首页

> 学术期刊知识库

首页 学术期刊知识库 问题

毕业论文信度效度怎么弄

发布时间:

毕业论文信度效度怎么弄

信度的检验方法 :重测信度法、复本信度法、折半信度法、α信度系数法。

效度的检验方法 :内容效度、构想效度、效标效度。

1、重测信度法

这一方法是用同样的问卷对同一组被调查者间隔一定时间重复施测,计算两次施测结果的相关系数。显然,重测信度属于稳定系数。

重测信度法特别适用于事实式问卷,如性别、出生年月等在两次施测中不应有任何差异,大多数被调查者的兴趣、爱好、习惯等在短时间内也不会有十分明显的变化。

2、复本信度法

复本信度法是让同一组被调查者一次填答两份问卷复本,计算两个复本的相关系数。复本信度属于等值系数。

复本信度法要求两个复本除表述方式不同外,在内容、格式、难度和对应题项的提问方向等方面要完全一致,而在实际调查中,很难使调查问卷达到这种要求,因此采用这种方法者较少。

3、折半信度法

折半信度法是将调查项目分为两半,计算两半得分的相关系数,进而估计整个量表的信度。折半信度属于内在一致性系数,测量的是两半题项得分间的一致性。这种方法一般不适用于事实式问卷(如年龄与性别无法相比),常用于态度、意见式问卷的信度分析。

4、α信度系数法

Cronbach α信度系数是目前最常用的信度系数,其公式为:α=(k/(k-1))*(1-(∑Si^2)/ST^2)

其中,K为量表中题项的总数, Si^2为第i题得分的题内方差, ST^2为全部题项总得分的方差。从公式中可以看出,α系数评价的是量表中各题项得分间的一致性,属于内在一致性系数。这种方法适用于态度、意见式问卷(量表)的信度分析。

总量表的信度系数最好在以上,之间可以接受;分量表的信度系数最好在以上,还可以接受。Cronbach 's alpha系数如果在以下就要考虑重新编问卷。

5、内容效度

内容效度经常与表面效度(face validity)混淆。表面效度是由外行对测验作表面上的检查确定的,它不反映测验实际测量的东西,只是指测验表面上看来好像是测量所要测的东西;内容效度是由够资格的判断者(专家)详尽地、系统地对测验作评价而建立的。

6、构想效度

对测验本身的分析,测验间的相互比较:相容效度(与已成熟的相同测验间的比较)、区分效度(与近似或应区分测验间的比较)、因素分析法,效标效度的研究证明,实验法和观察法证实。

7、效标效度

效标,即衡量测验有效性的参照标准,指的是可以直接而且独立测量的我们感兴趣的行为。我们感兴趣的行为,就是要预测的行为,这是一个总的观念,故必须以可操作的测量来确定才有实际意义。

因此有必要把效标细分为两个层次,其一是理论水平的“观念效标”,其二是操作定义水平的“效标测量”。

扩展资料:

效度和信度的关系可以用测量值的构成公式O=T S R来理解。

如果测量是完全有效的,即0=T,S=0,R=0,此时测量必然是完全可信的,若量表的信度不足,它也不可能完全有效,因为有O=T R。

如果量表是完全可信的,可以达到完全有效,也可能达不到,因为有可能存在导致误差,虽然缺乏信度必然缺乏效度,但信度的大小并不能体现效度的大小。

信度是效度的必要条件,但不是充分条件。从理论的角度来看,量应具有足够的效度和信度;从实践的观点来看,一个好的量表还应该具有实用性。实用性指量表的经济性、便利性和可解释性。

一般来说,信度是效度的必要条件,也就是说,效度都必须建立在信度的基础上;但是没有效度的测量,即使它的信度再高,这样的测量也是没有意义的。

参考资料:

百度百科-信度分析

百度百科-信度

百度百科-效度

论文写作中,导师常常告诉我们,调研要有信效度检验,那么信度、效度是什么?怎么分析信效度呢? 信度是指测量的可信程度。 我们来看一个比较理想的状态。当我们用一个测量工具,对我们需要测量的对象测量了很多次后,得到的结果都是一样的。这时我们可以说这个测量工具是可以信赖的。 但是现实中,由于随机误差的影响,不可能达到这种状态。 那么我们怎么评估我们的测量工具是可以信赖的呢? 我们可以计算我们用自己的测量工具得到的结果与理想状态的差距。如果差距越小,那么我们的测量工具就越可靠。 这个差距就是信度。 信度有不同的指标,我们只要明白什么时候用什么指标来检验信度就可以了。剩下的计算,统计软件可以帮我们完成,我们只要选择我们需要的计算公式进行计算,就能得出我们想要的结果。 效度则是考察我们使用的测量工具是否能有效度量我们要测量的变量。  较为公认的说法是,效度分为三种:内容效度、校标效度和构念效度。 内容效度指问题的撰写是否能准确反映测量的初衷。 校标效度指测量工具与某个公认的标准的关系是否紧密。(研究目的是测量是否能较为准确地进行预测。) 构念效度指测量工具能测量出的结果和理论预测或理论结论之间的关系是否紧密相关。(研究目的是验证理论用于测量的有效性。)那么文献中经常看到的表面效度,聚合效度,区别效度呢? 表面效度:题项的表述是否明确、清晰、规范。(一般依据专家的意见来检验,具有主观性,不够牢靠。) 构念效度包含区分效度,聚合效度。当测量对象包含较为复杂的相互关系时,需要细化分析了。 区别效度:一个测量中,不同项目得到的测量结果能够得到区分。 聚合效度:测量一个特征的项目中,项目中不同题项应该指向同一相同特征。 那我们具体要怎么做呢? 和信度一样,我们只要了解在什么情况下用什么指标检验效度就好,剩下的计算软件会帮我们完成。在写文章时,我们只要依据自己的问卷或量表,选择合适的信度、效度检验指标,利用软件计算出结果,就可以验证问卷或量表设计是否可信、有效了。

信度一般用阿尔法系数做检验效度一般用T检验,显著性差异指数P检验。一般应该先用小样本做信度和效度,但是做效度的样本也不应该低于60人。然后再做推广。还有你这种量表是否应该在做效度时用校标关联系数呢,但这又需要你有新的校标。因为不太了解具体情况,所以先这么说,在做的时候你要遇到什么问题,你在问我哈。还有建议关于怎么做信度和效度,你还是看一下相关书籍。我觉得这还是很有必要的。 一、信度系数与信度指数 大部分情况下,信度是以信度系数为指标,它是一种相关系数。常常是同一被试样本所得到的两组资料的相关,理论上说就是真分数方差与实得分数方差的比值,公式为: r(xx)=r^2(xt)=S^2(t)/S^2(x) 公式中r^2(xt)是真分数标准差与实得分数标准差的比值,称作信度系数,公式为: r(xt)=S(t)/S(x) 可见信度指数的平方就是信度系数。 二、测量标准误 信度系数仅表示一组测量的实得分数与真分数的符合程度,但并没有直接指出个人测验分数的变异量。我们可以用一组被试两次测量结果来代替对同一个人的反复施测,于是有了信度的另一个指标,公式为: SE=S(x)√1-r(xx) 公式中SE为测量的标准误,S(x)是所得分数的标准差,r(xx)为测验的信度系数,从公式我们可以看出测量的标准误与信度之间有互为消长的关系:信度越高,标准误越小,信度越低,标准误越大。p value 和t value 我在百度百科上没看到,你自己再找找吧

