hdh h nflksaf
当你清晨匆匆煮鸡蛋时,因为着急而将火开得大了点,你会发现在煮的过程中蛋壳出现了裂缝。为什么会这样呢?原来,在鸡蛋的一头有个空洞,鸡蛋被加热时,空洞里的空气就会膨胀。如果加热得太快,膨胀的空气来不及通过多孔的蛋壳跑出去,蛋壳就会开裂。为了防止出现这种情况,有经验的厨师会建议在煮蛋的时候要用冷水小火慢慢地煮。如果鸡蛋煮的时间过长,你还会发现在蛋黄的表面呈现灰绿色,这是因为化学反应产生了一种叫做硫化铁的化合物。鸡蛋含有铁元素和蛋白质,长时间高温加热会使蛋白质中含硫的氨基酸分解,产生硫化氢,蛋黄中的铁质与硫化氢发生反应,生成对人体无害的硫化铁。 煮沸的水如果从锅里溢出来,接触到煤气灶上的火焰,蓝色的火苗就变成黄色。煤气火焰的变色一方面表明了水让火焰的温度降低了,另外也表明水中含有钠离子,黄色火焰是氯化钠中的钠原子被加热后出现的现象,这种现象在化学上被称为“焰色反应”。我们的饮用水中一般溶解了许多盐类化合物,其中的钙离子、镁离子等没有“焰色反应”现象出现。溢出水在灶台干后会出现一些白色的物质,也证明了水中有盐类化合物。 我们制作面包、蛋糕或者松饼的时候,先要用发酵粉让面团发酵。为什么发酵粉会让面团变得松软呢?发酵粉的化学名称叫碳酸氢钠,它受热会分解,产生大量二氧化碳气体,使得面团膨胀起来,做出来的食品就会变得松软。碳酸氢钠还可以用在小型灭火器中用来扑灭火灾。在一些燃烧温度很高的火灾中,它被分解后产生二氧化碳气体,二氧化碳不会助燃,又比空气重,可覆盖在可燃物周围,因此可以用来阻断可燃物与空气的接触,火自然就熄灭了。 不含酒精的软饮料也含有各种各样的化学物质,不同成分的化学物质可以使饮料有着不同的颜色和不同的口味。有些生产商在广告上声称自己生产的碳酸饮料不会增加人体对糖类的过分摄入,不会让人发胖,因为他们所使用的甜味剂是从蔗糖中提炼出来的。为什么蔗糖会让人发胖,而从它里面提炼出来的甜味剂却不会呢?如果人体摄入过量可吸收的糖分,就不能被人体及时转化成新陈代谢所需的能量,一部分糖就转变成脂肪储存在体内,食用了过量糖分的人就会发胖。而那种从蔗糖中提炼出来的甜味剂虽然可以让人感觉到甜味,却不能被人体消化吸收,而是被肠胃当作废物排泄到了体外,因此它就不会让人发胖。
当你清晨匆匆煮鸡蛋时,因为着急而将火开得大了点,你会发现在煮的过程中蛋壳出现了裂缝。为什么会这样呢?原来,在鸡蛋的一头有个空洞,鸡蛋被加热时,空洞里的空气就会膨胀。如果加热得太快,膨胀的空气来不及通过多孔的蛋壳跑出去,蛋壳就会开裂。为了防止出现这种情况,有经验的厨师会建议在煮蛋的时候要用冷水小火慢慢地煮。如果鸡蛋煮的时间过长,你还会发现在蛋黄的表面呈现灰绿色,这是因为化学反应产生了一种叫做硫化铁的化合物。鸡蛋含有铁元素和蛋白质,长时间高温加热会使蛋白质中含硫的氨基酸分解,产生硫化氢,蛋黄中的铁质与硫化氢发生反应,生成对人体无害的硫化铁。煮沸的水如果从锅里溢出来,接触到煤气灶上的火焰,蓝色的火苗就变成黄色。煤气火焰的变色一方面表明了水让火焰的温度降低了,另外也表明水中含有钠离子,黄色火焰是氯化钠中的钠原子被加热后出现的现象,这种现象在化学上被称为“焰色反应”。我们的饮用水中一般溶解了许多盐类化合物,其中的钙离子、镁离子等没有“焰色反应”现象出现。溢出水在灶台干后会出现一些白色的物质,也证明了水中有盐类化合物。我们制作面包、蛋糕或者松饼的时候,先要用发酵粉让面团发酵。为什么发酵粉会让面团变得松软呢?发酵粉的化学名称叫碳酸氢钠,它受热会分解,产生大量二氧化碳气体,使得面团膨胀起来,做出来的食品就会变得松软。碳酸氢钠还可以用在小型灭火器中用来扑灭火灾。在一些燃烧温度很高的火灾中,它被分解后产生二氧化碳气体,二氧化碳不会助燃,又比空气重,可覆盖在可燃物周围,因此可以用来阻断可燃物与空气的接触,火自然就熄灭了。不含酒精的软饮料也含有各种各样的化学物质,不同成分的化学物质可以使饮料有着不同的颜色和不同的口味。有些生产商在广告上声称自己生产的碳酸饮料不会增加人体对糖类的过分摄入,不会让人发胖,因为他们所使用的甜味剂是从蔗糖中提炼出来的。为什么蔗糖会让人发胖,而从它里面提炼出来的甜味剂却不会呢?如果人体摄入过量可吸收的糖分,就不能被人体及时转化成新陈代谢所需的能量,一部分糖就转变成脂肪储存在体内,食用了过量糖分的人就会发胖。而那种从蔗糖中提炼出来的甜味剂虽然可以让人感觉到甜味,却不能被人体消化吸收,而是被肠胃当作废物排泄到了体外,因此它就不会让人发胖。
