医学统计中的常见误区有哪些
医学统计学是运用概率论与数理统计的原理及方法,结合医学实际,研究数字资料的搜集、整理分析与推断的一门学科。医学研究的对象主要是人体以及与人的健康有关的各种因素。下面是我为大家带来的关于医学统计中的常见误区的知识,欢迎阅读。
一,真正差异和统计学差异
常常有人和我说: P值越小,试验结果的差异就越大!而且还有依据 [P < 是有显著性差异; P < 是有极显著性差异]。
其实,这些人忽略了 n 这个样本数的作用,n 的大小会影响 P 值。但更应该澄清一下的是: P 值代表的是统计学差异,并不是真正的差异!真正的差异只能靠平均值或者频度的比较才能得到。
二,卡方检验的局限性
我们知道各组之间的计数资料的比较,要用卡方检验,但有些情况是不行的!!!
1,当样本有小于5的值2X2表时,必须要用 Fisher 检验才正确!
2,当组与组之间有不同的背景,而这些背景因子还可能会影响到组与组之间结果差异,这是就必须要用 Mantel-Haenszel 检验!
这第2条可能大家不要理解,那我就举两个例子:
1) 关于男性和女性对于不同颜色的喜好的统计学分析
但这里应该注意到年龄可能会对这个分析造成影响,这就要用Mantel-Haenszel 检验了。
***红色 蓝色 黄色
男性 5 7 8
女性 15 10 6
可以按大人和小孩(比如我们以15岁为分界)分层,在SPSS中要把这个因素放到[行] [列]下边的[层化]一栏里,并在统计指标选项里,选 Cochran和Mantel-Haenszel的统计量选项,这样出来的结果就可靠了!
2)两种治疗(A和B)效果的评价分析:
*****A法 B法
生存 41 54
死亡 47 31
用卡方检验 X2=; P <
但是,病人的临床分期将影响着分析结果:
********生存**************死亡
——————————***——————————
————A****B————————A*****B———
1期-----18-----21--------------------0--------0-------
2期-----23-----33-------------------13------- 8-------
3期------0------0--------------------34-------23-------
再用Mantel-Haenszel检验: X2=; P >
说明实际上A法和B法两组的统计学差异,是这个不同的分期造成的!!!
1,当样本有小于5的值2X2表时,必须要用 Fisher 检验才正确!
讨论:当样本有小于5的值2X2表时,必须要用 Fisher 确切概率法。
当样本有小于5的值R×C表时,将某两组合并,用pearson卡方检验。
三,t 检验的局限性
1,我们经常用 t 检验来判别两组病人血清中某种标记物水平上的差异,但这里要注意,有一些血清标记物的水平是不能用 t 检验的!
比如: 血清标记物 PSA和AFP,在正常人的水平是很低的,而在病人则明显增加,呈现指数幂次改变,这样一来,血清 PSA和AFP水平在每组病人中很容易不是呈现正态分布!
这时应该用 非参数性检验---即 Mann-Whitney U test (Wilcoxon U test)。
2,关于用不用配对t 检验,我个人认为当同一组样本在不同时点,不同处理方式的比较上,应该用配对t 检验。
四,ANOVA 检验的局限性
1,在2组以上计量资料样本比较时,ANOVA 检验非常常用。但这个检验只是说明了一个趋势的比较结果,并不能说明真正的统计学差异,真正的`差异还要通过每两个点的直接比较,也就是说应该在ANOVA 检验后,还必须做两两比较或多重比较,这样才能从全貌上反映出统计的全部结果。
2,既然方差分析得到差别有显著性意义的结论后,还需进行两两比较,有人认为还不如一开始就进行多次t检验更方便,其实,这种认识是不妥当的。t检验用于ANOVA的两两比较将增大第一类错误,产生假阳性,因此要采用特定的方法,在SPSS的one-way ANOVA或General linear models中操作时,Post Hoc(多重比较)对话框内有多种方法可供选择,象两两比较一般用SNK法,而多个试验组和一个对照组的比较则多用dunnett检验。
3,我们经常用 ANOVA 检验来判别几组病人血清中某种标记物水平上的差异,但这里要注意,与 t 检验一样,有一些血清标记物的水平是不能用 ANOVA 检验的!
如上所说的: 血清标记物 PSA和AFP,在正常人的水平是很低的,而在病人则明显增加,呈现指数幂次改变,这样一来,血清 PSA和AFP水平在每组病人中很容易不是呈现正态分布!
这时应该用 非参数性检验---即 Kruskal-Wallis rank test 。
五,单元线性相关分析
有时我们常常只注意到了 P 值大小,可最重要的是 r 值!
样本数 n 对 P 值 结果的影响很大,容易让我们产生错觉,其实,相关的存在与否的评价是与 r 值最直接相关的,如下:
当 P 值小于时: r 值
几乎没有相关关系
弱的相关关系
有相关关系
强相关关系
极强相关关系
P 值只是证明这个相关在统计学上是否成立!!!
1,当样本有小于5的值2X2表时,必须要用 Fisher 检验才正确!
讨论:当样本有小于5的值2X2表时,必须要用 Fisher 确切概率法。
当样本有小于5的值R×C表时,将某两组合并,用pearson卡方检验。
不是说样本小于5
而是说:在R×C表中
理论频数不应该小于1,并且1≤T≤5的格子数不应该超过总格子数的1/5,若出现上述情况可以通过以下方法:
a.增加样本含量,使理论频数增大;
b.根据专业知识,删除理论频数太小的行和列;或者将理论频数太小的行或列与性质相近的邻行和邻近列合并。
c.改用双向无序的R×C表的fishher确切概率法。
还有一点
四格表卡方检验的适应指标:(T为理论频数)
1。n≥40,且T≥5时用卡方检验基本公式。但是当p≈α应该用fisher确切概率法
2。n≥40,但是1≤T≤5时,用四格表校正公式
3。n<40,或者T<1时,用fisher四格表确切概率法
4。四格表卡方检验的连续性校正仅仅用于自由度为1的四格表尤其是n较小时。
补充几点:
1. 关于P值:P值的大小并不是各组差异的大小,而是统计学差异显著性的大小。P值越小,说明得出各组没有差异的概率越小,越有理由说明各组存在差异(可以说,P值的大小反映了做出统计结论的“理由”的大小,而不是被比较的各组的实际差异的大小,得出有意义的结论后,其差异的大小可直接通过各组的均数或率进行比较)。
2. 关于t检验和方差分析:katalyster兄上面提到的t检验及方差分析在某些时候不适用,实际上就是每种方法都有其应用条件,不服从正态分布当然不能用。对这样的资料首先可考虑变量变换(如抗体滴度等资料,为指数或幂次的关系,可用对数转换),如变换后,服从正态分布,可用上述方法;若还不符合,则考虑非参数检验。
3. 关于相关分析:两个变量间是否存在相关关系,要看P值,而不是r值,r值用来说明相关关系的大小。当P<,才能讲两变量间存在相关关系,再看r值,r值越大,相关关系越强,反之越小;否则,P>,不能讲两变量间存在相关关系,r值毫无意义。
感谢kushuya, xiaoxiongzjh两位专家的补充和指正!之所以开这个专题,是真心想让初学者从这些<误区>中走出来!
