首页

> 期刊发表知识库

首页 期刊发表知识库 问题

应用数学建模杂志

发布时间:

应用数学建模杂志

是大学生建模会的会刊啊,还有建模与仿真,应用数学进展,是核心oa期刊

这种期刊比较多,数学学报 工程数学学报 数学进展 应用数学 数学季刊等

青岛山科《数学建模及其应用》杂志出版有限公司是2012-01-16在山东省青岛市黄岛区注册成立的有限责任公司(自然人投资或控股的法人独资),注册地址位于山东省青岛市黄岛区前湾港路579号。青岛山科《数学建模及其应用》杂志出版有限公司的统一社会信用代码/注册号是913702115878381515,企业法人梁向前,目前企业处于开业状态。青岛山科《数学建模及其应用》杂志出版有限公司的经营范围是:许可经营项目:《数学建模及其应用》期刊出版(期刊出版许可证 有效期以许可证为准);经营其它无需行政审批即可经营的一般经营项目。在山东省,相近经营范围的公司总注册资本为180万元,主要资本集中在 10-100万 规模的企业中,共4家。本省范围内,当前企业的注册资本属于良好。通过百度企业信用查看青岛山科《数学建模及其应用》杂志出版有限公司更多信息和资讯。

数学建模及应用期刊

是大学生建模会的会刊啊,还有建模与仿真,应用数学进展,是核心oa期刊

[1]谢金星,薛毅,优化建模与LINDO/LINGO软件,清华大学出版社,2005。[2]姜启源,谢金星,叶俊,数学建模(第三版),高等教育出版社,2006。

是大学生建模会的会刊啊,还有建模与仿真,应用数学进展,是核心oa期刊

应用数学杂志官网

The Journal of Computational and Applied Mathematics publishes original papers of high scientific value in all areas of computational and applied The main interest of the Journal is in papers that describe and analyze new computational techniques for solving scientific or engineering Also the improved analysis, including the effectiveness and applicability, of existing methods and algorithms is of The computational efficiency ( the convergence, stability, accuracy, ) should be proved and illustrated by nontrivial numerical Papers describing only variants of existing methods, without adding significant new computational properties are not of 计算与应用数学杂志在计算与应用数学的所有领域中发表具有高科学价值的原创论文。 该杂志的主要兴趣在于描述和分析解决科学或工程问题的新计算技术的论文。 同样,改进现有方法和算法的分析,包括有效性和适用性,也很重要。 计算效率(例如收敛性,稳定性,准确性等)应通过非平凡的数值示例来证明和说明。 仅描述现有方法的变体而未添加显着的新计算属性的论文并不引起人们的兴趣。The Journal of Computational and Applied Mathematics is a peer-reviewed scientific journal covering computational and applied It was established in 1975 and is published biweekly by E The editors-in-chief are Yalchin Efendiev (Texas A&M University), Taketomo Mitsui (Nagoya University), Michael Kwok-Po Ng (Hong Kong Baptist University), Fatih Tank (Ankara University), and Luc Wuytack (University of Antwerp) According to the Journal Citation Reports, the journal has a 2017 impact factor of [1]《计算与应用数学杂志》是一本经过同行评审的科学期刊,涵盖计算和应用数学。 它成立于1975年,由Elsevier每两周出版一次。 主编是Yalchin Efendiev(得克萨斯农工大学),Takemomo Mitsui(名古屋大学),Michael Kwok-Po Ng(香港浸会大学),Fatih Tank(安卡拉大学)和Luc Wuytack(安特卫普大学)。 根据《期刊引证报告》,该期刊的2017年影响因子为883。[1][1] "Journal of Computational and Applied Mathematics" Journal P Web of Science (Science ) E Impact factor:632 (2017)    Frequency:Biweekly

