首页

> 学术期刊知识库

首页 学术期刊知识库 问题

平行宇宙论文参考文献

发布时间:

平行宇宙论文参考文献

2分钟了解什么是平行宇宙,平行宇宙理论是如何提出来的

上海科技出版社有《科学》杂志,是关于这方面的。不过需要中文的文章,可以有英文的摘要。

你是在看漫威吗?简单来说,另一个世界发生的不同故事就是平行宇宙,比如你在这个世界是个警察,另一个世界就可能是个匪徒,或者是个教师,也可能是个妹子,当然,甚至都不一定存在,这就是平行宇宙中的你,这么说,明白?

说实话外文期刊,本科学历发表有写困难,可以帮你尝试下。

宇宙线论文参考文献

10*宇宙生命之谜一、教材说明 这篇课文介绍了科学家探索地球之外是否有生命存在的艰难历程,说明到目前为止,地球之外是否有生命存在,仍然是一个未解的谜。 课文从古代神话讲起,引出了“地球之外的太空中是否有生命存在”这个问题;接着概括地说明,从理论上猜测,地球绝不是有生命存在的唯一天体,但是至今尚未找到另外一颗有生命的星球;然后具体地介绍了科学家探索的历程(先研究了生命存在必须具备的条件;再根据这些条件对太阳系除地球之外的其他行星进行了分析,得出了太阳系中唯一有可能存在生命的星球是火星;然后利用宇宙飞船对火星作近距离的观测,又让宇宙飞船在火星登陆,进行了一系列的分析测试);最后说明,人们至今尚未在地球之外的太空中找到生命,但科学家仍然相信那里存在着生命,因此,地球之外是否有生命存在,仍然是一个谜。 选编这篇课文的主要意图,是通过阅读理解,学习科学家追求真知、不断探索的精神,激发学生爱科学、学科学、探索宇宙奥秘的兴趣,领悟作者采用分析、比较、排除的方法说明问题的表达方法。 科学家根据生命存在的条件探索火星的情况及其成果,是教学这篇课文的重点;学生对有关生命科学的理论、术语的理解是教学这篇课文的难点。 二、学习目标 1.认识“酶、碳、冥、磁”4个字。 2.正确、流利、有感情地朗读课文。 3.读懂课文,了解课文围绕“地球之外是否有生命存在”这一问题讲了些什么,培养爱科学、学科学的兴趣和探索未知的好奇心。 三、教学建议 1.课前,教师要了解银河系、太阳系、火星、生命科学等方面的知识,可制作有银河系、太阳系、火星图片的教学课件。学生可阅读《小学生十万个为什么》,了解与课文内容相关的知识,为理解课文内容作准备。 2.这是一篇介绍科学家探索宇宙生命的科普文章。教学时,教师要让学生进行充分的自学,然后组织学生交流学习收获,提出不明白的问题。在此基础上,师生共同进行梳理归纳,确定重点讨论的问题。 (1)天体上可能存在生命的条件。这个方面的内容写得比较详细,学生阅读理解后,教师引导学生用自己的话说一说。学生对这部分内容的理解,是学习其他内容的重要前提和基础。 (2)科学家探索火星上有无生命的情况及其结论。这是学习这篇课文的重点。教学时,先引导学生认真阅读课文,弄清科学家对火星探索的历程,然后再理解科学家经过观测分析得出的结论:“在火星上生命难以生存”“在飞船着陆的地区,火星表面没有生命存在”。组织学生讨论这个问题的时候,一定要让学生搞清楚,科学家一开始认为火星上有生命存在,是根据生命存在的条件作出的推测;后来得出的结论,是根据宇宙飞船探测到的事实作出的科学判断,从而培养学生科学的思维方法。 (3)地球之外的太空中到底有没有生命存在。这个问题课文没有作出明确的回答。教师要组织学生结合课文内容进行充分讨论,激发学生热爱科学、追求真知的兴趣。教学时,可引导学生从以下两个方面思考:一是科学家的探测只证明火星表面没有生命存在,而未探测出火星岩层中有无生命存在,科学家的疑问“生命物质是否会存在于火星的岩层之中呢?”明确告诉了我们这一点;二是科学家通过对落到地球上的一些陨石的分析,发现太空有有机分子存在,所以,科学家仍然相信“在太空中存在着生命”。因此,文章最后说“地球之外是否有生命存在,是人类一直探索的宇宙生命之谜”。 3.课后可组织学生开展一次语文实践活动。教师可布置学生搜集古今中外人类探索宇宙奥秘的文章、图片,以“宇宙的奥秘”为主题举办一次文章、图片展览,激发学生学科学、用科学的兴趣。 4.对课文中出现的科学术语,如对学生理解课文没有太大影响,教学时可不涉及;如对读懂课文有较大影响,或学生要求解释的,教师可做通俗的解说。 四、参考资料 银河系银河系包含几千亿颗星体,我们的太阳就是其中之一。银河系里大多数恒星集中在一个扁盘状的空间范围内,好像一个铁饼。扁盘密集部分的直径约为八万光年。太阳距离银河中心约三万光年。银河系有三个主要组成部分:银盘、银核和银晕。 太阳系太阳系是一个巨大的天体系统,主要包括太阳和围绕着太阳旋转的九大行星,60多颗围绕着不同行星运转的卫星,数以万计的小行星、彗星、流星体,以及行星际气体和尘埃物质。 火星火星是太阳系九大行星之一,按离太阳由近及远的次序为第四颗,它的体积在太阳系中居第七位。由于火星上的岩石、砂土和天空是红色或粉红色的,因此这颗行星又常被称作“红色的星球”。 蛋白质是一切生物细胞的重要组成部分。没有蛋白质,就没有生命。鸡蛋中的蛋白,是蛋白质的一种。牛肉、猪血、黄瓜、大豆、面粉中,都含有不同数量的蛋白质。在人体中,内脏、肌肉、血液、皮肤、骨骼、毛发中均含有蛋白质。 酶酶是生物体的细胞产生的有机胶状物质,由蛋白质组成。作用是加速有机体内进行的化学变化,如促进体内的氧化作用、消化作用等。 二氧化碳无色无臭的气体,空气中含量约为0�04%。动物呼吸时,吸入氧气,呼出二氧化碳;绿色植物进行光合作用时,放出氧气,吸入二氧化碳。 磁场传递物体间磁力作用的场。指南针指南就是地球磁场的作用。 臭氧层地球的外面包围的气体层,叫大气层。大气层分为对流层、平流层、中层、热层、外层等层次。平流层中臭氧集中的一层,叫臭氧层,距地面20—30公里。太阳射向地球的紫外线大部分被臭氧层吸收。臭氧层具有保护地球上的生物免遭紫外线过量辐射的作用。 紫外线波长比可见光短的电磁波。可使磷光和荧光物质发光,能透过空气,有杀菌能力,对眼睛有伤害作用。 宇宙线也叫宇宙射线。从宇宙空间辐射到地球上的射线。能量极大,穿透力比爱克斯射线和丙种射线更强。

科学家研究表明宇宙中恒星的数量为10的29次方个! 银河系中有行星的的恒星不到千分之二,而地球于其它行星相比具有二百多个显著特性! 根据对宇宙其它行星产生过程的研究,计算出地球在宇宙中产生的机率为10的215次方分之一!也就是要有10的215次方个行星才有可能产生一个地球,而这个数字远远大于恒星的数量。 计算结果表明地球的产生可以说是不可能的!科学家们现在也无法解释地球存在的原因!所以很多天文学家都有——“上帝造人”的心理倾向! 但这些数字都是根据天文望远镜的观察测算出来的,而天文望远镜的误差率为30%。所以对于生命的认识还有待于进一步研究!