六,Logistic regression 分析
在判断某因子对疾病的危险度时常用的方法。
1,假设要判断某因子对疾病的危险度(OR),要了解这个OR是一个相对危险度,即是有某因子存在和没有某因子存在之间比较的OR值。
2,OR 和 RR 不一样,OR是在Logistic regression model中使用,RR是在Cox proportional hazard model中使用。
3,假设要判断某因子对疾病的危险度,要在多变量Logistic regression model中校正一些混扰因素,如常见的年龄,性别,吸烟等等,并最后得出这个 Adjusted OR。但并不是说有了这些校正,我们就可以在实验设计上就不考虑这些混扰因素,相反,必须在实验设计上就把这些混扰因素在实验组和对照组配平,光靠在多变量Logistic regression model中校正是不可靠的。
其它方法---生存分析 (Kaplan-Meier法+ Logrank法):
我们有时在临床研究只注意到了用这种方法分析与生存相关的研究,其实,在疾病复发上也常用这种方法!前者是以生---死为判别,后者则以复发---不复发为判别。
医学论文投稿后,发现文章有错误怎么办?具体可以分以下四种情况,大家发表评职称医学论文时,中途发现错误,可以对号入坐!一、刚刚投稿,还没有审稿发现文章有错误现在多数的期刊都使用在线系统,如果在稿件投出去后,尚未指派编辑前,发现论文中的错误,可以先尝试通过系统更新档案。也可以直接联系期刊,在邮件中说明需要更正的内容以及原因,并附上稿件编号、论文题目以及具体的页码和段落,编辑通常很快就会响应的。
二、文章处于审稿的状态,修改的同时,发现论文有错误当你的论文处于大修状态,假设你发现的问题并不影响研究发现的本质和影响力,就不需要撤销投稿。有修改意见的时候,您再修改文章的同事,可以向期刊编辑说明情况,在给审稿人的逐点回复中,提供详细的回复以及说明做出的修改。三、有的文章重新投稿后,发现论文有错误论文重投后,如果又发现修改的内容有错,是在出结果之前发现论文中有错误,最好立刻联系编辑,说明论文中有错误,并在邮件中夹带更正过的论文。必须要说明是什么样的错误,在论文什么地方做了修改,也可以在论文中标示修改的地方。四、文章录用后,发现论文有错误论文在正式下过录用通知以后,还需要经过校稿,之后期刊才会进行在线发表或是进入印刷排版程序。如果在收到清样前前发现错误,错误也不严重,可以等收到清样后再看看问题是否还在。大部分的期刊都接受一些细微的修改,尤其是错误的内容,在回复的时候向编辑解释即可。
一般都会过。一般盲审不过的论文多半都是违背学术道德规范,有造假和抄袭行为,不管是否盲审,这种论文铁定不通过。所以如果只是少量的方法用错,一般都会过。但是,针对论文中的问题评委会提出反馈意见供整改,也不能完全排除不通过的可能性,所以也要做好相应的准备应付这种情况。
不论是什么错,还是谁提出的,一经核实,原刊物会在以后的期刊中,给出勘误表或更正。如果是作者本人,发现的最好尽快与杂志社联系,予以更正,并附一封对读者的致歉信。
你可以参考一下 《当代医学论文研究 》 里面很多这样子的文章
一般都会过。一般盲审不过的论文多半都是违背学术道德规范,有造假和抄袭行为,不管是否盲审,这种论文铁定不通过。所以如果只是少量的方法用错,一般都会过。但是,针对论文中的问题评委会提出反馈意见供整改,也不能完全排除不通过的可能性,所以也要做好相应的准备应付这种情况。
医药毕业论文范文大全
医药毕业论文范文大全,每个大学生在毕业之际都要写一篇论文,这样是对这些年来自己学的知识的一种总结。下面就由我为大家解答一下医药毕业论文范文大全这问题吧,希望大家一起来了解一下吧!
中医药论文在交流中医药学术、推进中医药事业进步方面发挥着重要的作用。随着我国中医药队伍的日趋壮大、知识层次的逐渐完善、学术水平的不断提高和中医药期刊数量的增加、质量的改善,中医药论文正呈现出逐年增多和提高的趋势,这是十分可喜的事。但当前中医药论文在撰写和编辑上也还存在一些问题,不利于中医药事业的发展。笔者结合近年来审读中医药科技期刊的情况,就以上问题提出一些粗浅的看法。
从近几年多种中医药学术期刊上发表的学术论文看,以下几个问题是带有共性的,需要引起我们的关注。
1、论文类型单调,缺乏学科特色
中医药理论虽然有学术上凝固性的一面,表述上也形成了一定的习惯性程式,但同时又存在着学术上不断发展的一面,其表述形式也必须跟上时代发展的步伐。“以不变应万变”这句老话所表现的,正是中医药论文在不断延续、出新过程中“不变”与“变”的辩证关系。这里,关键就在这个“变”字上。说起来容易做起来难,实际上这种变化举步维艰,打开中医药期刊一看,大部分论文所表述的内容和表现形式几乎是几十年一贯制:一些理论性论文缺乏新意,甚至是一些论点的反复克隆和重复。应用性论文更加突出,充斥版面的个案、群案报道,使人有“百刊面孔雷同,千篇似曾相识”的感觉。也有期刊开辟出医话、医论、研讨、解答等形式,但还没有形成特色和个性,充其量是同类问题的汇集,缺乏有机交流的深层次内涵。一些专科性质的期刊,本身具备个性特色,却习惯于跟着综合性期刊的路子走,结果失去了个性。如以“民间医学”为宗旨的杂志,却找不到民间医学的内容;以“急救医学”为宗旨的杂志,反映的大都是寻常的治法。一些期刊还出于单纯的经济利益,把缺乏科技根据、夸大实际效果、明显带有广告性质的内容直接或变相强塞给读者,最终导致对读者基本利益的伤害。
2、论文设计粗糙,缺乏科学依据
一篇好的论文,首先来自一个好的设计。以应用性论文为例,无论是交叉设计、析因设计、正交设计、重复测量设计,都必须能真实反映出研究目的和过程。不少作者不懂得这些基本方法,而是以简单的分组代替设计,绝大部分论文都是对以往经历的回顾,具有前瞻性设计的可谓凤毛麟角。其中虽有一些论文在名义上是冠以“前瞻性”的,事实上遮不住从回顾性内容中人为制造的痕迹。以上情况基本是当前中医药学术论文存在的通病。更有甚者,个别作者随意编造、删改实验数据,更改病例发生的时段,使论文失去真实性和可信性。不少论文没有对照组,即便是一些设有对照组的文章,不少却形同虚设:实验组与对照组不仅在年龄、性别等基本要素上不均衡,缺乏可比性,且不是采取随机抽取或分层的方法,而是按照人为划分的手段获得的。这种所谓的“对照”,失去了对照的实质性意义。如一个乡镇医院的医生,在他的论文中提供了一年内使用中医药抢救有机磷中毒100多例的报道,还有30名的对照组。且不说这个乡中毒人数之众难以令人置信,就是其所谓的“前瞻性”设计也不能不令人生疑。试想,在中毒者情况各异、迅速抢救垂危生命前提下,要套入作者设计的方案进行对照可能做得到吗?给人的感觉,只会是虚假的、不现实的和不负责任的。
3、统计学处理问题多,假阳性结果随处可见
