人工智能:冲击,还是救赎?人工智能,人类期待的下一个科技新燃点正在试图“引爆”我们的社会交朋友、订餐、打车、网上购物、众筹投资等等,这些我们习以为常的生活技能已经被我们通过众多的社交媒体和App而掌握。然而,如今硅谷再次找到了下一个新燃点——人工智能(AI),试图再次“引爆”我们的世界。截至目前来看,人们对这一科技的未来十分有信心,并且部分学者及科学家,如牛津大学教授卢西亚诺·弗洛里迪,麻省理工斯隆管理学院的埃里克·布莱恩约弗森、安德鲁·麦卡菲等人,认为人工智能或许会成继哥白尼革命、达尔文革命后又一人类自我认知革命,蒸汽机工业革命后的又一机器革命。未来,人工智能究竟会成为人类认知的冲击力量,还是世界时代发展的技术革命救赎?“硅谷独家大王”,《纽约时报》高级科技记者约翰·马尔科夫,凭借他对互联网发展的惊人洞察力和敏锐度,为我们带来深刻解读。AI与IA《时间线》:尽管AI已经成为当前的热门话题,但是似乎AI还没有被给予一个较为完整的定义。在您看来,AI的定义是什么?马尔科夫: 从普遍共识角度来看,AI是一个关注于执行类似人类能力的技术的领域,包括从认知到语音、视觉以及物理运动。因此机器人学是AI的一个子集。值得注意的是,麦克卡尼最初创造了这个词,因为他想创造和替代控制论领域,主要是因为他不喜欢Norbert Wiener。《时间线》:在您的《与机器人共舞》这本书中,您为我们呈现了另一个概念,IA(智能增强)。您能为我们详细解释一下IA吗?马尔科夫:智能增强,即IA,是在20世纪60年代由计算机科学家Douglas Engelbart创造的。Engelbart后来还发明了直到现在我们仍在电脑和网络上使用的电脑鼠标,超文本和其他技术。在提出智能增强一词时,他打算使用各种基于计算机的技术来帮助知识工作者更有效地进行工作。《时间线》:关于AI与IA的发展关系,您认为它们之间是互斥的还是互相支持的?马尔科夫:AI与IA的关系是分歧并悖论的。悖论的原因是如果你增强人类智能,意味着你可能需要较少的人类去处理某个任务。我着手写《与机器人共舞》就是为了探索这两个在过去半个世纪都没有任何联系的截然不同的计算机世界。面对这个挑战,我认为的解决办法即是以人类为中心的工程设计。人机关系与机器人犯罪《时间线》:人机关系一直是很有争议的话题。在您看来最合适的人机关系是怎样的?您是否同意《人工智能时代》作者Jerry Kaplan教授提出的AI可能会加剧财富分配不均的观点?马尔科夫:计算机科学家Alan Kay曾说,我们可以选择去设计那些系统作为我们的奴隶,合作伙伴或主人。(他这番话来自黑格尔。)我也赞同通过设计那些可以充当工作同伴的系统来作为解决办法。至于Jerry Kaplan先生提出的关于技术产生更大的财富不平等的观点,我认为相关的证据和情况是复杂的。我看到有一些情况和趋势是反映了他的观点,但是另一些情况确实是与其相背离的。《时间线》:在机器帮人们解决很多问题同时也意味着人类在逐渐被机器简化。例如现在人们使用的智能手机将很多复杂程序简化,用户不用思考太多的操作流程,只要几步简单的操作就可以掌握它的功能,以至于帮助人们解决很多问题。您认为智能机器的“思维”是否会使人类智慧“退化”?马尔科夫:不得不说这确实是个问题,这事关我们怎样设计那些会与我们产生相互作用及相关性的AI。比如说,可能通过使用AI去增强一个医生的决策能力和诊断能力。或者,相反地,可能在AI的协助下使有较浅资历和能力的医生助手来替代医生。哪个是正确的选择呢?我想这是很难决定其一的,但它确实是一个社会选择。《时间线》:现在人们最直观的AI感受除了智能手机外就是目前大热的无人驾驶汽车,但是近期特斯拉无人驾驶汽车车祸死亡事故将安全问题推向舆论风口浪尖。关于最后的追责问题引起人们关注,您如何看待这类问题?在未来,机器人犯罪是否会成为重要的伦理问题之一?马尔科夫:完全无人驾驶要比欧洲、美国、亚洲的工程师所认为的无人驾驶挑战更大。来自技术和监管的挑战使得设计者需要比想象中更多的时间来设计完全无人驾驶系统。关于完全无人驾驶的责任认定问题,最简单的答案就是责任归属制造者。我认为AI技术将很快被滥用,正如现如今我们使用的相关计算机技术被滥用一样。或许,在未来,语音合成将很可能成为社会工程攻击人类诚信的武器。人工智能全球化与产业革命《时间线》:自集成电路发展开始,摩尔定律成为科技发展的默认趋势,但是似乎自大数据、云计算、AI等出现后,摩尔定律在逐渐被打破,您如何看待这种情况?