恒星形成是宇宙物质由暗(光学意义)到明(恒星及星系)的关键步骤。从1796年拉普拉斯的星云假说开始,过去了两个多世纪后,恒星形成领域终于在20世纪的第一个十年通过开创的宽视场成像(Barnard,1907,1919,ApJ)进入实测(靠谱+有钱)学科。

Barnard认证的“暗云”,至今都是本领域研究的重要对象,例如著名的B68 (Alves et al., 2001,Nature)被揭示具有经典的流体力学压力平衡密度结构Bonnor-Ebert轮廓。又例如基于我们首次捕获到的正在诞生的暗云B227(Zuo et al., 2018 ,ApJ “Catching the Birth of a Dark Molecular Cloud for the First Time”)。这两个工作分别研究了Barnard认证的第68个和第227个暗云。

拉普拉斯及其太阳系星云起源假说示意图

暗云之为暗,是由于尘埃消光,但其主要成分是气体。1951年星际中性原子氢气(HI)的发现,确立了其为星际介质的主要成分之一。20世纪60年代,Hollenbach和Salpeter的研究明确了氢原子在星际尘埃表面‘复合’成为分子氢。60年代四大天文发现之一的星际一氧化碳(CO)分子,使得难以探测的分子氢气得以现形,揭示暗云都是分子云。七八十年代,空间天文兴起,红外巡天确定了年轻恒星诞生于分子云。至此一个恒星诞生的完整图景基本完成。

恒星诞生过程

分子的辐射集中在毫米射电波段。恒星形成领域的天文学家从80年代初就开始推动大型毫米波阵列(MMA),经过几次10年规划、多边国际谈判、无数次高原反应,MMA演化、成长为当今地面天文设备的巨无霸——ALMA。到目前为止,ALMA观测用时最多的领域是恒星形成及星际介质,由最初的新兴成为主流显学。

90年代末,我在纽约上州的农村苦读学位,一把剪刀对付一月头发。现在回想起来,那时的手艺为今年的COVID-19疫情宅做了准备。村里有让胡适挂科的农场,自产牛奶和冰激凌。村边有“手指湖”(Finger Lakes),古冰川凿穿岩石深达数百米,与秋光一起烂漫至天际,非常适合思考恒星形成之三大经典问题:磁场问题、湍流问题、角动量问题。

至今,三大问题无一解决!

三大问题的本质是多数量级尺度跨越中的能量转移机制。从几千光年的弥散星际介质到百万公里腰围的太阳,缩水了几百亿倍。如果星际介质中的磁场在具有一定电离度的气体中冻结,其能量密度将远高于分子云所拥有的重力势能。磁场将阻止恒星形成。星际介质中遍布超音速的湍流。湍动对抗质量相吸的重力,直到在数万天文单位或更小的尺度,热运动才达到或超过湍动,使所谓的致密云核可能整体塌缩,开启新一代太阳的星途。

星际介质包裹中的太阳系

磁场、湍流如何耗散缺乏实证,数值模拟里面普遍直接忽略或者做生硬的量纲假设。人类距离物理解释恒星形成尚远。角动量问题是三大问题中相对简单的一个。大尺度的星际介质包含或者演化成为许多子结构。宏观的角动量不必等于局域角动量之和。

90年代以来,特别是哈佛大学天体物理中心Myers和Goodman关于暗分子云核的系列工作,确立了从分子云核中心向外延展5万亿公里左右(这个尺度范围被称为亚光年尺度),在这个范围内角动量已经远远小于重力势能或磁场能或湍动能,而后三者处于能量均分状态。

能量均分也可能是暗云磁流体的一个基本性质。我们刚刚发表了对北天6个分子暗云中云核角动量的研究(Xu et al., 2020,ApJ)。在计算过程中,考虑了此前同类工作忽视的云核密度分布,因而导出了更为真实、数值更小的角动量,进一步验证了在亚光年尺度角动量已经不再影响云核整体塌缩的动力学。从亚光年尺度到恒星尺度(百万公里),角动量虽然不再影响整体塌缩的动力学,但是依然需要被大量耗散,才能加速物质吸积。一般认为外向流是角动量耗散的重要途径。

星际介质,特别是分子暗云中,各个层级的结构逐步紧实,最终小宇宙爆发点燃核聚变成为恒星。这一句话的星途,包含了多种基本物理、化学过程和环境变化:磁场、湍流、重力、热运动、等离子体、辐射转移、宇宙线、尘埃演化、无机-有机化学等等相互耦合,纠缠不休。

经过了一个世纪和多次新设备之重大突破,恒星形成的科学描述还主要是唯像的:巨分子云集群(Giant molecular cloud complex)到分子云(cloud)到云块(clump)到云核(core)到年轻星周盘(protostellar disk)加外向流(outflow),最终由于某种神秘力量阻止吸积确定原恒星质量,并且整体达成那个统一的更为神秘的初始质量函数(IMF)。

恒星形成的唯像描述

星际云的形状柔弱多变,但是到了即将塌缩踏上星途的云核,就圆润起来,在物理学家眼里都是球,亦如物理学家眼里的牛。这个叙事过程朴素可爱:“现在的日子是鸡,长大了就变成了鹅;鹅长大了, 就变成了羊;羊长大了, 就变成了牛;等牛长大了, 就是共产主义了......”

物理牛

如何实现太阳诞生这样“共产主义”的理想?2009年,人类 历史 上最大的单体空间望远镜(大过但是轻于哈勃)赫歇尔天文台的发射升空,带来了革命性的进步。

作者近期相关论文发表于:

美国《天体物理杂志快报》Xu et al. 2020, ApJL,DOI:,作者:徐雪芳,李菂, 戴昱等

美国《天体物理杂志》Xu et al. 2020, ApJ,arXiv:,作者:徐雪芳,李菂, 戴昱等

中国《天文与天体物理研究》 Yue et al. 2020, RAA,arXiv:,作者:岳楠楠,李菂, 张其洲等

英国《皇家天文学会月报》 Zhang et al. 2020, MNRAS accepted, arXiv:, 作者:张超,任志远, 吴京文等

参考文献:

Alves, ., Lada, ., & Lada, . Internal structure of a cold dark molecular cloud inferred from the extinction of background starlight. 2001, nature, 409, 159

Barnard . On a nebulous groundwork in the constellation Taurus. ApJ, 1907, 25:218-225.

Barnard . On the dark markings of the sky, with a catalogue of 182 such objects. ApJ, 1919, 49:1-24.

Hacar, A., Tafalla, M., Forbrich, J., et al. An ALMA study of the Orion Integral Filament. I. Evidence for narrow fibers in a massive cloud. 2018, ApJ, 610, A77

Hollenbach, D., Salpeter, . Molecular Hydrogen Formation on Grains in H I Regions. 1969, BAAS, 1, 244

Li, ., Li, D., Qian L. et al. 2015, Outflows and Bubbles in Taurus: Star-formation Feedback Sufficient to Maintain Turbulence, ApJS, 219, 20

Tan, J. C., & McKee, C. F. 2004, The Formation of the First Stars. I. Mass Infall Rates, Accretion Disk Structure, and Protostellar Evolution, ApJ, 603, 383

Xu, X., Li, D., Dai, ., et al. Independent Core Rotation in Massive Filaments in Orion. 2020, ApJL, 894, L20

Xu, X., Li, D., Dai, ., et al. Rotation of Two Micron All Sky Survey Clumps in Molecular Clouds. 2020, ApJ, arXiv:

Yue, N., Li, D., Zhang, Q., et al. Resolution-dependent Subsonic Non-thermal Line Dispersion Revealed by ALMA, 2020, accepted by RAA, arXiv:

Zuo P., Li D., Peek . G., et al. Catching the Birth of a Dark Molecular Cloud for the First Time. ApJ, 2018, 867:13.