目前解题技巧类的不新颖了,关于教改和养成理念方面的较好。初一的论文重点放在学生习惯的培养上,虽然是老问题,但是写的前卫点,还是很吸引人的。我给你建议一个标题,你自己准备素材和内容吧。《如何在数学课堂教学中培养学生的主体意识》
如何学写数学小论文 “ 写什么?怎样写?”这是每个学写小论文的同学都会碰到的问题。一篇好论文的产生,对于它的作者来说是一次创造性的劳动。创造性的劳动对劳动者的要求是很高的。其创作的素材、水平,乃至创作的灵感……,绝不是轻易可以得到的,它们需要作者在自己的学习与生活实践中,去进行长期的积累与思考。从我校征集的论文来看,作者中有的是在平时十分注意对课本知识进行归纳整理、拓展延伸,学习中有许多意想不到的收获;有的是从课外阅读中得到收获与启发后,获得灵感、得以选题;……更有甚者是,有的作者在生活中发现问题注意观察、探究,并与自己的数学学习相联系,对观察、探究的结果进行思考、归纳、总结,升华为理论,写出了令人叫绝的好论文。综观获奖论文的小作者们,他们大多是数学学习的有心人。好论文的作者不仅要有较好的数学感悟,还要有良好的文学修养、综合素养。 (1) 写什么 写小论文的关键,首先就是选题,同学们都是初中一、二年级的学生,受年龄、知识、生活阅历的局限,因此,大家的选题要从自己最熟悉的、最想写的内容入手。 下面我结合我校同学部分获奖论文的选题,进行一点简单的选题分析。 论文按内容分类,大概有以下几种: ①勤于实践,学以致用,对实际问题建立数学模型,再利用模型对问题进行分析、预测; 如:探究大桥的热胀冷缩度 ②对生活中普遍存在而又扰人心烦的小事,提出了巧妙的数学方法来解决它; 如: 一台饮水机创造的意想不到的实惠 ③对数学问题本身进行研究,探索规律,得出了解决问题的一般方法 如: 分式“家族”中的亲缘探究 如: 纸飞机里的数学 ④对自己数学学习的某个章节、或某个内容的体会与反思 如: “没有条件”的推理 如: 小议“黄金分割” 如: 奇妙的正五角星 (2) 怎样写 ① 课题要小而集中,要有针对性; ② 见解要真实、独特,有感而发,富有新意; ③ 要用自己的语言表述自己要表达的内容 (四) 评价数学小论文的标准 什么样的数学小论文算是好的论文呢?标准很多,但我以为一篇好的数学小论文必须有以下三个特征——新、真、美。“新”,指的就是选题要有独特的视角,写的内容不是简单地重复别人的东西、不是单纯地下载一段。文字,最好是自己原创的,至少要有自己的创造、自己的观点,属于自己的思想;“真”,指的就是内容要实在、言之有理,既不能空洞无味、也不能冗长拖沓,文章要紧扣主题,力求做到准确、精练,尽量地体现数学的严谨性与科学性;“美”,指的就是语言通顺、文笔流畅,文章要给人以美的享受。当然,从第二届时代数学学习“时代之星”实践与创新论文大赛的名称来看,既有实践又有创新的论文肯定更容易受到评委们的亲睐,所以,我希望同学们更加贴近生活、注意观察、去寻找、去发现,把生活与数学联系起来,把学习撰写论文、争取写出好的论文,作为对自己数学学习的一种评价、一种补充、一种提高,这样你学写小论文的目的就对了,你就会将数学小论文越写越好。 “梅花香自苦寒来”,只要肯下大工夫、只要肯吃的起苦,不断地去思考、去揣摸,去学习,好的数学论文就一定会在你的手中诞生。总之,学习撰写论文、争取写出好的论文,对于我们每一位同学来说,始终是一个锻炼自己、提高能力的极好的方式。我相信我校初一、初二的同学们一定会在老师的组织与指导下积极参与第二届《时代数学学习》“时代之星”实践与创新论文大赛的活动与交流,并取得好成绩。祝愿今后有更多更好的数学小论文,在同学们的手中诞生;愿有更多的同学从学写数学小论文开始起飞,在今后的人生之路上书写出更多的高水平、高质量的论文。 例子:《容易忽略的答案》 大千世界,无奇不有,在我们数学王国里也有许多有趣的事情。比如,在我现在的第九册的练习册中,有一题思考题是这样说的:“一辆客车从东城开向西城,每小时行45千米,行了5小时后停下,这时刚好离东西两城的中点18千米,东西两城相距多少千米?王星与小英在解上面这道题时,计算的方法与结果都不一样。王星算出的千米数比小英算出的千米数少,但是许老师却说两人的结果都对。这是为什么呢?你想出来了没有?你也列式算一下他们两人的计算结果。”其实,这道题我们可以很快速地做出一种方法,就是:45×5=5(千米),5+18=5(千米),5×2=261(千米),但仔细推敲看一下,就觉得不对劲。