首页

> 期刊发表知识库

首页 期刊发表知识库 问题

人工智能改变生活论文

发布时间:

人工智能改变生活论文

引用cn#GVBuffBLpa的回答:随着科技的发展社会的进步,新一代信息技术正在着力打造智慧生活,互联网、智能机、液晶电视、空调也逐渐步入了千千万万的家庭。1977年英国世界上最大的互联网公司的经理预料,将来任何人都不会在自己的家里拥有一台属于自己的计算机。计算机不会被大多数人使用,然而在日新月异发展的现代化社会里不是用电脑这几乎是不可能的,高楼大厦里职员们正使用计算机记录完成上级布置的任务;漫画家打好画稿在用计算机进行扫描、上色;学校里每一间教室都放置一台,老师则利用计算机为学生讲解课文;打印店里一台台计算机正忙碌的工作着。然而那位经理怎么也想不到将近半个世纪的今天计算机已经在我们的生活中起着不可代替的作用,也从原来笨重的以至于塞满一整个房间的机器到如今教科书厚的液晶。展望未来。未来,一个抽象的代名词——触摸不到,感受不到。每个人都有美好的畅想,我畅想畅想着城市美好的未来。城市的美好,必然少不了那一片霓虹灯。繁华的夜景,热闹的人市。那繁荣景象的背后又是什么呢?是一片黑暗吗?不,至少有盏明灯。是那些流浪者的家吗?不,至少有间草屋。光明固然美好,黑暗也将会被无数明灯所点亮。我畅想,畅想城市那份恬静。当人们迎着朝阳开始一天的工作时,他们的心情是平静而喜悦的。此时,自行车已成“古董”,人们只能在博物馆才能见到。在宽阔、现代化的立交桥上,一辆辆高级轿车来回穿梭。在居民小区里,物业管理是机器人,二十四小时服务。工作的地方没有了原来的狭隘,不再只是人手一台电脑埋头工作,而是两三个人一个办公室,摄像头、监视器什么的都不在有,人们诚实守信、勤勤恳恳。工厂是机器人工作的岗位。

与你同在屋檐下的你的都有恃无恐

人工智能对生活的影响有:1、逐渐代替行业工作者的工作。尤其是那些工厂流水线职位等,到时候可能会减少这些岗位的需求增加了对机器人的控制和维护人员,至于未来是否能够像电影中那样人类不再需要工作,人工智能都能够代替各种岗位,这样情况不好说,但是在未来也很有可能会实现的。2、面部识别成为新的“信用卡”随着人工智能的日益成熟,脸部将成为新的信用卡、新的驾驶执照和新的条形码。面部识别已经完全颠覆了安全性的定义,它可以采用生物识别功能,带来更高的准确性。我们已经看到技术和零售的一些完美结合,如亚马逊收购全食。可以预见在不久的将来,人们将不再需要在商店排队。3、 人类的衣食住行等基本生活方式丰富化发展人工智能技术与人类衣食住行等各种用具的结合,将彻底改变人类的生活方式。例如智能服装:智能服装是在传统服装的基础上,加入电子智能设备,使之能够读出人体心跳和呼吸频率;能够自动播放音乐;能够在胸前显示文字与图像,一件衣服能同时播放音乐、视频、调节温度,甚至上网冲浪的“聪明衣衫”。4、人们生活安全保障性提高。目前的安全防盗技术,主要是用数字密码和电磁密码等安全保障措施,这些密码保障方式虽然足够先进,但依然有漏洞和破绽可循,容易被破解盗取。而人工智能领域图像识别和计算机视觉等技术,提供了人面识别、指纹识别、虹膜识别等保密方式,使人们生活中的秘密、隐私、以及人身财产安全,能够得到更多的保障。