作者简介:李菂,国家天文台研究员,从事天体物理和天文技术研究,撰写关于猎户座大质量“宁静”云核的系列论文,在美国天体物理杂志(ApJ)发表。

[ 责编:赵宇豪 ]

我国的宇宙线研究几乎与新中国同龄,1949 年10 月1 日开国大典后的第二个月,中国科学院即在北京成立.半年以后,1950 年5 月19 日在北京成立了中国科学院近代物理研究所,吴有训兼任所长.1951 年开始,即在该所内建立了宇宙线组,由王淦昌、肖健负责.1953 年10 月,近代物理研究所改名为物理研究所,钱三强曾任所长,研究所设有高能研究室,包括宇宙线组和加速器物理实验组,王淦昌、张文裕先后任室主任.1958 年研究所又更名为原子能研究所,由第二机械工业部(以下简称二机部)和中国科学院双重领导,以二机部为主.1972 年,因周总理的批示“这件事不能再延迟了”,指的是要发展高能物理,建造高能粒子加速器,1973 年2 月1 日,原子能研究所一部易名,成立中国科学院高能物理研究所,张文裕为第一任所长,宇宙线室随之成立,以后发展为粒子天体物理中心.这一段时间的机构调整,说明当时国家在考虑如何布局和发展我国的原子能事业和高能物理事业.从那以后的40 年中,我国的宇宙线研究队伍扩大到国内多家高等院校和研究所,其中高能物理研究所始终扮演着排头兵的角色.

建国初期,我国的宇宙线研究队伍虽小,但力量很强,赵忠尧、王淦昌和张文裕先生都是在新中国成立前就已经在核物理、粒子物理或宇宙线领域做出过有重大国际影响的成果,并与国际知名物理学家有过合作或交流的学者.他们三位都领导过我国早期的宇宙线研究.

赵忠尧先生( 见图1),1902 年出生,1927 年夏赴美国加州理工学院留学,师从1923 年诺贝尔物理奖得主、校长密立根(R. A. Millikan)教授.他是国际上第一个观测到正电子的产生和正负电子湮灭现象的人,他在这段时间的工作曾得到卢瑟福(E. Rutherford) 的高度评价.1945 年,赵先生再次赴美,用多板云室研究宇宙线高能簇射,得到出色的结果.

图1 赵忠尧

王淦昌先生( 见图2),1907 年出生,1933 年在德国柏林大学获博士学位,导师迈特纳(L. Meitner), 1941 年,王淦昌在国内生病期间,系统分析研究了当时已经用过的各种探测中微子的方法,1942 年1 月,他的论文《关于探测中微子的一个建议》在美国《物理评论快讯》(Physical Review Letters)上发表.美国的物理学家杰姆斯·阿伦(J. S. Allen)采纳了他的建议后于同年6 月在《物理评论》(Physical Review)上发表了题目为《一个中微子存在的实验证据》的文章,“王淦昌—阿伦实验”是世界上第一个比较确切地验证中微子存在的著名实验.

图2 王淦昌

张文裕先生(见图3),1910 年出生,1935—1938 年在英国剑桥大学卡文迪什实验室获得博士学位,导师是该实验室主任、诺贝尔物理奖得主卢瑟福(E. Rutherford).张先生于1944—1949年再次赴美,在美国普林斯顿大学巴尔摩(Pa1mer)实验室访问工作,发现在一定条件下带负电的μ 子会被原子核俘获并释放一个轨道电子,从而形成μ 介原子.1949 年1 月,他在美国《现代物理评论》(Rev. Mod. Phys.)上发表论文,受到实验室主任惠勒(J. A. Wheeler)同期文章的引用,在J. Hiifner 等人的专著《μ子物理》一书中被称作“张辐射”、“张原子”.

图3 张文裕

这三位先生有一个共同特点,就是学风严谨,重视实验,而且亲自动手做实验装置.他们都有一颗强烈的敬业爱国之心,赵先生于1945 年第二次出国是由当时的中央研究院派出,除了做研究工作外,为以后国内的研究做了许多技术准备,新中国成立后,赵先生毅然于1950 年底辗转回国;张先生因在国内无法开展工作于1943 年二次赴美,建国初期由于受到美国麦卡锡主义的迫害,经过了五年时间的努力,于1956 年从美国绕道欧洲才得以回到祖国;王先生则是1934年留学回国,1945年后到美国做宇宙线研究,还和赵先生共同制造一台50cm多板云室带回国内.三位先生是中国科学院最早期的院士,是新中国核科学和高能物理事业的奠基人和开拓者.

还应当提到的一位是肖健先生(见图4),1920年出生, 1944 年毕业于西南联合大学物理系,1947 年留学美国加州理工学院,成为安德森的研究生.新中国成立,肖健因急于回国放弃了继续攻读博士学位的机会,于1950 年获硕士学位后即刻回国.在我国早期的宇宙线研究中,肖健成为几位前辈的主要助手,他“只管耕耘,不管收获”,在较长的时间是宇宙线研究的学术领导,“文革”期间曾遭受迫害,后转向粒子物理,1980年成为中国科学院院士.

图4 肖健

由于这几位前辈的学问和人格魅力,我国的宇宙线和粒子物理研究结合非常紧密,不分彼此,几十年来宇宙线为加速器和粒子物理培养和输送了不少人才,著名“两弹一星”专家吕敏就经历过宇宙线的早期研究工作的锻炼.由于另有重任,几位前辈在宇宙线方面工作的时间长短不一,相对都比较短暂,我们大家都为有他们作为我国宇宙线事业的第一代学科带头人而自豪.

我国的宇宙线研究大体可以分为三个阶段,从建国初期到1973 年左右,大体可看成宇宙线研究的第一阶段,在前辈们的带领下,侧重于以云雾室为主要探测工具的高能宇宙线相互作用的研究和奇异粒子的寻找.1954 年在云南落雪山海拔3180m处建立了中国第一个高山宇宙线实验室.安装了赵忠尧、王淦昌从美国带回的50cm 多板云室,建造了30cm 磁云室.用这两个小云室探测到700 多个奇异粒子(主要是Λ0超子和K0s(θ0)介子)事例,并对它们进行了全面分析,还研究了宇宙线粒子电磁簇射现象和高能电子直接产生电子对的截面等,发表了一批好文章,例如文献.1958 年,在大跃进形势下,在张文裕、肖健、力一领导下,在原落雪山实验室附近9km处海拔3220m海子头山顶上建设了新的高山宇宙线站,实验设备由三个大型云室组成,上层为靶室,中层为磁云室,下层为多板室,对单电荷粒子的最大可测动量为100 GeV/c,电离测量误差为10%,设备的总重近300 吨,在当时是世界同类装置规模最大、水平最先进的仪器之一.在当时的经济条件下,能建设这样一套大云室系统,已经是很大的投入了.最初,大云室的物理目标放在超过当时加速器能量(几十GeV)的高能物理研究上.因为经历三年困难时期,大云室的建造花了7年时间,到1965 年建成,后又因“文化大革命”,岁月蹉跎,研究工作受到影响,到60 年代末,国际上加速器的能量已提高到与大云室相同的量级,原定的高能物理的研究方向已不具优势.于是,研究组根据当时粒子物理前沿的热点课题,突出了寻找夸克(我国粒子物理理论家曾称为层子)的研究.夸克(quark)可能具有1/3 或2/3 分数电子电荷,大磁云室能够可靠地鉴定分数电荷粒子,但是实验中没有找到分数电荷粒子(以后的研究表明,夸克是存在的,但是被囚禁在强子内,所以找不到),却在1972 年获得了一个可能的重质量粒子事例.后来研究组又较系统地测量了3220m高度的μ子强度和能谱,测量了π-介子、质子、反质子等的流强以及它们之间的比值,其中反质子流强是当时国际上的首次实验结果.此外,还有高山宇宙线高能粒子形态学的测量,对研究宇宙线在大气层中的传播和超高能核作用模型的检验也具有重要意义.