其实,在这里我们忽略了一个非常重要的条件,就是“这时刚好离东西城的中点18千米”这个条件中所说的“离”字,没说是还没到中点,还是超过了中点。如果是没到中点离中点18千米的话,列式就是前面的那一种,如果是超过中点18千米的话,列式应该就是45×5=5(千米),5-18=5(千米),5×2=189(千米)。所以正确答案应该是:45×5=5(千米),5+18=5(千米),5×2=261(千米)和45×5=5(千米),5-18=5(千米),5×2=189(千米)。两个答案,也就是说王星的答案加上小英的答案才是全面的。 在日常学习中,往往有许多数学题目的答案是多个的,容易在练习或考试中被忽略,这就需要我们认真审题,唤醒生活经验,仔细推敲,全面正确理解题意。否则就容易忽略了另外的答案,犯以偏概全的错误。
阿四大四大四大四大四大
想想,初中都学了那些?我在上中学时都没写过论文,现在上初中都要写论文啦?真是悲剧呀!但初中的数学还是很简单的,写一篇论文,可以联系到自己已经上过的知识。下面给你一些建议: 可以写,对任意的二元一次方程组的解转换为图形的交点问题。 还有,不知道三角函数有没有上,如果上了可以论证三角公式,比如说,(sinA)^2+(cosA)^2=1,(tanX)^2=(secX)^2-1
1、数学中的研究性学习2、数字危机4、高斯分布的启示5、a2+b2≧2ab的变形推广及应用6、网络优化7、泰勒公式及其应用9、数学选择题的利和弊10、浅谈计算机辅助数学教学11、论研究性学习12、浅谈发展数学思维的学习方法13、关于整系数多项式有理根的几个定理及求解方法14、数学教学中课堂提问的误区与对策16、浅谈数学教学中的“问题情境”17、市场经济中的蛛网模型19、数学课堂差异教学20、浅谈线性变换的对角化问题21、圆锥曲线的性质及推广应用22、经济问题中的概率统计模型及应用23、通过逻辑趣题学推理24、直觉思维的训练和培养25、用高等数学知识解初等数学题26、浅谈数学中的变形技巧27、浅谈平均值不等式的应用28、浅谈高中立体几何的入门学习29、数形结合思想30、关于连通性的两个习题31、从赌博和概率到抽奖陷阱中的数学32、情感在数学教学中的作用33、因材施教 因性施教34、关于抽象函数的若干问题35、创新教育背景下的数学教学36、实数基本理论的一些探讨37、论数学教学中的心理环境38、以数学教学为例谈谈课堂提问的设计原则39、不等式证明的若干方法40、试论数学中的美41、数学教育与美育42、数学问题情境的创设43、略谈创新思维44、随机变量列的收敛性及其相互关系45、数字新闻中数学应用46、微积分学的发展史47、利用几何知识求函数最值48、数学评价应用举例49、数学思维批判性50、让阅读走进数学课堂51、开放式数学教学52、浅谈中学数列中的探索性问题53、论数学史的教育价值54、思维与智慧的共享——从建构主义到讨论法教学55、微分方程组中的若干问题56、由“唯分是举”浅谈考试改革57、随机变量与可测函数58、二阶变系数齐次微分方程的求解问题59、一种函数方程的解法60、积分中值定理的再讨论1、浅谈菲波纳契数列的内涵和应用价值2、一道排列组合题的解法探讨及延伸3、整除与竞赛4、足彩优化5、向量的几件法宝在几何中的应用6、递推关系的应用8、小议问题情境的创设9、数学概念探索启发式教学10、柯西不等式的推广与应用11、关于几个特殊不等式的几种巧妙证法及其推广应用12、一道高考题的反思13、数学中的研究性学习15、数字危机16、数学中的化归方法17、高斯分布的启示18、 的变形推广及应用19、网络优化20、泰勒公式及其应用22、数学选择题的利和弊23、浅谈计算机辅助数学教学24、数学研究性学习25、谈发展数学思维的学习方法26、关于整系数多项式有理根的几个定理及求解方法27、数学教学中课堂提问的误区与对策29、浅谈数学教学中的“问题情境”30、市场经济中的蛛网模型32、数学课堂差异教学33、浅谈线性变换的对角化问题34、圆锥曲线的性质及推广应用35、经济问题中的概率统计模型及应用36、通过逻辑趣题学推理37、直觉思维的训练和培养38、用高等数学知识解初等数学题39、浅谈数学中的变形技巧40、浅谈平均值不等式的应用41、浅谈高中立体几何的入门学习42、数形结合思想43、关于连通性的两个习题44、从赌博和概率到抽奖陷阱中的数学45、情感在数学教学中的作用46、因材施教与因性施教47、关于抽象函数的若干问题48、创新教育背景下的数学教学49、实数基本理论的一些探讨50、论数学教学中的心理环境51、以数学教学为例谈谈课堂提问的设计原则52、不等式证明的若干方法53、试论数学中的美54、数学教育与美育55、数学问题情境的创设56、略谈创新思维57、随机变量列的收敛性及其相互关系58、数字新闻中的数学应用59、微积分学的发展史60、利用几何知识求函数最值61、数学评价应用举例62、数学思维批判性63、让阅读走进数学课堂64、开放式数学教学65、浅谈中学数列中的探索性问题66、论数学史的教育价值67、思维与智慧的共享——从建构主义到讨论法教学68、 