首页

> 期刊发表知识库

首页 期刊发表知识库 问题

四年级的数学论文

发布时间:

四年级的数学论文

数学小论文:年龄问题四年级300字  今天,我在做题时被一道应用题给难住了。这道题的题目是:小华今年3岁,今年爸爸26岁,几年后爸爸的年龄是小华的3倍?我百思不得其解。  后来妈妈回来了,我就请教妈妈。妈妈帮我分析:根据这个题目的条件可知,今年爸爸和小华的“年龄差”是26-4=24(岁)。再根据“爸爸的年龄是小华的3倍”这一关系,画张图试试。我们俩就开始画了起来。  画了图之后,我马上明白过来了:他们俩过了几年后,“年龄差”还是24岁。再根据差倍问题的解法求出几年后小华的年龄,用几年后小华的年龄减去2岁,就可以求出中间经过了几年了。  解是:26-2=24(岁)  24÷(3-1)=12(岁)  12-2=10(年)  答:10年后爸爸的年龄是小华的3倍。  妈妈又让我验算一下,10年后爸爸的年龄是不是小华的3倍。  (26+10)÷(2+10)=36÷12=3  耶!我答对了。看来做题先得画图,画了图就能就一目了然了。

生活中的数学平安夜,妈妈带我去逛商场到了商场一看,今天商场里到处都在搞活动妈妈对我说;“今天在搞活动,商场的东西一定比平时便宜,看看我们有没有什么想买的”在商场逛了一圈,我看中了一双鞋子,标价318元,这个柜台搞的活动时满166减61元,妈妈对我说:“平时不搞活动时这种鞋打8折”营业员告诉我们今天搞活动买鞋可划算了,说完就要帮我们按照活动价开票,这时妈妈突然说:“等一下”转身又对我说:“你算一下按照活动价到底有没有便宜”我心想:搞活动嘛肯定比平时要便宜,还要算什么呢?但是妈妈让我算,我只能勉为其难,算一下呗按照活动价算,满166减61元,318元里只有一个166,也就是只能减一个61元,318-61=257(元),按照平时的价格打8折计算,318*80%=4(元)一算真的还是平时不搞活动时的价格便宜,于是妈妈对营业员说还是按照平时的价格开票吧付过钱后,我们就拿了鞋走开了离开了柜台,妈妈就对我说:“我们平时做什么事情都要认真考虑,别被一些表面现象所迷惑了”看来数学在生活中还真是无处不在啊

这么些、::你们。你是否会有所?你要去找 gfufyìyytx四个地方需要懂gdajòdfkryeymsj人不够敢说出的话就不知道仍然坚持✊!你的手机没有信号?在线的

数学小论文一关于“0”0,可以说是人类最早接触的数了。我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”这样说显然是不正确的。我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。”“任何数除以0即为没有意义。”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少。一个整体无法分成0份,即“没有意义”。后来我才了解到a/0中的0可以表示以零为极限的变量(一个变量在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变量在变化过程中其绝对值永远大于任意大的已定正数)。从中得到关于0的又一个定理“以零为极限的变量,叫做无穷小”。“105、203房间、2003年”中,虽都有0的出现,粗“看”差不多;彼此意思却不同。105、2003年中的0指数的空位,不可删去。203房间中的0是分隔“楼(2)”与“房门号(3)”的(即表示二楼八号房),可删去。0还表示……爱因斯坦曾说:“要探究一个人或者一切生物存在的意义和目的,宏观上看来,我始终认为是荒唐的。”我想研究一切“存在”的数字,不如先了解0这个“不存在”的数,不至于成为爱因斯坦说的“荒唐”的人。作为一个中学生,我的能力毕竟是有限的,对0的认识还不够透彻,今后望(包括行动)能在“知识的海洋”中发现“我的新大陆”。