平行宇宙最新研究进展论文

我觉得平行宇宙不可能真正的存在,以前科学家竟然没有发现平行宇宙的存在,而且也没有给出合适的科学解释。

93年,楼主应该迈入大学的校门了吧?那应该充分的利用好学校提供的资源。向楼主这个问题,完全可以到文献库中搜索。无论学校的质量如何,必定会购买几个文献库的使用权,国内的数据库中,CNKI和万方使用的人数最多。在文献库中搜索“平行宇宙”,相信能得到数以千级的论文。说实话,国内文献虽然不乏精品,但是总体水平比起国外的文献还是低了一个档次的。可以到一些国外的数据库搜索,比如Web of Science,相信楼主读过几篇之后能比较出国内与国外的差距。海阔凭鱼跃,天高任鸟飞。知道这个平台可能没有满足楼主的需求,不妨到更宽阔的空间中放飞自己的梦想。

平行宇宙理论是最近科学家提出一个理论竟然不止一个宇宙,而且,似乎他们还完全一样。在宇宙之外可能有一个星系与银河系具有非常显著的相似之处,还有一颗也与我们的太阳非常相似的恒星,在这颗恒星周围存在着八大行星,其中第三颗行星与我们的地球非常相似,这颗行星上同样也存在着高等直立智慧生物,其中有一个生物和您非常相似,过着同样的生活,更重要的是,此时此刻,他与您一样,也正在阅读这篇文章正文第一段的最后一行。 平行宇宙理论编辑本段平行宇宙的分类在2003年的《科学美国人》杂志里,有一篇由美国宇宙学家马克斯·铁马克(Max Tegmark)为写的关於平行宇宙的专文,文中他将平行宇宙分成四类[2][3]:第一类:这类的宇宙和我们宇宙的物理常数相同,但是粒子的排列法不同,同时这类的宇宙也可视为存在於已知的宇宙(可观测宇宙)之外的地方;第二类:这类的宇宙的物理定律大致和我们宇宙相同,但是基本物理常数不同;第三类(艾弗雷特(Hugh Everett III)的多世界诠释):根据量子理论,一件事件发生之後可以产生不同的後果,而所有可能的後果都会形成一个宇宙,而此类宇宙可归属於第一类或第二类的平行宇宙,因为这类宇宙所遵守的基本物理定律依然和我们所认知的宇宙相同(以上「一颗球落入时光隧道,回到了过去撞上了自己因而使得自己无法进入时光隧道」诡论的平行宇宙解决办法属於此种);第四类: M理论宇宙-模型图这类的宇宙最基础的物理定律不同於我们宇宙,而基本上到第四类为止,就可以解释所有可能存在(也就是可想像得到的)的宇宙,一般而言这些宇宙的物理定律可以用M理论构造出来。编辑本段理论依据事实上,根据平行宇宙理论,在某个宇宙中,就存在着无数个星系,几乎和我们的宇宙完全一模一样,看上去就像是我们自己一样,在那个宇宙中,也存在着你和你的亲人,还有同样的生活方式,但是有一点必须说明:虽然在两个宇宙中你们是非常非常的相似,几乎相似到划上等号,这种相似度有且只能用来描述过去发生的事件,也就是说,直到这一刻,你们可以说是绝对相同的。 这些平行世界的存在,那不是无聊的炒作。比如泡沫宇宙理论、量子力学的多世界解释以及埃弗雷特多世界理论(Everett MWI),量子力学的多世界解释则认为宇宙是不断分叉的。所有的这些理论推演都需要基于一些基本的解释。当我们的宇宙诞生于137亿年前的时候,开始不断地加速膨胀,在宇宙中第一缕光线发出之后,就在宇宙空间中传播开来,而宇宙最深处的光线还未到达到地球上,目前我们探测到最深的宇宙空间仅仅是在130亿光年左右,也就是在宇宙诞生后的7亿年左右,而在这7亿年内发生的事件,还没有直接的观测数据。由于这些来自宇宙遥远空间的光线还未到达地球上,使之超出了我们的对宇宙观测的视野。 然而,我们对宇宙的了解的程度而言,来自宇宙大爆炸遗留下来的辐射证实,宇宙曾经历过一个转瞬即逝的超高速扩张阶段,科学家将这个阶段称为“暴涨宇宙”模型。简单的说就是宇宙在极其短的时刻,将其体积瞬间扩大,就像吹气球一样。而如果膨胀的速率稍微改变一点儿,那我们的宇宙就不会是现在这样了。因此,我们的现在观测到的宇宙空间,更贴切的说法是类似一个泡沫,在宇宙之外还存在的无数个泡沫,也就是说,存在无数个宇宙。所有的宇宙有着同样的或者说类似的机制进行各种限制,每个宇宙都经历了一次大爆炸,他们都是在大爆炸中诞生,并且存在着相同的物理定律。但是,并不是说所有的宇宙都能“存活”下来,只要将大爆炸的“参数”进行细微的调整,各种宇宙就会出现不同的情况了。比如,将我们这个宇宙的膨胀速率调低,这个初始条件下的宇宙就不可能演化至今,通俗地说,如果没有一个精确的膨胀速率,这个宇宙不是无限制的膨胀下去,就是早就坍缩没有了,所以,重点是“恰到好处”,只要稍微有一点儿的偏差,轻则不会演化出星系和恒星,重则无法存在下去。编辑本段存在概率尽管如此,要找到与我们非常相似的宇宙应该说是几乎不可能的,只能说在概率学上,它是存在的,我们对这个“似曾相识”的宇宙的观测,仅仅体现于概率数字上。而通过量子力学,我们会发现宇宙其实很神奇,这个理论会告诉我们一个完全不同且超越想象的故事。首先,将宇宙空间放大,我们会发现宇宙看上去像是由颗粒组成的,整个宇宙空间类似西洋象棋盘。在瞬间发生的大爆炸后,产生了无数个宇宙,就像同时出现了无数个泡沫,但是只有在少数地方,初始条件是精确的,这个精确性体现在这些宇宙能演化出星系等物质。 在这些无数个泡沫宇宙中,每个泡沫初始条件都是不同的,都存在着细微的差别,以此类推,最终我们会发现有一个泡沫和我们非常相似,这种概率性的事件就有点儿像:给一只猴子26个英文字母还有无限的时间,它总有一天能拼出一本莎士比亚全集。同理,既然存在着无数个宇宙,那我们的历史同样也有无数种不同的版本,也就是说、:在某个泡沫宇宙中,某个我们这个世界熟知的历史事件并不存在,他们那个世界绝大部分却与我们相似,但就是唯独缺少了那个在我们世界中人人皆知的历史事件。从这一点出发,不仅存在着无数版本的过去,也存在着无数版本的将来。 而如何才能遇到这个存在于概率数字上的泡沫宇宙呢?麻省理工的宇宙学家马克斯计算出了一种非常直观方法:可以从地球出发,往宇宙的任一方向走足够远,最终会遇到一个这么样宇宙,这个宇宙中的任何细节都是你所熟知的,而且还会遇到一个和你一模一样的“你”。但是,这个距离非常遥远,计算结果得出:这个距离是10的1028次方米。虽然我们得到了一个距离,可以通过这个途径去寻找“似曾相识”的宇宙。