首页

> 学术期刊知识库

首页 学术期刊知识库 问题

有机溶剂对电导率的影响研究论文

发布时间:

有机溶剂对电导率的影响研究论文

有机物绝大多数是共价化合物,不导电的,只有几种有机弱酸具有微弱的导电性,通常忽略不计了。

不会影响的。

初中化学之溶液的导电性

化学是重要的基础科学之一,是一门以实验为基础的学科,在与物理学、生物学、地理学、天文学等学科的相互渗透中,得到了迅速的发展,也推动了其他学科和技术的发展。下文是我为大家搜集整理的关于大学化学毕业论文的内容,欢迎大家阅读参考! 大学化学毕业论文篇1 浅议化学氧化改性对碳毡空气阴极表面特征的影响 微生物燃料电池(MFC)是一种可以将废水中有机物的化学能转化为电能同时处理废水的新型电化学装置。但输出功率低、运行费用高且性能不稳定等严重制约了MFC的实际应用。影响MFC性能的主要因素有产电微生物、阴极催化剂、电极材料、反应器构型及运行参数等。其中,阴极是影响MFC性能及运行成本的重要因素。目前,有学者通过筛选电极材料及对电极材料进行改性来提高MFC性能和降低成本,效果较为显着。因此,笔者采用HNO3氧化碳毡,制作改性碳毡空气阴极,研究化学氧化改性对碳毡空气阴极表面特征的影响;并通过循环伏安测试,考察改性后碳毡阴极的稳定性。 1材料与方法 试验装置及材料 采用连续流运行方式,试验装置主体是由有机玻璃制成的圆柱体,中间阳极室有效容积为36mL(内径为2cm,高为),为确保阳极室的厌氧环境,用密封柱密封。阴极在阳极室外侧壁围绕。装置总容积为,密封盖上有阳极孔、阴极孔及检测孔,以便用铜导线、鳄鱼夹来连接外电路,外接1000Ω电阻作为负载。进水口设计在底部中央,制备成无膜上升流式反应器。阳极是直径为1cm的碳棒,阴极是厚度为3cm的碳毡,输出电压由万用表采集。 原水水质及运行参数 垃圾渗滤液取自沈阳市老虎冲垃圾填埋场的集水井,其水质如表1所示。接种微生物为取自UASB反应器中的厌氧颗粒污泥,接种量为25mL。启动期的进水流量控制在30mL/h,COD约为500mg/L。稳定运行后进水流量逐步提升到90mL/h,COD提升到1500mg/L。 装置在32℃下恒温运行。MFC接种厌氧污泥后,先用COD为1000mg/L的垃圾渗滤液驯化一个周期,使阳极的产电微生物成功挂膜,MFC运行稳定后,再以COD为1500mg/L的垃圾渗滤液作为阳极进水。 改性碳毡空气阴极的制备 阴极预处理:将碳毡剪成所需尺寸,然后浸泡在1mol/L的盐酸溶液中,目的是去除碳毡中的杂质离子,24h后取出,用去离子水反复清洗直至清洗液为中性,放入105℃烘箱中干燥2h。 碳毡改性:将预处理过的碳毡浸入65%~68%的浓硝酸中,用水浴加热至75℃,处理不同时间后取出并用蒸馏水反复清洗直至清洗液为中性,放入105℃烘箱中干燥2h。 催化剂吸附:将经改性后的碳毡放入Fe/C催化剂溶液(硝酸铁浓度为,活性炭粉为1g)中,于磁力搅拌器上搅拌30min,然后取出碳毡放入105℃烘箱中烘干。 分析项目和方法 外电阻R通过可调电阻箱控制,电压由万用表直接读取,功率密度P通过公式P=U2/RV计算得到,其中U为电池电压,V为阳极室体积。 表观内阻采用稳态放电法测定。 循环伏安测试以饱和甘汞电极作为参比电极,采用传统三电极体系,电化学工作站为EC705型。 电极电导率采用伏特计测定,COD采用快速密闭消解法测定,NH+4-N采用纳氏试剂光度法测定。 2结果与讨论 改性时间对催化剂担载量的影响 电极表面催化剂担载量是影响电极性能的直接因素,而化学改性将影响电极吸附催化剂的担载量(如表2所示)。碳毡经过HNO3化学氧化处理不同时间后,其质量均出现一定程度的减少,且随着处理时间的增加,单位质量碳毡减少量也逐步增加,同时,单位质量碳毡所吸附催化剂的量也增加。