信度的检验方法 :重测信度法、复本信度法、折半信度法、α信度系数法。效度的检验方法 :内容效度、构想效度、效标效度。1、重测信度法这一方法是用同样的问卷对同一组被调查者间隔一定时间重复施测,计算两次施测结果的相关系数。显然,重测信度属于稳定系数。重测信度法特别适用于事实式问卷,如性别、出生年月等在两次施测中不应有任何差异,大多数被调查者的兴趣、爱好、习惯等在短时间内也不会有十分明显的变化。2、复本信度法复本信度法是让同一组被调查者一次填答两份问卷复本,计算两个复本的相关系数。复本信度属于等值系数。复本信度法要求两个复本除表述方式不同外,在内容、格式、难度和对应题项的提问方向等方面要完全一致,而在实际调查中,很难使调查问卷达到这种要求,因此采用这种方法者较少。3、折半信度法折半信度法是将调查项目分为两半,计算两半得分的相关系数,进而估计整个量表的信度。折半信度属于内在一致性系数,测量的是两半题项得分间的一致性。这种方法一般不适用于事实式问卷(如年龄与性别无法相比),常用于态度、意见式问卷的信度分析。4、α信度系数法Cronbach α信度系数是目前最常用的信度系数,其公式为:α=(k/(k-1))*(1-(∑Si^2)/ST^2)其中,K为量表中题项的总数, Si^2为第i题得分的题内方差, ST^2为全部题项总得分的方差。从公式中可以看出,α系数评价的是量表中各题项得分间的一致性,属于内在一致性系数。这种方法适用于态度、意见式问卷(量表)的信度分析。总量表的信度系数最好在以上,之间可以接受;分量表的信度系数最好在以上,还可以接受。Cronbach 's alpha系数如果在以下就要考虑重新编问卷。5、内容效度内容效度经常与表面效度(face validity)混淆。表面效度是由外行对测验作表面上的检查确定的,它不反映测验实际测量的东西,只是指测验表面上看来好像是测量所要测的东西;内容效度是由够资格的判断者(专家)详尽地、系统地对测验作评价而建立的。6、构想效度对测验本身的分析,测验间的相互比较:相容效度(与已成熟的相同测验间的比较)、区分效度(与近似或应区分测验间的比较)、因素分析法,效标效度的研究证明,实验法和观察法证实。7、效标效度效标,即衡量测验有效性的参照标准,指的是可以直接而且独立测量的我们感兴趣的行为。我们感兴趣的行为,就是要预测的行为,这是一个总的观念,故必须以可操作的测量来确定才有实际意义。

论文信效度怎么检测

一、信度

1、信度即可靠性,它指的是采取同样的方法对同一对象重复进行测量时,其所得结果相一致的程度。从另一方面来说,信度就是指测量数据的可靠程度。

2、信度是指测验结果的一致性、稳定性及可靠性,一般多以内部一致性来加以表示该测验信度的高低。信度系数愈高即表示该测验的结果愈一致、稳定与可靠。

3、系统误差对信度没什么影响,因为系统误差总是以相同的方式影响测量值的,因此不会造成不一致性。反之,随机误差可能导致不一致性,从而降低信度。

二、效度

1、效度即有效性,它是指测量工具或手段能够准确测出所需测量的事物的程度。效度是指所测量到的结果反映所想要考察内容的程度,测量结果与要考察的内容越吻合,则效度越高;反之,则效度越低。效度分为三种类型:内容效度、准则效度和结构效度。

2、效度是测量的有效性程度,即测量工具确能测出其所要测量特质的程度,或者简单地说是指一个测验的准确性、有用性。效度是科学的测量工具所必须具备的最重要的条件。

3、在社会测量中,对作为测量工具的问卷或量表的效度要求较高。鉴别效度须明确测量的目的与范围,考虑所要测量的内容并分析其性质与特征,检查测量的内容是否与测量的目的相符,进而判断测量结果是否反映了所要测量的特质的程度。

【测验的效度】:

效度指测验的正确性和有效性,即测验能够测到被测量对象的真实水平的程度。

通俗讲就是,效度指,一个测验能够测得出想要测量的东西。

比如,我想测大家的身高,用卷尺测出身高,这就是效度高。但是,我用体重计测大家的身高,这就是效度低、没效度。

【测验的信度】:

信度指测验的可靠性和多次测量结果的一致性程度。

一个好的测验,测出的数据必须稳定、可靠,多次测量结果要保持一致,这样才让人信服。否则就不可信。

通俗讲,信度就是一次测量很可靠,再测一次,再测10次,结果都是差不多的。

比如,我用试卷测大家的心理学成绩,今天测大家考90分,明天测、后天测,还是90分,这就说明我这份试卷的信度高。

在论文写作中,导师常常告诉我们,调研要有信效度检验,那么信度、效度是什么?怎么分析信效度呢? 信度是指测量的可信程度。 我们来看一个比较理想的状态。当我们用一个测量工具,对我们需要测量的对象测量了很多次后,得到的结果都是一样的。这时我们可以说这个测量工具是可以信赖的。 但是现实中,由于随机误差的影响,不可能达到这种状态。 那么我们怎么评估我们的测量工具是可以信赖的呢? 我们可以计算我们用自己的测量工具得到的结果与理想状态的差距。如果差距越小,那么我们的测量工具就越可靠。 这个差距就是信度。 信度有不同的指标,我们只要明白什么时候用什么指标来检验信度就可以了。剩下的计算,统计软件可以帮我们完成,我们只要选择我们需要的计算公式进行计算,就能得出我们想要的结果。 效度则是考察我们使用的测量工具是否能有效度量我们要测量的变量。  较为公认的说法是,效度分为三种:内容效度、校标效度和构念效度。 内容效度指问题的撰写是否能准确反映测量的初衷。 校标效度指测量工具与某个公认的标准的关系是否紧密。(研究目的是测量是否能较为准确地进行预测。) 构念效度指测量工具能测量出的结果和理论预测或理论结论之间的关系是否紧密相关。(研究目的是验证理论用于测量的有效性。)那么文献中经常看到的表面效度,聚合效度,区别效度呢? 表面效度:题项的表述是否明确、清晰、规范。(一般依据专家的意见来检验,具有主观性,不够牢靠。) 构念效度包含区分效度,聚合效度。当测量对象包含较为复杂的相互关系时,需要细化分析了。 区别效度:一个测量中,不同项目得到的测量结果能够得到区分。 聚合效度:测量一个特征的项目中,项目中不同题项应该指向同一相同特征。 那我们具体要怎么做呢? 和信度一样,我们只要了解在什么情况下用什么指标检验效度就好,剩下的计算软件会帮我们完成。在写文章时,我们只要依据自己的问卷或量表,选择合适的信度、效度检验指标,利用软件计算出结果,就可以验证问卷或量表设计是否可信、有效了。

需要。要想测量信效度,就一定先把观察记录表量化。然后采用信效度的估计方法,信度的估计方法有重测信度,复本信度,内部一致性信度评分者信度,而效度的评估方法有内容效度,效度和构思效度。

本科毕业论文信度效度是什么

信度是指其可信度,既是在多大程度上是正确的,效度是指能够多有效的表示所需表达的含义.以一份量表(测量智力,记忆力之类的标准化试卷)为例,其信度就是指同一个人在几次参加同一份试卷的考试(假设此人并未有改变)分数不会有大的差异,而效度是指这份试卷能勾多大程度测量你的智力水平.再如,用一把尺子来量一个人的体重,其信度是有的,但是没有效度.如果一个事物具有效度,那一定具有信度,反之则不然

一、信度

1、信度(reliability)即可靠性,它指的是采取同样的方法对同一对象重复进行测量时,其所得结果相一致的程度。从另一方面来说,信度就是指测量数据的可靠程度。

2、信度是指测验结果的一致性、稳定性及可靠性,一般多以内部一致性来加以表示该测验信度的高低。信度系数愈高即表示该测验的结果愈一致、稳定与可靠。

3、系统误差对信度没什么影响,因为系统误差总是以相同的方式影响测量值的,因此不会造成不一致性。反之,随机误差可能导致不一致性,从而降低信度。

二、效度

1、效度(Validity)即有效性,它是指测量工具或手段能够准确测出所需测量的事物的程度。效度是指所测量到的结果反映所想要考察内容的程度,测量结果与要考察的内容越吻合,则效度越高;反之,则效度越低。效度分为三种类型:内容效度、准则效度和结构效度。

2、效度是测量的有效性程度,即测量工具确能测出其所要测量特质的程度,或者简单地说是指一个测验的准确性、有用性。效度是科学的测量工具所必须具备的最重要的条件。

3、在社会测量中,对作为测量工具的问卷或量表的效度要求较高。鉴别效度须明确测量的目的与范围,考虑所要测量的内容并分析其性质与特征,检查测量的内容是否与测量的目的相符,进而判断测量结果是否反映了所要测量的特质的程度。

扩展资料:

信度和效度的关系有如下几种类型:

①可信且有效

这种问卷准确地反映被调查人员的真实态度,问卷中的题目是和调查目标紧密关联的。若调查结果能真实地反映所调查的对象,测量的误差较小,则说明问卷调查的结果是可信而且有效的。

②可信但无效

这种问卷调查结果虽然能准确地反映被调查人员的真实态度,但问卷中题目与真实的调查目的的关联程度较弱,与调查的目标不相一致。这种情况表明,虽然调查中所得的结果是可信的,但可能在某些环节上出了差错,例如问卷中题目的设计使得所有的被调查人员都出现了理解的偏差,从而出现了系统性的偏差。