对摩尔定律的突破是否也意味着科技发展的新形式?马尔科夫:摩尔定律的影响现在是失速的。登纳德缩放比例定律(关于处理器时针速度的指数增长)终结于2006年,并且单个晶体管成本的下降终结于2014年。这意味着始于1965年的“搭便车效应”现在已经终结了。我不知道制造技术在未来是否有新的突破,但是目前还未发生什么。这也不意味着计算机进程正在结束,只是未来可能更多的是依赖人类的创造力。《时间线》:随着技术的进步,AI技术已经成为部分国家的战略发展,从德国的工业0到中国的互联网+,AI全球化成为必然趋势,但这一趋势也毫无疑问地在挑战着目前的发展模式,您认为AI的爆发是否会彻底颠覆人类发展成为新一次的产业革命?马尔科夫:不,我认为不会的。AI本质是一种技术,就像汽锤或卡车一样。在任何社会中,它既可用来增强人类能力但也可取代人类。但这依赖于如何使用和部署AI技术。《时间线》:AI和智能机器人的渗透已经开始在影响人类生活了,我们看到在部分行业中,部分职业已经被机器人取代,同时因为AI的出现也衍生出不少新的行业,您认为这一变化是否在预示着AI对产业结构的改变?人类的工作真的会被智能机器抢走吗?您认为人们应该如何应对这一变化?马尔科夫:AI和机器人的到来要比其狂热者所认为的慢很多。这些技术在被演示的时候表现得非常好,但是目前有些技术在现实生活中仍有些不切实际。一些支持者认为,技术的快速发展在未来将是继续的趋势,但是事实上有些证据却表明速度是慢了下来,而不是持续加速。对于AI和机器人的到来,我认为在许多社会中,特别是那些正在加速成熟的国家,例如中国,如果机器人来得及时,那么对于这些国家来说将是很幸运的。中国竞争《时间线》:您能否简单对比下美国AI发展与中国AI发展,有何相同点和不同点?您对中国的AI技术和智能机器人的发展有何看法?对中国的企业家有何建议?马尔科夫:由于贵国政府没有允许我作为一个报道者在贵国工作,所以很抱歉我的观点很有限。不过,有证据表明,中国正在快速追赶美国的创新能力。但是我还没有见到中国计算机科学家和工程师有根本性的突破,大部分都还只是渐进式的发展。《时间线》:目前中国经济和科技在面临一次新的转型,中国逐渐在由“中国制造”转变为“中国创造”,您认为AI的爆发对这一转型会产生怎样的影响?马尔科夫:我认为“中国创造”是一个目标。当新奇的中国技术出现,或是源自中国想法而不是复制美国而产生的新技术平台出现时,那将会非常有意思。
第1章人工智能研究的发展和基本原则1.1人工智能的研究和应用1.2人工智能研究的发展1.3人工智能研究的成果1.4人工智能研究的基本原则1.5存在的问题和发展前景习题参考文献第2章问题求解的基本方法2.1一般图搜索2.1.1状态空间搜索2.1.2启发式搜索2.1.3状态空间抽象和生成一测试法2.1.4启发式搜索的适用性讨论2.2问题归约2.2.1问题归约的描述2.2.2与或图搜索2.2.3与或图的启发式搜索2.3基于归结的演绎推理2.3.1谓词演算2.3.2归结演绎方法2.3.3归结反演2.4基于规则的演绎推理2.4.1基于规则的正向演绎推理2.4.2基于规则的逆向演绎推理2.4.3演绎推理的应用讨论2.4.4逻辑编程语言Prolog本章小结习题参考文献第3章知识表示3.1知识和知识表示3.1.1知识原则3.1.2知识表示的作用3.1.3知识表示的功能3.1.4知识表示的性能3.1.5基本的知识表示方式3.2产生式表示3.2.1产生式系统3.2.2控制策略3.2.3产生式系统的分类3.3结构化表示3.3.1语义网络3.3.2框架表示法3.3.3面向对象的表示法3.4知识表示的实用化问题3.4.1程序性和陈述性知识3.4.2表示能力和推理效率之间的制约关系3.5基于本体的语义知识表示3.5.1语义知识表示和共享本体3.5.2本体表示语言的研究3.5.3Web本体语言OWL3.5.4语义Web的应用情景和支持技术本章小结习题参考文献第4章基于知识的系统4.1KB系统的开发4.1.1KB系统的一般概念4.1.2KB系统的体系结构原则4.1.3KB系统的开发过程4.1.4KB系统的开发工具和环境4.2设计基于产生式表示的KB系统开发工具4.2.1总体设计4.2.2xps的实现4.2.3应用实例——家族树4.2.4性能改进4.2.5开发工具OPS54.3专家系统实例