数学教学论文:要写好小学,初中,高中数学教学论文请到(鲁韵论文网),小学,初中,高中数学教学论文的参考文献!或者直接加Q(我的名称就是)我能帮上你的忙。
瞎扯淡呗,还用想吗
数学教学论文:要写好小学,初中,高中数学教学论文请到(鲁韵论文网),小学,初中,高中数学教学论文的参考文献!或者直接加Q(我的名称就是)我能帮上你的忙。
如何在数学教育教学中提升学生的数学核心素养进入21世纪,社会进步、科学技术和数学发展异常迅速,甚至超出想象,这势必会影响教育,影响基础教育,影响数学教育。20世纪学生应具备的基本能力与21世纪学生应具备的核心素养一致吗?哪些不一致?这是跨世纪的挑战,也是建立基于核心素养的课程体系的背景。一、正确认识和理解数学核心素养21世纪,我国确定了“立德树人”“以人为本”的教育改革指导思想,强调以课程为载体落实指导思想,进而以高中课程标准修订为突破,探索、积累经验,逐步推广。“以素养立意课程体系”主要是将培养、提升学生的核心素养(通识)、学科核心素养作为课程基本目标,根据每一个学科的特点,把三维目标通过每一个学科的核心素养加以落实,把课程总目标与学科教育有机结合。我国数学教育工作者一直在思考:数学教育应留给学生什么?数学核心素养是具有数学基本特征的适应个人终身发展和社会发展需要的人的关键能力与思维品质。不严格地说,数学核心素养不仅包含外显能力,还包含内在思维品质。数学课标修订组提出了六个核心素养:数学抽象、数学推理、数学建模、直观想象、数学运算、数据分析,它是五大基本能力的延续和深化。数学核心素养是数学课程目标的重要的基本组成部分,每个数学核心素养通过“情境与问题”“知识与技能”“思维与表达”“交流与反思”四个方面表现出来,这四个方面也是描述核心素养水平的四个维度。每一个数学核心素养有自身的独立性,在学习数学的过程中,在发现与提出、分析与解决数学问题和实际问题中,各自在不同的环节发挥不同的作用,但我们更需要强调整体性,六个核心素养是一个有机联系的整体,它们不是两两“不交”的独立素养,而是相互“交着”相互“渗透”的,在直观想象中,蕴含着抽象、推理、模型;在抽象概括中,也离不开直观、推理、模型;在数学建模的过程中,更需要直观、推理、模型交互发挥作用……数学核心素养不是独立于知识、技能、思想、经验之外的“神秘”概念,综合体现出对数学知识的理解、对数学技能方法的掌握、对数学思想的感悟及对数学活动经验的积累。二、基于数学核心素养的数学课程体系基于数学核心素养的数学课程要突出三件事,一是符合数学规律并结构清晰;二是突出数学本质;三是便于转化,转化为数学核心素养。体现选择性的高中数学课程结构不同的学生拥有不同的特长,会选择不同的发展方向,需要有不同水平的数学核心素养,而数学课程标准为不同发展方向的学生设计了不同的课程。必修课程为学生发展提供共同基础,是高中毕业考试的内容要求。选修I课程是供学生选择的课程,必修课程和选修I课程是高考的内容要求。选修Ⅱ课程分为ABCDE五类。这些课程为学生确定发展方向提供引导,为学生展示数学才能提供平台,为学生发展数学兴趣提供选择,为大学自主招生提供参考。学生可以根据自己的志向和大学专业的要求选择学习其中的某些课程。A课程是部分理工类(数学、物理、计算机、精密仪器等)学生可以选择的课程。B课程是经济、社会(数理经济等)和部分理工类(化学、生物、机械等)学生可以选择的课程。C课程是人文类(历史、语言等)学生可以选择的课程。D课程是体育、音乐、美术(艺术)类学生等可以选择的课程。E课程(校本课程)是学校自主开设,供学生自主选择的课程,特别包括大学先修课程(CAP)。体现数学核心素养发展的高中数学内容结构数学有丰富的研究领域、问题和方法,形成了很多特点鲜明、作用不同的数学分支,但数学又是一个有机整体,拥有清晰的结构,从学习的角度来说,更是如此。只有这样,才能更好地提升、发展学生的数学核心素养。根据高中学习特点和需要,高中数学内容将突出三条贯穿始终的内容主线:函数及应用、几何与代数、统计与概率。数学建模与数学探究是另一条贯穿始终的主线。另外,还应将数学文化渗透在高中课程内容中。抓住这些贯穿始终的主线,才能反复感受到抽象、推理(运算)、模型、直观所起的作用,有效地促进学生数学核心素养的提升和发展。体现数学本质的关键问题和主要概念、定理、模型、思想方法、应用在整体认识高中数学内容结构和主线的基础上,需要进一步深入思考支撑主线的关键问题和主要概念、定理、模型、思想方法、应用等。以函数主线为例,首先,抓住以下关键问题:整体、全面认识函数概念;深入理解函数性质——整体性质与局部性质;掌握一批基本函数类;把握函数应用;感悟研究函数思想方法;深入理解主要概念、定理、模型、思想方法、应用等,步步深入,逐步提升数学核心素养。三、基于数学核心素养的数学教学教什么,如何教?这是教师教学的永恒课题。基于数学核心素养的教师数学教学,首先要更新观念。培养并提升核心素养,不能依赖模仿、记忆,更需要理解、感悟,需要主动、自觉,将“学生为本”的理念与教学实际有机结合。整体把握数学课程基于数学核心素养的数学教学,整体理解数学课程是基础。高中数学课程是一个有机整体,要整体理解数学课程性质与理念,整体掌握数学课程目标,特别需要整体感悟数学核心素养,整体认识数学课程内容结构—主线—主题—关键概念、定理、模型、思想方法、应用,整体设计与实施教学。