这是由于HNO3的氧化作用使碳毡结构发生了变化,表面沟壑加深加密,粗糙度和表面积增加。同时碳毡表面的H+易被催化剂Fe3+取代,也有利于阴极催化剂的吸附。 化学改性时间对电导率的影响 电极电导率是表征电极性能的重要参数之一。考察了碳毡空气阴极化学改性时间对其电导率的影响, 经改性后碳毡空气阴极的电导率明显提高,且随着处理时间的增加,电导率升高,当化学改性时间达到6h后,电导率趋于稳定。 这是因为碳毡具有石墨层状结构,层与层之间主要是以范德华力相结合,故层间较易引入其他分子、原子或离子而形成层间化合物。应用HNO3处理碳毡时,HNO3分子嵌入层间,同时吸引石墨电子,使其内部空穴增多,因此大大提高了碳毡的电导率。当碳毡层间嵌入的HNO3分子达到饱和时,将不再影响碳毡的电导率。 改性时间对MFC电化学性能的影响 对产电性能的影响 分别选取经HNO3氧化0、2、4、6、8、10h的碳毡制备碳毡空气阴极,并以石墨棒为阳极,垃圾渗滤液为燃料构建MFC,进行产电试验。极化曲线斜率和功率密度是表征MFC产电性能的两个重要参数,因此,通过测定输出电压和电流等参数,分别得到极化曲线和功率密度曲线。整个试验过程保持进水流量为120mL/h,反应温度为32℃。经HNO3改性的碳毡空气阴极MFC的极化都经历了活化极化、欧姆极化和浓度极化三个阶段。随着HNO3改性时间的延长,活化极化、欧姆极化和浓度极化损耗逐渐减小,电池的极化曲线斜率逐渐减小,即表观内阻逐渐降低;当改性时间为6h时,极化曲线斜率达到最小,表明此时表观内阻最小(358Ω)。之后,随改性时间的增加,极化曲线斜率增大,即表观内阻增大。 随着处理时间的增加,电池的功率密度同样经历了一个先增高再降低的过程,与图2的规律基本一致。其中当处理时间为6h时,电池的产电性能最好,最大功率密度达到,较未经HNO3处理的MFC的最大功率密度()增大了倍。由此可知,通过HNO3化学氧化改性碳毡空气阴极是改善MFC产电性能的有效方式之一。 对CV曲线的影响 循环伏安法(CV)是表征MFC放电容量的重要方法之一。化学改性碳毡空气阴极MFC的CV曲线如图4所示。其中,扫描速度为50mV/s,扫描范围为-1~1V。扫描曲线以下的积分面积代表了电池的放电容量。由此可知,随着处理时间的增加,放电容量先增加后减小,化学氧化时间为6h时,构建的MFC放电容量最大,即MFC性能最好。综上所述,HNO3化学氧化碳毡空气阴极的最佳时间为6h。 的产电除污稳定性 产电性能稳定性 对经HNO3化学氧化处理6h的碳毡空气阴极MFC进行了CV测试,共进行了21次循环扫描,结果表明:随着循环次数的增加,曲线形状几乎没有改变,第1、6、11、16、21次的循环伏安曲线基本重合,面积近乎恒定,即放电容量几乎没有变化,说明电池性能比较稳定,能够长期稳定运行。 在其他条件不变的情况下,采用经HNO3氧化6h的碳毡作为阴极,保持进水流量为120mL/h,外接1000Ω电阻持续运行14d,每天记录输出电压。 在最初的3d内,输出电压从62mV增加到483mV,第4天达到最大为492mV,接下来的一周则稳定在470mV左右。随着运行时间的增加,电压略有下降,这可能是阳极室溶液的不断流动,冲刷阳极,带出一定量产电菌同时增加了电池的内阻所致,但总体上电池的运行比较稳定。 除污性能稳定性 采用经HNO3化学氧化6h的碳毡作为阴极、石墨棒作为阳极、外接1000Ω电阻的MFC,以连续流方式处理垃圾渗滤液。试验过程中原水COD为(2376±200)mg/L,NH+4-N为(151±10)mg/L,保持进水流量为120mL/h、温度为32℃,反应初期(1~5d),出水COD浓度急剧下降,之后出水COD浓度逐渐趋于稳定。 COD由初始的(2376±200)mg/L降到(238±15)mg/L,去除率达到~,高于谢珊等采用两瓶型MFC处理垃圾渗滤液对COD的去除率()。