——MYCIN4.3.1知识库的构造4.3.2推理机的设计4.3.3系统服务设施4.3.4开发工具EMYCIN4.4问题求解的结构化组织4.4.1结构化组织的需求4.4.2事务表4.4.3黑板法4.4.4问题求解建模4.4.5KB系统的高级技术4.5基于本体的知识系统4.5.1基础级本体工程4.5.2高级本体工程4.5.3开发基于本体的知识系统本章小结习题参考文献第5章自动规划和配置5.1经典规划技术5.1.1经典规划技术的发展5.1.2规划的基本概念5.1.3早期的自动规划技术5.1.4部分排序规划技术5.2自动规划技术的新进展5.2.1非经典规划技术的开发5.2.2自动规划技术的实用化5.2.3智能的调度、规划和项目管理5.3自动配置5.3.1配置的一般概念5.3.2自动配置的建模5.3.3XCON——计算机自动配置系统本章小结习题参考文献第6章机器学习6.1机器学习概论6.1.1机器学习的基本概念6.1.2机器学习的发展历史6.1.3机器学习分类6.2示例学习6.2.1示例学习的基本策略6.2.2决策树构造法ID36.3基于解释的学习6.3.1基于解释的泛化(EBG)6.3.2基于解释学习的若干基本问题6.4遗传算法6.4.1简单遗传算法6.4.2分类系统6.5加强学习6.5.1加强学习的基本方法6.5.2p学习6.5.3有关加强学习的进一步讨论6.6基于范例的学习6.6.1基于范例推理的过程6.6.2应用实例:智能饲料配方系统IcMIx6.7知识发现与数据挖掘6.7.1定理发现6.7.2数据挖掘6.7.3关联规则挖掘6.7.4数据库及网络中的知识发现本章小结习题参考文献第7章人工智能高级技术综述参考文献第二版本前面6章内容基本相同以下附带:第一版的第七章到第九章第七章 非单调推理和软计算1 传统逻辑系统的局限性2 非单调推理3 不确定推理4 模糊逻辑和模糊推理5 神经网络本章小结习题参考文献第八章 机器感知1 视觉与视觉图像2 图像特征提取3 视觉模型与识别4 自然语言理解5 机器翻译本章小结习题参考文献第九章 Agent技术和信息基础设施智能化1 Agent技术的研究和发展2 多Agent协作3 Agent通信4 信息基础设施的智能化本章小结习题参考文献……
人工智能(Artificial Intelligence) ,英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。人工智能是一门极富挑战性的科学,从事这项工作的人必须懂得计算机知识,心理学和哲学。人工智能是包括十分广泛的科学,它由不同的领域组成,如机器学习,计算机视觉等等,总的说来,人工智能研究的一个主要目标是使机器能够胜任一些通常需要人类智能才能完成的复杂工作。
文献综述3000字不包括参考文献。综述中任何与本文相关的重要成果都应当在综述中得到体现,并且在参考文献中列出。参考文献不能省略。有的科研论文可以将参考文献省略,但文献综述绝对不能省略,而且应是文中引用过的,能反映主题全貌的并且是作者直接阅读过的文献资料。参考文献的作用:科学研究具有传承性,任何一项学术成果几乎都是在他人已有的成果之上,经过不断研究获得的。标注参考文献有连接新、旧科研成果桥梁、纽带的作用。而准确规范地使用参考文献能体现出作者实事求是、严肃认真的治学态度。
人工智能应用范围比较广
人工智能(Artificial Intelligence) ,英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。人工智能是一门极富挑战性的科学,从事这项工作的人必须懂得计算机知识,心理学和哲学。人工智能是包括十分广泛的科学,它由不同的领域组成,如机器学习,计算机视觉等等,总的说来,人工智能研究的一个主要目标是使机器能够胜任一些通常需要人类智能才能完成的复杂工作。
你还是自己去汉斯出版社 的官网找下相关文献看看学习学习吧
人工智能是使用计算机编写的程序可以与人交流,使人感到与之交流的是一个人,而不是一台机器,比如可以和人下棋的计算机 程序,或者可以帮人决策的程序,如专家系统,如帮助病人的医疗诊断程序,或者帮助人决定投资的程序,人工智能应用范围很广。比如:博弈、自动推理、专家系统、自然语言理解、规划和机器人学、机器学习等。人工智能是一种计算机程序,可以辅助人们解决一些问题。
具/体/要/求/有/吗?