但是,有一个不好的消息,即使你有足够的勇气和耐心,也将无法看到另一个宇宙中的“你”。因为当你踏上这个旅程的时刻,还会有更多的宇宙出现,你踏出每一个步,都将伴随着下一刻泡沫宇宙的出现,而这些宇宙早已扩展到离你最近的宇宙,也就是说,这个时间长度足以等于一个宇宙中的所有恒星。编辑本段科学家观点值得注意的是,只有这样才能规避这个古怪的结论,而如果我们目前的量子理论以及标准宇宙模型是错误的,那你将遇到另一个宇宙中的“你”。据位于美国马萨诸塞州梅德福塔夫茨大学的宇宙学家亚历山大介绍:“对于这个“无数”的问题,我一直研究了超过25年,虽然对于无数版本的历史、无数版本的将来、还有无数个你和我存在于无数个泡沫宇宙中这个命题,未曾感到高兴,根据目前的研究进展,我认为很可能是真实存在的。” 需要重申的是,关于对多宇宙、平行世界理论探讨是非常具有争议性的,也是宇宙学中最基本的矛盾之一。同时,还有其他的关于“多宇宙”的理论,比如,弦理论。弦理论认为宇宙中的基本粒子都是由线形线条的弦构成,当弦处于不同的振动态时,就是表征出不同的粒子,具有不同的振动能量时,就对应着不同粒子的能量,这样我们的宇宙中,由于弦的具有不同的振动和能量,就有了电子、夸克等粒子形态。 事实上,宇宙各种常数的精确性可能告诉我们在其他宇宙中存在着不同的物理定律,而按照量子力学对多世界理论的解释,所有的历史事件都是可能存在无数不同的版本,包括你在内,都将在某个宇宙中以一种不同的方式存在,就像在某个宇宙中,你可能是温网冠军。对于多世界理论的不同解释,也是一部分宇宙学家的观点。编辑本段另一方面现在对于平行世界存在,尚未得到有效的证明。关于其是否存在,在科学家中也是目前在争论中。 休·艾弗雷特三世提出的多世界诠释认为,所有量子理论所做出的可能性的预言,全部同时实现,这些现实成为互相之间一般无关的平行宇宙。而人们是无法对这些平行世界进行观察和干涉。 关于量子力学,科学家普遍接受哥本哈根诠释。 而所谓“平行宇宙”、“分支世界”都是现在剧评中的流行用词而已,实际上并不代表物理学中的大平行宇宙假设。 有些人认为平行宇宙理论缺乏对经验主义的关联性以及可测性,同时缺乏物理学上的证据和可否定性,因为这个理论以目前的科学方法无法证实或否定,而且这些理论目前而言太过形而上学且只是在数学结构上有可能而已;不过马克斯·铁马克注意到了对宇宙微波背景辐射和宇宙物质大规模分布的测量的改进可能会否定或实证其中两种的平行宇宙存在的可能性,并进而能证实或否定开放宇宙理论和混乱暴涨理论,意即平行宇宙理论最少在某种程度上是可测的。 一些人认为科学家的职责就是要在不涉及观察者的状况下对已观测的现象提出基本的解释。回归到人择原理在解释会建构出所谓的「懒惰出口」,而这些解释的种类包括了「很明显地为生命的存在微调过的宇宙参数」等等;不过李奥纳特·蘇士侃宣称:某些形式的平行宇宙是无可避免的,在给出对现有宇宙状态的解释时,观测者效应是无法避免的而且得在其他的科学中获得解决。 一些人认为,平行宇宙理论会被奥卡姆剃刀给排除,因为假设一些我们无法观测且无法看见的宇宙来解决我们所看见的,就像是带著额外的行李走到尽头一般;不过对此马克斯·铁马克反驳:「这四种平行宇宙的一个共同特徵就是:预设平行宇宙的存在模型是最简单且最优雅的模型。如果一个人要否决这些多重宇宙的存在,他需要在实验上地对多重宇宙论的不支持,并且要加入以下的假定:有限空间、波函数崩溃和本体上的不对称是正确的,而这些过程会复杂化整个理论。因此我们的对於谁比较不优雅且较为浪费的裁决就变成了以下两者:多重宇宙或者是大量的文辞」。 有时有些人认为我们的宇宙是唯一可能存在的宇宙,因此讨论这些「其他的宇宙」是很明显地无意义的。爱因斯坦在思考其他种类的宇宙存在的可能性时,就提出了这个问题,关於宇宙结构是否只有一种可能的问题的解答的希望被认为在於理论上可统一全部物理理论的万物理论当中。 对於平行宇宙的观测证据的支援被认为来自於人择原理:「我们所观测到的宇宙对生命是友善的,要不然就不会被观测到。虽然这似乎是老调重弹,但是当生物体对物理法则和宇宙状况的敏感性、被考虑时,整个宇宙就是一个明显的证据;在另一方面,许多关键的物理常数似乎不会对於生物体造成严重的不适」;其他对於微调论证的批评是:就我们所知,在我们所知的物理常数之下可能还有更多的基本物理法则,而这些法则背後可能会有更多的参数存在,因此,给出这些定律,这些已知的物理常数未必落在生命许可的生存范围之内。 多重宇宙支持者经常对於常数如何从已定义的整体中选取感到茫然。假设存在个「定律中的定律」或者基本定律描述说常数如果被从一个宇宙到下一个宇宙中指定,那麼我们不过只是将宇宙学的问题给往上移了一个等级而已,因为我们必须解释这个基本定律从何而来。另外,这个基本法则是无穷大的,因此我不过是把问题从「为什麼是这个宇宙」给置换成了「为什麼是这个基本法则」。在援引平行宇宙论时这似乎是一个要点,尤其当假定只存在一个宇宙和一个原理会更简易时更是如此;但在马克斯·铁马克的平行宇宙理论里,这个问题是被避开的,因为在那种状况当中,所有可能的基本理论被实行的,而且被用以描述真实存在的平行宇宙。 对於虚拟宇宙和平行宇宙之间的关系依旧是个问题。多数的科学家已经准备好要接受自觉机器的可能性,而有些人工智慧学者甚至於已经说我们快要能制造自觉电脑了,在距离达让自觉生物住在虚拟世界方面仅剩一步之遥。对於那些生物而言,他们的「假」宇宙和我们的真宇宙可说是无分别的。因此我们应该将这些虚拟宇宙算在平行宇宙中吗?如果不是的话将我们自身存在的宇宙和这些虚拟宇宙划上等号有意义吗? 对於现有的平行宇宙论的最後一个问题是对於宇宙的定义。对多数的平行宇宙论者而言,宇宙是由物理法则和常数,以及初始条件定义的。这项论点可能会因为它的狭隘和沙文主义的性质而招致反对;对於将人类理解之外的事物予以分类也可能会招致批评。

平行宇宙(Multiverse、Parallel universes),或者叫多重宇宙论,指的是一种在物理学里尚未被证实的理论,根据这种理论,在我们的宇宙之外,很可能还存在着其他的宇宙,而这些宇宙是宇宙的可能状态的一种反应,这些宇宙可能其基本物理常数和我们所认知的宇宙相同,也可能不同。