回答 您好,很高兴为您解答问题,人工智能对生活最大的影响就是便利了我们的生活。人工智能习惯性被大家称为AI,目前已经在很多行业有了特定的应用场景,比如电商客服、教育智适应和医疗器械等方面,均可以替代部分人类工作来自动化完成任务。除了替代简单重复工作以外,人工智能还可以增强人类执行复杂任务的能力,比如会议速记员对语音识别功能的应用、司机对自动驾驶和泊车功能的应用、色差鉴定员对机器色谱识别的应用。 在日常生活中,智能音箱是离我们最近的人工智能使用案例。智能音箱替代了我们日常的重复性动作,比如每天的开关灯、开关窗帘、空调电视等电器控制,都可以通过和音箱的语音互动来完成。在单线程占用人类器官的场景中,比如查询天气、菜谱、时间、打电话等,智能音箱也可以很好的辅助我们完成,且不需要停下手头的其他事情。 人工智能还在很多细分领域和行业开始落地应用,比如:自动新闻撰写,机器可以根据规则自动生成新闻稿,不在需要人工编辑;送货机器人,可以取代物流行业里面的快递员,不仅增强了安全性还节省了大量人力物力;除草喷药机器人,在农林领域利用人工智能精准喷洒后,农药避开了农作物,非常规整的喷洒在杂草的周边,不浪费农药;在安防领域,利用计算机视觉技术和大数据分析犯罪嫌疑人生活轨迹及可能出现的场所。 更多1条 

人工智能改变生活论文800字

回答 您现在可以使用这种新的图像到图像转换技术,从粗糙甚至不完整的草图生成高质量的人脸图像,无需绘图技巧!如果你的画技和我一样差,你甚至可以调整眼睛、嘴巴和鼻子对最终图像的影响。让我们看看它是否真的有效,以及他们是如何做到的。 Learning to Simulate Dynamic Environments with GameGAN [3] 这项研究由英伟达多伦多AI实验室和日本游戏大厂万代南梦宫 *BANDAI NAMCO) 一同开发,技术来自前者,数据来自后者。 简单来说,仅对简单的游戏录像和玩家输入进行学习,GameGAN 就能够模拟出接近真实游戏的环境,还不需要游戏引擎和底层代码。它的底层是在 AI 领域很有名的生成对抗网络 (GAN)。 PULSE: Self-Supervised Photo Upsampling via Latent Space Exploration of Generative Models [4] 它可以把超低分辨率的16x16图像转换成1080p高清晰度的人脸!你不相信我?然后你就可以像我一样,在不到一分钟的时间里自己试穿一下! Unsupervised Translation of Programming Languages [5] 这种新模型在没有任何监督的情况下将代码从一种编程语言转换成另一种编程语言!它可以接受一个Python函数并将其转换成c++函数,反之亦然,不需要任何先前的例子!它理解每种语言的语法,因此可以推广到任何编程语言!我们来看看他们是怎么做到的。 PIFuHD: Multi-Level Pixel-Aligned Implicit Function for High-Resolution 3D Human Digitization [6] 这个人工智能从2D图像生成3D高分辨率的人的重建!它只需要一个单一的图像你生成一个3D头像,看起来就像你,甚至从背后! High-Resolution Neural Face Swapping for Visual Effects [7] 迪士尼的研究人员在论文中开发了一种新的高分辨率视觉效果人脸交换算法。它能够以百万像素的分辨率渲染照片真实的结果。。它们的目标是在保持actor的性能的同时,从源actor交换目标actor的外观。这是非常具有 提问 大一人工智能课程学习总结,八百字。 回答 我学习人工智能已经快一年的时间,有许多心得可以和大家分享一下。人工智能,英文是Artificial Intelligence,简称AI。人工智能,最早是由著名计算机科学家图灵在20世纪50年代提出的,就是著名的“图灵测试”。最近几年,随着深度学习发展,人工智能被运用在各行各业,因此有人把人工智能称为第四次科技革命,他将给人们的生活带来翻天覆地的变化。 人工智能怎么学习呢? AI的基础是数据,是对数据进行挖掘、训练和应用。所以基础中的基础是数学,你得要先掌握高等数学、线性代数、概率论和数理统计等相关知识。 学习Python语言。Python最近几年非常火,学习的人非常多,甚至有些地区小学也开设这门课。为什么Python会迅速传红呢?首先,Python编程的代码量只有Java的1/5不到,简单易学。其次,Python的功能强大,写爬虫、游戏开发、自动化运维、机器学习和人工智能领域。最后,Python拥有丰富强大的库,如前端开发的Flask和Django、图形界面的tkInter、矩阵计算numpy、绘图的matplotlib等等。 学习各类机器学习和算法模型。这其中主要包含监督学习和非监督学习,监督学习中有:线性回归、逻辑回归、随机森林、SVM、决策树、等。非监督学习有:聚类、KMeans、DBScan等。 深度学习可以说是AI的精髓。深度学习主要流行的框架有:Tensorflow、Caffe、MXNet、Keras、Pytorch等。 我觉得自学,还是非常费劲的,效果不一定好,最好有老师指导,否则进展很慢,可以先跟教学视频学习,看书实操,做一些具体的项目等。 更多18条 