在这一过程中,学生会不断感悟、理解抽象、推理、运算、直观的作用,得到新的数学模型,改进思维品质,扩大应用范围,提升关键能力,改善思维品质。主题(单元)教学基于数学核心素养的数学教学,要求教师能从一节一节的教学中跳出来,以“主题(单元)”作为进行教学的基本教学思考对象。可以以“章”作为单元,如将“三角函数”作为教学设计单元;也可以以数学中的重要主题为教学设计单元,如“距离”或“几何度量关系:距离、角度”等;也可以以数学中通性通法为单元,如“模型与待定系数”等。这是深度学习的核心,也是深度学习的抓手,也是整体把握数学课程的抓手,可突出本质——数学核心素养,有利于教学方式多样化,把“教”与“学”结合起来,促进学生自主学习;有助于提高数学教师专业水平(数学、教育教学理论、实践),这是数学骨干教师的基本功,不是教教材,而是创造性地使用教材教数学。抓住数学本质我国著名数学家华罗庚反复强调:能把书读厚,又能把书读薄,读薄就是抓住本质,抓住重点,抓住本质,才能更好地理解和提升数学核心素养。问题引领——发现、提出问题与分析解决问题在关于数学和数学教育的大讨论中,问及在数学和数学教育中什么最重要时,著名数学家P Harmous 在一篇总结文章中强调“问题是关键”,数学概念、定理、模型和应用都是在解决问题的过程中总结形成的。在数学课程目标中,特别强调发展学生发现、提出问题与分析解决问题的能力,在基于数学核心素养的教学中,这也是关注的重点。创设合适情境创设合适情境是基于数学核心素养教学的另一关注点。首先要对“情境需要”有个全面的认识,包括实际情境、科学情境、数学情境、历史情境。情境选择的基本原则是便于理解学习内容和要完成的任务,循序渐进,进而考虑激发学生的兴趣和热情。掌握学情,加强“会学”指导“授之于鱼,不如授之以渔”是古训,这与学会学习的理念一致,“会学”比“学会”重要。“会学数学”应包括:阅读理解、质疑提问、梳理总结、表达交流。以“数学阅读理解”为例,需要清楚数学语言由数学自然语言、符号语言、图形语言组成,它的特点是准确、清晰、简洁,数学阅读就要会读“数学普通话”“符号”“图形(表格)”。而数学符号、图形又是一个系统,彼此联系,学生不能很快习惯,需要指导,不能太急。数学教师强调“学法指导”,是一个很好的经验,需要坚持、总结、提升。四、基于数学核心素养的数学学习基于数学核心素养的数学学习,应关注以下问题。视野—见识学习数学需要有开阔视野,了解数学的历史,了解数学的发展,了解数学在社会发展中作用,在美国科学委员会写给美国总统的咨询报告中特别强调:“高科技本质上是数学技术”;了解数学在现实生活中的作用,英国研究理事会的评估报告认为,数学研究对英国经济的贡献约占英国所有工作岗位的10%和GDP增加值总额的16%。对优秀学生,教师应引导他们不满足学到数学知识,得到好成绩,还需要好的见识。见识比知识更重要。做题=数学学习?会学—自主以做题取代数学学习,这是数学教育中的突出问题。通过做题巩固学习内容,这是学习数学的重要环节,但仅靠做题有很大的局限性。学习数学也需要理解数学概念、定理、应用,需要理解不同内容之间的联系。做题与做数学是有区别的。做数学,首先要选择问题,进而猜想结论,确定条件,探索解决问题的方法;做题,完全不同,条件和结论是确定的,方法也是学习过的,在锻炼数学素养方面有一定的局限性。积极参与数学建模和数学探究数学建模是对现实问题进行数学抽象,用数学语言表达问题,用数学知识与方法构建模型解决问题的过程。数学探究是围绕某个具体数学问题,开展自主探究、合作研究,并最终解决数学问题的过程。它们是高中阶段数学课程的重要内容。“数学建模活动”和“数学探究活动”主要以课题研究的形式开展。课题研究过程包括选题、开题、做题、结题四个环节,这是促进学生自主学习的一项重要措施,可以让他们经历解决问题的过程。会交流在数学学习为主的阶段,交流很重要。听一遍不如看一遍,看一遍不如讲一遍,讲一遍不如写一遍,很有道理。大学研究生授课的主要方式是让学生报告,导师很容易从报告的过程中判断是否真懂,希望中学教师和学生也能借鉴这种方法——交流。基于数学核心素养的评价是落实的重要措施,尤其是高考评价。如果高考试题、考试等形式不进行改变,这次改革就很难落实。当然,也应循序渐进。数学课标修订组下专门成立了“基于数学核心素养考试命题研究组”,研究需要改进的命题要素和形式。因此,基于数学核心素养评价的命题,要关注以下要素:(1)命题者要整体把握高中数学课程,围绕内容主线—主题(单元)和关键概念、结论、模型、思想方法、应用展开;(2)突出数学本质;(3)创设合适情境,强调发现、提出和分析、解决问题背景,情境包括实际情境、科学情境、数学情境、历史情境;(4)强调开放性、探究性。如何在数学教育中提升学生的数学核心素养,是数学教育工作者面临的新课题。一线数学教师是落实本次高中课程标准修订的关键,希望广大教师注重提升自身数学素养,特别是数学核心素养,关注数学内容、数学教学理论、数学教学实践与数学核心素养的有机结合,直面问题,不断探索,为学生营造良好的数学教育。
点我用户名,空间博文有介绍详细各种论文检测系统软件介绍见我空间各种有效论文修改秘籍 111
