首页

> 期刊发表知识库

首页 期刊发表知识库 问题

小学数学论文集

发布时间:

小学数学论文集

究题目:直角三角形三边的关系研究材料:几个不同的直角三角形我的猜想:a边乘以a边加b边乘以b边等于c边乘以c边研究过程:经过较为精确的测量及计算,确定了三边的关系并且没有发现反例研究结论:a边乘以a边加b边乘以b边等于c边乘以c边绝对原创!!!!

最好的方法是在生活中发现数学的实际问题,依据自己的真凭实据来拟定它的答案,也可以经过研究测试来完善。不能单单靠抄袭,这样是没用的。 衷心希望靠你自己的探索和发现写一篇数学论文!

0

小学数学论文集100

数学是研究数量、结构、变化以及空间模型等概念的一门学科。透过抽象化和逻辑推理的使用,由计数、计算、量度和对物体形状及运动的观察中产生。数学家们拓展这些概念,为了公式化新的猜想以及从合适选定的公理及定义中建立起严谨推导出的真理。 数学,作为人类思维的表达形式,反映了人们积极进取的意志、缜密周详的推理及对完美境界的追求。它的基本要素是:逻辑和直观、分析和推理、共性和个性。虽然不同的传统学派可以强调不同的侧面,然而正是这些互相对立的力量的相互作用,以及它们综合起来的努力,才构成了数学科学的生命力、可用性和它的崇高价值。 数学主要的学科首要产生于商业上计算的需要、了解数字间的关系、测量土地及预测天文事件。这四种需要大致地与数量、结构、空间及变化(即算术、代数、几何及分析)等数学上广泛的子领域相关连著。除了上述主要的关注之外,亦有用来探索由数学核心至其他领域上之间的连结的子领域:至逻辑、至集合论(基础)、至不同科学的经验上的数学(应用数学)、及较近代的至不确定性的严格学习 数量的学习起于数,一开始为熟悉的自然数及整数与被描述在算术内的自然数及整数的算术运算。整数更深的性质被研究于数论中,此一理论包括了如费马最后定理之著名的结果。 当数系更进一步发展时,整数被承认为有理数的子集,而有理数则包含于实数中,连续的数量即是以实数来表示的。实数则可以被进一步广义化成复数。数的进一步广义化可以持续至包含四元数及八元数。自然数的考虑亦可导致超限数,它公式化了计数至无限的这一概念。另一个研究的领域为其大小,这个导致了基数和之后对无限的另外一种概念:阿列夫数,它允许无限集合之间的大小可以做有意义的比较。 数学逻辑专注在将数学置于一坚固的公理架构上,并研究此一架构的成果。就其本身而言,其为哥德尔第二不完备定理的产地,而这或许是逻辑中最广为流传的成果-总存在一不能被证明的真实定理。现代逻辑被分成递归论、模型论和证明论,且和理论计算机科学有着密切的关连性。