四年级的数学小论文

数学小论文:年龄问题四年级300字  今天,我在做题时被一道应用题给难住了。这道题的题目是:小华今年3岁,今年爸爸26岁,几年后爸爸的年龄是小华的3倍?我百思不得其解。  后来妈妈回来了,我就请教妈妈。妈妈帮我分析:根据这个题目的条件可知,今年爸爸和小华的“年龄差”是26-4=24(岁)。再根据“爸爸的年龄是小华的3倍”这一关系,画张图试试。我们俩就开始画了起来。  画了图之后,我马上明白过来了:他们俩过了几年后,“年龄差”还是24岁。再根据差倍问题的解法求出几年后小华的年龄,用几年后小华的年龄减去2岁,就可以求出中间经过了几年了。  解是:26-2=24(岁)  24÷(3-1)=12(岁)  12-2=10(年)  答:10年后爸爸的年龄是小华的3倍。  妈妈又让我验算一下,10年后爸爸的年龄是不是小华的3倍。  (26+10)÷(2+10)=36÷12=3  耶!我答对了。看来做题先得画图,画了图就能就一目了然了。

生活中的数学平安夜,妈妈带我去逛商场到了商场一看,今天商场里到处都在搞活动妈妈对我说;“今天在搞活动,商场的东西一定比平时便宜,看看我们有没有什么想买的”在商场逛了一圈,我看中了一双鞋子,标价318元,这个柜台搞的活动时满166减61元,妈妈对我说:“平时不搞活动时这种鞋打8折”营业员告诉我们今天搞活动买鞋可划算了,说完就要帮我们按照活动价开票,这时妈妈突然说:“等一下”转身又对我说:“你算一下按照活动价到底有没有便宜”我心想:搞活动嘛肯定比平时要便宜,还要算什么呢?但是妈妈让我算,我只能勉为其难,算一下呗按照活动价算,满166减61元,318元里只有一个166,也就是只能减一个61元,318-61=257(元),按照平时的价格打8折计算,318*80%=4(元)一算真的还是平时不搞活动时的价格便宜,于是妈妈对营业员说∶“还是按照平时的价格开票吧。”付过钱后,我们就拿了鞋走了。离开了柜台,妈妈就对我说:“我们平时做什么事情都要认真考虑,别被一些表面现象所迷惑了”看来数学在生活中还真是无处不在啊!

这么些、::你们。你是否会有所?你要去找 gfufyìyytx四个地方需要懂gdajòdfkryeymsj人不够敢说出的话就不知道仍然坚持✊!你的手机没有信号?在线的

dmo j l wo

数学小论文,四年级

这么些、::你们。你是否会有所?你要去找 gfufyìyytx四个地方需要懂gdajòdfkryeymsj人不够敢说出的话就不知道仍然坚持✊!你的手机没有信号?在线的