亲·
,论文题目:(下附署名)要求准确,简练,醒目,新颖2,目录目录是论文中主要段落的简表(短篇论文不必列目录)3,摘要是文章主要内容的摘录,要求短,精,完整字数少可几十字,多不超过三百字为宜4,关键词或主题词关键词是从论文的题名,提要和正文中选取出来的,是对表述论文的中心内容有实质意义的词汇关键词是用作计算机系统标引论文内容特征的词语,便于信息系统汇集,以供读者检索 每篇论文一般选取3-8个词汇作为关键词,另起一行,排在"提要"的左下方主题词是经过规范化的词,在确定主题词时,要对论文进行主题分析,依照标引和组配规则转换成主题词表中的规范词语(参见《汉语主题词表》和《世界汉语主题词表》) 学位论文的标准格式二5,论文正文(1)引言:引言又称前言,序言和导言,用在论文的开头 引言一般要概括地写出作者意图,说明选题的目的和意义, 并指出论文写作的范围引言要短小精悍,紧扣主题(2)论文正文:正文是论文的主体,正文应包括论点,论据, 论证过程和结论主体部分包括以下内容:提出问题-论点;分析问题-论据和论证;解决问题-论证方法与步骤; 结论6,参考文献一篇论文的参考文献是将论文在研究和写作中可参考或引证的主要文献资料,列于论文的末尾参考文献应另起一页,标注方式按《GB7714-87文后参考文献著录规则》进行中文:标题--作者--出版物信息(版地,版者,版期)英文:作者--标题--出版物信息所列参考文献的要求是:(1)所列参考文献应是正式出版物,以便读者考证(2)所列举的参考文献要标明序号,著作或文章的标题,作者,出版物信息如何选题获取最佳论文选题的途径 1,选择你有浓厚兴趣,而且在某方面较有专长的课题 2,在不了解和了解不详的领域中寻找课题3,要善于独辟蹊径,选择富有新意的课题4,选择能够找得到足够参考资料的课题5,征询导师和专家的意见6,善于利用图书馆; 图书馆的自动化,网络化为读者选题提供了便利条件 论文的核心不同的问题,有不同的写法,一般一篇论文论述一个核心问题(综述除外)论文的核心是作者根据国内外发展和自己工作梳理出来的,可以从多个方面着手元部件和系统,理论分析和实验,系统特性和测试,方案设计和实现等;新思想,新概念,新理论,新途径,新方案,新进展,不同看法文章结构和长度结构题目,摘要和关键词引言正文结论和致谢(结束语)参考文献,附录等文章长度并无明确规定,一般科技期刊文章在4000-8000字(含图表),根据杂志和文章类别而定综述文章多由编辑部门邀请权威撰写,涉及历史的回顾和未来的展望,内容广泛,可以较长科技论文的篇名用简洁恰当的词组反映文章的特定内容,明确无误篇名简短,不超过20个字少用研究和空洞应用之类字避免用不熟悉的简称,缩写和公式等关键词4-6个反映文章特征内容,通用性比较强的词组第一个为本文主要工作或内容,或二级学科第二个为本文主要成果名称或若干成果类别名称第三个为本文采用的科学研究方法名称,综述或评论性文章应为"综述"或"评论"第四个为本文采用的研究对象的事或物质名称避免使用分析,特性等普通词组引言主要回答为什么研究(why)介绍论文背景,相关领域研究历史与现状,本文目的一般不要出现图表正文论文核心,主要回答怎么研究(how),一般正文应有下述几个部分组成本文观点,理论或原理分析实现方法或方案(根据内容而定)数值计算,仿真分析或实验结果(根据内容而定)讨论,主要根据理论分析,仿真或实验结果讨论不同参数产生的变化,理论分析与实验相符的程度以及可能出现的问题等结论文章的总结,要回答研究出什么(what)以正文为依据,简洁指出由研究结果所揭示的原理及其普遍性研究中有无例外或本论文尚难以解决的问题与以前已经发表的论文异同在理论与实际上的意义对近一步研究的建议致谢对给予本文研究的选题,构思,实验或撰写等方面给以指导,帮助或建议的人员致以谢意;由于论文作者不能太多,所以部分次要参加者可不列入作者,表示致谢;一般资助单位应在文章首页下脚加注,一般不再致谢参考文献文章中引用他人成果或文章内容应注明参考文献参考文献规格应按国标或出版社编辑部格式作者,文献题名,刊名,年,卷(期),起止页码附录附录不是文章的必要组成部分,但可为深入了解本文人员提供参考主要提供论文有关公式推导,演算以及不宜列入正文的数据和图表等注意事项-缩写词,外文字母摘要和正文中的缩写词第一次出现都必须写出全称外文字母必须分清大小写,正斜体和上,下角正体:计量单位(cm, kg)斜体:物理量,坐标,函数符号 R,L,C注意事项-量和单位使用国际标准和国家法定计量单位一篇文章不要用一个符号表示两个或多个物理量,如用C同时表示常数和电容首次出现(公式)的符号应在其后说明物理意义量的符号一般为单个字母,如阈值电压(Threshold Voltage) 不能用TV ,应当用 Vt 组合单位的斜线不能多于1个,W/m2/k应为W/( m2· k)或W·m-2·k -1 注意事项-图,表图表内容及含义,坐标名称量纲清楚图和表内容不应重复,一种数据用图或表一个表示应按顺序连续编号 F 1, F 2, Table 