0

数学小论文:《容易忽略的答案》大千世界,无奇不有,在我们数学王国里也有许多有趣的事情。比如,在我现在的第九册的练习册中,有一题思考题是这样说的:“一辆客车从东城开向西城,每小时行45千米,行了5小时后停下,这时刚好离东西两城的中点18千米,东西两城相距多少千米?王星与小英在解上面这道题时,计算的方法与结果都不一样。王星算出的千米数比小英算出的千米数少,但是许老师却说两人的结果都对。这是为什么呢?你想出来了没有?你也列式算一下他们两人的计算结果。”其实,这道题我们可以很快速地做出一种方法,就是:45×5=5(千米),5+18=5(千米),5×2=261(千米),但仔细推敲看一下,就觉得不对劲。其实,在这里我们忽略了一个非常重要的条件,就是“这时刚好离东西城的中点18千米”这个条件中所说的“离”字,没说是还没到中点,还是超过了中点。如果是没到中点离中点18千米的话,列式就是前面的那一种,如果是超过中点18千米的话,列式应该就是45×5=5(千米),5-18=5(千米),5×2=189(千米)。所以正确答案应该是:45×5=5(千米),5+18=5(千米),5×2=261(千米)和45×5=5(千米),5-18=5(千米),5×2=189(千米)。两个答案,也就是说王星的答案加上小英的答案才是全面的。在日常学习中,往往有许多数学题目的答案是多个的,容易在练习或考试中被忽略,这就需要我们认真审题,唤醒生活经验,仔细推敲,全面正确理解题意。否则就容易忽略了另外的答案,犯以偏概全的错误。数学小论文今天,在我们数学俱乐部里,老师给我们研究了一道有趣的题目,其实也是一道有些复杂的找规律题目,题目是这样的“有一列数:1,2,3,2,1,2,3,4,3,2,3,4,5,4,3,4,5,……。这列数字中前240个数字的和是多少?”我一拿到题目,心里猛然想到,这题目必须得按照规律来做!!!想法一:开始我便先试着先3个一组来求和,6,5,10,9,12,15,14……。这样一看,这些数字各有特征,关键就是找不出合适的规律。于是,我又找4个一组来求和,8,10,12,16,20……。仔细一看,好像也没什么规律,我只好再试着找5个一组来求和,9,14,19,24……,这样一来就非常明显的看出它们是等数列,我非常高兴,再把240÷5=48(组),5个一组,(1、2、3、2、1),(2、3、4、3、2),(3、4、5、4、3),(4、5、6、5、4)……那么就可以求出末项的和,9+47×5=244,把首项加末项的和乘项数除以2,(9+244)×48÷2=6072。这样就完成了!想法二:我又发现每组开头第一个数字恰好分别是1,2,3,4……48,那么另一种方法就产生了,(1+48)×48÷2×2+(2+49)×48÷2×2+(3+50)×48÷2×2=6072。这样想也合乎情理,也是一个理得清楚而且又实用的方法!想法三:我又发现有N组时,他的和也是把(1+2+3+4+……+N)×5+4N=你要求那N组数的和,比如(1+2+3+4+……+48)×5+4×48=6072。这个规律也是要通过不断来细心观察与研究得来的,这个规律虽然有些抽象,但如果是自己弄明白了,那还要比其他两种方法更容易些。我做的只是其中的三种解法,其实方法还有很多,但是要靠自己来找其中的规律,解其中的奥秘!

自已跟据平常的数学题,怎么想的,解的,写上去就行了。

小学数学教学论文集锦

0

太多了, 谈谈计算教学的改革 小学数学数与计算教学的回顾与思考 小学数学教材结构的研究与探讨 小学数学应用题的研究(一) 改进教学方法培养创新技能 21世纪我国小学数学教育改革展望 面向21世纪的小学数学课程改革与发展 不拘一格育“鸣凤” 使学生真正成为学习的主人 改革课堂教学的着力点 谈素质教育在小学数学教学中的实施 素质教育与小学数学教育改革 浅谈学生数学思维能力的培养 浅议表象积累与培养学生的思维能力 也谈学生创新意识培养 实施创新教学策略 培养学生创新意识 10以内加法整理和复习 改良“有余数除法计算”教法 给学生创新的时间和空间 和谐愉悦 主动探索——一年级《统计》教学片断评析 小学数学教育--教师之家--教师培训 教学策略A、B、C 面向21世纪的数学素质及其培养 能被3整除的数的特征 年、月、日 培养自学能力 推进素质教育 浅谈小学数学总复习的“步步反馈,逐层提高”法 入情才能入理 激情方能启思 实施“生活数学”教育 培养自主创新能力 数学作业批改中巧用评语 提高元认知水平 培养自学能力 “圆的面积”的教案 圆柱的认识 运用多媒体辅助教学 优化数学教学方法 组织课堂讨论 优化课堂教学 ---------以上更新日期为17(来自同下) 重视学生获取知识的思维过程 小论文巧算圆的面积 倒推转化巧拿硬币 联系生活实际提高课堂效率 数学教学中如何调动学生的学习积极性 根据心理学的理论进行计算法则教学 简单应用题教学再探 创设情境,培养学生创造个性 数学教学中培养学生创造思维能力 启动学海搁浅之舟—— 转化数学学习后进生的体会 学生“四会”能力的培养 联系实际,强化操作,努力优化数学教学 重视学法指导,培养自学能力 让生活问题走进数学课堂教学,培养学生问题意识 主动探究发展能力 创新教育中学生创新能力的培养 构建数学生活的美好乐园——数学“研究性学习”理论的实践与思索 营造探究氛围一例 实施创新教育 培养创新人格 课堂纯真 《9和几的进位加法》教学设计 信息技术与小学数学课程整合的研究与实践 运用CAI技术,优化素质教育 合理运用学具 提高数学课堂教学效率 略谈“问题解决”与小学数学教学 渗透数学思想方法 提高学生思维素质 引导学生参与教学过程 发挥学生的主体作用 优化数学课堂练习设计的探索与实践 实施“开放性”教学促进学生主体参与 数学练习要有趣味性和开放性 “五、四、三自主式学法指导”教学模式初探 引导学生主动参与教学活动 改进几何初步知识教学的初步探索 多媒体课件在优化课堂教学中的功能及其策略研究 创新从习惯抓起 培养学生的创新意识要处理好的几个关系 让学生在数学学习中获得持续发展 小学数学创新学习的实验与研究 小学数学课题教学中学生创新意识的培养