dmo j l wo

有一天我和爷爷一起去商场上买东西,走到超市里,发现你买一把面条送一把面条,原来的话就是五块钱一把面条,但是现在呢两包合起来是七块钱,剩下自由发挥

我自己写的,你可以借鉴一下黄金分割 对于“黄金分割”大家应该都不陌生吧!由于公元前6世纪古希腊的毕达哥拉斯学派研究过正五边形和正十边形的作图,因此现代数学家们推断当时毕达哥拉斯学派已经触及甚至掌握了黄金分割。 公元前4世纪,古希腊数学家欧多克索斯第一个系统研究了这一问题,并建立起比例理论。 公元前300年前后欧几里得撰写《几何原本》时吸收了欧多克索斯的研究成果,进一步系统论述了黄金分割,成为最早的有关黄金分割的论著。 中世纪后,黄金分割被披上神秘的外衣,意大利数家帕乔利称中末比为神圣比例,并专门为此著书立说。德国天文学家开普勒称黄金分割为神圣分割。 到19世纪黄金分割这一名称才逐渐通行。黄金分割数有许多有趣的性质,人类对它的实际应用也很广泛。最著名的例子是优选学中的黄金分割法或618法,是由美国数学家基弗于1953年首先提出的,70年代在中国推广。也许,618在科学艺术上的表现我们已了解了很多,但是,你有没有听说过,618还与炮火连天、硝烟弥漫、血肉横飞的惨烈、残酷的战场也有着不解之缘,在军事上也显示出它巨大而神秘的力量?一代枭雄的的拿破仑大帝可能怎么也不会想到,他的命运会与618紧紧地联系在一起。1812年6月,正是莫斯科一年中气候最为凉爽宜人的夏季,在未能消灭俄军有生力量的博罗金诺战役后,拿破仑于此时率领着他的大军进入了莫斯科。这时的他可是踌躇满志、不可一世。他并未意识到,天才和运气此时也正从他身上一点点地消失,他一生事业的顶峰和转折点正在同时到来。后来,法军便在大雪纷扬、寒风呼啸中灰溜溜地撤离了莫斯科。三个月的胜利进军加上两个月的盛极而衰,从时间轴上看,法兰西皇帝透过熊熊烈焰俯瞰莫斯科城时,脚下正好就踩着黄金分割线。古希腊帕提侬神庙是举世闻名的完美建筑,它的高和宽的比是618。建筑师们发现,按这样的比例来设计殿堂,殿堂更加雄伟、美丽;去设计别墅,别墅将更加舒适、漂亮.连一扇门窗若设计为黄金矩形都会显得更加协调和令人赏心悦目.有趣的是,这个数字在自然界和人们生活中到处可见:人们的肚脐是人体总长的黄金分割点,人的膝盖是肚脐到脚跟的黄金分割点。大多数门窗的宽长之比也是618…;有些植茎上,两张相邻叶柄的夹角是137度28',这恰好是把圆周分成1:618……的两条半径的夹角。据研究发现,这种角度对植物通风和采光效果最佳。黄金分割与人的关系相当密切。地球表面的纬度范围是0——90°,对其进行黄金分割,则38°——62°正是地球的黄金地带。无论从平均气温、年日照时数、年降水量、相对湿度等方面都是具备适于人类生活的最佳地区。说来也巧,这一地区几乎囊括了世界上所有的发达国家。多去观察生活,你就会发现生活中奇妙的数学!数字中国有一个成语——“顾名思义”。很多事物都能顾名思义,但是也有例外。比如,阿拉伯数字。很多人一听到阿拉伯数字,就会认为是阿拉伯人发明的。但事实证明,不是。 阿拉伯数字1、2、3、4、5、6、7、8、9。0是国际上通用的数码。这种数字的创制并非阿拉伯人,但也不能抹掉阿拉伯人的功劳。其实,阿拉伯数字最初出自印度人之手,是他们的祖先在生产实践中逐步创造出来的。 公元前3000年,印度河流域居民的数字就已经比较进步,并采用了十进位制的计算法。到吠陀时代(公元前1400-公元前543年),雅利安人已意识到数码在生产活动和日常生活中的作用,创造了一些简单的、不完全的数字。公元前3世纪,印度出现了整套的数字,但各地的写法不一,其中典型的是婆罗门式,它的独到之处就是从1~9每个数都有专用符号,现代数字就是从它们中脱胎而来的。当时,“0”还没有出现。到了笈多时代(300-500年)才有了“0”,叫“舜若”(shunya),表示方式是一个黑点“●”,后来衍变成“0”。这样,一套完整的数字便产生了。这就是古代印度人民对世界文化的巨大贡献。 印度数字首先传到斯里兰卡、缅甸、柬埔寨等国。7-8世纪,随着地跨亚、非、欧三洲的阿拉伯帝国的崛起,阿拉伯人如饥似渴地吸取古希腊、罗马、印度等国的先进文化,大量翻译其科学著作。771年,印度天文学家、旅行家毛卡访问阿拉伯帝国阿拨斯王朝(750-1258年)的首都巴格达,将随身携带的一部印度天文学著作《西德罕塔》献给了当时的哈里发曼苏尔(757-775),曼苏尔令翻译成阿拉伯文,取名为《信德欣德》。此书中有大量的数字,因此称“印度数字”,原意即为“从印度来的”。 阿拉伯数学家花拉子密(约780-850)和海伯什等首先接受了印度数字,并在天文表中运用。他们放弃了自己的28个字母,在实践中加以修改完善,并毫无保留地把它介绍给西方。9世纪初,花拉子密发表《印度计数算法》,阐述了印度数字及应用方法。 印度数字取代了冗长笨拙的罗马数字,在欧洲传播,遭到一些基督教徒的反对,但实践证明优于罗马数字。1202年意大利雷俄那多所发行的《计算之书》,标志着欧洲使用印度数字的开始。该书共15章,开章说:“印度九个数字是:‘9、8、7、6、5、4、3、2、1’,用这九个数字及阿拉伯人称作sifr(零)的记号‘0’,任何数都可以表示出来。” 14世纪时中国的印刷术传到欧洲,更加速了印度数字在欧洲的推广应用,逐渐为欧洲人所采用。 西方人接受了经阿拉伯人传来的印度数字,但忘却了其创始祖,称之为阿拉伯数字。