人工智能:冲击,还是救赎?人工智能,人类期待的下一个科技新燃点正在试图“引爆”我们的社会交朋友、订餐、打车、网上购物、众筹投资等等,这些我们习以为常的生活技能已经被我们通过众多的社交媒体和App而掌握。然而,如今硅谷再次找到了下一个新燃点——人工智能(AI),试图再次“引爆”我们的世界。截至目前来看,人们对这一科技的未来十分有信心,并且部分学者及科学家,如牛津大学教授卢西亚诺·弗洛里迪,麻省理工斯隆管理学院的埃里克·布莱恩约弗森、安德鲁·麦卡菲等人,认为人工智能或许会成继哥白尼革命、达尔文革命后又一人类自我认知革命,蒸汽机工业革命后的又一机器革命。未来,人工智能究竟会成为人类认知的冲击力量,还是世界时代发展的技术革命救赎?“硅谷独家大王”,《纽约时报》高级科技记者约翰·马尔科夫,凭借他对互联网发展的惊人洞察力和敏锐度,为我们带来深刻解读。AI与IA《时间线》:尽管AI已经成为当前的热门话题,但是似乎AI还没有被给予一个较为完整的定义。在您看来,AI的定义是什么?马尔科夫: 从普遍共识角度来看,AI是一个关注于执行类似人类能力的技术的领域,包括从认知到语音、视觉以及物理运动。因此机器人学是AI的一个子集。值得注意的是,麦克卡尼最初创造了这个词,因为他想创造和替代控制论领域,主要是因为他不喜欢Norbert Wiener。《时间线》:在您的《与机器人共舞》这本书中,您为我们呈现了另一个概念,IA(智能增强)。您能为我们详细解释一下IA吗?马尔科夫:智能增强,即IA,是在20世纪60年代由计算机科学家Douglas Engelbart创造的。Engelbart后来还发明了直到现在我们仍在电脑和网络上使用的电脑鼠标,超文本和其他技术。在提出智能增强一词时,他打算使用各种基于计算机的技术来帮助知识工作者更有效地进行工作。《时间线》:关于AI与IA的发展关系,您认为它们之间是互斥的还是互相支持的?马尔科夫:AI与IA的关系是分歧并悖论的。悖论的原因是如果你增强人类智能,意味着你可能需要较少的人类去处理某个任务。我着手写《与机器人共舞》就是为了探索这两个在过去半个世纪都没有任何联系的截然不同的计算机世界。面对这个挑战,我认为的解决办法即是以人类为中心的工程设计。人机关系与机器人犯罪《时间线》:人机关系一直是很有争议的话题。在您看来最合适的人机关系是怎样的?您是否同意《人工智能时代》作者Jerry Kaplan教授提出的AI可能会加剧财富分配不均的观点?马尔科夫:计算机科学家Alan Kay曾说,我们可以选择去设计那些系统作为我们的奴隶,合作伙伴或主人。(他这番话来自黑格尔。)我也赞同通过设计那些可以充当工作同伴的系统来作为解决办法。至于Jerry Kaplan先生提出的关于技术产生更大的财富不平等的观点,我认为相关的证据和情况是复杂的。我看到有一些情况和趋势是反映了他的观点,但是另一些情况确实是与其相背离的。《时间线》:在机器帮人们解决很多问题同时也意味着人类在逐渐被机器简化。例如现在人们使用的智能手机将很多复杂程序简化,用户不用思考太多的操作流程,只要几步简单的操作就可以掌握它的功能,以至于帮助人们解决很多问题。您认为智能机器的“思维”是否会使人类智慧“退化”?马尔科夫:不得不说这确实是个问题,这事关我们怎样设计那些会与我们产生相互作用及相关性的AI。比如说,可能通过使用AI去增强一个医生的决策能力和诊断能力。或者,相反地,可能在AI的协助下使有较浅资历和能力的医生助手来替代医生。哪个是正确的选择呢?我想这是很难决定其一的,但它确实是一个社会选择。