VeryCD上的电子书 书名:SBIA 2004——人工智能的最新进展Advances in Artificial Intelligence走近人工智能 人工智能(Artificial Intelligence,AI)一直都处于计算机技术的最前沿,经历了几起几落…… 长久以来,人工智能对于普通人来说是那样的可望而不可及,然而它却吸引了无数研究人员为之奉献才智,从美国的麻省理工学院(MIT)、卡内基-梅隆大学(CMU)到IBM公司,再到日本的本田公司、SONY公司以及国内的清华大学、中科院等科研院所,全世界的实验室都在进行着AI技术的实验。不久前,著名导演斯蒂文·斯皮尔伯格还将这一主题搬上了银幕,科幻片《人工智能》(AI)对许多人的头脑又一次产生了震动,引起了一些人士了解并探索人工智能领域的兴趣。 在本期技术专题中,中国科学院计算技术研究所智能信息处理开放实验室的几位研究人员将引领我们走近人工智能这一充满挑战与机遇的领域。 计算机与人工智能 "智能"源于拉丁语LEGERE,字面意思是采集(特别是果实)、收集、汇集,并由此进行选择,形成一个东西。INTELEGERE是从中进行选择,进而理解、领悟和认识。正如帕梅拉·麦考达克在《机器思维》(Machines Who Thinks,1979)中所提出的: 在复杂的机械装置与智能之间存在长期的联系。从几个世纪前出现的神话般的巨钟和机械自动机开始,人们已对机器操作的复杂性与自身的某些智能活动进行直观联系。经过几个世纪之后,新技术已使我们所建立的机器的复杂性大为提高。1936年,24岁的英国数学家图灵(Turing)提出了"自动机"理论,把研究会思维的机器和计算机的工作大大向前推进了一步,他也因此被称为"人工智能之父"。 人工智能领域的研究是从1956年正式开始的,这一年在达特茅斯大学召开的会议上正式使用了"人工智能"(Artificial Intelligence,AI)这个术语。随后的几十年中,人们从问题求解、逻辑推理与定理证明、自然语言理解、博弈、自动程序设计、专家系统、学习以及机器人学等多个角度展开了研究,已经建立了一些具有不同程度人工智能的计算机系统,例如能够求解微分方程、设计分析集成电路、合成人类自然语言,而进行情报检索,提供语音识别、手写体识别的多模式接口,应用于疾病诊断的专家系统以及控制太空飞行器和水下机器人更加贴近我们的生活。我们熟知的IBM的"深蓝"在棋盘上击败了国际象棋大师卡斯帕罗夫就是比较突出的例子。 当然,人工智能的发展也并不是一帆风顺的,也曾因计算机计算能力的限制无法模仿人脑的思考以及与实际需求的差距过远而走入低谷,但是随着硬件和软件的发展,计算机的运算能力在以指数级增长,同时网络技术蓬勃兴起,确保计算机已经具备了足够的条件来运行一些要求更高的AI软件,而且现在的AI具备了更多的现实应用的基础。90年代以来,人工智能研究又出现了新的高潮。 我们有幸采访了中国科学院计算技术研究所智能信息处理开放实验室史忠植研究员,请他和他的实验室成员引领我们走近人工智能这个让普通人感到深奥却又具有无穷魅力的领域。 问: 目前人工智能研究出现了新的高潮,那么现在有哪些新的研究热点和实际应用呢? 答: AI研究出现了新的高潮,这一方面是因为在人工智能理论方面有了新的进展,另一方面也是因为计算机硬件突飞猛进的发展。随着计算机速度的不断提高、存储容量的不断扩大、价格的不断降低以及网络技术的不断发展,许多原来无法完成的工作现在已经能够实现。目前人工智能研究的3个热点是: 智能接口、数据挖掘、主体及多主体系统。 智能接口技术是研究如何使人们能够方便自然地与计算机交流。为了实现这一目标,要求计算机能够看懂文字、听懂语言、说话表达,甚至能够进行不同语言之间的翻译,而这些功能的实现又依赖于知识表示方法的研究。因此,智能接口技术的研究既有巨大的应用价值,又有基础的理论意义。目前,智能接口技术已经取得了显著成果,文字识别、语音识别、语音合成、图像识别、机器翻译以及自然语言理解等技术已经开始实用化。 数据挖掘就是从大量的、不完全的、有噪声的、模糊的、随机的实际应用数据中提取隐含在其中的、人们事先不知道的、但又是潜在有用的信息和知识的过程。数据挖掘和知识发现的研究目前已经形成了三根强大的技术支柱: 数据库、人工智能和数理统计。主要研究内容包括基础理论、发现算法、数据仓库、可视化技术、定性定量互换模型、知识表示方法、发现知识的维护和再利用、半结构化和非结构化数据中的知识发现以及网上数据挖掘等。 主体是具有信念、愿望、意图、能力、选择、承诺等心智状态的实体,比对象的粒度更大,智能性更高,而且具有一定自主性。主体试图自治地、独立地完成任务,而且可以和环境交互,与其他主体通信,通过规划达到目标。