人工智能ai

人工智能改变我们的生活论文

人工智能与机器人这本期刊你之前看过吗?建议你有时间可以去看看哦,找下自己的写作思路先

人工智能来临,有人在担忧失业,有人在憧憬未来,有人在发掘行业机会,也有人在研究围棋。在讨论这些之前,也许我们应该先考虑一下人类的结局。有人可能觉得谈论这个话题太夸张了,那先回忆一下人类历史上究竟发生了哪些不可思议的事情。不可思议的事情,需要请几个穿越者来判定。我们请1个出生于公元0年出生的人(汉朝人)穿越到公元1600年(明朝),尽管跨越了1600年,但这个人可能对周围人的生活不会感到太夸张,只不过换了几个王朝,依旧过着面朝黄土背朝天的日子罢了。但如果请1个1600年的英国人穿越到1850年的英国,看到巨大的钢铁怪物在水上路上跑来跑去,这个人可能直接被吓尿了,这是250年前的人从未想象过的。如果再请1个1850的人穿越到1980年,听说一颗炸弹可以夷平一座城市,这个人可能直接吓傻了,130年前诺贝尔都还没有发明出炸药。那再请1个1980年的人到现在呢?这个人会不会被吓哭呢?如果35年前的人,几乎完全无法想象互联网时代的生活,那么人类文明进入指数发展的今天,我们怎么能想象35年后的时代?超人工智能,则是35年后的统治者。首先,我们明确一下人工智能的分类:目前主流观点的分类是三种。弱人工智能:弱人工智能是擅长于单个方面的人工智能。比如阿尔法狗,能够在围棋方面战胜人类,但你要问他李世石和柯洁谁更帅,他就无法回答了。弱人工智能依赖于计算机强大的运算能力和重复性的逻辑,看似聪明,其实只能做一些精密的体力活。目前在汽车生产线上就有很多是弱人工智能,所以在弱人工智能发展的时代,人类确实会迎来一批失业潮,也会发掘出很多新行业。强人工智能:人类级别的人工智能。强人工智能是指在各方面都能和人类比肩的人工智能,人类能干的脑力活它都能干。创造强人工智能比创造弱人工智能难得多。百度的百度大脑和微软的小冰,都算是往强人工智能的探索,通过庞大的数据,帮助强人工智能逐渐学习。强人工智能时代的到来,人类会有很多新的乐趣,也会有很多新的道德观念。超人工智能:各方面都超过人类的人工智能。超人工智能可以是各方面都比人类强一点,也可以是各方面都比人类强万亿倍的存在。当人工智能学会学习和自我纠错之后,会不断加速学习,这个过程可能会产生自我意识,可能不会产生自我意识,唯一可以肯定的是他的能力会得到极大的提高,这其中包括创造能力(阿尔法狗会根据棋手的棋路调整策略就是最浅层的创新体现,普通手机版的围棋,电脑棋路其实就固定的几种)。我们距离超人工智能时代,到底有多远呢?首先是电脑的运算能力,电脑运算能力每两年就翻一倍,这是有历史数据支撑的。目前人脑的运算能力是10^16 cps,也就是1亿亿次计算每秒。现在最快的超级计算机,中国的天河二号,其实已经超过这个运算力了。而目前我们普通人买的电脑运算能力只相当于人脑千分之一的水平。听起来还是弱爆了,但是,按照目前电子设备的发展速度,我们在2025年花5000人民币就可以买到和人脑运算速度抗衡的电脑了。其次是让电脑变得智能,目前有两种尝试让电脑变得智能,一种是做类脑研究。现在,我们已经能够模拟1毫米长的扁虫的大脑,这个大脑含有302个神经元。人类的大脑有1000亿个神经元,听起来还差很远。但是要记住指数增长的威力——我们已经能模拟小虫子的大脑了,蚂蚁的大脑也不远了,接着就是老鼠的大脑,到那时模拟人类大脑就不是那么不现实的事情了。另一种是模仿学习过程,让人工智能不断修正。基于互联网产生的庞大数据,让人工智能不断学习新的东西,并且不断进行自我更正。百度的百度大脑据说目前有4岁的智力,可以进行几段连续的对话,可以根据图片判断一个人的动作。尽管目前出错的次数依旧很多,但是这种能力的变化是一种质变。在全球最聪明的科学家眼中,强人工智能的出现已经不再是会不会的问题,而是什么时候的问题,2013年,有一个数百位人工智能专家参与的调查 “你预测人类级别的强人工智能什么时候会实现?”结果如下:2030年:42%的回答者认为强人工智能会实现2050年:25%的回答者2070年:20%2070年以后:10%永远不会实现:2%也就是说,超过2/3的科学家的科学家认为2050年前强人工智能就会实现,而只有2%的人认为它永远不会实现。最关键的是,全球最顶尖的精英正在抛弃互联网,转向人工智能——斯坦福、麻省理工、卡内基梅隆、伯克利四所名校人工智能专业的博士生第一份offer已经可以拿到200-300万美金。这种情况历史上从来没有发生过。奇点大学(谷歌、美国国家航天航空局以及若干科技界专家联合建立)的校长库兹韦尔则抱有更乐观的估计,他相信电脑会在2029年达成强人工智能,到2045年,进入超人工智能时代。所以,如果你觉得你还能活30、40年的话,那你应该能见证超人工智能的出现。