《时间线》:现在人们最直观的AI感受除了智能手机外就是目前大热的无人驾驶汽车,但是近期特斯拉无人驾驶汽车车祸死亡事故将安全问题推向舆论风口浪尖。关于最后的追责问题引起人们关注,您如何看待这类问题?在未来,机器人犯罪是否会成为重要的伦理问题之一?马尔科夫:完全无人驾驶要比欧洲、美国、亚洲的工程师所认为的无人驾驶挑战更大。来自技术和监管的挑战使得设计者需要比想象中更多的时间来设计完全无人驾驶系统。关于完全无人驾驶的责任认定问题,最简单的答案就是责任归属制造者。我认为AI技术将很快被滥用,正如现如今我们使用的相关计算机技术被滥用一样。或许,在未来,语音合成将很可能成为社会工程攻击人类诚信的武器。人工智能全球化与产业革命《时间线》:自集成电路发展开始,摩尔定律成为科技发展的默认趋势,但是似乎自大数据、云计算、AI等出现后,摩尔定律在逐渐被打破,您如何看待这种情况?对摩尔定律的突破是否也意味着科技发展的新形式?马尔科夫:摩尔定律的影响现在是失速的。登纳德缩放比例定律(关于处理器时针速度的指数增长)终结于2006年,并且单个晶体管成本的下降终结于2014年。这意味着始于1965年的“搭便车效应”现在已经终结了。我不知道制造技术在未来是否有新的突破,但是目前还未发生什么。这也不意味着计算机进程正在结束,只是未来可能更多的是依赖人类的创造力。《时间线》:随着技术的进步,AI技术已经成为部分国家的战略发展,从德国的工业0到中国的互联网+,AI全球化成为必然趋势,但这一趋势也毫无疑问地在挑战着目前的发展模式,您认为AI的爆发是否会彻底颠覆人类发展成为新一次的产业革命?马尔科夫:不,我认为不会的。AI本质是一种技术,就像汽锤或卡车一样。在任何社会中,它既可用来增强人类能力但也可取代人类。但这依赖于如何使用和部署AI技术。《时间线》:AI和智能机器人的渗透已经开始在影响人类生活了,我们看到在部分行业中,部分职业已经被机器人取代,同时因为AI的出现也衍生出不少新的行业,您认为这一变化是否在预示着AI对产业结构的改变?人类的工作真的会被智能机器抢走吗?您认为人们应该如何应对这一变化?马尔科夫:AI和机器人的到来要比其狂热者所认为的慢很多。这些技术在被演示的时候表现得非常好,但是目前有些技术在现实生活中仍有些不切实际。一些支持者认为,技术的快速发展在未来将是继续的趋势,但是事实上有些证据却表明速度是慢了下来,而不是持续加速。对于AI和机器人的到来,我认为在许多社会中,特别是那些正在加速成熟的国家,例如中国,如果机器人来得及时,那么对于这些国家来说将是很幸运的。中国竞争《时间线》:您能否简单对比下美国AI发展与中国AI发展,有何相同点和不同点?您对中国的AI技术和智能机器人的发展有何看法?对中国的企业家有何建议?马尔科夫:由于贵国政府没有允许我作为一个报道者在贵国工作,所以很抱歉我的观点很有限。不过,有证据表明,中国正在快速追赶美国的创新能力。但是我还没有见到中国计算机科学家和工程师有根本性的突破,大部分都还只是渐进式的发展。《时间线》:目前中国经济和科技在面临一次新的转型,中国逐渐在由“中国制造”转变为“中国创造”,您认为AI的爆发对这一转型会产生怎样的影响?马尔科夫:我认为“中国创造”是一个目标。当新奇的中国技术出现,或是源自中国想法而不是复制美国而产生的新技术平台出现时,那将会非常有意思。
人工智能是使用计算机编写的程序可以与人交流,使人感到与之交流的是一个人,而不是一台机器,比如可以和人下棋的计算机 程序,或者可以帮人决策的程序,如专家系统,如帮助病人的医疗诊断程序,或者帮助人决定投资的程序,人工智能应用范围很广。比如:博弈、自动推理、专家系统、自然语言理解、规划和机器人学、机器学习等。人工智能是一种计算机程序,可以辅助人们解决一些问题。