而氨氮则由初始的(151±10)mg/L降到(86±5)mg/L,去除率达到~。去除的氨氮中部分以NH+4形式随水流进入阴极室,在阴极室扩散到空气中或转化为其他形式的氮,部分在阳极室作为电子供体被氧化。He等的研究也证实了氨氮可以作为MFC的燃料。 3结论 ①碳毡空气阴极吸附的催化剂量随着HNO3化学氧化碳毡时间的增加而增加,但是过量的催化剂不但不能促进反应,反而会增加电池内阻从而降低电池产电性能。碳毡空气阴极电导率随着HNO3化学氧化碳毡时间的增加而增加,并逐渐趋于稳定。 ②随着HNO3化学氧化碳毡时间的增加,碳毡空气阴极MFC的功率密度、放电容量呈现先升高后降低的趋势,而极化曲线斜率呈现先降低后升高的趋势。 ③HNO3化学氧化碳毡的最佳时间为6h。阴极改性6h后电池产电性能较稳定,最大功率密度比未改性增大倍,达到了,内阻降低到358Ω。 ④阴极改性6h后的MFC处理垃圾渗滤液的性能稳定。当进水COD为(2376±200)mg/L、NH+4-N为(151±10)mg/L时,对两者的去除率分别为(~)和(~)。 参考文献: [1]布鲁斯·洛根。微生物燃料电池[M].北京:化学工业出版社,2009. [2]FomeroJJ,RosenbaumM,CottaMA,[J].EnvironSciTechnol,2008,42(22):8578-8584. [3]李明,邵林广,梁鹏,等。集电方式对填料型微生物燃料电池性能的影响[J].中国给水排水,2013,29(9):24-28. 大学化学毕业论文篇2 浅谈化学分子力学对建筑建材选用的影响 引言 化学的应用给人类文明带来了翻天覆地的变化,在建筑领域,基于化学基础上的新型建筑建材的开发和利用提高了建筑的质量及建筑的安全性、稳定性、美观性等,是现代建筑研究的重要话题。此外,随着地球资源的日益紧张,环境污染的日益严峻,现代建材的研究和应用更为人们所重视,基于化学分子力学对建筑建材的选择和应用途径也日趋广泛。 1 建筑建材的选择和应用 现代建筑建材选择和应用的现状 伴随着人类文明的发展,建筑建材的生产工艺日益改进,生产技术的现代化,实现了建筑建材生产的智能化、自动化,各类建筑材料在科技发展的影响下不断优化。例如,混凝土的应用,它不仅是一种建筑材料,更具有装饰等作用。如利用混凝土砌块装饰建筑物墙壁,不但具有一定的美观性,还具有保温、隔热等效果。在高分子化学建材应用上,国外的发展要优于国内,例如塑料地板、高分子防水卷材等高分子化学建材最早出现与国际市场,被一些发达国家广泛应用。当前,建筑建材的选择和应用趋于高科技、多功能化,人们对建筑建材的性能、装饰效果、环保作用等有了更高要求。例如,涂料的选择,功能多、污染小、性能高、装饰效果强的材料更受欢迎。总之,人们对建筑建材的选择已由传统的实用性,转向了性价比高、性能好、低碳环保、功能多等多元方向。 新型化学建筑材料 新型化学建筑建材能赋予建筑新功能,在节约能源、优化环境等方面也有突出表现。例如建筑物墙体,可选择非粘土砖、建筑墙体板材、钢结构、玻璃结构等,其性能明显优于传统墙体。如玻璃结构,透光性好、装饰性强,给人以时尚、美观、大气之感。同时,新型化学建筑建材的多样性,使其具备更广泛的功能。例如塑料,新型塑料门窗,不仅美观、轻便、易安装,还具有很好的隔热性、耐腐性等; 又如新型的塑料管材,不但克服可传统管材的易腐蚀、易生锈、易老化等缺点,还具质轻、易安装、无污染等特点,极适合现代建筑环境; 再如塑料地板,节省原料,运输、施工方便,能带给人更好的舒适,具有良好的装饰效果好,是现代建筑建材的“新宠”。此外,混凝土、涂料等,在化学发展的影响下也具有更多、更广泛的用途,例如涂料的防水、防火、防毒、杀虫、隔音、保温等作用。 