1…图框宜细,曲线应粗表格应用三线表基本入手途径(一)选题最关键一定要选择具有一定理论深度的题目,可拓展性强的领域要尽可能选择研究学科交叉点不要盲目追随研究热点,强调独立选择创新之路提出自然的,很简单的,具有直觉性的解决方法,做深下去考虑自己感兴趣的,具有实际意义的点做下去要广泛粗看,少量精看基本入手途径(二)提高论文写作能力背诵科技英文段落及常用句式由浅入深,勤于动笔向国外投稿,得到反馈科技论文的摘要简明扼要, 200字左右,无废话;用第三人称写,说明文章目的,方法,结果和结论,不应出现"本文","我们","作者"字眼,也不要有"首先" , "最后" , "简单" , "主要"和"次要"等修饰词;文摘可单独发表,应有独立性和自明性,不得使用文章中的章节号,图号和表号等;第一句不要重复文章篇名或已表述过的信息;不能写常识性内容,过去情况和未来的计划,只写最新进展三,关于英文文摘英文摘要(Abstract)SCI,ISTP和EI等索引主要是根据英文题名和文摘选录文摘长度一般为100-200 内容要求与中文大体相同,主要讲目的,过程,方法和结果内容要精练,不要将结论译成英文作摘要文章题目第一词切不可用冠词The,A,An和And(单位名称也不用The Institute …)四,怎样读文章怎样读文章(一)在读文章前,确信它是值得的先看题目,然后是摘要,如果没有完全失望,继续看介绍和结论(title->abstract->introduction->conclusions)在掌握所有细节之前,浏览整个文章,尽量找到那些关键点(the most implortant points)如果还觉得它是有关和值得的,就回去继续看(当然如果是老板要你看的重要文章,跳过前面的内容,直接读就行了) 高的效率从结论开始,浏览图示和表,看看他的引用 只在你觉得相关或者你觉得能给你不同的观点的时候才读其他部分 跳过你已经知道的部分(比如背景和动机) 怎样读文章(二)积极主动的思考作者怎么想出这个念头的 这件工作到底完成了什么 它和这个领域的其他工作有什么关系 其中重要的引用文献是哪些 在这个工作的基础上合理的下一步工作是什么 相关领域的什么想法和这个主题相关 有什么不同 这些想法怎样帮助解决自己的研究问题 怎样读文章(三)总结所读的每个主题关键问题key problems 所描述问题的不同表达形式 不同方法之间的关系 替代的方法 读完以后,看一下表述的问题 什么使得这篇文章易读 文章解决了哪个级别的细节问题 什么例子用来阐述重要的概念 什么问题没有解决 结果能够一般化(推广)吗 怎样读文章(四)良好的组织习惯一个有用的方法是,用笔记录自己读过和听过的东西写下自己的想法(speculations),感兴趣的难题,可能的解决方法,要查看的参考数目,笔记,文章的概要,有趣的印证阶段性的复习可以发现这些思想是不是开始走在一起(fit together)即使那些笔记没有用,也会帮助我们集中精力,找到重点和进行总结(You may find yourself spending over half of your time reading, especially at the This is ) 怎样读文章(五)发展自己的IDEA确认所描述的思想真的有用(而不是仅仅理论上成立,或者是一些不重要的例子上面成立)真正理解文章,就要懂得问题的动机,解决方法的可能选择,解决方法基于的假设这些假设是不是现实,它们是不是可以在使方法有效的情况下移除,进一步的研究方向,实际完成或者实现的工作,理论判定或者实验验证的有效性,扩充和延伸算法的潜力 保存读过的文章,建立在线的参考书目增加关键字的的域,文章的位置和感兴趣的文章的总结这对以后写文章以及给其他的研究生很有用 怎样读文章(六)阅读,思考,再阅读,再思考每周留一定的时间看看是不是可以想出研究想法 每周至少到图书馆看一下相关领域前面杂志的摘要选择一两篇仔细阅读并且批判 每周进行一次调查,利用电子资源或者图书馆寻找领域相关的技术报告,选择性批判性的阅读 参加一个研讨会或者讨论组,批判性的听取 了解研究的进展要注意你清楚这个领域的所有文献,如果你不经常复习一个月以前的文献,你可能发现自己对别人的思想不清楚了另外一方面,也不要让别人的想法限制了你的创造力 要注意避免的方面主动(活跃)的听和读需要被当作贯穿你整个事业的"不间断教育"不要愚蠢的认为在你开始研究前应当读完所有的文献,而应该选择性的阅读一开始从经典的文章(询问你的老师或者同学从而得到一些最有用的杂志和会议)和最近几年的杂志和会议开始 五,开始写作开始写作(一)读一些最新的论文,尤其是那些发表了的学习它们的内容和表达,注意它们里面的-进一步工作(future work) 仔细的记笔记记下每一个新的结果,即使没有重要的和有帮助的东西 写出一个纲要,它以后会经常改变,经常在头脑中保持一个新的构想对以后平滑的过渡很有好处 开始写作(二)第一章:导言问题是什么 为什么重要 别人做了什么工作 自己方法的主要思想是什么 文章的其他部分是怎样组织的 第二章:问题问题定义术语介绍基本属性讨论第三章:主要想法1……第k+2章:主要想法k第k+3章:结论重述完成的工作讨论进一步的工作开始写作(三)不要总认为文章必须从第一页写直接写主要想法big idea,记录怎样和其他部分组织在一起一个组织各章的方法是展现给你的实验室同学(fellow