那你在网上找找(人工智能与机器人研究)吧~~看看别人的是怎么写的~
人工智能的随着工资上涨,人工智能可以节约很多成本问题。
人工智能(Artificial Intelligence) ,英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。人工智能是一门极富挑战性的科学,从事这项工作的人必须懂得计算机知识,心理学和哲学。人工智能是包括十分广泛的科学,它由不同的领域组成,如机器学习,计算机视觉等等,总的说来,人工智能研究的一个主要目标是使机器能够胜任一些通常需要人类智能才能完成的复杂工作。
文献综述就是用资料,只不多有一个比较固定的格式。主要是,关于你的论文主题,国内外学者提出多点看法和主张。某某学者在某某文章中,就你的论文主题,提出看法认为如何如何都是这样的语句,写出来就ok了。需要大概七八篇文章的论述,最好是高级的人物写的文章,发表在高级期刊上的。-wenxianzongshu-html文献综述的写作技巧和范文,中国知网的,很全面。合适采纳啊
我觉得主要是温情片吧~小男孩虽是机器人,但对母爱有着惊人的依赖和执着,至始至终深深地爱着那个把她领回去的母亲。是一大催泪片哦~特别是影片的结尾更是让人不禁流下眼泪。蛮感人的,当时在寝室里看的,小男孩忧郁的眼神看了就心疼。
回答 课题研究计划(或称开题报告)是有格式要求的。一般包括:课题名称、选题背景、理由、国内外成果综述、研究内容、目标、方法、步骤、预期成果等。请参考我设计的下面这个: 1、课题名称: 关于人工智能的可行性研究 2、课题的来由: 随着时代的发展,社会分工日趋复杂,并且有的工种具有一定的危险性,另一方面,随着经济水平的提高,人们产生了越来越高的生活需求,越来越多人的迫切需要从消费水平进入享受水平,人们生产的目的是为了追求更好的生活。二者之间的矛盾导致现有人力无法满足社会生产发展的需要,急切需要一种更为发达、效率更高的生产工具代替人力进行生产流程,只有这样才能最大显得的提高人们的生活质量,现代人工作的压力、紧张和心理疾病才有可能得到根本的缓解,也才有利于我们和谐社会的构建。随着计算机技术的不断发展,我们从中看到了希望。就是依托计算机技术来开发人工智能,进入生产、生活领域。 3、研究的目的及意义: 本课题研究通过探讨人工智能的原理明确开发人工智能的可行性。开发人工智能将极大地提高社会生产力,将有助于改善我们的生活质量,将有助于社会、文化、教育等改革。 4、活动计划与活动步骤:(含分工,如有可能,最好加上时间安排) (1)组长负责进行资料收集、查询、整理,完成人工智能相关文献综述; (2)两组员负责通过资料查询了解人工智能原理等相关理论知识; (3)两组员通过访谈计算机专家了解人工智能的可行性; (4)全体组员通过访谈、观察了解工厂工人工作压力情况和人们生活状况,了解人们的需要; (5)全体组员对查询和收集的资料进行整理分析,完成研究。 5、可行性分析: (1)我们课题组对计算机技术非常感兴趣,具有较好的基础,尤其是人工智能感兴趣; (2)我们联系到了计算机专业的教师和科研院所的计算机专家作为指导教师; (3)人工智能理论研究成果比较多,对我们课题的研究提供了丰富的基础性支撑; (4)我们收集到了比较多的相关资料和书籍等。 6、小组分工:(参见4) 7、研究方法:文献研究法、访谈法、观察法等。 8、预期成果:论文、研究报告、访谈调查报告 更多19条
这都不知道,不会吧哈哈