对于大多数论文作者、特别是工作在基层的临床医生来说,论文的统计学处理既是一个头痛的问题,也是一个敏感的问题。一些作者没有这方面的专业知识,又迫于期刊的要求,要么请人帮助计算,要么干脆拿别人使用过的结果比葫芦画瓢,照着搬过来。更有甚者,随便做起数字游戏,改变实际数字,制造出能够为设计“效果”服务的假阳性来。由此造成的一些论文“水分”大、所用方法不能重复的弊病,就在所难免了。有专家对近20年来我国发表在核心期刊上的论文进行审查,发现统计学误用率平均高达80%。就是一些重大项目的论文,也有50%存在着明显的统计学错误。究其原因,虽然与论文作者的科研水平和道德缺陷有关,也与期刊普遍追求的所谓阳性率的做法不无关系。需要指出的是,在运用中医药治疗各种疾病的实践中,两种实验方法或药物在临床上虽然没有统计学意义,但却取得了基本相同效果的例子是十分常见的。它证明了不同方法或药物,在临床中具有的可靠性和可替代性,其本身也是一种非常有意义的意义。优效性结论(新方法优于传统的方法)虽然是我们每个科研者的愿望,但实际上是不容易取得的,能取得等效性(新方法与传统方法的效果基本相当或相差无几)、甚至非劣效性(新方法虽然很难超过传统方法,但具有验便简廉的实用价值和经济价值)结论,也不能不说是一种有意义的结果,各种期刊不能不面对这一基本事实。
4、论文文采不足,语法错误较多
无论什么类型的文章,本质上都是以书面语为表达手段的。作为中国优秀传统文化的构成,中医药著述自古就是非常讲究文字功夫的。翻开祖国医学的'历代典籍,先贤们留给后人的不仅是一部部优秀的学术经典,更是一部部优美的文字学佳品,这是值得我们继承和效法的。只有准确的文字表述、优美的文学手法,才能把要表达的内容说清楚,才能引人入胜,才能达到扩大宣传和影响的效果。任何形式的论文,都必须符合起码的文字学规则,文章要写出点文采并不算苛刻的要求。不少中医药期刊的文章都在不同程度上存在着文采不足情况,滥用字、生造词、语句不通、乱用标点等错误并不罕见。笔者在对报纸、书籍、杂志的审读比较中发现,期刊的差错率相对较高。它除了作者的责任心和水平外,也反映出部分编辑人员责任心不够、文化素质不高的缺陷。在被人们视为文人荟萃的中医界,写不出高水平的文章、作品缺乏文采的问题不是个别现象。
【论文摘要】同样都是老鼠,为何有老鼠与米老鼠之别?这就是品牌与非品牌的概念。一提到品牌有很多人都觉得很玄妙,事实上并非如此。就如制药工业中的品牌,比如琥乙红霉素与利君沙,化学成分没有任何区别,可是在销售上利君沙与琥乙红霉素相差甚远。利君沙就是“米老鼠”,而琥乙红霉素就是“老鼠”;利君沙就是品牌,琥乙红霉素就不是品牌。我们要做的就是把自己的产品做成“米老鼠”。
一、品牌策略与执行
在医药行业中有一个非常显著的特点,就是所谓的“小市场,大营销”。这个行业有一个单品的销售额超过10亿元人民币的是凤毛麟角,它不同于啤酒、饮料等产品的市场很大,所以说是“小市场”。为什么说是大营销呢?我们先看一看电视里的广告就知道了,医药产品的广告投放量相当大,在当前的媒体投放中占有很高的比例。也就是说,在今天激烈竞争的环境中,我们制药工业的营销费用投入是很大的。营销什么?当然是营销我们的产品。而营销的最终目的就是为了建立一个知名度高、美誉度高的强势品牌。
品牌从何做起?制药工业一直有一个说法:产品卓越,市场卓越,执行卓越。产品卓越对处方药的营销至关重要,市场卓越是对OTC产品的极大挑战,执行卓越无论是对处方药还是对OTC都是营销管理的一种极高境界。产品卓越是我们一直努力追求的方向。如果我们有“万艾可”这样的产品,我们根本就不用为打广告而犯愁,也不会担心搞促销之类的事情,这个药也会卖得很好,因为它相对卓越。国内众多药厂虽然在研发经费上不设上限,但是目前中国企业没有哪一家敢一年投入10亿元人民币来做研发的,因为研发来得太慢。
如果没有最好的产品怎么办?现阶段中国制药工业的成功者们,他们的成功大多是建立在市场卓越基础上的。换而言之,他们是找准了市场定位,再通过市场营销手段来完成产品的差异化,进而满足消费者的需求。那么是不是有了好的想法、好的战略就可以了呢?你可以这么想,也可以模仿别人,但是你清楚这一点:过去别人做成了的,你现在不一定就能做得成;人家在别的公司做成了,在你这儿也不一定能做成。由此我们必须具体情况具体分析,因为企业外部的环境和内部的条件都在不断变化,而出路就在于创新,不断创新。别人的东西是拿不过来的,结合自己的文化进行创新才能获取成功。而创新需要的,就是执行上的卓越。
二、医药企业营销中的“推”与“拉”
制药工业的营销宝典是什么?实际上,无论是4C还是4P,营销都可以简单地归结为两个方面:“推”和“拉”。举个例子,假如一个人感冒了,到医院看病,医生给他开治痔疮的药,他当然不会相信这个医生的话。但是假如有一套理论说“感冒是由痔疮引起的,治好痔疮就可以治愈感冒”,那么医生给他开治痔疮的药,他就会相信。[
处方药与非处方药不同之处在于处方药营销的对象是医生,所谓“拉动”的概念就是要给医生一个说法,只要有一个说法。那么医生就有理由开处方了。但是,有一个说法之后,在非常多的药品中,医生是否会选择这个产品?在这种情况下,就必须予以“推动”。因此,“推”和“拉”要结合,“拉动”就是给医生一个开处方的理由,树立学术地位,普及医药教育;“推动”就是给医生一个开处方的动力,让自己的药品能进到医院里来。只有“推”“拉”结合,才能让医生有理由开处方且愿意开处方。
非处方药的营销实际上也可以归结为“推”和“拉”。由于在OTC的营销链条上我们实在找不到像医生那样的角色,于是医药企业的“拉动”对象就不得不面向产品定位的消费者。所谓“拉动”,就是让消费者产生购买的欲望,并且买得起;所谓“推动”,就是让顾客买得到,能够很方便地买得到。所以对于对非处方药的营销来说,就必须做品牌。需要特别关注的是这几年药品零售商业的发展速度远远超过批发企业的发展速度,而药店在做品牌经营的同时更希望与制药企业进行联盟与合作。因此,药店特别是连锁药店将成为OTC药品销售的关键力量。
三、企业品牌与产品品牌
医药企业做品牌时遇到的另外一个难题是企业品牌和产品品牌的关系。比如在我提到杨森时人们会想到什么?会想到吗丁啉、达克宁。提到天士力时人们又会想到什么?一定会想到丹参滴丸。但一提到杨子江,我相信大部分人会哑口。可是扬子江在我们国家却是销售额位居前三名的制药企业,它的产品一点都不少。可为什么人们对它的名字那么陌生?是因为它的药更多地是在医院里做处方药,所以它的产品品牌知名度会小一些。由此对于我们来说就会产生这样一个疑问,到底是做产品品牌还是做企业品牌好?其实西药制药企业内心一直有个愿望,希望摆脱“一牌独大”的状态。但是根据目前的情况来看,西药制药企业甚至包括一些中药制药企业,想以企业品牌来带动产品销售是一件很不容易的事情。在这种情况下,我们只好先做产品品牌。至于最终能不能做好企业品牌,当我们国家的行业集中度非常高的时候,高到50家、10家、8家制药企业的销售额占到总销售额80%-90%的时候,制药企业的品牌对自己的产品群的销售会起到很大的帮助作用。
21世纪是一个竞争激烈的世纪,没有核心竞争力的企业是难以在激烈竞争中立足的。企业现有的所有竞争力优势,包括资源优势、技术优势、人才优势、营销优势,最终都会转化为企业的品牌竞争力优势。
统计学是一门抽象难懂的学科,非统计学专业毕业人员一般很难做到精通。下文是我为大家整理的关于统计类论文投稿的范文,欢迎大家阅读参考!