为您奉上一部分,请参考:  谈谈计算教学的改革  小学数学数与计算教学的回顾与思考  小学数学教材结构的研究与探讨  小学数学应用题的研究(一)  改进教学方法培养创新技能  21世纪我国小学数学教育改革展望  面向21世纪的小学数学课程改革与发展  不拘一格育“鸣凤”  使学生真正成为学习的主人  改革课堂教学的着力点  谈素质教育在小学数学教学中的实施  素质教育与小学数学教育改革  浅谈学生数学思维能力的培养  浅议表象积累与培养学生的思维能力  也谈学生创新意识培养  实施创新教学策略 培养学生创新意识  10以内加法整理和复习  改良“有余数除法计算”教法  给学生创新的时间和空间  和谐愉悦 主动探索——一年级《统计》教学片断评析  小学数学教育--教师之家--教师培训  教学策略A、B、C  面向21世纪的数学素质及其培养  能被3整除的数的特征  年、月、日  培养自学能力 推进素质教育  浅谈小学数学总复习的“步步反馈,逐层提高”法  入情才能入理 激情方能启思  实施“生活数学”教育 培养自主创新能力  数学作业批改中巧用评语  提高元认知水平 培养自学能力  “圆的面积”的教案  圆柱的认识  运用多媒体辅助教学 优化数学教学方法  组织课堂讨论 优化课堂教学

小学数学论文集100篇

认识了小学五年级勾股定理知识和勾股定理知识的常见运用,想必很多同学会去深入学习。本站用户整理了五年级数学小论文:勾股定理,欢迎阅读。五年级数学小论文:勾股定理1、证明一个三角形是直角三角形2、用于直角三角形中的相关计算3、有利于你记住余弦定理,它是余弦定理的一种特殊情况。中国最早的一部数学着作—— 周髀算经 的开头,记载着一段周公向商高请教数学知识的对话:周公问:“我听说您对数学非常精通,我想请教一下:天没有梯子可以上去,地也没法用尺子去一段一段丈量,那么怎样才能得到关于天地得到数据呢?”商高回答说:“数的产生来源于对方和圆这些形体饿认识。其中有一条原理:当直角三角形‘矩’得到的一条直角边‘勾’等于3,另一条直角边‘股’等于4的时候,那么它的斜边‘弦’就必定是5。这个原理是大禹在治水的时候就总结出来的呵。”从上面所引的这段对话中,我们可以清楚地看到,我国古代的人民早在几千年以前就已经发现并应用勾股定理这一重要懂得数学原理了。稍懂平面几何饿读者都知道,所谓勾股定理,就是指在直角三角形中,两条直角边的平方和等于斜边的平方用勾(a)和股(b)分别表示直角三角形得到两条直角边,用弦(c)来表示斜边,则可得:勾2+股2=弦2亦即:a2+b2=c2勾股定理在西方被称为毕达哥拉斯定理,相传是古希腊数学家兼哲学家毕达哥拉斯于公元前550年首先发现的。其实,我国古代得到人民对这一数学定理的发现和应用,远比毕达哥拉斯早得多。如果说大禹治水因年代久远而无法确切考证的话,那么周公与商高的对话则可以确定在公元前1100年左右的西周时期,比毕达哥拉斯要早了五百多年。其中所说的勾3股4弦5,正是勾股定理的一个应用特例(32+42=52)。所以现在数学界把它称为勾股定理,应该是非常恰当的。在稍后一点的 九章算术一书 中,勾股定理得到了更加规范的一般性表达。书中的 勾股章 说;“把勾和股分别自乘,然后把它们的积加起来,再进行开方,便可以得到弦。”把这段话列成算式,即为:弦=(勾2+股2)(1/2)即:c=(a2+b2)(1/2)定理:如果直角三角形两直角边分别为a,b,斜边为c,那么a^平方+b^平方=c^平方;即直角三角形两直角边的平方和等于斜边的平方。如果三角形的三条边a,b,c满足a^2+b^2=c^2,如:一条直角边是3,一条直角边是四,斜边就是33+4。