方程组中的若干问题69、由“唯分是举”浅谈考试改革70、随机变量与可测函数71、二阶变系数齐次微分方程的求解问题72、一种函数方程的解法73、微分中值定理的再讨论74、学生数学学习的障碍研究;76、数学中的美;77、数学的和谐和统一----谈论数学中的美;78、推测和猜想在数学中的应用;79、款买房问题的决策;80、线性回归在经济中的应用;81、数学规划在管理中的应用;82、初等数学解题策略;83、浅谈数学CAI中的不足与对策;84、数学创新教育的课堂设计;86、关于培养和提高中学生数学学习能力的探究;87、运用多媒体培养学生88、高等数学课件的开发89、 广告效益预测模型;90、最短路网络;91、计算机自动逻辑推理能力在数学教学中的应用;93、最优增长模型94、学生数学素养的培养初探96、 城市道路交通发展规划数学模型;97、函数逼近98、数的进制问题99、无穷维矩阵与序列Bannch空间的关系100、 多媒体课件教学设计----若干中小学数学教学案例101、一维,二维空间到欧氏空间102、初中数学新课程数与代数学习策略研究103、初中数学新课程统计与概率学习策略研105、数列运算的顺序交换及条件106、歇定理的推广和应用107、解析函数的各种等价条件及其应用108、特征函数在概率论中的应用109、数学史与中学教育110、让生活走进数学,数学方法的应用将数学应用于生活——谈xx111、数学竟赛中的数论问题112、新旧教材的对比与研究114、随机变量分布规律的求法115、简述概率论与数理统计的思想方法及其应用116、无穷大量存在的意义118、例谈培养数学思维的深刻性120、从坐标系到向量空间的基121 谈谈反证法122、一致连续性的判断定理及性质123、课堂提问和思维能力的培养125、函数及其在证明不等式中的应用126、极值的讨论及其应用127、正难则反,从反面来考虑问题128、实数的构造,完备性及它们的应用129、数学创新思维的训练 130、简述期望的性质及其作用131、简述概率论与数理统计的思想和方法132、穷乘积133、递推式求数列的通项及和134、划归思想在数学中的应用135、凸函数的定义性质及应用136、行列式的计算方法137、可行解的表式定理的证明140、充分挖掘例题的数学价值和智力开发功能141、数学思想方法的一支奇葩-----数学猜想初探142、关于实变函数中叶果罗夫定理的鲁津定理的证明143、于黎曼积分的定义144、微分方程的历史发展145、概率论发展史及其简单应用147、数学教学中使用多媒体的几点思考148、矩阵特征值的计算方法初探149、数形结合思想及其应用150、关于上、下确界,上、下极限的定义,性质及应用 151、复均方可积随机变量空间的讨论155、欧几里得第五公设产生背景及其对数学发展影响160、函数性质的应用163、中数学新课程空间与图形学习策略与研究167、函数的凸性及其在不等式中的应用171、数学归纳法教学探究174、关于全概率公式及其应用的研究176、变量代换法与常微分方程的求解188、不等式解法大观189、谈谈“ 隐函数 ”190、有限维矩阵的范数计算与估计191、数学奥赛中数论问题的解题方法研究193、微分方程积分因子的研究195、关于泰勒公式196、解析函数的孤立奇点的分类及其判断方法197、最大模原理的推广及其应用198、π的奥秘——从圆周率到统计199、对现代信息技术辅助数学及其发展的几点思考200、无理数e的发现及其应用202、闭区间套定理的推广和应用203、函数的上下极限及其应用205、关于多值函数的解析理论探讨208、比较函数法在常微分方程中的应用209、数学分析的直观与严密303、求随机函数的分布函数和分布密度的方法304、条件期望的性质及其应用308、凸函数的等价命题及其应用310、有界变差函数的定义及其性质311、初等函数的极值