人工智能与生活论文

回答 您现在可以使用这种新的图像到图像转换技术,从粗糙甚至不完整的草图生成高质量的人脸图像,无需绘图技巧!如果你的画技和我一样差,你甚至可以调整眼睛、嘴巴和鼻子对最终图像的影响。让我们看看它是否真的有效,以及他们是如何做到的。 Learning to Simulate Dynamic Environments with GameGAN [3] 这项研究由英伟达多伦多AI实验室和日本游戏大厂万代南梦宫 *BANDAI NAMCO) 一同开发,技术来自前者,数据来自后者。 简单来说,仅对简单的游戏录像和玩家输入进行学习,GameGAN 就能够模拟出接近真实游戏的环境,还不需要游戏引擎和底层代码。它的底层是在 AI 领域很有名的生成对抗网络 (GAN)。 PULSE: Self-Supervised Photo Upsampling via Latent Space Exploration of Generative Models [4] 它可以把超低分辨率的16x16图像转换成1080p高清晰度的人脸!你不相信我?然后你就可以像我一样,在不到一分钟的时间里自己试穿一下! Unsupervised Translation of Programming Languages [5] 这种新模型在没有任何监督的情况下将代码从一种编程语言转换成另一种编程语言!它可以接受一个Python函数并将其转换成c++函数,反之亦然,不需要任何先前的例子!它理解每种语言的语法,因此可以推广到任何编程语言!我们来看看他们是怎么做到的。 PIFuHD: Multi-Level Pixel-Aligned Implicit Function for High-Resolution 3D Human Digitization [6] 这个人工智能从2D图像生成3D高分辨率的人的重建!它只需要一个单一的图像你生成一个3D头像,看起来就像你,甚至从背后! High-Resolution Neural Face Swapping for Visual Effects [7] 迪士尼的研究人员在论文中开发了一种新的高分辨率视觉效果人脸交换算法。它能够以百万像素的分辨率渲染照片真实的结果。。它们的目标是在保持actor的性能的同时,从源actor交换目标actor的外观。这是非常具有 提问 大一人工智能课程学习总结,八百字。 回答 我学习人工智能已经快一年的时间,有许多心得可以和大家分享一下。人工智能,英文是Artificial Intelligence,简称AI。人工智能,最早是由著名计算机科学家图灵在20世纪50年代提出的,就是著名的“图灵测试”。最近几年,随着深度学习发展,人工智能被运用在各行各业,因此有人把人工智能称为第四次科技革命,他将给人们的生活带来翻天覆地的变化。 人工智能怎么学习呢? AI的基础是数据,是对数据进行挖掘、训练和应用。所以基础中的基础是数学,你得要先掌握高等数学、线性代数、概率论和数理统计等相关知识。 学习Python语言。Python最近几年非常火,学习的人非常多,甚至有些地区小学也开设这门课。为什么Python会迅速传红呢?首先,Python编程的代码量只有Java的1/5不到,简单易学。其次,Python的功能强大,写爬虫、游戏开发、自动化运维、机器学习和人工智能领域。最后,Python拥有丰富强大的库,如前端开发的Flask和Django、图形界面的tkInter、矩阵计算numpy、绘图的matplotlib等等。 学习各类机器学习和算法模型。这其中主要包含监督学习和非监督学习,监督学习中有:线性回归、逻辑回归、随机森林、SVM、决策树、等。非监督学习有:聚类、KMeans、DBScan等。 深度学习可以说是AI的精髓。深度学习主要流行的框架有:Tensorflow、Caffe、MXNet、Keras、Pytorch等。 我觉得自学,还是非常费劲的,效果不一定好,最好有老师指导,否则进展很慢,可以先跟教学视频学习,看书实操,做一些具体的项目等。 更多18条 