建筑建材的选择和应用原则 建筑建材的选择首先要满足应用需求,确保建筑建材选择的应用性能,确保其应用方便、应用安全和应用效果。其次,考虑建筑建材的美观性,建筑不是把好的东西堆积起来,而是一种艺术的创造与实践。 再次,充分考虑建筑建材的性价比,确保建筑工程的综合效益。在选择建筑建材时,先对建筑建材的特点、性能进行充分的了解,结合建筑需求,科学的选择适当的建筑建材。再对建筑建材的使用环境、使用目标进行综合的分析和研究,确保建筑建材应用的效果和性能,提高建筑物的功能性、美观性。最后,要全面认知建筑建材的应用工艺,确保建筑建材性能的发挥。例如混凝土,不但要了解各种混凝土的特点、配置比例等,还要重视其混合工艺,确保混凝土能到达理想的建筑效果。因此,建筑建材的选择是需要非常慎重的,而且需要遵循必要的应用原则。 2 化学分子力学对建筑建材的选择和应用的影响 新型建筑建材种类繁多、功能齐全。例如涂料,有有机水性涂料、溶剂类涂料等,在应用上也有较大区别。新型涂料应用化学知识,使涂料具有低污染、高性能、隔热、防火等多种功能,在材料选择时,要充分考虑建筑建材的应用目的,以达到工程施工的最大效益。又如保温隔热材料,现在常用的有玻璃棉、泡沫塑料等,这些材料的选择和应用与化学分子力学息息相关。以混凝土为例,要选择高性能的混凝土,首先,要了解混凝土的特点,它是一种由水泥、砂石、水、胶凝材料等按一定比例混合而成的复合材料。在材料的选择与应用中,必须认清其复合材料性质和各种混合比例,同时掌握混凝土的搅拌、成型、养护等等。 其次,在混凝土基本特点基础上,科学认知混凝土的集中搅拌特点,科学搭配各种材料比例,确保建筑建材的工作性、效益性和性价比。再次,在实践中结合理论科学的进行建筑建材的选择和应用。如通常情况下,建筑中会使用硅酸盐水泥,在该类建筑建材的选择上,不能单方面的考虑某一方面,要综合考虑,全面了解、可选选择。例如,在配置C40 以下的流态混泥土时,选择 42. 5Mpa 普硅水泥就不太合适,应结合应用需求,选择 32. 5Mpa 普硅水泥,避免选择的盲目性带来施工的不便。 此外,混凝土的选择要科学的利用化学知识,如相同标号的混凝土,要选择强度系数大,确保混凝土的耐久性; 相同强度的混凝土,则要选择需水量小的,降低水泥用量,确保水灰比例的科学性。同时,注重季节、气候等对于建筑建材化学性能的影响,如在混凝土配置中选择水泥,如在冬季施工则易采用 R 型硅酸盐水泥,搭配合适的掺料、外加剂等,确保混凝土性能。总之,化学丰富了现代建筑建材市场,为建筑提供了更多的选材机遇,而新型的建筑建材的使用一定要避开盲目性、跟风性,应在建筑目的的指导下,结合建筑建材性能,利用化学分子力学等知识,科学的、适当的对其进行选择和应用,以提高建筑建材的应用效果和应用价值。化学的分子力学,在建筑建材中应用非常广泛,基于建筑建材的化学分子力学应用,可以将建材的使用效率和使用效果做到最佳。总之,要充分利用化学分子力学的原理,在建筑建材中实现广泛的推广性使用,逐步加强对于化学原理的实际应用,从而达到推动行业发展的目的。 3 结语 高科技带来了建筑建材的高性能、多功能及轻便、美观等等。如玻璃材料钢化、夹丝、夹层等工艺不但提高了玻璃的安全性、抗压性,还对玻璃的隔音性、保温性等有很大的优化作用。随着化学工业的发展,越多的不可能变为可能,玻璃墙、塑料地板等,不断的丰富人类的建筑需求,提升建筑品味,使城市建设的风景更加多姿多彩。 参考文献 [1]辉宝琨。压力输送式预拌特种干混砂浆生产工艺选择[J].广东建材,2013( 9) . [2]崔东霞,费治华,姚海婷等,粉煤灰与化学外加剂对高性能混凝土开裂性能的影响[J].混凝土与水泥制品,2011( 4) . 猜你喜欢: 1. 大学毕业论文范文化学 2. 化学毕业论文精选范文 3. 大学化学论文范文 4. 化学毕业论文范文参考 5. 化学本科毕业论文范文