宇宙与地球论文参考文献

地球大气层以外的宇宙空间,大气层空间以外的整个空间。 物理学家将大气分为5层:对流层(海平面至10千米)、平流层(10~40千米)、中间层(40~80千米)、热成层(电离层,80~370千米)和外大气层(电离层,370千米以上)。地球上空的大气约有3/4在对流层内,97%在平流层以下,平流层的外缘是航空器依靠空气支持而飞行的最高限度。某些高空火箭可进入中间层。人造卫星的最低轨道在热成层内,其空气密度为地球表面的1%。在万千米高度空气继续存在,甚至在10万千米高度仍有空气粒子。从严格的科学观点来说,空气空间和外层空间没有明确的界限,而是逐渐融合的。联合国和平利用外层空间委员会科学和技术小组委员会指出,目前还不可能提出确切和持久的科学标准来划分外层空间和空气空间的界限。近年来,趋向于以人造卫星离地面的最低高度(100~110)千米为外层空间的最低界限。[编辑本段]领空和外层空间的划分 关于领空(空气空间)和外层空间的划分问题,历来有两种对立的主张。 ①“空间论”,主张以空间的某种高度来划分领空和外层空间的界限,以确定两种不同法律制度适用的范围。 ②“功能论”,认为应根据飞行器的功能来确定其所适用的法律,如果是航天器,则其活动为航天活动,应适用外空法;如果是航空器,则其活动为航空活动,应受航空法的管辖;整个空间是一个整体,没有划分领空和外层空间的必要。 就“空间论”而言,关于确定外层空间的下部界限大致又有以下几种意见: ①以航空器向上飞行的最高高度为限,即离地面30~40公里; ②以不同的空气构成为依据来划分界限。由于从地球表面至数万公里高度都有空气,因而出现以几十,几百,几千公里为界的不同主张,甚至有人认为凡发现有空气的地方均为空气空间,应属领空范围; ③以人造卫星离地面的最低高度(100~110公里)为外层空间的最低界限。 1976年,巴西、哥伦比亚、刚果、厄瓜多尔、印度尼西亚、肯尼亚、乌干达和扎伊尔等8个赤道国家发表《波哥大宣言》,主张各赤道国家上空的那一段地球静止轨道 (离地面35871公里)属于各该国的主权范围。上述主权要求,使外空划界问题进一步复杂化。近年来,一些持“空间论”者逐渐趋向于接受上述第三种意见,即离地面100公里左右为外层空间的下部界限。1975年,意大利在外空委员会提出以海拔90公里为领空(空气空间)的最高界限。1976年,阿根廷、比利时和意大利支持以海拔100公里为界。1979年,苏联建议离海平面100~110公里以上为外层空间,同时各国空间物体为到达轨道和返回发射国领土,有飞越其他国家领空(空气空间)的权利。但另外一些国家,如美国、英国、日本等,则认为从空间科技现状来看,仍无法规定一定高度作为领空(空气空间)和外层空间的界限。他们强调划定外层空间的条件和时机还不成熟。 外空的定义和界限以及地球静止轨道的法律地位问题尚在联合国和平利用外层空间委员会审议之中。外空委员会正在审议卫星直接电视广播、卫星遥感地球,以及在外空使用核动力源等问题,以便草拟有关的法律原则。[编辑本段]在外空使用核动力源问题 外空委员会科学和技术小组委员会在1979年研究报告的结论中称,只要充分履行有关使用核动力源的安全标准和规定,核动力源可以在外空安全使用。现在法律小组委员会正在上述研究报告的基础上审议能否在现有的国际法规范方面,补充有关在外空使用核动力源的规定问题。[编辑本段]外层空间法 联合国和平利用外层空间委员会(简称“外空委员会”)作为永久性机构,于1959年成立。外空委员会设立了法律和科技两个小组委员会,分别审议和研究有关的法律和科技问题。除上述1963年联大通过的宣言外,外空委员会先后草拟了5项有关外空的国际条约,即《关于各国探索和利用包括月球和其他天体在内外层空间活动的原则条约》(1966,简称《外层空间条约》)、《营救宇宙航行员、送回宇宙航行员和归还射入外层空间的物体的协定》(1967)、《空间物体所造成损害的国际责任公约》(1971)、《关于登记射入外层空间物体的公约》(1974)和《关于各国在月球和其它天体上活动的协定》(1979),中国于1983年12月加入了《外层空间条约》。 原则和规则 上述条约提出了一些重要原则和规则,对外层空间法的形成起了重要作用,它们包括:外空的利用应为全人类谋利益;外空和天体供一切国家在平等基础上自由探测和利用;任何国家不得将外空和天体据为己有;探测和利用外空应遵守国际法和维护国际和平与安全;禁止将载有核武器或其他大规模毁灭性武器的人造卫星或航天器放置在地球卫星轨道和外层空间;发射国对射入外空的物体及其所载的人员具有管辖权和控制权;对紧急降落的宇航员应给以一切可能的协助,尽力予以营救和送回发射国,发现的外空物体应予归还;发射国为其外空物体对地面上或对飞行中的飞机造成的损害负有赔偿的绝对责任;发射国在切实可行范围内将所发射的外空物体和有关情报通知联合国秘书长;各国探测和利用外层空间应进行合作和互助;在外空进行活动时,应照顾其他国家的利益;从事外层空间活动应避免使外空遭受有害的污染和使地球环境发生不利的变化;月球和其他天体应限用于和平目的,禁止各种军事利用;月球和其他天体及其自然资源为人类共同财产;公平分配这些资源带来的利益并对发展中国家和对探索作出贡献的国家给予特殊照顾,等等。 在国际法上,尽管有些学者曾经提出过领空无限的主张,但由于地球的自转和公转,以及整个太阳系的运动,认为国家主权无限制地延伸到宇宙中去是没有实际意义的。对外空的探测和利用以及数以千计的人造卫星不断地在围绕地球的轨道上运行的事实,表明外层空间依其性质是难以成为国家主权控制的对象的。1963年联合国大会通过的《各国在探索与利用外层空间活动的法律原则的宣言》,确定了外层空间供一切国家自由探测和使用,以及不得由任何国家据为己有这两条原则。 联合国和平利用外层空间委员会(简称“外空委员会”)作为永久性机构,于1959年成立。外空委员会设立了法律和科技两个小组委员会,分别审议和研究有关的法律和科技问题。除上述1963年联大通过的宣言外,外空委员会先后草拟了5项有关外空的国际条约,即《关于各国探索和利用包括月球和其他天体在内外层空间活动的原则条约》(1966,简称《外层空间条约》)、《营救宇宙航行员、送回宇宙航行员和归还射入外层空间的物体的协定》(1967)、《空间物体所造成损害的国际责任公约》(1971)、《关于登记射入外层空间物体的公约》(1974)和《关于各国在月球和其它天体上活动的协定》(1979),中国于1983年12月加入了《外层空间条约》。由柳洪平创建。[编辑本段]太空武器 太空武器大部分是新概念武器,主要有: “利剑”——激光武器:用激光作武器的设想是基于激光的高热效应。激光产生的高温可使任何金属熔化。同时激光以光速(每秒钟30万千米)直线射出,延时完全可以忽略,也没有弯曲的弹道,因此不需要提前量,简直指哪打哪。另外,激光武器没有后坐力,可以迅速转移打击目标,还可以进行单发、多发或连续射击。激光武器的本质就是利用光束输送巨大的能量,与目标的材料相互作用,产生不同的杀伤破坏效应,如烧蚀效应、激波效应、辐射效应等。正是靠着这几项神奇的本领,激光武器成为理想的太空武器。 “长矛”———粒子束武器:它是利用粒子加速器原理制造出的一种新概念武器。带电粒子进入加速器后就会在强大的电场力的作用下,加速到所需要的速度。这时将粒子集束发射出去,就会产生巨大的杀伤力。粒子束武器发射出的高能粒子以接近光速的速度前进,用以拦截各种航天器,可在极短的时间内命中目标,且一般不需考虑射击提前量。粒子束武器将巨大的能量以狭窄的束流形式高度集中到一小块面积上,是一种杀伤点状目标的武器,其高能粒子和目标材料的分子发生猛烈碰撞,产生高温和热应力,使目标材料熔化、损坏。 “神鞭”——微波武器:由能源系统、高功率微波系统和发射天线组成,主要是利用定向辐射的高功率微波波束杀伤破坏目标。微波波束武器全天候作战能力较强,有效作用距离较远,可同时杀伤几个目标。特别是微波波束武器完全有可能与雷达兼容形成一体化系统,先探测、跟踪目标,再提高功率杀伤目标,达到最佳作战效能。它犹如无形的“神鞭”,既能进行全面毁伤、横扫敌方电子设备,又能实施精确打击、直击敌方信息中枢。可以说,微波武器是现代电子战、电磁战、信息战不可或缺的基本武器。 “飞镖”———动能武器:动能武器的原理十分简单,说白了,它和飞镖伤人的道理完全一样。一切运动的物体都具有动能。根据动力学原理,一个物体只要有一定的质量和足够大的运动速度,就具有相当的动能,就能有惊人的杀伤破坏能力,这个物体就是一件动能武器。所谓动能武器,就是能发射出超高速运动的弹头,利用弹头的巨大动能,通过直接碰撞的方式摧毁目标的武器。这里最重要的一点是动能武器不是靠爆炸、辐射等其他物理和化学能量去杀伤目标,而是靠自身巨大的动能,在与目标短暂而剧烈的碰撞中杀伤目标。所以,它是一种完全不同于常规弹头或核弹头的全新概念的新式武器。