为节约能源,某单位按以下规定收取每月电费:用电不超过140度,按每度43元收费;如果超过140度,超过部分按每度57元收费。若墨用电户四月费的电费平均每度5元,问该用电户四月份应缴电费多少元? 设总用电x度:[(x-140)*57+140*43]/x=5 57x-8+2=5x 07x=6 x=280 再分步算: 140*43=2 (280-140)*57=8 8+2=140 1)某大商场家电部送货人员与销售人员人数之比为1:8。今年夏天由于家电购买量明显增多,家电部经理从销售人员中抽调了22人去送货。结果送货人员与销售人数之比为2:5。求这个商场家电部原来各有多少名送货人员和销售人员? 设送货人员有X人,则销售人员为8X人。 (X+22)/(8X-22)=2/5 5*(X+22)=2*(8X-22) 5X+110=16X-44 11X=154 X=14 8X=8*14=112 这个商场家电部原来有14名送货人员,112名销售人员 现对某商品降价10%促销,为了使销售金额不变,销售量要比按原价销售时增加百分之几? 设:增加x% 90%*(1+x%)=1 解得: x=1/9 所以,销售量要比按原价销售时增加11% 甲.乙两种商品的原单价和为100元,因市场变化,甲商品降10%,乙商品提价5%调价后两商品的单价和比原单价和提高2%,甲.乙两商品原单价各是多少/ 设甲商品原单价为X元,那么乙为100-X (1-10%)X+(1+5%)(100-X)=100(1+2%) 结果X=20元 甲 100-20=80 乙 甲车间人数比乙车间人数的4/5少30人,如果从乙车间调10人到甲车间去,那么甲车间的人数就是乙车间的3/4。求原来每个车间的人数。 设乙车间有X人,根据总人数相等,列出方程: X+4/5X-30=X-10+3/4(X-10) X=250 所以甲车间人数为250*4/5-30= 说明: 等式左边是调前的,等式右边是调后的 甲骑自行车从A地到B地,乙骑自行车从B地到A地,两人都均速前进,以知两人在上午8时同时出发,到上午10时,两人还相距36千米,到中午12时,两人又相距36千米,求A.B两地间的路程?(列方程) 设A,B两地路程为X x-(x/4)=x-72 x=288 答:A,B两地路程为288 甲、乙两车长度均为180米,若两列车相对行驶,从车头相遇到车尾离开共12秒;若同向行驶,从甲车头遇到乙车尾,到甲车尾超过乙车头需60秒,车的速度不变,求甲、乙两车的速度。 二车的速度和是:[180*2]/12=30米/秒 设甲速度是X,则乙的速度是30-X 180*2=60[X-(30-X)] X=18 即甲车的速度是18米/秒,乙车的速度是:12米/秒 两根同样长的蜡烛,粗的可燃3小时,细的可燃8/3小时,停电时,同时点燃两根蜡烛,来电时同时吹灭,粗的是细的长度的2倍,求停电的时间 设停电的时间是X 设总长是单位1,那么粗的一时间燃1/3,细的是3/8 1-X/3=2[1-3X/8] X=2。4 即停电了2。4小时。 某小组计划做一批“中国结”,如果每人做5个,那么比计划多了9个;如果每人做4个,那么比计划少了15个,小组成员共有多少名?他们计划做多少个“中国结”? 设小组成员有x名 5x=4x+15+9 5x-4x=15+9 某中学组织初一学生进行春游,原计划租用45座客车若干辆,但有15人没有座位;若租用同样数量的60座客车,则多出一辆车,且其余客车恰好坐满。试问 (1) 初一年级人数是多少?原计划租用45座客车多少辆? 解:租用45座客车x辆,租用60座客车(x-1)辆, 45x+15=60(x-1) 解之得:x=5 45x+15=240(人) 答:初一年级学生人数是240人, 计划租用45座客车为5辆 将一批会计报表输入电脑,甲单独做需20h完成,乙单独做需12h完成.现在先由甲单独做4h,剩下的部分由甲,乙合作完成,甲,乙两人合作的时间是多少? 解;设为XH 1/5+1/20X+1/12X=1 8/60X=4/5 X=6 甲,乙两人合作的时间是6H 甲乙丙三个数的和是53,以知甲数和乙数的比是4:3,丙数比乙数少2,乙数是(),丙数是() 设甲数为4X则乙为3X丙为3X- 4X+3X+3X-2=53 10X=53+2 10X=55 X=5 3X=5 3X-2=5-2=5 乙为5,丙为5 粗蜡烛和细蜡烛的长短一样,粗蜡烛可燃5小时,细蜡烛可燃4小时,一次停电后同时点燃这两只蜡烛,来电后同时熄灭,结果发现粗蜡烛的长是细蜡烛长的4倍,求停电多长时间? 