溶剂酸值对树脂的影响研究论文

树脂中酸值,会影响锚固剂的固化时间,强度和储存期。

酸值是树脂中羧基的量,酸值越高,树脂中羧基含量越高,酯化反应程度相对越低。不同原材料和产品对酸值有不同的要求。

溶剂加入树脂时最好不能超过20% 多少对产品的硬度有点影响。加一些不会影响粘度。以减少点成本。我以前就是做树脂工艺品的因材料贵。用其它材料代替了。你听说过脲醛树脂吧.一块多钱一公斤.加上普通的石粉.再加上一种固化剂.就可以做成你想要的工艺品.只要是不饱和树脂做的产品.都是一样的做.甚至可以用不要什么钱的黄沙.都可以做成产品.成本极其低廉.何必要进人家的产品再加工呢?成本应该是它的十分之一左右.这个技术一般没人会.我是天天在做.产品基本上没什么成本.做出来不管是贵还是便宜.卖掉就是钱.一样可以做大型浮雕.小工艺品等等.产品固化后相当坚硬.且光滑。

溶液对溶胀平衡率的影响毕业论文

溶胀的平衡度越小越好。因为聚合物网络用溶剂溶胀, 网络交联度越高, 平衡溶胀度越 小 , 聚合物密度越高,平衡溶胀度越 小 , 聚合物与溶剂吸引作用越强, 平衡溶胀度越 大。

溶胀阶段进行得快慢不仅与温度有关,而且与高聚物的分子量和支化度有关, 同时还与溶剂有关。分子量越高,支化度越大,溶胀越慢, 体型分子 (如酚醛树脂、硫化橡胶) 由于网格结点的束缚, 只能溶胀, 不能溶解 。

那不一定,每个反应的影响都不同 还有,你的下个问题很奇怪,既然是溶剂,怎么会不是溶液反应呢??????????

不知道你有没有看到课本上这样一句话:“外界条件改变时,化学反应就向着减弱这种变化的方向移动。”(不知道是不是原句,但基本含义是一样的)在溶液体积增大相同的情况下,溶液浓度必定减少,当化学平衡向着化学计量数大的方向移动时,溶液浓度显然大于平衡向计量数小的方向移动。因为计量数大,反应生成的物质的量也增大。不知道你能不能看懂,反正我尽力解释了,希望你可以理解。

电镀各参数对溶液的影响研究论文

测量电镀液的电导率,就是为了知道其电镀液的浓度. 知道了,在电镀过程中成份有消耗了,那就可以定量添加至某电导率,保证电镀的效果.

电导率高也就是电镀溶液的电阻小,电镀上镀层速度会快,反之电导率低,就会上镀层慢!个人观点,保留意见!