医学统计学方法应用的错误解析
一、引 言
医学由于其研究的复杂性和系统性,常需要应用严谨的统计学方法,由于有些作者对医学科研的统计学理论和方法的应用缺乏深刻了解,在医学论文中错误应用统计学方法的现象时有发生。统计学方法应用的错误直接导致统计结果的错误。例如统计学图表、统计学指标、统计学的显著性检验等。因此,正确应用统计学方法,并将所获得的结果进行正确的描述有助于单篇论著的质量提高,现将医学论文中统计学方法应用及其常见结果的错误解析如下。
二、医学论文统计学方法应用概况
医学论文的摘要是全文的高度浓缩[1],主要由目的、方法、结果、结论组成。一般要求要写明主要的统计学方法、统计学研究结果和P值。一篇医学论文的质量往往通过摘要的统计学结果部分就能判断。统计学方法的选择和结果的表达直接影响单篇论著的科研水平。
(一)材料与方法部分
正文中,材料与方法部分必须对统计学方法的选择、应用、统计学显著性的设定进行明确说明。通过对统计学方法的描述,读者应该清楚论著的统计学设计思路。材料部分要清楚说明样本或病例的来源、入组和排除标准、样本量大小、研究组和对照组的设定条件、回顾性或者前瞻性研究、调查或者实验性研究、其他与研究有关的一般资料情况,其目的是表明统计学方法应用的合理性和可靠性,他人作相关研究时具备可重复性。方法部分应详细叙述研究组和对照组的不同处理过程、观察的具体指标、采用的测量技术,要具备可比较性和科学性,
方法部分还要专门介绍统计分析方法及其采用的统计软件。不同的数据处理要采用不同的方法,必须清楚的说明计数或者计量资料、两组或者多组比较、不同处理因素的关联性研究。常用的有两组间计量资料的t检验,多组间计量资料的F检验,计数资料的卡方检验,不同因素之间的相关分析和回归分析。有些遗传学研究方法还有专门的统计学方法,要在这里简要说明并给出参考文献,还要简单叙述统计方法的原理。统计学软件要清楚的说明软件的名称和版本号,如基于家系资料研究的版本。
(二)论文结果部分
论文结果部分要显示应用统计学方法得到的统计量[2],所采用的统计学指标较多时,往往分开叙述。分组比较多时还要借助统计图表来准确表达统计结果。对于数据的精确度,除了与测量仪器的精密程度有关外,还与样本本身的均数有关,所得值的单位一般采用紧邻均数除以三为原则。均数和标准差的有效位数要和原始数据一致。标准差或标准误差有时需要增加一个位数,百分比一般保留一个小数。在统计软件中,分析结果往往精确度比较高,一般要采用四舍五入的方法使其靠近实验的实际情况,否则还会降低论文的可信度和可读性。
结果部分的统计表采用统一的“三线”表,表题中要注明均数、标准差等数据类型。表格中的数值要按照行和列进行顺序放置,要求整齐美观,不能出现错行现象。要明确标注观察的例数,得到的检验统计量。统计图可以直观的表达研究结果,如回归和相关分析的散点图可以显示个体值的散布情况。曲线图表达个体均值在不同组别随时间变化的情况或者不同条件下重复测量的结果。误差条图由均数加减标准误绘出,描述的是67%的置信区间,不是95%,提倡在误差条图采用95%的置信区间。
关于统计量,一般采用均数与标准差两个指标,均数不宜单独使用。使用均数的时候要明确变异指标标准差或者精确性指标标准误。关于百分比,分母的确定必须要符合逻辑,过小的样本会导致分母过小而出现百分比过大的情况。百分率的比较要写清两者中不同的变化,可以采用卡方检验。
1.假设检验的结果中,常见只写P值的情况,有时候会误导读者,也会隐藏计算失误的情况,因此写出具体的统计值,如F值、t值,可以增强可信度。对于率、相关系数、均数这类描述统计量,要清楚写明进行过统计学检验并将结果列出。P值一般取与作为检验显著性,对于结果的计算要求具体的P值,如P=或P=。
2.在对论文进行讨论时,作为统计学方法产生的结果往往要作为作者的主要观点支持其科学假设,对统计结果的正确解释至关重要。P值很大表明两组间没有差别属于大概率事件,P值很小表明两组间没有差别的概率很小。当P<,表明差异具有统计学意义。P值与观察的样本量的大小有关联,当样本量小的时候,数据之间的差别即使很大,P值也可能很大;当样本量大时,数据之间的差别即使很小,P值也可能显示有显著性差异。相关系数统计学意义的显著性也与相关系数的大小没有绝对的关联,有统计学意义的样本相关系数可能很小。因此,有统计学差异的描述并不一定意味着两组间差别很大,错判的危险性很大,显著性的检验为定性的结果,结合统计量大小方可判断是否具有专业意义。
变量间虚假的相关关系与变量随时间变化而变化相关,统计学意义的关联并不表示变量间一定存在因果关系。因果关系的确定要根据专业知识和采用的研究方法的不同来考量。使用回归方程进行分析,当两变量间具有显著性关系,但是从自变量推测因变量仍然不会很精确。相关或回归系数不能预测推测结果的精确程度,而只是预测一个可信区间。诊断性检验应用于人群发病率很低的疾病,灵敏度、特异度的高低对于明确疾病诊断并不能很肯定。“假阳性率”与“假阴性率”根据实际的需要不同要求并不一致,在疾病患病率很低时,出现假阳性也是正常的,要确诊疾病必须要与临床症状体征相结合。因此,这两个率的计算方法必须交待清楚。
三、医学论文统计学方法应用的常见错误分析
(一)“材料与方法”中的统计学方法应用的常见错误
“材料与方法”中统计学方法常见的问题主要为:对样本的选择或者研究对象的来源和分组描述很少或者过于简单。例如,临床入组病例分组只采用简单的随机分组,未描述随机分组的方法,未描述是否双盲双模拟,未设置空白对照组,分组后对性别、年龄、文化程度的描述未进行统计学检验,对于特殊的统计学方法没有详细交代;动物实验分组的随机化原则描述过于简单,没有具体说清完全随机、配对或分层随机分组等;统计分析方法没有任何说明采用的分析软件,有的只说明采用的分析软件而不交代在软件中采用的统计方法;没有说明原因的情况下出现样本量过于小等情况。
(二)“结果”统计学方法应用的常见错误
1.应用正确的统计学方法出现的结果表达并不一定正确。例如前文所述数据的精确度要求。医学论文常见错误中包括均数、标准差、标准误等统计学指标与原始数据应保留的小数位数不同;对于率、例数、比值、比值比、相对危险度等统计学指标保留的小数点位数过多;罕见疾病的发病率、患病率、现患率等指标没有选择好基数,导致结果没有整数位;相关系数、回归系数等指标保留的小数位数过多或者过少;常用的一些检验统计量,如F值、t值保留的位数不符合要求。