数学小论文四年级

利用除法来比较分数的大小今天阳光明媚,我正在家中看《小学数学奥林匹克》忽然发现这样一道题:比较1111/111,11111/1111两个分数的大小。顿时,我来了兴趣,拿起笔在演草纸上“刷刷”地画了起来,不一会儿,便找到了一种解法。那就是把这两个假分数化成带分数,然后利用分数的规律,同分子分数,分母越小,这个分数就越大。解出1111/111<11111/1111。解完之后,我高兴极了,自夸道:“看来,什么难题都难不倒我了。”正在织毛衣的妈妈听了我的话,看了看题目,大声笑道:“哟,我还以为有多难题来,不就是简单的比较分数大小吗?”听了妈妈的话,我立刻生气起来,说:“什么呀,这题就是难。”说完我又讽刺起妈妈来:“你多高啊,就这题对你来说还不是小菜啊!”妈妈笑了:“好了,好了,不跟你闹了,不过你要能用两种方法解这题,那就算高水平了。”我听了妈妈的话又看了看这道题,还不禁愣了一下“还有一种解法。”我惊讶地说道。“当然了”妈妈说道,“怎么样,不会做了吧,看来你还是低水平。”我扣了妈妈的话生气极了,为了证明我是高水平的人我又做了起来。终于经过我的一番努力,第二种方法出来了,那就是用除法来比较它们之间的大小。你看,一个数如果小于另一个数,那么这个数除以另一个数商一定是真分数,同理,一个数如果大于另一个数,那么这个数除以另一个数,商一定大于1。利用这个规律,我用1111/111÷11111/1111,由于这些数太大,所以不能直接相乘,于是我又把这个除法算式改了一下,假设有8个1,让你组成两个数,两个数乘积最大的是多少。不用说,一定是两个最接近的,所以1111/111÷11111/1111=1111/111×1111/11111、1111×1111>111×11111,那么也就是1111/111>11111/1111。大千世界,无奇不有,在我们数学王国里也有许多有趣的事情。比如,在我现在的第九册的练习册中,有一题思考题是这样说的:“一辆客车从东城开向西城,每小时行45千米,行了5小时后停下,这时刚好离东西两城的中点18千米,东西两城相距多少千米?王星与小英在解上面这道题时,计算的方法与结果都不一样。王星算出的千米数比小英算出的千米数少,但是许老师却说两人的结果都对。这是为什么呢?你想出来了没有?你也列式算一下他们两人的计算结果。”其实,这道题我们可以很快速地做出一种方法,就是:45×5=5(千米),5+18=5(千米),5×2=261(千米),但仔细推敲看一下,就觉得不对劲。其实,在这里我们忽略了一个非常重要的条件,就是“这时刚好离东西城的中点18千米”这个条件中所说的“离”字,没说是还没到中点,还是超过了中点。如果是没到中点离中点18千米的话,列式就是前面的那一种,如果是超过中点18千米的话,列式应该就是45×5=5(千米),5-18=5(千米),5×2=189(千米)。所以正确答案应该是:45×5=5(千米),5+18=5(千米),5×2=261(千米)和45×5=5(千米),5-18=5(千米),5×2=189(千米)。两个答案,也就是说王星的答案加上小英的答案才是全面的。在日常学习中,往往有许多数学题目的答案是多个的,容易在练习或考试中被忽略,这就需要我们认真审题,唤醒生活经验,仔细推敲,全面正确理解题意。否则就容易忽略了另外的答案,犯以偏概全的错误。