设停电x小时 粗蜡烛每小时燃烧1/5,细蜡烛是1/4 1-1/5X=4(1-1/4) 1-1/5X=4-X -1/5+X=4-1 4/5X=3 X=15/4 一个三位数,百位上的数字比十位上的数字大1,个位上的数字比十位上的数字的3倍少2,若将三个数字顺序颠倒后,所得的三位数与原三位数的和是1171,求这个三位数 设十位数为x 则 100×(x+1)+10x+3x-2+100*(x+1)+10x+x+1=1171 化简得 424x=1272 所以:x=3 则这个三位数为437 一年级三个班为希望小学捐赠图书,一班娟了152册,二班捐书数是三个班级的平均数,三班捐书数是年级捐书总数的40%,三个班共捐了多少图书? 解:设⑵班捐x册 3x=152+x+3xX40% 3x=152+x+6/5x 3x-x-6/5x=152 4/5x=152 x=190…⑵班 190X3=570(本) a b 两地相距31千米,甲从a地骑自行车去b地 一小时后乙骑摩托车也从a地去b地 已知甲每小时行12千米 乙每小时行28千米 问乙出发后多少小时追上甲 设乙出发x小时后追上甲,列方程 12(X+1)=28X X=75小时,即45分钟 15、一艘货船的载重量是400t,容积是860m^现在要装生铁和棉花两种货物,生铁每吨体积是3m^3,棉花每吨体积是4m^生铁和棉花各装多少吨,才能充分利用这艘船的载重量和容积? 设铁x吨,棉花为400-x吨 3x+4*(400-x)=860 x=200t 答案为铁和棉花各200吨 16、某电脑公司销售A、B两种品牌电脑,前年共卖出2200台,去年A种电脑卖出的数量比前年多6%,B种电脑卖出的数量比前年减少5%,两种电脑的总销量增加了110台。前年A、B两种电脑各卖了多少台? 设前年A电脑卖出了x台,B电脑卖出了2200-x台 去年A电脑为06x,B电脑为95(2200-x) 06x+95*(2200-x)=2200+110 x=2000 则A电脑2000台,B电脑200台 地球上面面积约等于陆地面积的29分之71倍,地球的表面积约等于1亿平方公里,求地球上陆地面积是多少?(精确到1亿平方公里) 设陆地的面积是X X+71/29X=1 X=479 即陆地的面积是:5亿平方公里。 内径为90毫米的圆柱形长玻璃杯(已装满水)向一个地面直径为131*131平方毫米,内高为81毫米的长方形铁盒到水,当铁盒装满水时,玻璃杯中水的高度下降多少? 设下降高度是X 下降的水的体积等于铁盒中的水的体积。 14*45*45*X=131*131*81 X=6 水面下降6毫米。 内径为120毫米的圆柱形玻璃杯,和内径为300毫米、内高为32毫米的圆柱形玻璃盘可以盛同样多的水,求玻璃杯的内高? 内径为120毫米的圆柱形玻璃杯,和内径为300毫米,内高为32毫米的圆柱形玻璃盘可以盛同样多的水 所以两个容器体积相等 内径为300毫米,内高为32毫米的圆柱形玻璃盘体积 V=π(300/2)^2*32=720000π 设玻璃杯的内高为X 那么 X*π(120/2)^2=720000π X=200毫米 将内径为200毫米的圆柱形水桶中的满桶水倒入一个内部长、宽、高分别为300毫米、300毫米、80毫米的长方形铁盒,正好倒满。求圆柱形水桶的水高?(精确到毫米。派取14) 设水桶的高是X 14*100*100*X=300*300*80 X=229 即水桶的高是229毫米 某地下管道由甲工程队单独铺设需要12天,由乙工程队单独修设需要18天。如果有由两个工程队从两端同时想象施工,要多少天可以铺好? 解:设X天可以铺好 1/18X+1/12X=1 2/36X+3/36X=1 5/36X=1 X=1除以5/36 X=1乘以36/5 X=36/5 即要36/5天
数学小论文数学是生活中的一分子,它是在“生活”这个集体中生存的,离开了生活这个集体,数学将是一片死海,没有生活的数学是没有魅力的数学,同样,人类也离不开数学,离开了数学人类将无法生存。 著名数学家华罗庚说过:“宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,生物之谜,日月之繁,无处不用到数学。”特别是二十一世纪的今天,数学的应用更是无所不在。那么,我们如何从小打下坚实的数学基础,究竟什么样的课堂教学才适合我们这些新一代的学生呢?我认为,在课堂中,由学生去担任学习的主角,才是我们的心愿。那么,数学活动课就是让我们充分体现自主学习的一种教学方式。 活动课上,在老师的指导下,我们可以分成小组,通过自己动手去测量、拼凑、剪切、计算,去探索发现的规律、掌握数学知识。