Cr(OH)3沉淀,加硫酸使之溶解。

谈电镀生产质量保障体系 电镀生产保障体系包括三方面一是设备保障体系,二是技术保障体系,三是管理保障体系,这三者关系相互依存,相互制约,又相互促进,仅就技术保障体系谈一点粗浅认识,供大家参照。一、电镀技术可靠性与工艺完整性的统一是电镀质量提高的关键 电镀生产有了先进设备并不够,要提高电镀质量,电镀技术可靠性和工艺完整性必须和先进设备配套,质量才能有所保证。目前大多数电镀厂家基本能做到这一点,都有自己名独道的电镀工艺。那么谁家的工艺先进,配合的好,相对谁家的电镀质量就好。比如,镀件如何处理,电镀的电流大小,电镀添加剂的选择,光亮剂的应用,直到清洗各家有各异的工艺要求。不同的镀种,不同的工件,用不同的设备,这种技术可靠性与工艺完美性的统一,是构成提高电镀质量的核心,即保障体系,所以说是电镀质量提高的关键。二、电镀溶液循环搅拌技术是稳定和促进电镀质量的重要环节 电镀生产中,质量较高的镀件是在流动的镀液中完成的,作为每个电镀生产者来说并不陌生,无所不知,无人不晓,但方法不同效果也不同,有空气搅拌法,阴极摆动法,液下泵循环搅拌法,过滤机过滤循环搅拌法等等。用钛吸液泵(卧式)给电镀溶液循环搅拌更有其特色,直得推广。这是我国电镀界搅拌设备的重大变革。如山东寿光电力焊丝厂,首先利用钛吸液泵(卧式)进行镀液搅拌,开辟了我国电镀界历史先河。天津市第一电镀厂,大胆改造和钛吸液泵取代钛液下泵进行溶液循环搅拌,收到良好的效果,这种方法简单,可将泵进液管口装上钛吸头,上下抖动,溶液很快被吸入泵体中,即可开机使用,因为钛吸液泵(卧式)泵轴短、离心力强、叶轮同心度好,密封件更换方便,有吸液泵独道之处。长春电镀厂等多家厂家应用钛吸液泵(卧式)和钛过滤机循环搅拌使用取得了了可喜的成果。再如,武汉市华航表面精饰高新技术工程有限公司王绍宝工程师设计的,用钛吸液泵(卧式)TIC-5型槽内钛管分液器进行循环搅拌,更有名独道之处,开辟了搅拌领域的新天地。三、镀液过滤是提高电镀质量,不可忽视的潜在因素 我国大部分是电镀企业都有过滤设备,相应采取了循环过滤,定期大处理过滤,但也有部分企业还是土办法,先用泵将清液抽出,剩下的杂质和部分镀液倒掉,一是造成浪费,二是又把部分杂质带进镀液中,使镀件成品率低下,反修率增高。要提高电镀质量,镀液过滤决不可忽视。因此必须加大力度进行过滤,镀液越清,电镀质量越佳。如西安东方机械厂,合肥铸锻厂,江苏法尔胜集团,山西晋西化工厂,牡丹江兴达焊接材料有限公司,用钛过滤机对电镀溶液过滤都收到了良好的效果。目前,大部分电镀企业对镀镍、铜、锌等溶液基本做到过滤,但对镀铬溶液过滤只是少数企业尝试,对镀铬质量的提高,镀铬溶液不过滤是障碍因素。随着中国专利产品钛过滤机的诞生,无疑适应性强,是机遇也是巧合。钛过滤机给镀铬产品质量的提高带来了前途和希望。如重庆诺高制版有限责任公司,重庆长安汽车公司用钛吸液泵(卧式)和钛过滤机对铬溶液的使用都收到了较好的效果。四、稳定镀液和镀液的维护是保证电镀质量的必要条件1、一般镀液的维护 搞电镀,有电镀溶液是首要条件,维护好镀液才是保证电镀质量的必要条件。一般情况下稳定镀液需进行以下工作:a 搞好溶液各种药量的配比;b 溶液过滤及渣质的清除; c 溶液在生产中的再利用; d 溶液在一定阶段的处理;e 溶液经处理再重新组合(倒槽),重新再电镀,这样一次次周期循环,整个过程就是镀液的维护,在倒槽过程中,设备不同,作业方式也不同,如有用液下泵,有用人工倒,千差万别。用钛吸液泵(国家专利法产品)倒槽,省时、省力、彻底、速度快、效率高。如哈尔滨飞云集团有四条电镀生产线,共用六台移动式钛吸液泵(卧式)TIC-10型进行倒槽液,不仅满足高效率工作,而且减轻了劳动强度,带来了事半功倍的效果。2、镀铬溶液 的维护与保养 镀铬层是一种高硬度,高耐磨性又耐腐蚀有实用价值广的金属镀铬层。特别是镀硬铬更有其特点。但在整个镀铬过程中也有其弱点,如何提高薄弱环节达到工艺完美要求应要下很大功夫。弱点是:电流效率低,分散能力差,深度能力差,温度与电流密度要严格配合,镀前处理要求严格,复杂件要求像型阳极,溶液要求严格等等,加之对电镀铬溶液污染的很多方面(标准铬溶液)如:添加剂铬酐硫酸的杂含量的污染,水质的污染、电镀前清洗杂质带入的污染、加工件掉到槽内进行腐蚀对溶液的严重污染等。对镀铬层质量带来很严重的影响。1)电镀加工时电镀速度明显变慢。2)铬液的分散能力变坏。3)铬液的深度能力差。4)铬层光亮程度变严重时发黑。5)镀层表面不光滑及有小颗粒。6)镀层的硬度变低,耐磨性也明显变差。鉴于以上的种种原因,镀铬质量的提高,光靠添加剂是不全面的,并且也不可靠。重要的问题在于镀铬溶液的维护和保养。那么如何维护,如何保养?哈尔滨量具刃具厂徐嘉良工程师认为:1)对镀铬溶液进行过滤(钛过滤机较好);2)加强对电镀用水质量的管理;3)定期清理掉镀槽里的电镀零件;4)卡具一定要保证包扎好不能存留有各种镀液;5)对重金属杂质的处理,用离子交换法和电渗析法。采用这些方法才能保证镀铬质量铬层的色泽光亮、没有麻点、提高镀铬层的粗糙度、硬度和耐腐蚀性,最终才能加工出高质量的镀铬产品。 为了振兴我国电镀行业,要向时间要效益,要向现代化要效益,要向高科技要效益,我们应面向现代化,面向世界,面向未来,二十一世纪的中国电镀事业一定会兴旺发达!