在学习和工作中,大家一定都接触过论文吧,论文是指进行各个学术领域的研究和描述学术研究成果的文章。还是对论文一筹莫展吗?下面是我为大家收集的宇宙的秘密-议论文800字,供大家参考借鉴,希望可以帮助到有需要的朋友。 地球在宇宙中生存了数亿年,而人类,在地球上仅仅生存了数千万年,从远古时代,人们仰望星空,都会想几个问题:我们从哪里来,又将到哪里去,我们的归宿是什么? 自从非洲的第一批古人走出非洲,到各个大陆上,他们首先要考虑的问题是该怎么生存,当他们解决了衣食住行等问题,进入了工业时代,他们开始思考一个问题:宇宙到底有多大?于是他们发明了天文望远镜,开始观察地球之外的浩瀚宇宙。 因为仅仅是观察还不够,他们就发明了探测器,飞上了月球,但当他们在月球上看地球时,他们的世界观发生了翻天覆地的变化:原来在宇宙中,人类连虫子都算不上。进入了原子时代和信息时代,他们研究了宇宙的结构,发现太阳是由许多能量和原子不断坍缩形成的。在中国的.神话故事中,我们的后羿很称职,射掉了多余的9个太阳,只留下了这一个太阳,使得地球一年有四季,一天有日出日落,形成了恒纪元。 恒纪元到底是什么呢?当我们的行星围绕着其中的一个太阳做稳定运行时,就是恒纪元;当另外一颗或两颗太阳运行到一定距离内,其引力会将行星从它围绕的太阳边夺走,使其三颗太阳的引力范围内游移不定时,就是乱纪元;一段不确定的时间后,我们的行星再一次被某一颗太阳捕获,暂时建立稳定的轨道,恒纪元又开始了。因为我们只有一颗太阳,所以不存在恒纪元和乱纪元,而科幻小说中的三体世界,有时候是很长的黑夜,或者是漫长的白天。 宇宙就是一片黑暗森林,每个文明都是带枪的猎人,像幽灵般潜行于林间,轻轻剥开挡路的树枝,竭力不让脚步发出一点儿声音,连呼吸都小心翼翼;他必须小心,因为林中到处都有与他一样潜行的猎人。如果他发现了别的生命,能做的只有一件事:开枪消灭之。在这片森林中,他人就是地狱,就是永恒的威胁,任何暴露自己存在的生命都将很快被消灭。这就是宇宙文明的基本图景,这就是对费米悖论的解释。 《三体》中有一句话:把海弄干的鱼在海干之前上了陆地,他们从一片黑暗森林奔向另一片黑暗森林。这里把宇宙比喻成黑暗森林,每个文明都随时有可能遭遇毁灭,这是与死亡的赛跑,而死亡,只是为了让人们更好的走在路上。