这样,不仅培养了我们的动手能力,而且提高了我们的思维能力,又让我们初步尝到了数学家研究问题成功时的滋味,使我们对数学的学习兴趣倍增。例如,我们上《平行四边形面积的计算》这节课时,老师让我们分成几个小组,发一些平行四边形的小纸片,让同学们互相讨论,怎样使一个平行四边形经过剪贴、拼凑变成一个我们已经会计算面积的图形呢?大家七嘴八舌的讨论开了,一些同学发现可以从平行四边形的任意一条高剪开,就得到两个直角梯形,依然可以拼成一个同样大小的长方形。同学们通过观察、思考,认识到拼成的长方形的“长”和“宽”,分别就是原来平行四边形的“底边”和“高”。由此,大家终于可以通过自己的动手能力而找到了平行四边形面积公式为:S=ah。 在数学的世界里,我们还可以使用图象法解数学习题。图象法解数学习题的特点是把繁琐的演算及逻辑推理过程,在函数图象的辅助下加以简化和形象直观,解题思路清淅、直观、明了、可靠.然而,怎样才能在图象法解题过程中做到顺手沾来、得心应手、准确无误呢?我认为关键是要有丰富的初等函数图象知识。而要达到这一点,就得掌握初等函数在复合过程中引起的图象变换规律,以规律求拓宽,为图象法解题创造良好的基础条件。 在教学中老师若能恰当地把握传授知识与增减能力的关系,动用灵活的教学方法,充分发挥课本的功能,就可以事半功倍,提高课堂教学效果.笔者在教学实践中,始终抓住课本这个“纲”,在课本教学上狠下功夫,减少复习资料,不搞题海战术,既减轻学生负担,又培养了学生的多种能力. 我还认为老师要重视课本概念的阅读,培养学生的学习能力。 中学生往往缺乏阅读数学课本的习惯,这除了数学难以读懂以外,另外一个原因是我们许多数学教师在讲课时,也很少阅读课本,喜欢滔滔不绝的讲,满满黑板的写,使学生产生了依赖性.数学课本是数学基础知识的载体,课堂上指导学生阅读数学课本,不仅可以正确理解书中的基础知识,同时,可以从书中字里行间挖掘更丰富的内容.此外,还可以发挥课本使用文字的垂范作用,潜移默化培养和提高学生准确说练的文字表达能力和学习能力. 重视阅读数学课本,首先要老师引导,特别在讲授新课时,应当纠正那种“学生闭着书,光听老师讲”的教学方法,在讲解概念时,应让学生翻开课本,老师按课本原文逐字,逐句,逐节的阅读.在阅读中,让学生反复琢磨,认真思考,对书中的叙述的概念,定理,定义中有本质特征的关键词句要仔细品味,深刻理解其语意,并不时地提出一些反问:如,换成其它词语行吗?省略某字行吗?加上某某字行吗?等等.要读出书中的要点,难点和疑点,读出字里行间所蕴藏的内容,读出从课文中提炼的数学思想,观点和方法.教师在课堂上阅读数学课本,不仅可以节省不必要的板书时间,而且可以防止因口误,笔误所产生的概念错误,从而使学生能准确地掌握。 在日常学习中,往往有许多数学题目的答案是多个的,容易在练习或考试中被忽略,这就需要我们认真审题,唤醒生活经验,仔细推敲,全面正确理解题意。否则就容易忽略了另外的答案,犯以偏概全的错误。 人人学有价值的数学;人人都能获得必要的数学;不同的人在数学上得到不同的发展。基于这个目的,对我们初中数学来说,老师们必须要改变原来“应试”教育的教学方法,让同学们亲自体验和经历,让他们自己去探索知识的来源。 我认为老师也要换个角度来教学,为每个学生着想 ,我不时会听到同学们说:“书本儿上我看懂了的老师讲,而且不厌其烦的讲,不懂的老师一带而过,结果还是不懂”。这种讲课就是只备教材不备学生,没有为学生着想。比如讲一个概念,不要把定义直接抄在黑板上,接着就开始做题。而要讲如何去理解、体会它,从正面、反面、侧面去讲,并指出如何去理解它,运用它,提醒同学们理解中容易出现的误区,以及它与有关概念的差别和联系,把学生易犯的错误讲在前面。再如讲解一个结论的证明或一道题的解法时,重要的不是一步步按逻辑叙述,而是要指明其思考过程。一个班级里学生的知识水平,能力水平都有所差异,总有些思维水平较低的学生,老师要在备课时换个角度来教,效果就会有所提高。 总之,老师要引导学同学们善于思考生活中的数学,加强知识与实际联系,课堂上同学们通过活动获取知识,突出了知识的形成过程,掌握学习方法,训练学生思维。生活化课堂教学,能以课本为主源,又不受课本知识的禁锢,使同学们灵活掌握知识,培养同学们实践操作能力和思维能力,既能落实减轻学生负担,又能提高教学质量。
语文课堂教学的有效性打造以学为中心的语文课堂语文:学然后教这些都是我一直在思考的问题,你是否有兴趣?