多主体系统主要研究在逻辑上或物理上分离的多个主体之间进行协调智能行为,最终实现问题求解。多主体系统试图用主体来模拟人的理性行为,主要应用在对现实世界和社会的模拟、机器人以及智能机械等领域。目前对主体和多主体系统的研究主要集中在主体和多主体理论、主体的体系结构和组织、主体语言、主体之间的协作和协调、通信和交互技术、多主体学习以及多主体系统应用等方面。 问: 您在人工智能领域研究了几十年,参与了许多国家重点研究课题,非常清楚国内外目前人工智能领域的研究情况。您认为目前我国人工智能的研究情况如何? 答: 我国开始"863计划"时,正值全世界的人工智能热潮。"863-306"主题的名称是"智能计算机系统",其任务就是在充分发掘现有计算机潜力的基础上,分析现有计算机在应用中的缺陷和"瓶颈",用人工智能技术克服这些问题,建立起更为和谐的人-机环境。经过十几年来的努力,我们缩短了我国人工智能技术与世界先进水平的差距,也为未来的发展奠定了技术和人才基础。 但是也应该看到目前我国人工智能研究中还存在一些问题,其特点是: 课题比较分散,应用项目偏多、基础研究比例略少、理论研究与实际应用需求结合不够紧密。选题时,容易跟着国外的选题走; 立项论证时,惯于考虑国外怎么做; 落实项目时,又往往顾及面面俱到,大而全; 再加上受研究经费的限制,所以很多课题既没有取得理论上的突破,也没有太大的实际应用价值。 今后,基础研究的比例应该适当提高,同时人工智能研究一定要与应用需求相结合。科学研究讲创新,而创新必须接受应用和市场的检验。因此,我们不仅要善于找到解决问题的答案,更重要的是要发现最迫切需要解决的问题和最迫切需要满足的市场需求。 问: 请您预测一下人工智能将来会向哪些方面发展? 答: 技术的发展总是超乎人们的想象,要准确地预测人工智能的未来是不可能的。但是,从目前的一些前瞻性研究可以看出未来人工智能可能会向以下几个方面发展: 模糊处理、并行化、神经网络和机器情感。 目前,人工智能的推理功能已获突破,学习及联想功能正在研究之中,下一步就是模仿人类右脑的模糊处理功能和整个大脑的并行化处理功能。人工神经网络是未来人工智能应用的新领域,未来智能计算机的构成,可能就是作为主机的冯·诺依曼型机与作为智能外围的人工神经网络的结合。研究表明: 情感是智能的一部分,而不是与智能相分离的,因此人工智能领域的下一个突破可能在于赋予计算机情感能力。情感能力对于计算机与人的自然交往至关重要。 人工智能一直处于计算机技术的前沿,人工智能研究的理论和发现在很大程度上将决定计算机技术的发展方向。今天,已经有很多人工智能研究的成果进入人们的日常生活。将来,人工智能技术的发展将会给人们的生活、工作和教育等带来更大的影响。 什么是人工智能? 人工智能也称机器智能,它是计算机科学、控制论、信息论、神经生理学、心理学、语言学等多种学科互相渗透而发展起来的一门综合性学科。从计算机应用系统的角度出发,人工智能是研究如何制造出人造的智能机器或智能系统,来模拟人类智能活动的能力,以延伸人们智能的科学。 AI理论的实用性 在一年一度AT&T实验室举行的机器人足球赛中,每支球队的"球员"都装备上了AI软件和许多感应器,它们都很清楚自己该踢什么位置,同时也明白有些情况下不能死守岗位。尽管现在的AI技术只能使它们大部分时间处于个人盘带的状态,但它们传接配合的能力正在以很快的速度改进。 这种AI机器人组队打比赛看似无聊,但是有很强的现实意义。因为通过这类活动可以加强机器之间的协作能力。我们知道,Internet是由无数台服务器和无数台路由器组成的,路由器的作用就是为各自的数据选择通道并加以传送,如果利用一些智能化的路由器很好地协作,就能分析出传输数据的最佳路径,从而可以大大减少网络堵塞。 我国也已经在大学中开展了机器人足球赛,有很多学校组队参加,引起了大学生对人工智能研究的兴趣。 未来的AI产品 安放于加州劳伦斯·利佛摩尔国家实验室的ASCI White电脑,是IBM制造的世界最快的超级电脑,但其智力能力也仅为人脑的千分之一。现在,IBM正在开发能力更为强大的新超级电脑--"蓝色牛仔"(Blue Jean)。据其研究主任保罗·霍恩称,预计于4年后诞生的"蓝色牛仔"的智力水平将大致与人脑相当。 麻省理工学院的AI实验室进行一个的代号为Cog的项目。Cog计划意图赋予机器人以人类的行为。该实验的一个项目是让机器人捕捉眼睛的移动和面部表情,另一个项目是让机器人抓住从它眼前经过的东西,还有一个项目则是让机器人学会聆听音乐的节奏并将其在鼓上演奏出来。
挺难的,相当于顶级SCI期刊,你觉得呢~
有人工智能了,还需要人来写文章吗?