2.对统计学指标进行分析和计算时,一般采用计数资料和计量资料进行区分。计量资料常用三线表,在近似服从正态分布的前提下采用均数、标准差进行说明,如果不符合正态分布时,可以采用加对数或其他的处理方式使其近似正态分布,否则只能采用中位数和四分位数间距等指标进行描述。医学论文中常见未对数据进行正态分布检验的计算,影响统计结果的真实性和可信度。对于率、构成比等常用的计数资料指标,常见样本量过小的问题,采用率进行描述会影响统计结果的可靠性,采用绝对数进行说明会显得客观一些。还有一些文献将构成比误用为率,也是不可取的。
3.在判断临床疗效之一指标时,两组平均疗效有差别并不意味着两组的每一个个体都有效或无效,必须通过计算有效率进行计算。如比较某药物治疗糖尿病的疗效,服药一周后,研究组和对照组的对血糖降低值分别为 ± 和 ± ( P = 1) 。按空腹血糖值低于的疗效判定有效率,研究组和对照组的有效率分别为和 ,尽管平均疗效相差较多,但也要注意到该药物对部分患者无效()。对假设检验结果的统计学分析结果,P 值的表达提倡报告精确P值,如P = 或P = 等。目前的统计学分析软件均可自动计算精确的P 值。例如常用的SAS,SPSS等,只要提供原始数据,就可以计算出t值、F值和相应的自由度,并可获得精确的P值。
四、小 结
提高医学论文中统计学方法的使用质量是编辑部值得重视的一项长期而又艰巨的工作[3],医学论文中统计方法应用和统计结果的表达正确与否,不仅体现了论文的科学性和严谨性,而且对于提高期刊整体的学术质量,促进医学科学的发展和传播也有着重要作用[4]。
参考文献:
[1] 李敬文,吕相征,薛爱华.医学期刊评论性文章摘要的添加对期刊被引频次的影响[J].编辑学报,2011(23).
[2] 陈长生.生物医学论文中统计结果的表达及解释[J].细胞与分子免疫学杂志,2008(24).
[3] 潘明志.新时期复合型医学科技期刊编辑应具备的素质和能力[J].中国科技期刊研究,2011 (22).
统计学专业毕业现状分析与对策研究
本科毕业论文是高等学校人才培养计划的重要组成部分,是本科教学过程中最后一个重要的教学实践环节,是学士学位授予的一个重要依据。[1,2]然而,相较于其他教学环节,毕业论文没有受到足够的重视,从而导致该环节存在着一些问题。[3]本文将以中央民族大学统计学专业毕业论文为例,在分析其现状的基础上,找到问题并提出相应的建议。
中央民族大学统计学本科专业设置于2003年,目前已有六届毕业生。经过学院和学校层面的努力,统计学专业作为新办专业取得了较快发展,所培养的学生具有较好的专业能力和综合素质,近四成学生继续读研深造,就业的学生大都在专业对口的工作岗位上,就业率一直在85%左右。
本科毕业论文环节在培养方案中是6个学分。学生在第七学期开始选择指导教师以确定毕业论文题目。经过前6个学期的系统理论学习,统计学专业学生已基本掌握了统计学的基础理论和基本方法,具备了正确的统计思想和较强的统计软件应用能力,以及运用所学的理论和方法解决实际问题、文献检索和资料查询等综合能力。本科毕业论文的写作就是统计学专业学生将上述基础和能力进一步深化与升华的重要过程,从而培养学生的创新能力和实践能力,使学生的知识、技能和素质得到进一步的充实和提高,同时也是衡量学校教学质量和办学水平的重要指标。因此对如何提高毕业论文质量进行研究是必要和有意义的。[4]
一、统计学专业毕业论文质量的现状分析
从论文完成情况来看,每届的毕业论文基本都能达到论文教学环节的要求,通过对中央民族大学统计学专业2007~2011年四届毕业生的毕业论文进行分析,发现毕业论文及格率为。
从毕业论文研究的类型来看,主要分为两大类:理论研究型论文和实证型论文,理论研究型论文表现为总结和论述现有统计理论问题,表述理论研究的成果,或应用理论对现实问题进行分析、说明,并提出自己的思考;实证型论文主要表现为针对某一特定的实际目的或目标,运用所学统计的理论和方法,对经济、管理、金融、医学、生物、工程、环境等领域进行统计调查、统计信息管理、数量分析等。
从论文知识点范围的分析来看,学生论文绝大多数是统计专业问题,极少数是其他数学分支的问题。从中央民族大学历届统计学专业学生的毕业论文情况分析,发现毕业论文中研究其他数学分支的问题占总数的,主要包括:一是其他科目的应用研究(数学分析、常微分方程、运筹学及空间解析几何等),占总数的。二是数学专业教育和数学思维的研究,占总数的。研究统计学专业问题的毕业论文占绝大部分,比例为,选题内容广泛且多为社会热点问题,涉及经济、社会、医疗卫生、教育发展、旅游、基础设施建设等多领域,由于受学校人文环境影响,很大比例的学生对少数民族地区的经济、社会、民生等问题进行了统计分析,约占总学生人数的。所使用的分析方法主要集中于抽样调查、回归分析、多元统计方法、聚类分析、判别分析等常用统计方法。
此外,统计分析显示学生成绩普遍偏高,统计学专业学生的毕业论文,尤其是实证类论文,存在着可以大量使用背景介绍和统计软件分析结果的特点,因此,一些论文没有创新性和学术含量,但具有较大的篇幅,与理学院其他专业的毕业论文成绩比较,其平均成绩相对较高,约分。
二、统计学专业毕业论文存在的问题
毕业论文的质量问题关系到本科人才的培养规格和目标,直接体现了学生本科阶段的学习成果,是衡量教学水平、学生毕业与学位资格认证的重要依据。通过对论文和考评结果的具体分析,发现学生的毕业论文在创新性、理论深度及论文写作常识多方面存在问题。具体表现为:
1.创新性不够
学生的毕业论文表现为理论性研究非常少,大都是实证型论文,并且多是简单的统计方法应用,缺少创新性研究和思考。从中央民族大学历届统计学专业学生的毕业论文来看,理论研究型论文只占,与实证型论文的比例为1︰,比例悬殊,体现了学生在毕业论文大的选题过程中,避重就轻,缺乏创新的特点。如每年都有一定数量的学生选择“我国人均GDP的预测”这类针对某经济指标进行预测的题目,论文的主要内容就是利用ARMA、灰色预测或者趋势外推方法等一种或多种方法对时间序列数据做简单建模和分析,论文没有对指标本身的意义以及国内国际的社会经济形势进行综合分析。这种方法简单套用性质的论文占有很大的比重。
2.选题过大、内容空泛,缺乏深入研究,存在抄袭、拼凑现象