数学建模论文应该怎么写

数学建模论文基本格式摘要 (200-300字,包括模型的主要特点、建模方法和主要结果。)关键词(求解问题、使用的方法中的重要术语) 内容较多时最好有个目录1。问题重述 2。问题分析3。模型假设与约定4。符号说明及名词定义5。模型建立与求解 ①补充假设条件,明确概念,引进参数; ②模型形式(可有多个形式的模型);6。进一步讨论(参数的变化、假设改变对模型的影响)7。模型检验 (使用数据计算结果,进行分析与检验)8。模型优缺点(改进方向,推广新思想)9。参考文献及参考书籍和网站10。附录 (计算程序,框图;各种求解演算过程,计算中间结果;各种图形、表格。)小经验:1。随时记下自己的假设。有时候在很合理的假设下开始了下一步的工作,就应该顺手把这个假设给记下 来,否则到了最后可能会忘掉,而且这也会让我们的解答更加严谨。2。随时记录自己的想法,而且不留余地的完全的表达自己的思想。3。要有自己的特色,闪光点。如何撰写数学建模论文当我们完成一个数学建模的全过程后,就应该把所作的工作进行小结,写成论文。撰写数学建模论文和参加大学生数学建模时完成答卷,在许多方面是类似的。事实上数学建模竞赛也包含了学生写作能力的比试,因此,论文的写作是一个很重要的问题。首先要明确撰写论文的目的。数学建模通常是由一些部门根据实际需要而提出的,也许那些部门还在经济上提供了资助,这时论文具有向特定部门汇报的目的,但即使在其他情况下,都要求对建模全过程作一个全面的、系统的小结,使有关的技术人员(竞赛时的阅卷人员)读了之后,相信模型假设的合理性,理解在建立模型过程中所用数学方法的适用性,从而确信该模型的数据和结论,放心地应用于实践中。当然,一篇好的论文是以作者所建立的数学模型的科学性为前提的。其次,要注意论文的条理性。下面就论文的各部分应当注意的地方具体地来做一些分析。(一) 问题提出和假设的合理性在撰写论文时,应该把读者想象为对你所研究的问题一无所知或知之甚少的一个群体,因此,首先要简单地说明问题的情景,即要说清事情的来龙去脉。列出必要数据,提出要解决的问题,并给出研究对象的关键信息的内容,它的目的在于使读者对要解决的问题有一个印象,以便擅于思考的读者自己也可以尝试解决问题。历届数学建模竞赛的试题可以看作是情景说明的范例。对情景的说明,不可能也不必要提供问题的每个细节。由此而来建立数学模型还是不够的,还要补充一些假设,模型假设是建立数学模型中非常关键的一步,关系到模型的成败和优劣。所以,应该细致地分析实际问题,从大量的变量中筛选出最能表现问题本质的变量,并简化它们的关系。这部分内容就应该在论文的“问题的假设”部分中体现。由于假设一般不是实际问题直接提供的,它们因人而异,所以在撰写这部分内容时要注意以下几方面:(1)论文中的假设要以严格、确切的数学语言来表达,使读者不致产生任何曲解。(2)所提出的假设确实是建立数学模型所必需的,与建立模型无关的假设只会扰乱读者的思考。(3)假设应验证其合理性。假设的合理性可以从分析问题过程中得出,例如从问题的性质出发做出合乎常识的假设;或者由观察所给数据的图像,得到变量的函数形式;也可以参考其他资料由类 推得到。对于后者应指出参考文献的相关内容。 (二) 模型的建立在做出假设后,我们就可以在论文中引进变量及其记号,抽象而确切地表达它们的关系,通过一定的数学方法,最后顺利地建立方程式或归纳为其他形式的数学问题,此处,一定要用分析和论证的方法,即说理的方法,让读者清楚地了解得到模型的过程上下文之间切忌逻辑推理过程中跃度过大,影响论文的说服力,需要推理和论证的地方,应该有推导的过程而且应该力求严谨;引用现成定理时,要先验证满足定理的条件。论文中用到的各种数学符号,必须在第一次出现时加以说明。总之,要把得到数学模型的过程表达清楚,使读者获得判断模型科学性的一个依据。 (三)模型的计算与分析把实际问题归结为一定的数学问题后,就要求解或进行分析。在数值求解时应对计算方法有所说明,并给出所使用软件的名称或者给出计算程序(通常以附录形式给出)。还可以用计算机软件绘制曲线和曲面示意图,来形象地表达数值计算结果。基于计算结果,可以用由分析方法得到一些对实践有所帮助的结论。有些模型(例如非线性微分方程)需要作稳定性或其他定性分析。这时应该指出所依据的数学理论,并在推理或计算的基础上得出明确的结论。在模型建立和分析的过程中,带有普遍意义的结论可以用清晰的定理或命题的形式陈述出来。结论使用时要注意的问题,可以用助记的形式列出。定理和命题必须写清结论成立的条件。(四) 模型的讨论对所作的数学模型,可以作多方面的讨论。例如可以就不同的情景,探索模型将如何变化。或可以根据实际情况,改变文章一开始所作的某些假设,指出由此数学模型的变化。还可以用不同的数值方法进行计算,并比较所得的结果。有时不妨拓广思路,考虑由于建模方法的不同选择而引起的变化。通常,应该对所建立模型的优缺点加以讨论比较,并实事求是地指出模型的使用范围。除正文外,论文和竞赛答卷都要求写出摘要。我们不要忽视摘要的写作。因为它会给读者和评卷人第一印象。摘要应把论文的主要思路、结论和模型的特色讲清楚,让人看到论文的新意。语言是构成论文的基本元素。数学建模论文的语言与其他科学论文的语言一样,要求达意、干练。不要把一句句子写得太长,使人不甚卒读。语言中应多用客观陈述句,切忌使用你、我、他等代名词和带主观意向的语句。在英语论文写作中应多用被动语态,科学命题与判断过程一般使用现在时态。最后,论文的书写和附图也都很重要。附图中的图形应有明确的说明,字迹力求端正。