风力对溶解氧的影响研究论文

水体污染严重,有机物过多~~

水动力条件,水中微生物(底泥和水中)及动物呼吸状况,水上游植被状况等.有没有河流注入等.

1、溶氧过高不利于鱼卵孵化,鱼苗易患气泡病,且鱼会兴奋的不停环游,容易累死。2、溶氧过低会影响水产的生理代谢,严重时会使养殖的水产死亡。3、每天晚上8个小时的溶氧要大于4mg/L,14个小时不低于5mg/L,任何时间不得低于2mg/L。4、溶解氧一天内会发生变化,晚上溶氧最低。一、鱼塘溶氧过高的危害      1、溶氧过高的危害      (1)水中溶氧量轻度升高,便会对鱼卵孵化和鱼苗不利,使鱼苗极易患气泡病,甚至对小规格鱼种(夏花)也有不良影响。      (2)水中溶氧高时,鱼会兴奋,出现不停的环游现象,小鱼苗会累死。      2、溶氧过低的危害      (1)水中溶氧低于某一水平时,水产的生理代谢和生长开始受到影响,但并不会立刻导致死亡,这时的溶氧浓度称为临界溶氧。      (2)当溶氧继续降低,已经不能满足生理水产的最低需要时,养殖的动物会窒息死亡,这时的溶氧浓度称为致死溶氧。      (3)临界溶氧和致死溶氧按照动物种类和规格不同而异,会受到水温、盐度等其它环境因子的影响,水温升高时,动物的致死溶氧度会下降。二、溶氧的正常范围是多少      1、溶解氧含量      (1)养殖用水的溶解氧在24小时内都会发生变化,晚上溶氧最低。      (2)溶氧量必须有8个小时(晚上)的时间大于4mg/L,14小时不低于5mg/L,任何时间不得低于2mg/L。      2、溶解氧的来源      (1)在刮风环境下,空气中氧气会溶解在水中,当地的风力大小关系着自然溶氧的速度。      (2)可用增氧机增氧把水花打的更细小,加大与空气的接触面积,促进氧气溶解。      (3)水体藻类在光合作用下释放的氧气是池塘溶氧的主要来源,该溶氧方式占池塘溶氧量的80-90%。

溶解氧对污水处理很重要,哪些因素会影响污水处理中溶解氧的浓度呢?一般来说,水中溶解氧含量受到两种作用的影响:一种是使DO下降的耗氧作用,包括好氧有机物降解的耗氧,微生物代谢耗氧;另一种是使DO增加的复氧作用,主要有空气中氧的溶解,曝气手段等,较为简单的理解就是,有机物、微生物会使溶解氧含量下降,水中绿植的光合作用、人为曝气等会增加水中的溶解氧的含量。除了这两种,还有其他环境因素会影响水中溶解氧的含量。第一个就是水温,溶解氧含量会随着水温的升高而降低,所以冬季水中的溶解氧会高于夏季。第二个就是气压,气压越低,水中溶解氧含量也越低。第三个,含盐量,一般含盐量浓度升高,溶解氧浓度会随之降低,当然还会受到盐种类、性能方面的影响。除了上述这些,溶解氧还和植物、水中微生物、水深、光照等等有密切关系,需注意,污水处理设备也不是所有区域都要溶解氧,比如好氧区溶解氧浓度在,缺氧区则需要控制在.

相关百科

热门百科

首页
发表服务