人工智能是否超越人类大脑的论文详情可以具体和我说说
人工智能是使用计算机编写的程序可以与人交流,使人感到与之交流的是一个人,而不是一台机器,比如可以和人下棋的计算机 程序,或者可以帮人决策的程序,如专家系统,如帮助病人的医疗诊断程序,或者帮助人决定投资的程序,人工智能应用范围很广。比如:博弈、自动推理、专家系统、自然语言理解、规划和机器人学、机器学习等。人工智能是一种计算机程序,可以辅助人们解决一些问题。
严格意义上讲,人是人生的,人工智能是人造的,差别只有两个:出生方式与智能水平。拿出生说事儿的人都有公主病,而拿智能说事儿的人通常都有歧视残疾之嫌,都不是啥好事儿。总的来说,人类与智能未来的关系主要取决于智能水平,对于弱智能会和使用家电一样,对于类人智能应该类似邻里关系。毕竟最早实现的类人智能,很可能就是移植了某个人的思维意识的人工智能。人工智能和人类的区别在于,人工智能是人造人,人类是地球生态造人。所以,假设这个世界是唯物可知论的,那么人工智能将来是一定会取代人类作为人类文明的延续的。地球生态对于进化的影响因素是有限的,人类是地球生态造的,其复杂程度一定也是有限的,当我们通过望远镜和显微镜看到了更加复杂的世界时,更进一步的进化就不是地球生态能完成的了,这需要我们自己努力。我想这是可以预见的,当人工智能拥有了自我学习和自我进化能力后,超过人类是一定的事情。我认为,人工智能不是人类的工具,更不是人类的敌人,他就是人类本身,是人类文明进化的表现,从碳基到硅基,从自然进化到自我进化,从顺从环境到改造环境。这才是人类文明的未来,不然受限于大脑的容量,寿命的长短,人类文明就走到末路了。把细胞捏把捏把造出个生命,并不比把零件组装组装造出个生命伟大,之所以觉得机器不像生命,是因为他还太简陋,太不完善。当他完善的比人体组织还复杂,造个机器人和生个孩子是一样的,还更聪明懂事。所以原始的人类一定会逐渐灭绝,被新人类取代。不要觉得人类灭绝好像是件悲惨的事情,这和人去世是一样的,我们和父母长得不一样,性格不一样,能力也不一样,但当我们的父母去世,我们不会说父母灭绝了,因为他们创造了我们,影响了我们,我们是他们的延续,也是文明的延续。人工智能是人类智能的必要补充,但是人工智能与人类智能仍存在着本质的区别:1、人工智能是机械的物理过程,不是生物过程。它不具备世界观、人生观、情感、意志、兴趣、爱好等。2、人工智能在解决问题时,不会意识到这是什么问题,它有什么意义,会带来什么后果。3、电脑必须接受人脑的指令,按预定的程序进行工作。4、人工机器没有社会性。作为社会存在物的人,其脑功能是适应社会生活的需要而产生和发展的。
基于人工智能的实验数据和海量资源,代替人类的论文完全没有问题。<建网站选择p域名
回答 您现在可以使用这种新的图像到图像转换技术,从粗糙甚至不完整的草图生成高质量的人脸图像,无需绘图技巧!如果你的画技和我一样差,你甚至可以调整眼睛、嘴巴和鼻子对最终图像的影响。让我们看看它是否真的有效,以及他们是如何做到的。 Learning to Simulate Dynamic Environments with GameGAN [3] 这项研究由英伟达多伦多AI实验室和日本游戏大厂万代南梦宫 *BANDAI NAMCO) 一同开发,技术来自前者,数据来自后者。 简单来说,仅对简单的游戏录像和玩家输入进行学习,GameGAN 就能够模拟出接近真实游戏的环境,还不需要游戏引擎和底层代码。它的底层是在 AI 领域很有名的生成对抗网络 (GAN)。 PULSE: Self-Supervised Photo Upsampling via Latent Space Exploration of Generative Models [4] 它可以把超低分辨率的16x16图像转换成1080p高清晰度的人脸!你不相信我?然后你就可以像我一样,在不到一分钟的时间里自己试穿一下! Unsupervised Translation of Programming Languages [5] 这种新模型在没有任何监督的情况下将代码从一种编程语言转换成另一种编程语言!