主要是摘要,一般评阅老师只看摘要的哦,三部曲:模型,思想,结果。不要太累赘,摘要单独占一页

(1) 每个参赛队可以从A、B、C、D、E题中任选一题完成论文。(2) 论文用白色A4纸单面打印;上下左右各留出至少5厘米的页边距;从左侧装订。(3) 论文题目和摘要写在论文封面上,封面页的下一页开始论文正文。(4) 论文从编号页开始编写页码,页码必须位于每页页脚中部,用阿拉伯数字从“1 ”开始连续编号。(5) 论文不能有页眉,论文中不能有任何可能显示答题人身份的标志。(6) 论文题目用三号黑体字、一级标题用四号黑体字,并居中。论文中其他汉字一律采用小四号宋体字,行距用单倍行距,打印时应尽量避免彩色打印。程序一般无须打印,但应有执行文件,和源程序一起附在电子版论文中以备检查。(7) 请大家注意:摘要应该是一份简明扼要的详细摘要(包括关键词),请认真书写(注意篇幅一般不超过两页,且无需译成英文)。全国评阅时对摘要和论文都会审阅。(8) 引用别人的成果或其他公开的资料(包括网上甚至在“博客”上查到的资料) 必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。正文引用处用方括号标示参考文献的编号,如[1][3]等;引用书籍还必须指出页码。参考文献按正文中的引用次序列出,其中书籍的表述方式为:[编号] 作者,书名,出版地:出版社,出版年。参考文献中期刊杂志论文的表述方式为:[编号] 作者,论文名,杂志名,卷期号:起止页码,出版年。参考文献中网上资源的表述方式为:[编号] 作者,资源标题,网址,访问时间(年月日)。

论文写作方法一、摘要:500个字左右,包括模型的主要特点、建模方法和主要结果二、关键字:3-5个三.问题重述。略四. 模型假设 根据全国组委会确定的评阅原则,基本假设的合理性很重要。 (1)根据题目中条件作出假设 (2)根据题目中要求作出假设 关键性假设不能缺;假设要切合题意五. 模型的建立 (1) 基本模型: 1) 首先要有数学模型:数学公式、方案等 2) 基本模型,要求 完整,正确,简明 (2) 简化模型 1) 要明确说明:简化思想,依据 2) 简化后模型,尽可能完整给出 (3) 模型要实用,有效,以解决问题有效为原则。 数学建模面临的、要解决的是实际问题, 不追求数学上:高(级)、深(刻)、难(度大)。 u 能用初等方法解决的、就不用高级方法, u 能用简单方法解决的,就不用复杂方法, u 能用被更多人看懂、理解的方法,就不用只能少数人看懂、理解的方法。 (4)鼓励创新,但要切实,不要离题搞标新立异数模创新可出现在 1建模中,模型本身,简化的好方法、好策略等, 2模型求解中 3结果表示、分析、检验,模型检验 4推广部分 (5)在问题分析推导过程中,需要注意的问题: u 分析:中肯、确切 u 术语:专业、内行;; u 原理、依据:正确、明确, u 表述:简明,关键步骤要列出 u 忌:外行话,专业术语不明确,表述混乱,冗长。六. 模型求解 (1) 需要建立数学命题时: 命题叙述要符合数学命题的表述规范,尽可能论证严密。 (2) 需要说明计算方法或算法的原理、思想、依据、步骤。 若采用现有软件,说明采用此软件的理由,软件名称 (3) 计算过程,中间结果可要可不要的,不要列出。 (4) 设法算出合理的数值结果。七、 结果分析、检验;模型检验及模型修正;结果表示 (1) 最终数值结果的正确性或合理性是第一位的 ; (2) 对数值结果或模拟结果进行必要的检验。结果不正确、不合理、或误差大时,分析原因, 对算法、 计算方法、或模型进行修正、改进; (3) 题目中要求回答的问题,数值结果,结论,须一一列出; (4) 列数据问题:考虑是否需要列出多组数据,或额外数据 对数据进行比较、分析,为各种方案的提出提供依据; (5) 结果表示:要集中,一目了然,直观,便于比较分析 1数值结果表示:精心设计表格;可能的话,用图形图表形式 2求解方案,用图示更好 (6) 必要时对问题解答,作定性或规律性的讨论。最后结论要明确。八.模型评价 优点突出,缺点不回避。 改变原题要求,重新建模可在此做。 推广或改进方向时,不要玩弄新数学术语。九、参考文献.十、附录 详细的结果,详细的数据表格,可在此列出。 但不要错,错的宁可不列。 主要结果数据,应在正文中列出,不怕重复。 检查答卷的主要三点,把三关: n 模型的正确性、合理性、创新性 n 结果的正确性、合理性 n 文字表述清晰,分析精辟,摘要精彩

纯粹数学与应用数学杂志

是04版的核心期刊,不是08版的核心期刊。

本刊坚持普及与提高相结合,以提高为主的办刊方针。宗旨是报道纯粹数学与应用数学科技成果,传播纯粹数学与应用数学科学技术,促进纯粹数学与应用数学科技交流,推动纯粹数学与应用数学科技进步。立足世界数学科学发展前沿,注重数学应用,兼顾理论探索。刊登有创造性的研究论文和具有重要经济价值的论文,以繁荣数学理论研究,推进应用研究。

相关百科

热门百科

首页
发表服务