有些学生在选择研究课题时,往往不能根据自身的专业知识结构特点和社会实践情况进行准确定位,只是一味的盲目的选择一些过大过空的社会热点问题,因此难以看到所要研究的问题的本质。如有的学生针对CPI做研究,没有深入了解问题的实质,只是收集了一些文献,很难提出自己的观点或研究角度,造成了材料堆积且过于散乱,论文变成了一些材料的简单拼凑。有些论文针对某一社会经济问题进行研究,论文的主题只是针对现有数据利用简单的统计方法进行分析,对数据的质量和可靠性以及方法的适用性不做针对性讨论,对所得的结论也不结合社会经济现实情况进行分析,导致论文质量不高。
3.相对前沿的分析方法利用较少
前沿的分析方法利用较少,通过毕业 论文的 写作, 统计分析能力没有实质性提升。学生论文使用的统计方法主要集中于回归分析、聚类分析、判别分析、相关性分析等,其中回归分析方法占有非常大的比例,约,其他各统计方法使用的比例分别为:聚类分析为,判别分析为,相关性分析为,多元统计方法为,时间序列分析为,极少有学生使用教科书外的相对前沿的分析方法。
4.论文写作上存在结构不合理、没有相关研究介绍、创新点表述不清、参考文献不会正确标注等问题
从学生的毕业论文来看,论文写作不规范,专业性差。主要存在论文形式不规范、结构不合理、题目含糊、有些论文杂乱无章、口语化严重、可读性差等问题。
三、存在问题的原因分析
针对上述问题,统计学系通过对论文进行详细审查以及 组织指导教师和学生座谈,发现毕业论文出现以上问题的主要原因包括以下几方面:
1.学生对论文不够重视
部分学生由于忙于考研学习而无暇顾及毕业论文的研究,还有部分学生由于忙于外出找 工作、 实习而无心认真撰写论文。论文撰写所需的必要时间难以得到保障,因此学生应付了事,从而无法保证论文的深度。此外,还有部分学生认为毕业论文只是一个教学环节,与考研的好坏无关,存在只要写了论文,教师都会让自己通过的侥幸 心理,在思想上没有引起足够的重视。
2.缺乏指导教师的针对性指导
指导教师所带毕业生人数过多,使得导师的工作量呈现超负荷状态,无法保证每个学生毕业论文的质量,从而致使部分学生的论文规范性较差,没有对存在的问题反复修改,使得学生论文存在诸多问题。
3.学生的专业训练还不够
大部分本科生没有经历过论文的写作训练,写作水平较低,不了解学术论文的规范性及其格式,不知如何从科研的角度构思文章、组织材料、安排结构,使得相当一部分学生的毕业论文表达的观点不够准确清楚,论据亦不能很好地支持论点。另外,一些同学为了完成任务,直接将在 网络中搜索到的资料不假思索的拼凑在一起,使得内容不成体系,观点混乱。
四、提高毕业论文质量的建议和 实践
1.加强毕业论文重要性的宣传,提高学生的重视度
加强对毕业论文重要性的认识有助于提高本科生毕业论文的质量。通过讲座、课堂传授等形式,让学生意识到毕业论文的实践性和综合性是任何教学环节都不能替代的,是提高发现问题、分析问题、解决问题能力的有效途径,更是进行个人综合素质提高的必不可少的重要环节,[4]从而使学生在思想上认识到毕业论文的重要性,投入更多精力进行毕业论文设计。
2.选题和教师的科研项目相结合,提高论文的创新性
在选择课题时,为了能充分发挥学生的主观能动性,可以让学生根据自身的特点,与指导教师协商,结合导师的研究方向制定课题方案。统计学专业的教师一般除了 申请国家自然科学基金和国家 社会科学基金这类对理论性和创新性要求较高的项目以外,很多教师还主持或参加有相应的 应用研究类项目。应用类项目大都需要实地调研(以及问卷涉及和数据分析)或者大量的数据分析和建模。引导学生参加这类项目来设计和完成自己的本科毕业论文,能够激发学生的科研热情和创新潜力。此外,鼓励和引导一些成绩较好,如让具备保研资格的学生参加教师的科研讨论班或者课题组,选择一些具有一定难度的理论问题进行研究,可以使学生了解本学科的 发展方向和最新动态。最近两年,越来越多的学生,特别是具备了保研资格的学生,在大四上学期就能投入到项目和毕业论文的写作中。
3.重视平时实践教学环节,培养学生的实践能力、发现问题以及解决问题的能力
为了提高学生的学习兴趣以及对问题的分析、解决能力,广泛开展了丰富多彩的社会实践活动,使学生尽可能早地接触与本专业有关的实际工作,切身 体会到如何将理论与实际相结合,了解本学科的实际业务,从而提高自主学习能力,加强专业知识的把握。结合学校的实际情况,积极鼓励学生在大二和大三阶段参加校级和国家级的全国大学生数学建模竞赛,申请“中央民族大学本科生研究训练 计划项目”、“北京市大学生科学研究计划项目”和“国家大学生创新性试验计划项目”。项目的申请和实施以及研究 报告的写作,对学生来说都是一个很好的锻炼。目前,统计学专业本科生的参与率在70%以上。此外,建立专业实习基地可以提高学生利用专业知识分析和解决实际问题的能力。这些环节的设计和实施都有力地保障了学生本科毕业论文的水平和质量。
4.加强学生科技论文写作训练
加强平时课堂上大作业的规范化,潜移默化培养学生科技论文的写作能力。通过平时的实践活动,如学生数学建模以及大学生创新实践等各类实践性项目来提高学生的 论文 写作能力。
5.实施激励措施,激发学生的兴趣和主动性
针对那些参与实际课题的学生,学院鼓励指导教师根据学生的完成情况以劳务费的形式给予其奖励,另外积极鼓励毕业论文质量优秀的学生进行投稿 发表。此外,还需对答辩程序和评分标准进行规范化,建立优秀毕业论文指导教师和优秀毕业论文奖励制度,以形成积极的导向作用,充分调动指导教师和学生的积极性。
6.加强教师责任心,建立完善的机制
加强学生毕业论文的过程 管理,从开题到中期检查严格执行,指导教师严格把关。为了保证学生与教师之间的沟通,学校可以通过建立师生信息反馈机制改善师生分离状态,为师生提供便利的沟通渠道,同时设置适当的教师激励制度,中央民族大学目前对教师指导本科毕业论文有额外的课时补贴。
医学的话可以去丁香园,统计方法问题可以去人大经济论坛,除此还有零点花园等网站,还有就是LZ要掌握好google学术搜索的高级技巧,我没有做过这样的题目,但我是统计学出身,现在跟导师写神经科学方面的论文~~
《河北省脑瘫患儿生存质量状况调查与经济负担评价_崔巍》文中 表计算错误。统计表核算“合计”结果是错的。按照表里的数据,计算一下就知道了。
弃真错误,是指拒绝了实际上成立的、正确的假设。存伪错误是指原假设是错误的,但是没有拒绝它。