students),如果你能够将它们组织成连贯的"一小时报告",那就表明你可以写你的文章了开始写作(四)无休止的修改格式而不是内容也是常犯的错误要避免这种情况 清楚自己想说什么这是写清楚要的最难最重要的因素如果你写出笨拙的东西,不断的修补,就表明不清楚自己想说什么确信你的文章真的有思想(ideas)要说清楚为什么,不仅仅是怎么样 从每一段到整个文章都应该把最引人入胜的东西放在前面让读者容易看到你写的东西(Make it easy for the reader to find out what you've done)注意处理摘要(carefully craft the abstract)确定(be sure)说出了你的好思想是什么确定你自己知道这个思想是什么,然后想想怎么用几句话写出来开始写作(五)不要大肆夸耀你自己做的事情 得到反馈如果你加入讨论组,会收到很多别人的文章,他们请你评论知道别人对论文的意见很重要你给别人帮助,别人会在你需要的时候帮助你而且,自己也能提高为文章写有用的评论是一门艺术你应当读上两遍,第一遍了解其思想(IDEAS),第二遍看表达 如何减少写论文的痛苦写下自己的想法是完善它的好方法你可能发现自己的想法在纸上会变成一团糟 慢慢 地你也发觉它清晰起来记住你写得草稿很可能要全部推翻着重于内容而不是格式不要追求完美记住:写作是一个不断完善的过程当你发现所写的不是你开始想写的,写下粗稿,以后再修补写粗稿可以理出自己的思想,渐渐进入状态如果写不出全部内容,就写纲要,在容易写具体的内容时再补充如果写不出来,就把想到的东西全部写出来,即使你觉得是垃圾当你写出足够的内容,再编辑它们,转化成有意义的东西另一个原因是想把所有的东西都有序的写出来(in order)次序是不一定的你可能要从正文写起,最后在你知道你写的到底是什么的时候再写简介写作是很痛苦的事情,有时候一天只能写上一页追求完美也可能导致对已经完美的文章无休止的修改润饰这不过是浪费时间罢了把写作当作和人说话就行了 积极的动力积极的反馈定下每天,每周,每月的目标是一个很好的主意 尽可能让自己获得成就感及时的交流要与人分享你的想法或者给别人以建议分而治之 在写论文时,不是写整个的文章,而是一节,一段,一章的写一次实现一个部分,找出那些一个小时里可以解决的问题,如果不确信,不要让它们阻止你完成一些东西——一天一次记住:你完成的每一步工作都使你接近完成六,论文写作辅助工具Word-论文模板Origin绘图工具的使用MathType公式编辑器Linux实验七,一个例子及常见问题学士论文例子基于对等网络的即时消息系统在写之前把目录做好终点就是起点以终为始,以始为终学士论文常见问题论文格式不合要求或字数不够 第一章改为: "绪论"或"概述"或许要好一些,这一单应分为几个小节概述最好写到4页以上,概述写清背景,动机以及本文的工作安排也可以把本文的贡献放上去, 对于论文的实验结果,应给出实验结果的详细分析,而不应是仅仅罗列一些结果有的论文描述算法时给出了算法的代码,最好不要大段地拷贝代码,而尽量用流程图或伪代码并对代码给出分析 论文尽量少用或不用"我,我们"之类的词,尤其尽量不要用"我"这一字眼 你的情况,借本课本多从课本上找依据,再搞几个数学名著的理论用名著撑面子~有点乱,但是加油哈 一个专业论文网预祝马到成功o(∩_∩)
数学很有用 学数学就是为了能在实际生活中应用,数学是人们用来解决实际问题的,其实数学问题就产生在生活中。比如说,上街买东西自然要用到加减法,修房造屋总要画图纸。类似这样的问题数不胜数,这些知识就从生活中产生,最后被人们归纳成数学知识,解决了更多的实际问题。 我曾看见过这样的一个报道:一个教授问一群外国学生:“12点到1点之间,分针和时针会重合几次?”那些学生都从手腕上拿下手表,开始拨表针;而这位教授在给中国学生讲到同样一个问题时,学生们就会套用数学公式来计算。评论说,由此可见,中国学生的数学知识都是从书本上搬到脑子中,不能灵活运用,很少想到在实际生活中学习、掌握数学知识。 从这以后,我开始有意识的把数学和日常生活联系起来。有一次,妈妈烙饼,锅里能放两张饼。我就想,这不是一个数学问题吗?烙一张饼用两分钟,烙正、反面各用一分钟,锅里最多同时放两张饼,那么烙三张饼最多用几分钟呢?我想了想,得出结论:要用3分钟:先把第一、第二张饼同时放进锅内,1分钟后,取出第二张饼,放入第三张饼,把第一张饼翻面;再烙1分钟,这样第一张饼就好了,取出来。然后放第二张饼的反面,同时把第三张饼翻过来,这样3分钟就全部搞定。 我把这个想法告诉了妈妈,她说,实际上不会这么巧,总得有一些误差,不过算法是正确的。看来,我们必须学以致用,才能更好的让数学服务于我们的生活。 数学就应该在生活中学习。有人说,现在书本上的知识都和实际联系不大。这说明他们的知识迁移能力还没有得到充分的锻炼。正因为学了不能够很好的理解、运用于日常生活中,才使得很多人对数学不重视。希望同学们到生活中学数学,在生活中用数学,数学与生活密不可分,学深了,学透了,自然会发现,其实数学很有用处。各门科学的数学化 数学究竟是什么呢?我们说,数学是研究现实世界空间形式和数量关系的一门科学.它在现代生活和现代生产中的应用非常广泛,是学习和研究现代科学技术必不可少的基本工具. 