回答 交通: 智能系统实现安全畅通和智能交通系统是一种先进的运输管理模 式。 中国科学院自动化研究所副所长、复杂系统与智能科学重点实验室主任王飞跃介绍说, 人工系统主要利用计算机仿真技术,通过监测人们出行的行为计算交通流。 农业: 农业专家系统可以代替农业专家群体走向地头,进入普通农家,并指导农民科学种田。 农业专家系统包含了农业各个领域的专家经验、知识,如作物栽培、植物保护、配方施 肥、农业经济效益分析等等。 医学: 医疗专家系统可以把有关的医药知识和许多著名医生的临床经验都存储在计算机中, 根据病人的症状计算机可快速调用这些医学知识,自动进行辨症推理,确定病因,开具处方。 这些方面哦~亲 更多2条 

生活中的人工智能论文

人工智能与机器人这本期刊你之前看过吗?建议你有时间可以去看看哦,找下自己的写作思路先

人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。人工智能从诞生以来,理论和技术日益成熟,应用领域也不断扩大,可以设想,未来人工智能带来的科技产品,将会是人类智慧的“容器”。人工智能可以对人的意识、思维的信息过程的模拟。人工智能不是人的智能,但能像人那样思考、也可能超过人的智能。1、大数据大数据,或者称之为巨量资料,指的是需要全新的处理模式才能具有更强的决策力、洞察力和流程优化能力的海量、高增长率和多样化的信息资产。也就是说,从各种各样类型的数据中,快速获得有价值信息的能力,就是大数据技术。大数据是AI智能化程度升级和进化的基础,拥有大数据,AI才能够不断的进行模拟演练,不断向着真正的人工智能靠拢。2、计算机视觉计算机视觉顾名思义,就是让计算机具备像人眼一样观察和识别的能力,更进一步的说,就是指用摄像机和电脑代替人眼对目标进行识别、跟踪和测量,并进一步做图形处理,使电脑处理成为更适合人眼观察或传送给仪器检测的图像。3、语音识别语音识别技术就是让机器通过识别和理解过程把语音信号转变为相应的文本或命令的高新技术。语音识别技术主要包括特征提取技术、模式匹配准则及模型训练技术三个方面。语音识别是人机交互的基础,主要解决让机器听清楚人说什么的难题。人工智能目前落地最成功的就是语音识别技术。

回答 交通: 智能系统实现安全畅通和智能交通系统是一种先进的运输管理模 式。 中国科学院自动化研究所副所长、复杂系统与智能科学重点实验室主任王飞跃介绍说, 人工系统主要利用计算机仿真技术,通过监测人们出行的行为计算交通流。 农业: 农业专家系统可以代替农业专家群体走向地头,进入普通农家,并指导农民科学种田。 农业专家系统包含了农业各个领域的专家经验、知识,如作物栽培、植物保护、配方施 肥、农业经济效益分析等等。 医学: 医疗专家系统可以把有关的医药知识和许多著名医生的临床经验都存储在计算机中, 根据病人的症状计算机可快速调用这些医学知识,自动进行辨症推理,确定病因,开具处方。 这些方面哦~亲 更多2条 

相关百科

热门百科

首页
发表服务