你在百度上搜索:数学小论文——清理杂草活动中的数学问题,在下载就行了。我写的。

数学是研究数量、结构、变化以及空间模型等概念的一门学科。透过抽象化和逻辑推理的使用,由计数、计算、量度和对物体形状及运动的观察中产生。数学家们拓展这些概念,为了公式化新的猜想以及从合适选定的公理及定义中建立起严谨推导出的真理。 数学,作为人类思维的表达形式,反映了人们积极进取的意志、缜密周详的推理及对完美境界的追求。它的基本要素是:逻辑和直观、分析和推理、共性和个性。虽然不同的传统学派可以强调不同的侧面,然而正是这些互相对立的力量的相互作用,以及它们综合起来的努力,才构成了数学科学的生命力、可用性和它的崇高价值。 数学主要的学科首要产生于商业上计算的需要、了解数字间的关系、测量土地及预测天文事件。这四种需要大致地与数量、结构、空间及变化(即算术、代数、几何及分析)等数学上广泛的子领域相关连著。除了上述主要的关注之外,亦有用来探索由数学核心至其他领域上之间的连结的子领域:至逻辑、至集合论(基础)、至不同科学的经验上的数学(应用数学)、及较近代的至不确定性的严格学习 数量的学习起于数,一开始为熟悉的自然数及整数与被描述在算术内的自然数及整数的算术运算。整数更深的性质被研究于数论中,此一理论包括了如费马最后定理之著名的结果。 当数系更进一步发展时,整数被承认为有理数的子集,而有理数则包含于实数中,连续的数量即是以实数来表示的。实数则可以被进一步广义化成复数。数的进一步广义化可以持续至包含四元数及八元数。自然数的考虑亦可导致超限数,它公式化了计数至无限的这一概念。另一个研究的领域为其大小,这个导致了基数和之后对无限的另外一种概念:阿列夫数,它允许无限集合之间的大小可以做有意义的比较。 数学逻辑专注在将数学置于一坚固的公理架构上,并研究此一架构的成果。就其本身而言,其为哥德尔第二不完备定理的产地,而这或许是逻辑中最广为流传的成果-总存在一不能被证明的真实定理。现代逻辑被分成递归论、模型论和证明论,且和理论计算机科学有着密切的关连性。

买西瓜的数学那是星期六的一天下午,我嚷着要吃西瓜,妈妈爽快地答应了。于是我和奶奶就去买西瓜走进菜市场,我一眼就瞅住了一个西瓜堆儿。这里的西瓜是红瓤的,又大又圆,看着就让人垂涎三尺。奶奶说:“给我挑个熟的!”那个小贩在西瓜上敲了敲,说:“包熟!”于是放在电子秤上说:“一斤十块半,6斤,17元8角。”奶奶说:“什么?17元8角,这么贵?不买了不买了!”小贩急了,说:“别,别,别,你去其它地方买就不贵吗?我这儿可是全市最便宜的了,我这儿一斤十块半,人家一斤半十五块五了!”奶奶数学本来就不好,被小贩这么一说便糊涂了,我当时也在想:一斤十块半,也就是1斤5元,单价是:5÷1=5元,而一斤半十五块五,也就是5斤5元,它的单价是:5÷5,我没细算,想想可能应该比5多,但是却犯了个致命的错误。算错就会犯错,我向奶奶使了个眼色,示意让她买,于是奶奶说:“价格能少一点吗?”“不能、不能,本能就比人家便宜,再少,我就亏大了,干脆别卖了。”看着小贩的“真诚”的态度,奶奶于是付了钱,拎着装好西瓜的袋子就走了。回到家,我把这件事告诉给妈妈。妈妈听了之后又问了一遍价钱。我说:“小贩说他这儿一斤十块半,别人那一斤半十五块五。”妈妈哭笑不得,问:“你怎么知道别人那儿贵呢?你再好好的算算”。“因为这儿是5÷1=5,而别人那儿是5÷5,反正他这儿便宜”我理直气壮。妈妈说:“你呀,太马虎了,5÷5=333……,谁便宜呀!”通过这件事,我知道了数学在我们日常生活中运用十分广泛,学好数学十分重要,另外还要记住:“不要利用数学人,也不能不懂数学而被人!”