同其他科学一样,数学有着它的过去、现在和未来.我们认识它的过去,就是为了了解它的现在和未来.近代数学的发展异常迅速,近30多年来,数学新的理论已经超过了18、19世纪的理论的总和.预计未来的数学成就每“翻一番”要不了10年.所以在认识了数学的过去以后,大致领略一下数学的现在和未来,是很有好处的. 现代数学发展的一个明显趋势,就是各门科学都在经历着数学化的过程. 例如物理学,人们早就知道它与数学密不可分.在高等学校里,数学系的学生要学普通物理,物理系的学生要学高等数学,这也是尽人皆知的事实了. 又如化学,要用数学来定量研究化学反应.把参加反应的物质的浓度、温度等作为变量,用方程表示它们的变化规律,通过方程的“稳定解”来研究化学反应.这里不仅要应用基础数学,而且要应用“前沿上的”、“发展中的”数学. 再如生物学方面,要研究心脏跳动、血液循环、脉搏等周期性的运动.这种运动可以用方程组表示出来,通过寻求方程组的“周期解”,研究这种解的出现和保持,来掌握上述生物界的现象.这说明近年来生物学已经从定性研究发展到定量研究,也是要应用“发展中的”数学.这使得生物学获得了重大的成就. 谈到人口学,只用加减乘除是不够的.我们谈到人口增长,常说每年出生率多少,死亡率多少,那么是否从出生率减去死亡率,就是每年的人口增长率呢?不是的.事实上,人是不断地出生的,出生的多少又跟原来的基数有关系;死亡也是这样.这种情况在现代数学中叫做“动态”的,它不能只用简单的加减乘除来处理,而要用复杂的“微分方程”来描述.研究这样的问题,离不开方程、数据、函数曲线、计算机等,最后才能说清楚每家只生一个孩子如何,只生两个孩子又如何等等. 还有水利方面,要考虑海上风暴、水源污染、港口设计等,也是用方程描述这些问题再把数据放进计算机,求出它们的解来,然后与实际观察的结果对比验证,进而为实际服务.这里要用到很高深的数学. 谈到考试,同学们往往认为这是用来检查学生的学习质量的.其实考试手段(口试、笔试等等)以及试卷本身也是有质量高低之分的.现代的教育统计学、教育测量学,就是通过效度、难度、区分度、信度等数量指标来检测考试的质量.只有质量合格的考试才能有效地检测学生的学习质量. 至于文艺、体育,也无一不用到数学.我们从中央电视台的文艺大奖赛节目中看到,给一位演员计分时,往往先“去掉一个最高分”,再“去掉一个最低分”.然后就剩下的分数计算平均分,作为这位演员的得分.从统计学来说,“最高分”、“最低分”的可信度最低,因此把它们去掉.这一切都包含着数学道理. 我国著名的数学家关肇直先生说:“数学的发明创造有种种,我认为至少有三种:一种是解决了经典的难题,这是一种很了不起的工作;一种是提出新概念、新方法、新理论,其实在历史上起更大作用的、历史上著名的正是这种人;还有一种就是把原来的理论用在崭新的领域,这是从应用的角度有一个很大的发明创造.”我们在这里所说的,正是第三种发明创造.“这里繁花似锦,美不胜收,把数学和其他各门科学发展成综合科学的前程无限灿烂.” 正如华罗庚先生在1959年5月所说的,近100年来,数学发展突飞猛进,我们可以毫不夸张地用“宇宙之大、粒子之微、火箭之速、化工之巧、地球之变、生物之谜、日用之繁等各个方面,无处不有数学”来概括数学的广泛应用.可以预见,科学越进步,应用数学的范围也就越大.一切科学研究在原则上都可以用数学来解决有关的问题.可以断言:只有现在还不会应用数学的部门,却绝对找不到原则上不能应用数学的领域. 关于“0” 0,可以说是人类最早接触的数了。我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”这样说显然是不正确的。我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。” “任何数除以0即为没有意义。”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少。一个整体无法分成0份,即“没有意义”。后来我才了解到a/0中的0可以表示以零为极限的变量(一个变量在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变量在变化过程中其绝对值永远大于任意大的已定正数)。从中得到关于0的又一个定理“以零为极限的变量,叫做无穷小”。 “105、203房间、2003年”中,虽都有0的出现,粗“看”差不多;彼此意思却不同。105、2003年中的0指数的空位,不可删去。203房间中的0是分隔“楼(2)”与“房门号(3)”的(即表示二楼八号房),可删去。0还表示…… 爱因斯坦曾说:“要探究一个人或者一切生物存在的意义和目的,宏观上看来,我始终认为是荒唐的。”我想研究一切“存在”的数字,不如先了解0这个“不存在”的数,不至于成为爱因斯坦说的“荒唐”的人。作为一个中学生,我的能力毕竟是有限的,对0的认识还不够透彻,今后望(包括行动)能在“知识的海洋”中发现“我的新大陆”。 黄金分割 对于“黄金分割”大家应该都不陌生吧! 由于公元前6世纪古希腊的毕达哥拉斯学派研究过正五边形和正十边形的作图,因此现代数学家们推断当时毕达哥拉斯学派已经触及甚至掌握了黄金分割。 