数学是一门很重要的学问,我们在生活中时时可以用到它:哪种优惠更省钱;运货需要运几次;哪条路最短……我觉得,要想学好数学,就要有找出题中的陷阱的本事。有一次,数学课上,老师让我们解一道题:一幢高59米的楼房,一楼的层高是6米,其余每层的层高都是2米。这幢楼一共有多少层?我想:这和线段图算端点是一样的。先用总高度59减去一层的高度6,再用得数4除以其余每层的层高2,最后用得数17加上一层和一个1,得18米。于是,我举手把我的想法告诉了老师。老师说:“错了,这和算端点不一样,‘有’18层,可实际可以住人的,只有17层。”我恍然大悟:我中了陷阱!看来我还得好好磨练自己,让我能找出陷阱啊!!

四年级上册数学小论文怎么写?我来答热心网友2019-02-13今天,数学竞赛成绩揭晓了,平时总屈居二三名的我竞考了98分。我得到这个消息后,高兴地想:“哈哈,这下第一名非我莫属了!对了,把这个消息告诉妈妈,让她也高兴高兴!”于是,我怀着喜悦的心情,迈着轻快的步子来到了家,把这个好消息告诉了妈妈。妈妈起先夸奖了我几句,谁知突然语调一转,对我说:“你可别高兴得太早。据我所知,还有人比你考得更好!”听了妈妈的话,我不禁有点失落:毕竟第一的位置没了。但是我又忍不住反问了一句:“啊?是谁啊?他考了几分?”妈妈笑嘻嘻地说:“谁,我就不清楚了,我只知道他的年龄、成绩、名次相乘等于2574,自己慢慢去想吧!”我听了不以为然,不就是区区一道题目,难不倒我这个数学高材生!我边想边回到房间,思考起来:把2574分解质因数:2574=3×3×11×13×2。这2肯定是名次,那么就是第二名。如果是9岁,那么分数就是143了,不对。那就只能是年龄为13,分数为99啦!哈!算出来了,答案就是名次2,年龄13,分数99!我算出答案后,急忙告诉妈妈。妈妈高兴地搂着我说:“我的天天就是棒!”这下,我被搞得云里来雾里去的。弄了半天才明白,原来妈妈是我的,我确确实实考了第一名。刚才是妈妈想检验我的数学本领,给我出的难题呀。为了表彰我,妈妈决定做顿庆功宴。我可是好久没有打牙祭了。听了妈妈的话,我仿佛已经看见了香喷喷的烤鸭和香气四溢的红烧肉了。我高兴得在妈妈的脸上左亲右亲,连连欢呼:“感谢数学,妈妈万岁!!!!!