缺失值的处理:缺失值是人群研究中不可避免的问题,其处理方式的差异可能在不同程度上引入偏倚,因此,详细报告数据清理过程中缺失值的处理方法有助于读者对潜在偏倚风险进行评价。例如,瑞舒伐他汀试验在统计分析部分详细说明了缺失值的填补策略,包括:将二分类结局中的缺失值视为未发生事件;将生物标志物和心电图测量中的缺失值进行多重填补(multiple imputation);为了证明缺失值处理的合理性和填补结果的稳定性,研究还比较了多重填补与完整数据(complete-case)分析的结果。2、数据的预处理:实施统计分析之前往往需要将原始数据进行预处理,如:对连续变量进行函数转换使其更接近正态分布,基于原始数据构建衍生变量,将连续变量拆分为分类变量或将分类变量的不同类别进行合并等。医学论文应报告处理原始数据的方法及依据,瑞舒伐他汀试验即在统计分析部分描述了对血液生物标志物的对数转换。3、变量分布特征描述:确定统计分析使用的变量,并针对每一个变量的分布特征进行描述,是决定研究选用何种统计分析方法的基础。医学期刊虽然普遍对此提出要求,但作者往往套用常用方法,如:连续变量符合正态分布时,采用均数(标准差)描述,否则采用中位数(四分位间距)描述;分类变量采用频数(百分比)描述等。事实上,应根据研究设计类型、统计分析目的和数据特征选择恰当的描述方法。例如,CKB选择采用年龄、性别和地区校正的均值和率来描述人群分布特征,而非简单的报告连续变量的均数和分类变量的构成比。4、主要分析(primary analysis):指针对研究结局的统计分析,是研究论文的核心证据。因此,医学论文应详细描述主要分析的实施过程和适用性。在试验性研究中,应明确统计分析数据集、试验效应指标、相对或绝对风险及其置信区间的计算方法、以及假设检验的方法。
中国光大(集团)总公司:你公司《关于报送企业集团统计报表的请示》(光京字[2003]67号)收悉。经研究,现批复如下:一、我局现行企业集团统计报表制度规定,国家试点企业集团和中央管理的企业集团统计报表由我局企业调查总队负责布置、收集。由于你公司属于中央管理的企业集团,因此你公司填报的企业集团统计报表应直接报送给我局企业调查总队,具体执行时间从今年半年报开始。二、《北京市统计局关于完善企业集团统计报表制度的通知》(京统发[2003]85号)要求你公司向其报送集团2003年年报和半年报的有关事宜,我局企业调查总队已和北京市统计局企调队进行了沟通,北京市企业集团统计的范围不再包括你公司,其所需资料由我局企业调查总队予以提供。国家统计局办公室二○○三年九月十五日
不论是什么错,还是谁提出的,一经核实,原刊物会在以后的期刊中,给出勘误表或更正。如果是作者本人,发现的最好尽快与杂志社联系,予以更正,并附一封对读者的致歉信。
我可以把知道的告诉你,像我就是从事医学论文发表的
我搜到3篇文章,希望对你有所帮助医学科研设计中一个常被忽视的统计学错误辨析【作者中文名】 毕京峰; 段俊国; 【作者单位】 山东中医药大学; 成都中医药大学; 【文献出处】 时珍国医国药, Lishizhen Medicine and Materia Medica Research, 编辑部邮箱 2008年 10期 期刊荣誉:中文核心期刊要目总览 ASPT来源刊 CJFD收录刊 【关键词】 医学统计学; 科研设计; 【摘要】 统计学错误在既往的临床科研设计中是常见的,但一般易于发现和改正。笔者近期查阅相关医学科研论文发现,有一个统计学错误,其错误应用率很高,甚至许多统计专业人员也不例外。例:某研究者研究A药对高脂血症性脂肪肝大鼠的作用,设计了如下试验方案:建立高脂血症性脂肪肝大鼠模型,以高、中、低剂量去脂胶囊进行干预,通过血液生化检查,观察其对脂肪肝大鼠的血脂的影响。结果:去脂胶囊能明显降低脂肪肝大鼠血脂,与对照组比较差异有显著性意义(P<)。结论:去脂胶囊对大鼠脂肪肝有肯定治疗作用。在本设计方案中,研究者将A药高、中、低3个剂量组与甲硫氨酸片组和自然恢复组按多因素一水平的统计方法进行方差分析。仔细考察各处理组之间的关系,其实本研究主要涉及两个因素:A药治疗与甲硫氨酸片治疗,而A药高、中、低3个剂量组是A药的3个水平,而不是与甲硫氨酸片平等的3个因素。表1各组大鼠血清脂质比较(x-±s)mmol·L-1组别TC TG HDL-C自然恢复± ± ±药低剂量± ± ±药中剂量±... 【DOI】 CNKI:SUN: 医学科研论文中常见的统计学错误【作者中文名】 李祝华; 【作者单位】 白城市传染病医院 吉林白城; 【文献出处】 吉林医药学院学报, Journal of Jilin Medical College, 编辑部邮箱 2007年 02期 期刊荣誉:ASPT来源刊 CJFD收录刊 【关键词】 医学; 科研论文; 统计学错误; 【摘要】 科技论文常用统计学方法对资料进行加工、整理与分析,从而定性或定量地阐述一些理论或实验结果。现就一些医学期刊(1999~2000年度国家级期刊8种共60期)中出现错误的统计方法进行归纳分析,以提醒科技工作者在撰写科技论文时能合理应用统计学方法,准确地进行描述、估计、比较、预测与分析,尽量减少统计学方法的错误应用,提高科技论文的写作水平。1资料缺乏可靠性有的资料样本数量较少,有的作者选择的实验对象不具代表性,有许多人为因素,有个别作者根据自己主观期望判断结果,更有甚者有时更改实验数据,致使一些实验结果出现较大误差。2统计学方法缺乏科学性统计学方法比较多,如率、构成比、发展速度、显著性检验方法等。有时计算方法不当就能直接影响结果或造成误解。如率与构成比的联系与区别就常被人误解,也有的作者只看表面现象,不经统计学方法处理,就下结论。3统计量投入缺乏规范性科学恰当地计算统计量,才能正确反映事物的真实情况,但如果计算不当,则会出现假象或错误的结果。如未经标准化处理的资料就进行率的比较,由于两组资料的内部结构不同,结... 【DOI】 CNKI:SUN: 医学论文中常见的统计学错误及对策【作者中文名】 杨云华; 【作者单位】 天津市医学科学技术信息研究所 300050天津; 【文献出处】 中华医学科研管理杂志, Chinese Journal of Medical Science Research Management, 编辑部邮箱 2004年 02期 期刊荣誉:ASPT来源刊 CJFD收录刊 【关键词】 医学论文; 统计学; 常见错误; 对策; 【摘要】 分析医学科研论文中统计学方法应用中常出现的错误 ,提高编辑人员识别统计学常见错误的能力 ,确保科研论文的科学性、准确性和可信性 ,努力办成精品期刊。 【DOI】 cnki:ISSN:
不论是什么错,还是谁提出的,一经核实,原刊物会在以后的期刊中,给出勘误表或更正。如果是作者本人,发现的最好尽快与杂志社联系,予以更正,并附一封对读者的致歉信。
“社会统计学与数理统计学的理论统一”的重大意义统计学家王见定教授指出:社会统计学描述的是变量,数理统计学描述的是随机变量,而变量和随机变量是两个既有区别又统计学家王见定教授著有联系,且在一定条件下可以相互转化的数学概念。王见定教授的这一论述在数学上就是一个巨大的发现,我们知道“变量”的概念是17世纪由著名数学家笛卡尔首先提出,而“随机变量”的概念是20世纪30年代以后由苏联学者首先提出,两个概念的提出相差3个世纪。截至到王见定教授,世界上还没有第二个人提出变量和随机变量两者的联系、区别以及相互的转化。我们知道变量的提出造就了一系列的函数论、方程论、微积分等重大数学学科的产生和发展;而随机变量的提出则奠定了概率论和数理统计等学科的理论基础和促进了它们的蓬勃发展。可见变量、随机变量概念的提出其价值何等重大,从而把王见定教授在世界上首次提出变量、随机变量的联系、区别以及相应的转化的意义称为巨大、也就不视为过。下面我们回到“社会统计学和数理统计学的统一”理论上来。王见定教授指出社会统计学描述的是变量,数理统计学描述的是随机变量,这样王见定教授准确地界定了社会统计学与数理统计学各自研究的范围,以及在一定条件下可以相互转化的关系,这是对统计学的最大贡献。它结束了近400年来几十种甚至上百种以上五花八门种类的统计学的混战局面,使它们回到正确的轨道上来。由于变量不断地出现且永远地继续下去,所以社会统计学不仅不会消亡,而且会不断发展状大。当然数理统计学也会由于随机变量的不断出现同样发展状大。但是,对随机变量的研究一般来说比对变量的研究复杂的多,而且直到今天数理统计的研究尚处在较低的水平,且使用起来比较复杂;再从长远的研究来看,对随机变量的研究最终会逐步转化为对变量的研究,这与我们通常研究复杂问题研究转化为若干简单问题的研究的道理是一样的。既然社会统计学描述的是变量,而变量描述的范围是极其宽广的,绝非某些数理统计学者所云:社会统计学只作简单的加、减、乘、除。从理论上讲,社会统计学应该复盖除了数理统计学之外的绝大多数数学学科的运作。所以统计学家王见定教授提出的“社会统计学与数理统计学统一”理论,从根本上纠正了统计学界长期存在的低估社会统计学的错误学说,并从理论上和应用上论证了社会统计学的广阔前景。[2] [6][5]
学好了数学或者成为了一个优秀的程序员绝对不等于对统计学有很好的了解。还有一些案例中显示有扎实的统计能力的优秀科学家也不一定总是在统计方面能做好——科学家也是人,他们也会在统计学领域犯错,这里有些例子:1. 非常草率的处理数据,例如:数据误读,错误标注,未能正确清理数据,合并不正确项,不存档等等。2. 对概率论的理解不足,过分依赖少数概率分布,如常态。3. 对取样理论和取样方法的无知:从一个小的自选择样本推广到一个大的异质群体就是一个例子。对数据加权的误解也很常见。第三个例子使用复杂抽样方法时,将数据视为一个简单的随机样本。4. 对统计推断的把握不严,如混淆统计意义和实际意义。另一个例子是对人口数据进行重要性测试。例如,如果我们对A国有五十年的季度GDP数据,这200个数据点是该时间段内国家的人口数据,而不是人口的样本。例如,进行t检验,看看线性趋势是否与零有统计学上的差异,在这种情况下是没有意义的。5. 利用机会寻找重大差异(p-hacking),却不考虑已经进行的显著性测试的数量。6. 在学术期刊上,要获得学术期刊的认可,通常需要达到统计上的重要性,而出版偏倚是一个严重的后果。 Meta-Analysis (Borenstein et al.) 和Methodsof Meta-Analysis (Schmidt and Hunter)这2本书中的对应方法很管用值得一看。7. 从一个没有被复制甚至交叉验证的单一研究中得出戏剧性的结论。8. 对贝叶斯统计,非参数统计,心理计量学和潜在变量模型的理解太表面。9. 对分析时间序列和纵向数据的方法,以及空间统计和多层次混合模型理解不充分。10. 许多工具,如支持向量机和人工神经网络,以及数据挖掘和预测分析中常用的Boosting和bagging等概念,对许多尚未开发的科学领域有潜在的实用价值。11. 没有对广义线性模型方程给予足够的关注,例如忽略交互术语。12. 在量化回归、回归样条、广义相加模型或其他方法时,对一组特定的数据进行线性化。13. 不理解(或忽略)重要的统计假设。回归分析被普遍滥用。14. 测量误差:统计显着性测试不考虑测量误差,但测量误差可能会对统计模型的解释造成很大影响。15. 忽略回归到平均值:一个非常古老而又非常危险的错误!16. 出于各种动机对连续变量进行分类,以满足统计假设,但这样做是不对的。另一个原因是它是一种输出结果的方法——一些“效应”是年龄真正的代理或年龄大大缓和。连续年龄有时被故意地分组到广泛的年龄范围,使其效果减弱。这样,一个不负责任的研究者可以得出结论:他们试图建立的效果在控制年龄后是“显着的”。17. 已经知道结果后才提出假设:这个现象很普遍,以至于“人人都做,所以没关系”。18. 用数据子集支持一个假设:“调整”数据直到它支持一个假设。19. 混淆因果关系:对因果机制的误解并不罕见。20. 埋藏在评论里的错误:有成千上万的“学术”出版物,但很少有期刊审稿人是具备专业的统计知识。21. 将模拟数据当作实际数据处理,并将计算机模拟解释为使用真实数据的实验。22. 基于假设而不是数据来进行粗略的估计,这在学术文献中很常见,我们很少注意到。随机模型有时也被误解为确定性模型。23. 试图 “从石头里挤血” :当数据越少,研究人员就越要 “填写空白”。有许多(通常是复杂的)方法来处理过少的数据量,但都增加了进入建模过程的主观性。反过来,这也为不负责人的科学家提供了更多的余地。24. 元分析和倾向分数分析的不当使用。25. “从小见大”——用少量信息去证实假设。26. 不跟上统计数据的最新发展,不与专业统计人员交流。这是上面列出的许多问题的根本原因。