公元前4世纪,古希腊数学家欧多克索斯第一个系统研究了这一问题,并建立起比例理论。 公元前300年前后欧几里得撰写《几何原本》时吸收了欧多克索斯的研究成果,进一步系统论述了黄金分割,成为最早的有关黄金分割的论著。 中世纪后,黄金分割被披上神秘的外衣,意大利数家帕乔利称中末比为神圣比例,并专门为此著书立说。德国天文学家开普勒称黄金分割为神圣分割。 到19世纪黄金分割这一名称才逐渐通行。黄金分割数有许多有趣的性质,人类对它的实际应用也很广泛。最著名的例子是优选学中的黄金分割法或618法,是由美国数学家基弗于1953年首先提出的,70年代在中国推广。 也许,618在科学艺术上的表现我们已了解了很多,但是,你有没有听说过,618还与炮火连天、硝烟弥漫、血肉横飞的惨烈、残酷的战场也有着不解之缘,在军事上也显示出它巨大而神秘的力量?一代枭雄的的拿破仑大帝可能怎么也不会想到,他的命运会与618紧紧地联系在一起。1812年6月,正是莫斯科一年中气候最为凉爽宜人的夏季,在未能消灭俄军有生力量的博罗金诺战役后,拿破仑于此时率领着他的大军进入了莫斯科。这时的他可是踌躇满志、不可一世。他并未意识到,天才和运气此时也正从他身上一点点地消失,他一生事业的顶峰和转折点正在同时到来。后来,法军便在大雪纷扬、寒风呼啸中灰溜溜地撤离了莫斯科。三个月的胜利进军加上两个月的盛极而衰,从时间轴上看,法兰西皇帝透过熊熊烈焰俯瞰莫斯科城时,脚下正好就踩着黄金分割线。 古希腊帕提侬神庙是举世闻名的完美建筑,它的高和宽的比是618。建筑师们发现,按这样的比
【初中数学教学论文】:亲你可以到,(鲁韵论文网)~了解下,上面有相关的(初中数学教学论文)资料或者直接加~~~Q~~~~(我的名称)我能帮上你的忙。
数学很有用 学数学就是为了能在实际生活中应用,数学是人们用来解决实际问题的,其实数学问题就产生在生活中。比如说,上街买东西自然要用到加减法,修房造屋总要画图纸。类似这样的问题数不胜数,这些知识就从生活中产生,最后被人们归纳成数学知识,解决了更多的实际问题。 我曾看见过这样的一个报道:一个教授问一群外国学生:“12点到1点之间,分针和时针会重合几次?”那些学生都从手腕上拿下手表,开始拨表针;而这位教授在给中国学生讲到同样一个问题时,学生们就会套用数学公式来计算。评论说,由此可见,中国学生的数学知识都是从书本上搬到脑子中,不能灵活运用,很少想到在实际生活中学习、掌握数学知识。 从这以后,我开始有意识的把数学和日常生活联系起来。有一次,妈妈烙饼,锅里能放两张饼。我就想,这不是一个数学问题吗?烙一张饼用两分钟,烙正、反面各用一分钟,锅里最多同时放两张饼,那么烙三张饼最多用几分钟呢?我想了想,得出结论:要用3分钟:先把第一、第二张饼同时放进锅内,1分钟后,取出第二张饼,放入第三张饼,把第一张饼翻面;再烙1分钟,这样第一张饼就好了,取出来。然后放第二张饼的反面,同时把第三张饼翻过来,这样3分钟就全部搞定。 我把这个想法告诉了妈妈,她说,实际上不会这么巧,总得有一些误差,不过算法是正确的。看来,我们必须学以致用,才能更好的让数学服务于我们的生活。 数学就应该在生活中学习。有人说,现在书本上的知识都和实际联系不大。这说明他们的知识迁移能力还没有得到充分的锻炼。正因为学了不能够很好的理解、运用于日常生活中,才使得很多人对数学不重视。希望同学们到生活中学数学,在生活中用数学,数学与生活密不可分,学深了,学透了,自然会发现,其实数学很有用处。各门科学的数学化 数学究竟是什么呢?我们说,数学是研究现实世界空间形式和数量关系的一门科学.它在现代生活和现代生产中的应用非常广泛,是学习和研究现代科学技术必不可少的基本工具. 同其他科学一样,数学有着它的过去、现在和未来.我们认识它的过去,就是为了了解它的现在和未来.近代数学的发展异常迅速,近30多年来,数学新的理论已经超过了18、19世纪的理论的总和.预计未来的数学成就每“翻一番”要不了10年.所以在认识了数学的过去以后,大致领略一下数学的现在和未来,是很有好处的. 现代数学发展的一个明显趋势,就是各门科学都在经历着数学化的过程. 例如物理学,人们早就知道它与数学密不可分.在高等学校里,数学系的学生要学普通物理,物理系的学生要学高等数学,这也是尽人皆知的事实了. 又如化学,要用数学来定量研究化学反应.把参加反应的物质的浓度、温度等作为变量,用方程表示它们的变化规律,通过方程的“稳定解”来研究化学反应.这里不仅要应用基础数学,而且要应用“前沿上的”、“发展中的”数学. 再如生物学方面,要研究心脏跳动、血液循环、脉搏等周期性的运动.这种运动可以用方程组表示出来,通过寻求方程组的“周期解”,研究这种解的出现和保持,来掌握上述生物界的现象.这说明近年来生物学已经从定性研究发展到定量研究,也是要应用“发展中的”数学.这使得生物学获得了重大的成就. 谈到人口学,只用加减乘除是不够的.我们谈到人口增长,常说每年出生率多少,死亡率多少,那么是否从出生率减去死亡率,就是每年的人口增长率呢?不是的.事实上,人是不断地出生的,出生的多少又跟原来的基数有关系;死亡也是这样.这种情况在现代数学中叫做“动态”的,它不能只用简单的加减乘除来处理,而要用复杂的“微分方程”来描述.