利用除法来比较分数的大小 今天阳光明媚,我正在家中看《小学数学奥林匹克》忽然发现这样一道题:比较1111/111,11111/1111两个分数的大小。顿时,我来了兴趣,拿起笔在演草纸上“刷刷”地画了起来,不一会儿,便找到了一种解法。那就是把这两个假分数化成带分数,然后利用分数的规律,同分子 分数,分母越小,这个分数就越大。解出1111/111<11111/1111。解完之后,我高兴极了,自夸道:“看来,什么难题都难不倒我了。”正在织毛衣的妈妈听了我的话,看了看题目,大声笑道:“哟,我还以为有多难题来,不就是简单的比较分数大小吗?”听了妈妈的话,我立刻生气起来,说:“什么呀 ,这题就是难。”说完我又讽刺起妈妈来:“你多高啊,就这题对你来说还不是小菜啊!”妈妈笑了:“好了,好了,不跟你闹了,不过你要能用两种方法解这题,那就算高水平了。”我听了妈妈的话又看了看这道题,还不禁愣了一下“还有一种解法。”我惊讶地说道。“当然了”妈妈说道,“怎么样,不会做了吧,看来你还是低水平。”我扣了妈妈的话生气极了,为了证明我是高水平的人我又做了起来。终于经过我的一番努力,第二种方法出来了,那就是用除法来比较它们之间的大小。你看,一个数如果小于另一个数,那么这个数除以另一个数商一定是真分数,同理,一个数如果大于另一个数,那么这个数除以另一个数,商一定大于1。利用这个规律,我用1111/111÷11111/1111,由于这些数太大,所以不能直接相乘,于是我又把这个除法算式改了一下,假设有8个1,让你组成两个数,两个数乘积最大的是多少。不用说,一定是两个最接近的,所以1111/111÷11111/1111=1111/111×1111/11111、1111×1111>111×11111,那么也就是1111/111>11111/1111。大千世界,无奇不有,在我们数学王国里也有许多有趣的事情。比如,在我现在的第九册的练习册中,有一题思考题是这样说的:“一辆客车从东城开向西城,每小时行45千米,行了5小时后停下,这时刚好离东西两城的中点18千米,东西两城相距多少千米?王星与小英在解上面这道题时,计算的方法与结果都不一样。王星算出的千米数比小英算出的千米数少,但是许老师却说两人的结果都对。这是为什么呢?你想出来了没有?你也列式算一下他们两人的计算结果。”其实,这道题我们可以很快速地做出一种方法,就是:45×5=5(千米),5+18=5(千米),5×2=261(千米),但仔细推敲看一下,就觉得不对劲。其实,在这里我们忽略了一个非常重要的条件,就是“这时刚好离东西城的中点18千米”这个条件中所说的“离”字,没说是还没到中点,还是超过了中点。如果是没到中点离中点18千米的话,列式就是前面的那一种,如果是超过中点18千米的话,列式应该就是45×5=5(千米),5-18=5(千米),5×2=189(千米)。所以正确答案应该是:45×5=5(千米),5+18=5(千米),5×2=261(千米)和45×5=5(千米),5-18=5(千米),5×2=189(千米)。两个答案,也就是说王星的答案加上小英的答案才是全面的。 在日常学习中,往往有许多数学题目的答案是多个的,容易在练习或考试中被忽略,这就需要我们认真审题,唤醒生活经验,仔细推敲,全面正确理解题意。否则就容易忽略了另外的答案,犯以偏概全的错误。

数学报,四年级

四年级数学小报内容写作如下(以数字故事为例):一、最小的数字。古老而庞大的自然数家族,是由全体自然数1、2、3、4、5、6、7、8、9、10等等集合在一起组成的。其中最小的是“1”,找不到最大的。如果你有兴趣的话,可以找一找。二、没有最大的自然数。也许你认为可以找到一个最大的自然数(n),但是,你立刻就会发现另一个自然数(n+1),它大于n。这就说明在自然数家族中永远找不到最大的自然数。三、“1”确实是自然数家族中最小的。自然数是无限的,而“1”是自然数中最小的。有人提出异议,不同意“1”是最小的自然数,说“0”比“1”小,“0”应该是最小的自然数。这是不对的,因为自然数指的是正整数,“0”是唯一的非正非负的整数,因而“0”不属于自然数家族。“1”确实是自然数家族中最小的。四、一元钱哪里去了三人住旅店,每人每天的价格是十元,每人付了十元钱,总共给了老板三十元,后来老板优惠了五元,让服务员退给他们,结果服务员私藏了两元,剩下三元每人退了一元钱,也就是说每人消费了9元钱。三个人总共花了27元,加上服务员私藏的2元总共29元。那么一元钱到哪去了呢?给大家留下疑问。

相关百科

热门百科

首页
发表服务