③不可信亦无效

在这种情况下,统计调查的结果分布较为分散,是难以从调查问卷中得出有效结果的,这是测量中应避免的类型。

参考资料:信度百度百科  效度百度百科

应该达到以上。信度和效度分析在问卷分析中大多都会用到的,即使是成熟的问卷,一般也是需要做的,在本科和研究生的论文中均适用。信度和效度相当于是对于问卷质量的一个前置条件,如果问卷的信度和效度比较好,证明问卷的数据可靠性比较高,问卷数据内部一致性比较高,所以可以用来做后续的建模分析。如果信度和效度不高,可能就需要重新设计问卷,发放问卷。信度是指测验结果的一致性、稳定性及可靠性。指的是采取同样的方法对同一对象重复进行测量时,其所得结果相一致的程度。

毕业论文要测信度效度吗

信度效度检验在问卷调查的过程中是必须要做的。

信度效度检验在问卷调查的过程中是必须要做的,因为问卷调查往往只是整个项目的一个环节,在正确项目的目标下,一定会另有调查的可信度,有效分析来支持调查结果,这样我们的问卷调查才有可信度,结果也能趋于正确数据。

信度指测验结果的一致性、稳定性及可靠性,一般多以内部一致性来加以表示该测验信度的高低。信度系数愈高即表示该测验的结果愈一致、稳定与可靠。

系统误差对信度没什么影响,因为系统误差总是以相同的方式影响测量值的,因此不会造成不一致性。反之,随机误差可能导致不致性,从而降低信度。信度可以定义为随机误差R影响测量值的程度。如果R=0,就认为测量是完全可信的,信度最高。

一般如果是含有量表的问卷都需要做信效度分析。非量表问卷可以使用文字形式进行描述,无论是什么类型的问卷,都应该在论文中进行表述以证明数据质量可信可靠。

如果是自编量表,一般需要进行预测试,就是在小范围发放问卷,进行信效度分析,对信效度较低的题项进行修改或删除,便于研究者对初测问卷进行一定调整以形成最终版本。当然,正式研究还是要做信效度分析。

效度与信度是优良测量工具所必备的两项主要条件。效度与信度之间存在的关系,可以用一句话来概括:信度是效度的必要条件而非充分条件。

信度是效度的必要条件,就是说,一个指标要有效度就必须有信度,不可信就不可能正确。但是,信度不是效度的充分条件,即是说,有了信度,不一定有效度。

严格来说!不是所有问卷都适合做信效度分析,信效度分析主要针对【量表】类问卷,而如果只是调查一些客观现实(如年龄、性别、职业、车辆、工资等)以【显变量】为主的问卷,是不适合做信效度分析的!判断一些变量之间是否适合做信效度检验,应该关注这么几点:

(1)潜变量:直接无法观测到的变量,主要反映人的认知和主观意愿等。

(2)可测:可以被测量的变量,一般是有序或等距的变量,而不是像地点这样的分类变量。

(3)变量之间等距等尺度:例如均采用5点或7点评分法获得的测量数据。

在论文写作中,导师常常告诉我们,调研要有信效度检验,那么信度、效度是什么?怎么分析信效度呢? 信度是指测量的可信程度。 我们来看一个比较理想的状态。当我们用一个测量工具,对我们需要测量的对象测量了很多次后,得到的结果都是一样的。这时我们可以说这个测量工具是可以信赖的。 但是现实中,由于随机误差的影响,不可能达到这种状态。 那么我们怎么评估我们的测量工具是可以信赖的呢? 我们可以计算我们用自己的测量工具得到的结果与理想状态的差距。如果差距越小,那么我们的测量工具就越可靠。 这个差距就是信度。 信度有不同的指标,我们只要明白什么时候用什么指标来检验信度就可以了。剩下的计算,统计软件可以帮我们完成,我们只要选择我们需要的计算公式进行计算,就能得出我们想要的结果。 效度则是考察我们使用的测量工具是否能有效度量我们要测量的变量。  较为公认的说法是,效度分为三种:内容效度、校标效度和构念效度。 内容效度指问题的撰写是否能准确反映测量的初衷。 校标效度指测量工具与某个公认的标准的关系是否紧密。(研究目的是测量是否能较为准确地进行预测。) 构念效度指测量工具能测量出的结果和理论预测或理论结论之间的关系是否紧密相关。(研究目的是验证理论用于测量的有效性。)那么文献中经常看到的表面效度,聚合效度,区别效度呢? 表面效度:题项的表述是否明确、清晰、规范。(一般依据专家的意见来检验,具有主观性,不够牢靠。) 构念效度包含区分效度,聚合效度。当测量对象包含较为复杂的相互关系时,需要细化分析了。 区别效度:一个测量中,不同项目得到的测量结果能够得到区分。 聚合效度:测量一个特征的项目中,项目中不同题项应该指向同一相同特征。 那我们具体要怎么做呢? 和信度一样,我们只要了解在什么情况下用什么指标检验效度就好,剩下的计算软件会帮我们完成。在写文章时,我们只要依据自己的问卷或量表,选择合适的信度、效度检验指标,利用软件计算出结果,就可以验证问卷或量表设计是否可信、有效了。