小学数学论文集500字

数学小论文 数学是一门神奇的学科,它不仅教会我们简单的加减乘除,更是一种对思维的锻炼,分析能力的提升。做数学题的方法首先是读懂题,其次仔细分析题目所给的条件,最后选择合适的方法解决问题。生活中我们也常常遇到难题,遇事不慌,冷静分析这就是数学带给我们的启示。 记得四年级,有一次,我和一个朋友出去玩,朋友的妈妈给我们俩出了一道题:1~100报数,每人可以报1个数,2个数,3个数,谁先报到100,谁就获胜。话音刚落,我便思考怎样才能获胜,我想:这肯定是一道数学策略问题,不能盲目地去报,里面肯定有数学问题,用1+3=4,100/4=25,我不能当第一个报的,只能当最后一个报的,她报X个数,我就报(4-X)个数,就可以获胜,我抱着疑惑的心理去和她报数,显然,她没有思考获胜的策略,我用我的方法去和她报数,到了最后,我果然报到了100,我获胜了。原来这道数学问题是一道典型的对策问题,需要思考,才能获胜。通过这次游玩,我喜欢上了对策问题,也更加爱思考,寻找数学中的奥秘。 真是生活处处皆学问啊,难怪说:数学来源于生活,也服务于生活。这个问题使我认识到在日常学习中,往往有许多数学题目的答案是多个的,容易在练习或考试中被忽略,这就需要我们认真审题,唤醒生活经验,仔细推敲,全面正确理解题意。否则就容易忽略了另外的答案,从而犯以偏概全的错误。

五年级第二学期以来,我们学的主要内容就是长方体、正方体的表面积、体积和分数乘法的等。在长方体、正方体表面积的单元里,有许多典型的题目,而这些题目通常会导致我们思维混乱从而做错。下面,我就来分析一道多次出错的题目。 题目是这样的: 一个长方体鱼缸,长6米、宽2米、深1米,制作这个鱼缸至少要多少平方米的玻璃? 我是这样做的: (6×2+2×1+6×1)×2-6×2 分析我的做法: 我先算出整个鱼缸6个面的总面积,再减去缺少的那个面(上面)的面积。因为鱼缸要养鱼,所以不可能是完全封闭的,往往都是上面作为缸口,所以要减去上面的面积。 方法多种多样,做这一道题还有另一种方法: (2×1+6×1)×2+6×2 分析这样的做法: 已知鱼缸共有5个面,其中前面、后面是一组,左面、右面是一组,可以先算出前、后、左、4个面的总面积,再加上下面的面积,就可以求出鱼缸5个面的面积,也就是鱼缸的表面积。 最容易出错的地方: 像这样类型的题目,往往容易出错的有2点。一是不联合实际想,把鱼缸的表面积当做6个面来计算;二是虽然知道鱼缸只有5个面,但却不知道少的面面积应当怎么算。 我的建议: 当你做到这种题目时,应该画一画图来帮助你,并在图形上标明长、宽、高对应的数目,这样题目就一目了然,做起来就会得心应手了。另外,还要注意单位是否一致! 以上就是我对“鱼缸问题”的分析与见解

生活中无处不在的数学 应用数学则是一个庞大的系统,有人说,它是我们的全部知识中,能用数学语言来表示的那一部分。应用数学只限于说明自然现象,解决实际问题,是纯粹数学与科学技术之间的桥梁。大家常说现在是信息社会,专门研究信息的“信息论”,就是应用数学中一门重要的学科,数学有3个最显著的特征:高度的抽象性、逻辑的严谨性、广泛的应用性。宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,生物之谜,日用之繁,无处不用数学。学数学就是为了能在实际生活中应用,数学是人们用来解决实际问题的,其实数学问题就产生在生活中。比如说,上街买东西自然要用加减法,修筑房屋总要画图纸。三角形很稳定,许多支架都是三角形的,这就运用了“三点确定一个平面”的数学公理;我们玩玩具枪时,总是用眼睛瞄准准星和靶心,使之成为一条直线,这样命中率才高,这就证明了“两点确定一条直线”的数学公理;轮胎之所以设计成圆的,是因为它容易滚…… 类似这样的问题数不胜数,这些知识就从生活中产生,最后被人们归纳成数学知识,解决了更多的实际问题。 小时候,妈妈烙饼,锅里一次只能放两张饼,我一想,这不就是一个应用数学问题吗?烙一张饼用两分钟,烙正反两面各用一分钟,锅里最多放两张饼,那么烙三张饼至少要用多少分钟呢?我想了想,得出结论:要用三分钟:先把第一张饼和第二张饼同时放进锅内,一分钟后,取出第二张饼,再放入第三张饼,把第一张饼翻面;再烙一分钟第一张饼就好了,取出来。然后将第二张饼的反面放入锅中,将第三张饼翻面,这样三分钟就能全部搞定。可是过年家里人多,要烙许多饼,怎样才能早点烙好饼?经过不断测试,我得出了一个限用两饼一锅的公式:饼数×单面用时=烙饼最少用时。我把这个想法告诉了爸爸,他说,实际上不会这么巧,总得有一些误差,不过算法是正确的。看来,我们必须学以致用,才能更好的让数学服务于我们的生活。

相关百科

热门百科

首页
发表服务