不晓得你刷来干嘛,无聊!
不会写可以找我们
语文活动的设计
作者:唐家三公主链接:来源:知乎著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。基于数学核心素养的教学设计——以“简单的线性规划问题”为例职前数学教师学科知识的调查研究——以小学“数与代数”内容为例向量数量积的多元表示及其应用在线教育平台用户行为研究数学分析中的函数表示苏教版小学数学教材中组合问题的内容编排高中生理解数学归纳法的障碍分析及应对策略SOLO分类理论在评价解题特征中的应用研究“中国学习者悖论”之解——基于学生数学学习态度的视角表征视角下的数形结合思想教学研究软集分析理论中的积分理论软度量空间下的软P-H-R 型压缩及软Meir-Keeler 压缩的不动点定理人教版、苏教版与北师版教材的对比分析——以初中教材《全等三角形》为例小学生对除法概念及性质理解水平的调查研究国际背景下中国学生数学观现状研究——基于淮海经济区初二学生的调查模糊软度量空间的性质及其上的不动点理论一类非线性微分方程的Hyers-Ulam稳定性关于苏教版和人教版教科书中数学核心素养的比较分析不动点原理及其应用2013-2017年江苏高考数学试题浅析基于综合风险评价模型对水资源短缺的预测 ---以徐州市为例新课程标准下的高中数学教学设计和试题编写相关研究基于小波降噪的HMM模型在沪深300指数择时中的应用C语言编程在小学数学教学中的初探浅谈极限思想在中小学的应用斯金纳的强化理论在数学课堂教学上的应用一类特殊函数的极限数学实验在初中数学教学中的应用从常微分方程的解到代数方程的根新课程标准下高中数学教学过程中如何培养学生的核心素养小学数学几何直观能力培养的教学策略研究常微分方程特殊形式转换成标准形式的应用几类数学思想在中学数学中的应用关于Fibonacci数列通项公式证明的数学方法分类中学数学翻转课堂实施情况及实现路径平面与球面三角形的比较具有多时滞的2型糖尿病血糖-胰岛素调节系统周期解的存在性及其稳定性研究常见统计流形的几何结构初中生几何证明认知障碍分析及对策研究数学错题本的教学价值和实现路径两类二阶差分方程解的渐近性质二元函数极值的充分条件新课标下小学数学教材中“综合与实践”的比较——以苏教版和人教版为例蝴蝶定理的证明、推广及其应用对《等周问题的一个初等证明》的报告中学阶段的数学启发式教学热方程在几何中的应用一类具有负反馈和抑制的反应扩散生态模型动力学行为的理论分析等宽曲面的构造高中不等式证明的对策研究比较视角下江苏高考"不等式"内容的综合难度研究线性变换思想在中学数学中的应用整数环上多项式的可约性数学分析中的部分问题初探对江苏近十年高考数学一卷最后一题的研究黎卡提方程与二阶齐次线性微分方程的解法探究三阶常系数线性微分方程的常数变易法一类二阶线性微分方程的常数变易法BKP方程的十类解用方程思想解决中学数学问题浅谈微元法在数学中的应用管状曲面上的特殊曲线一类函数列的积分中值点列的收敛子列的渐进性数学文化在数学教学中的渗透研究悬链面上的渐近线一类二阶非线性微分方程的解法昆虫爬行最短路径问题黄金椭圆的若干优美性质
容易忽略的答案大千世界,无奇不有,在我们数学王国里也有许多有趣的事情。比如,在我现在的第九册的练习册中,有一题思考题是这样说的:“一辆客车从东城开向西城,每小时行45千米,行了5小时后停下,这时刚好离东西两城的中点18千米,东西两城相距多少千米?王星与小英在解上面这道题时,计算的方法与结果都不一样。王星算出的千米数比小英算出的千米数少,但是许老师却说两人的结果都对。这是为什么呢?你想出来了没有?你也列式算一下他们两人的计算结果。”其实,这道题我们可以很快速地做出一种方法,就是:45×5=5(千米),5+18=5(千米),5×2=261(千米),但仔细推敲看一下,就觉得不对劲。其实,在这里我们忽略了一个非常重要的条件,就是“这时刚好离东西城的中点18千米”这个条件中所说的“离”字,没说是还没到中点,还是超过了中点。如果是没到中点离中点18千米的话,列式就是前面的那一种,如果是超过中点18千米的话,列式应该就是45×5=5(千米),5-18=5(千米),5×2=189(千米)。所以正确答案应该是:45×5=5(千米),5+18=5(千米),5×2=261(千米)和45×5=5(千米),5-18=5(千米),5×2=189(千米)。两个答案,也就是说王星的答案加上小英的答案才是全面的。 在日常学习中,往往有许多数学题目的答案是多个的,容易在练习或考试中被忽略,这就需要我们认真审题,唤醒生活经验,仔细推敲,全面正确理解题意。否则就容易忽略了另外的答案,犯以偏概全的错误。