研究这样的问题,离不开方程、数据、函数曲线、计算机等,最后才能说清楚每家只生一个孩子如何,只生两个孩子又如何等等. 还有水利方面,要考虑海上风暴、水源污染、港口设计等,也是用方程描述这些问题再把数据放进计算机,求出它们的解来,然后与实际观察的结果对比验证,进而为实际服务.这里要用到很高深的数学. 谈到考试,同学们往往认为这是用来检查学生的学习质量的.其实考试手段(口试、笔试等等)以及试卷本身也是有质量高低之分的.现代的教育统计学、教育测量学,就是通过效度、难度、区分度、信度等数量指标来检测考试的质量.只有质量合格的考试才能有效地检测学生的学习质量. 至于文艺、体育,也无一不用到数学.我们从中央电视台的文艺大奖赛节目中看到,给一位演员计分时,往往先“去掉一个最高分”,再“去掉一个最低分”.然后就剩下的分数计算平均分,作为这位演员的得分.从统计学来说,“最高分”、“最低分”的可信度最低,因此把它们去掉.这一切都包含着数学道理. 我国著名的数学家关肇直先生说:“数学的发明创造有种种,我认为至少有三种:一种是解决了经典的难题,这是一种很了不起的工作;一种是提出新概念、新方法、新理论,其实在历史上起更大作用的、历史上著名的正是这种人;还有一种就是把原来的理论用在崭新的领域,这是从应用的角度有一个很大的发明创造.”我们在这里所说的,正是第三种发明创造.“这里繁花似锦,美不胜收,把数学和其他各门科学发展成综合科学的前程无限灿烂.” 正如华罗庚先生在1959年5月所说的,近100年来,数学发展突飞猛进,我们可以毫不夸张地用“宇宙之大、粒子之微、火箭之速、化工之巧、地球之变、生物之谜、日用之繁等各个方面,无处不有数学”来概括数学的广泛应用.可以预见,科学越进步,应用数学的范围也就越大.一切科学研究在原则上都可以用数学来解决有关的问题.可以断言:只有现在还不会应用数学的部门,却绝对找不到原则上不能应用数学的领域. 关于“0” 0,可以说是人类最早接触的数了。我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”这样说显然是不正确的。我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。” “任何数除以0即为没有意义。”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少。一个整体无法分成0份,即“没有意义”。后来我才了解到a/0中的0可以表示以零为极限的变量(一个变量在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变量在变化过程中其绝对值永远大于任意大的已定正数)。从中得到关于0的又一个定理“以零为极限的变量,叫做无穷小”。 “105、203房间、2003年”中,虽都有0的出现,粗“看”差不多;彼此意思却不同。105、2003年中的0指数的空位,不可删去。203房间中的0是分隔“楼(2)”与“房门号(3)”的(即表示二楼八号房),可删去。0还表示…… 爱因斯坦曾说:“要探究一个人或者一切生物存在的意义和目的,宏观上看来,我始终认为是荒唐的。”我想研究一切“存在”的数字,不如先了解0这个“不存在”的数,不至于成为爱因斯坦说的“荒唐”的人。作为一个中学生,我的能力毕竟是有限的,对0的认识还不够透彻,今后望(包括行动)能在“知识的海洋”中发现“我的新大陆”。 黄金分割 对于“黄金分割”大家应该都不陌生吧! 由于公元前6世纪古希腊的毕达哥拉斯学派研究过正五边形和正十边形的作图,因此现代数学家们推断当时毕达哥拉斯学派已经触及甚至掌握了黄金分割。 公元前4世纪,古希腊数学家欧多克索斯第一个系统研究了这一问题,并建立起比例理论。 公元前300年前后欧几里得撰写《几何原本》时吸收了欧多克索斯的研究成果,进一步系统论述了黄金分割,成为最早的有关黄金分割的论著。 中世纪后,黄金分割被披上神秘的外衣,意大利数家帕乔利称中末比为神圣比例,并专门为此著书立说。德国天文学家开普勒称黄金分割为神圣分割。 到19世纪黄金分割这一名称才逐渐通行。黄金分割数有许多有趣的性质,人类对它的实际应用也很广泛。最著名的例子是优选学中的黄金分割法或618法,是由美国数学家基弗于1953年首先提出的,70年代在中国推广。 也许,618在科学艺术上的表现我们已了解了很多,但是,你有没有听说过,618还与炮火连天、硝烟弥漫、血肉横飞的惨烈、残酷的战场也有着不解之缘,在军事上也显示出它巨大而神秘的力量?一代枭雄的的拿破仑大帝可能怎么也不会想到,他的命运会与618紧紧地联系在一起。1812年6月,正是莫斯科一年中气候最为凉爽宜人的夏季,在未能消灭俄军有生力量的博罗金诺战役后,拿破仑于此时率领着他的大军进入了莫斯科。这时的他可是踌躇满志、不可一世。他并未意识到,天才和运气此时也正从他身上一点点地消失,他一生事业的顶峰和转折点正在同时到来。后来,法军便在大雪纷扬、寒风呼啸中灰溜溜地撤离了莫斯科。三个月的胜利进军加上两个月的盛极而衰,从时间轴上看,法兰西皇帝透过熊熊烈焰俯瞰莫斯科城时,脚下正好就踩着黄金分割线。 古希腊帕提侬神庙是举世闻名的完美建筑,它的高和宽的比是618。建筑师们发现,按这样的比