百度百科:互动百科:以下来自维基百科宇宙是由空间、时间、物质和能量,所构成的统一体。是一切空间和时间的综合。一般理解的宇宙指我们所存在的一个时空连续系统,包括其间的所有物质、能量和事件。对于这一体系的整体解释构成了宇宙论。二十世纪以来,根据现代物理学和天文学,建立了关于宇宙的科学理论,称为宇宙学。根据相对论,信息的传播速度有限,因此在某些情况下,例如在发生宇宙爆炸的情况下,时空连续系统中我们将只能收到一小部分区域的信息,其他部分的信息将永远无法传播到我们的区域。可以被我们观测到的时空部分称为“可观测宇宙”、“可见宇宙”或“我们的宇宙”。应该强调的是,这是由于时空本身的结构造成的,与我们所用的观测设备没有关系。宇宙大约是由5%的普通物质,25%的暗物质和70%的暗能量构成[1]。目录 [隐藏]1 中文辞源 2 神话和宗教的宇宙观 3 宇宙的历史 4 宇宙大小 5 宇宙的形状 6 宇宙的命运 7 多重宇宙 8 注释 9 相关条目 10 参考文献 [编辑] 中文辞源《文子·自然》:“往古来今谓之宙,四方上下谓之宇。”《尸子》:“上下四方曰宇,往古来今曰宙。”二字连用,始见于《庄子·齐物论》曰:“旁日月,挟宇宙,为其吻合。”《淮南子·天方训》中关于世界起源的论述:“天地未形,冯冯翼翼,洞洞灟灟,故曰太昭,道始于虚霩,虚霩生宇宙,宇宙生气,气有涯垠,清阳者薄靡而为天,重浊者凝滞而为地。清妙之合专易,重浊之凝竭难,故天先成而地后定,天地之袭精为阴阳,阴阳之专精为四时,四时之散精之万物,”[编辑] 神话和宗教的宇宙观起初古人不愿意承认有其他世界的可能性,甚至认为“山后面没有人”,更不用说到宇宙了。但在地球上探险和征服的活动频繁下,又见到新奇的世界甚至星座的变化,从而想像宇宙整体,虽然这些宇宙观主要是纯思辨的产物,但客观上对于后来探险和观测活动是起了指导的作用。佛教宇宙观 佛经中,大的空间叫佛刹、虚空,小的叫微尘,统称为“三千大千世界”。“佛教宇宙观”主张宇宙系由无数个世界所构成。集一千个一小世界称为“小千世界”,集一千个小千世界称为“中千世界”,集一千个中千世界称为“大千世界”;合小千、中千、大千总称为三千大千世界。但佛经中没有说过地和天空的关系与形成,这些问题被认为是当时无法理解的不可说法。前佛教的印度宇宙观 [编辑] 宇宙的历史物理宇宙学 宇宙 · 大爆炸宇宙的年龄大爆炸年表宇宙的终极命运 显示▼隐藏▲早期宇宙 暴涨 · 核合成引力波背景 · 中微子背景微波背景 显示▼隐藏▲膨胀宇宙 红移 · 哈勃定律空间的度规膨胀弗里德曼方程FLRW度规 显示▼隐藏▲结构形成 宇宙的形状结构形成星系形成大尺度结构大尺度丝状结构 显示▼隐藏▲成分 ∧CDM模型暗能量 · 暗物质 显示▼隐藏▲时间表 宇宙学年表大爆炸年表膨胀宇宙的未来 显示▼隐藏▲实验 观测宇宙学2度视场星系红移巡天 · 史隆数位巡天COBE · 毫米波段气球观天计划 · WMAP 显示▼隐藏▲科学家 爱因斯坦 · 霍金 · 弗里德曼 · 勒梅特 · 哈勃 · 彭齐亚斯 · 威尔逊 · 伽莫夫 · 狄基 · 泽尔多维奇 · 马瑟 · 鲁宾 · 斯穆特 · others 本模板: 查看 • 讨论 • 编辑 • 历史 现代物理宇宙学一般认为宇宙起源于大爆炸,即约亿(±1%)年前由一个密度极大,温度极高的状态膨胀而来。对于大爆炸以前的宇宙,目前只有一些猜测性的理论。而最新的研究则认为宇宙年龄为156亿年[2],但是这个说法还未得到公认[3]。对于大爆炸以后的宇宙,则可以用较成熟的理论加以描述。一种典型的理论是:10-43秒:宇宙从量子背景出现。 10-35秒:宇宙由夸克-胶子等离子体构成,强相互作用、引力与电磁相互作用/弱相互作用分开。 10-5秒:电子形成,宇宙主要包括光子、电子和中微子,温度约1000亿度。 10秒:质子和中子结合成氘、氦等原子核,温度30亿度。 35分钟:形成原子核的过程(核融合,nucleosynthesis)停止,温度3亿度。 30万年:电子和原子核结合成为原子。物质和辐射脱耦,大爆炸辐射的残余成为今天的3K微波背景辐射。 4亿年:第一批恒星形成。 20亿年:星系形成。 50亿年:太阳系形成。 目前宇宙还在继续膨胀之中,这在观测上为哈勃定律所概括。[编辑] 宇宙大小目前关于宇宙是否无限的问题还有争议。如果整个宇宙的空间部分是有限的,那么可以用一个距离来表示。对于均匀各向同性的宇宙来说,这就是三维空间的曲率半径。但是,即使宇宙整体是无限的,宇宙的可观测部分仍是有限的:由于相对论限定了光速为宇宙中信息传播的最高速度,如果一个光子从大爆炸开始传播,到今天传播的固有距离为93亿光年,由于宇宙在膨胀,相应的共动距离约为其3倍,具体数值与宇宙学参数有关,这一距离称为今天宇宙的粒子视界。另一个在物理学数量级估计中常用来表示宇宙大小的距离称为哈勃距离,是哈柏常数的倒数乘以光速,其数值约为 x 1028厘米,也恰为93亿光年。科普和科技书籍中所说的宇宙的大小常指这个数值。哈柏距离可以理解为四维时空的曲率半径。[编辑] 宇宙的形状 威尔金森探测器测量的宇宙微波背景辐射分布。宇宙的形状是宇宙学中一个未解决的问题。用数学的语言说就是:“哪一个三维形状才能最好地代表宇宙的空间结构?”首先,宇宙到底是不是“平坦空间”,即大范围内遵守欧氏几何的空间还未清楚。目前,大部分宇宙学家认为已知宇宙除了大质量天体造成的局部时空褶皱,是基本平坦的-就像湖面是基本平坦但局部有水波一样。最近威尔金森微波各向异性探测器观测宇宙微波背景辐射的结果也肯定了这一认识。其次,尚未清楚宇宙是否是多重连接。根据大爆炸理论,宇宙是没有空间边界的,然而其空间大小可能是有限的。我们可以通过二维的概念类推:一个球面没有边界,但是它的面积是有限的(4πR2)。它是一个在三维空间有固定曲率的二维表面。数学家黎曼发现了四维空间中一个与此类似的三维球形“表面”,其总体积为有限(2π2R3)但三个方向都朝第四个维度弯曲。他还发现了一个“椭圆空间”和“圆柱形空间”,后者的圆柱形两头互相连接但没有弯曲圆柱本身-这一现象在普通的三维空间是不可想象的。类似的数学例子还有很多。如果宇宙真是有限但无边界的话,人沿着宇宙中一条任意方向的“直线”走下去,最终会回到出发点,其路线长度可认为是宇宙的“直径”(这个直径是现在人类对宇宙的认识所无法想象的,因为它一定要比我们所见的宇宙部分大得多。)。哈勃望远镜拍摄的高清晰度深场照片,显示姿态年龄各异的河外星系。照片片上最小,颜色最红的属于人类看到的最古老的星系,在宇宙年龄约8亿年的时候就已经存在。宇宙有可能具有多重连接的拓扑学结构。如果这些结构足够小的话,人类,就如同在挂了多面镜子的房间里,可能在不同方向看到同一天体的多个影像。而实际的天体数量就会比观测所见少。从这个角度讲,星体和星系应该称作“所观的影像”才合适。这个可能,至今没有被彻底否定,但最近的宇宙微波背景辐射研究结果认为是很不可能的。[编辑] 宇宙的命运根据天文观测和宇宙学理论,可以对可观测宇宙未来的演化作出预言。均匀各向同性的宇宙的膨胀满足弗里德曼方程。多年来,人们认为,根据这一方程,物质的引力会导致宇宙的膨胀减速。宇宙的最终命运决定于物质的多少:如果物质密度(1)超过临界密度,宇宙的膨胀最后会停止,并逆转为收缩,最终形成与大爆炸相对的一个“大坍缩”(big crunch);如果物质密度(2)等于或(3)低于临界密度,则宇宙会一直膨胀下去。另外,宇宙的几何形状也与密度有关: 如果(1)密度大于临界密度,宇宙的几何应该是封闭的;如果(2)密度等于临界密度,宇宙的几何是平直的;如果(3)宇宙的密度小于临界密度,宇宙的几何是开放的。并且,宇宙的膨胀总是减速的。然而,根据近年来对超新星和宇宙微波背景辐射等天文观测,虽然物质的密度小于临界密度,宇宙的几何却是平直的,也即宇宙总密度应该等于临界密度。并且,膨胀正在加速。这些现象说明宇宙中存在着暗能量。不同于普通所说的“物质”,暗能量产生的重力不是引力而是斥力。在存在暗能量的情况下,宇宙的命运取决于暗能量的密度和性质,宇宙的最终命运可能是无限膨胀,渐缓膨胀趋于稳定,或者是与大爆炸相对的一个“大坍缩”,或者也可能膨胀不断加速,成为“大撕裂”(big rip)。目前,由于对暗能量的性质缺乏了解,还难以对宇宙的命运做出肯定的预言。[编辑] 多重宇宙对于多重宇宙有不同的理解。一种理解是,位于可观测宇宙之外的时空,构成了其它的宇宙。例如,在宇宙暴涨中形成的其它大量时空,或者我们宇宙中黑洞奇点内我们所无法理解的时空。这些不同的时空部分总体构成了多重宇宙。另一种理解则强调这些不同的宇宙不仅仅是时空区的独立,而且其中的表现的物理规律也可能有所不同,例如其中的粒子也许具有不同的电荷或质量,其物理常数也各不相同。有时人们也把平行宇宙与多重宇宙当作同义词。不过,平行宇宙还有一种理解,即量子力学中的多世界解释。这种解释认为,在量子力学中,存在多个平行的世界,在每个世界中,每次量子力学测量的结果各自不同,因此不同的历史发生在不同的平行世界中。

宇宙论文文献

在网上搜搜霍金的果壳中的宇宙

建议你把太阳系中每种星体形成过程写一下,从星云开始写,然后是物质开始聚集,内部发生聚变,初始太阳系形成,行星开始形成,太阳系冷却。只是告诉你一下思路望采纳

相关百科

热门百科

首页
发表服务