是啊,q我,我帮你

一般如果是含有量表的问卷都需要做信效度分析。非量表问卷可以使用文字形式进行描述,无论是什么类型的问卷,都应该在论文中进行表述以证明数据质量可信可靠。如果是自编量表,一般需要进行预测试,就是在小范围发放问卷,进行信效度分析,对信效度较低的题项进行修改或删除,便于研究者对初测问卷进行一定调整以形成最终版本。当然,正式研究还是要做信效度分析。

毕业论文问卷信度和效度分析

益派调查网可以免费发布调查问卷,可以免费使用样本。调查问卷包含的题型多种多样,开放题、矩阵题什么的都能做,基本满足论文中设计的数据调查及分析。

信度可以把它理解为可靠度、一致性、稳定性。用于测量样本回答结果是否可靠,即样本有没有真实作答量表类题项。比如说,在对同一对象进行测量,多次测量结果都很接近,就会认为这个结果是可信的,真实的,也就是信度高。如果每次测量的结果都有很大的差异,则说明信度较低。衡量信度的方法有很多种,常用的信度系数包括:克隆巴赫α系数和折半系数,可在spssau中进行分析。效度分析,简单来说就是问卷设计的有效性、准确程度,用于测量题项设计是否合理。效度又可分为内容效度、结构效度和效标效度。内容效度,通常是以文字来说明问卷的有效性。如通过参考文献,或者权威来源说明问卷的权威性和有效性。还有就是通过对问卷前测并结合结果进行题项的修正等工作来充分说明问卷的有效性。结构效度,指测量题项与测量维度之间的对应关系。测量方法有两种,一种是探索性因子分析,另外一种是验证性因子分析。其中,探索性因子分析是当前使用最为广泛的结构效度测量方法,SPSSAU提供此两种分析方法。效标效度,如果以前有一份权威且标准的量表数据,现在依旧使用该量表进行研究,并且收集回来一份数据。以前权威标准数据作为标准,当前数据与前一份数据之间进行相关分析,如果说相关系数值较高,则说明效标效度良好。但在实际分析中,效标效度很少使用。

应该达到以上。信度和效度分析在问卷分析中大多都会用到的,即使是成熟的问卷,一般也是需要做的,在本科和研究生的论文中均适用。信度和效度相当于是对于问卷质量的一个前置条件,如果问卷的信度和效度比较好,证明问卷的数据可靠性比较高,问卷数据内部一致性比较高,所以可以用来做后续的建模分析。如果信度和效度不高,可能就需要重新设计问卷,发放问卷。信度是指测验结果的一致性、稳定性及可靠性。指的是采取同样的方法对同一对象重复进行测量时,其所得结果相一致的程度。

一般如果是含有量表的问卷都需要做信效度分析。非量表问卷可以使用文字形式进行描述,无论是什么类型的问卷,都应该在论文中进行表述以证明数据质量可信可靠。

如果是自编量表,一般需要进行预测试,就是在小范围发放问卷,进行信效度分析,对信效度较低的题项进行修改或删除,便于研究者对初测问卷进行一定调整以形成最终版本。当然,正式研究还是要做信效度分析。

信效度具体分析参考SPSSAU的帮助手册说明。

信度分析智能文字解读-SPSSAU

参考资料:信度分析-SPSSAU

相关百科

热门百科

首页
发表服务