它可以接受一个Python函数并将其转换成c++函数,反之亦然,不需要任何先前的例子!它理解每种语言的语法,因此可以推广到任何编程语言!我们来看看他们是怎么做到的。 PIFuHD: Multi-Level Pixel-Aligned Implicit Function for High-Resolution 3D Human Digitization [6] 这个人工智能从2D图像生成3D高分辨率的人的重建!它只需要一个单一的图像你生成一个3D头像,看起来就像你,甚至从背后! High-Resolution Neural Face Swapping for Visual Effects [7] 迪士尼的研究人员在论文中开发了一种新的高分辨率视觉效果人脸交换算法。它能够以百万像素的分辨率渲染照片真实的结果。。它们的目标是在保持actor的性能的同时,从源actor交换目标actor的外观。这是非常具有 提问 大一人工智能课程学习总结,八百字。 回答 我学习人工智能已经快一年的时间,有许多心得可以和大家分享一下。人工智能,英文是Artificial Intelligence,简称AI。人工智能,最早是由著名计算机科学家图灵在20世纪50年代提出的,就是著名的“图灵测试”。最近几年,随着深度学习发展,人工智能被运用在各行各业,因此有人把人工智能称为第四次科技革命,他将给人们的生活带来翻天覆地的变化。 人工智能怎么学习呢? AI的基础是数据,是对数据进行挖掘、训练和应用。所以基础中的基础是数学,你得要先掌握高等数学、线性代数、概率论和数理统计等相关知识。 学习Python语言。Python最近几年非常火,学习的人非常多,甚至有些地区小学也开设这门课。为什么Python会迅速传红呢?首先,Python编程的代码量只有Java的1/5不到,简单易学。其次,Python的功能强大,写爬虫、游戏开发、自动化运维、机器学习和人工智能领域。最后,Python拥有丰富强大的库,如前端开发的Flask和Django、图形界面的tkInter、矩阵计算numpy、绘图的matplotlib等等。 学习各类机器学习和算法模型。这其中主要包含监督学习和非监督学习,监督学习中有:线性回归、逻辑回归、随机森林、SVM、决策树、等。非监督学习有:聚类、KMeans、DBScan等。 深度学习可以说是AI的精髓。深度学习主要流行的框架有:Tensorflow、Caffe、MXNet、Keras、Pytorch等。 我觉得自学,还是非常费劲的,效果不一定好,最好有老师指导,否则进展很慢,可以先跟教学视频学习,看书实操,做一些具体的项目等。 更多18条
我们期待机器智能化,通常想的是智能化带来的便利,很少思考智能化的机器可能产生的不利影响。机器智能化可以为我们节省很多精力,可以节省很多时间,可以辅助工业生产,降低生产成本,带来廉价的产品。凡事有一利必有一弊,机器智能化也改变了人们的生活,从深层次上改变人们的生活形态。1、造成人对机器的过度依赖。2、侵犯了人的隐私空间。3、打破原生态环境。4、造成新的不平等。5、生活节奏加快使人们不能适应。6、造成就业问题。7、造成人的自卑。8、挑战人类生存。凡是都有替代性,当我们依靠吃药来抵抗病菌的时候,人体自身免疫力就会下降;当我们依靠激素来对抗感染时,会造成很多后遗症;当我们吃甜食来维持血糖时,人体本身的血糖调节能力就会下降。同样,如果机器替代了人们的劳动,人们的劳动能力就会下降;当机体替代我们的技能,我的技能就会下降;当机器代替我们的思考和记忆,我们的思考和记忆能力就会下降。机器的智能化必然使在替代人们体力劳动和脑力劳动的同时,让人们逐渐依赖机器,使独立生存能力下降。应对办法就是主动进行体力运动和思维训练,维持一定的独立生存能力。过去人们生活相对隔离,由于现代通讯、网络技术,信息到达速度极快,我们很难置身世外了,想关闭电话、网络,到一个无人打扰的地方,已经成为一种奢侈的生活方式,不是所有人都能做到的。当摄像头被安装的时候,人们担心被录像,但现在已经习以为常;当拍照手机出现时,