“一旦戴上‘遗传病’的帽子,就意味着这个孩子只能抱回家等死了!” 很多年前,不仅老百姓这样想,就连毕业于北京医科大学,在北京大学第一医院做了好些年儿科大夫的杨艳玲也这样想过。 直到1991年杨艳玲去日本东京读研究生,她的老师恰好是遗传代谢病、内分泌疾病筛查的专家,从那时起杨艳玲才知道有些遗传病是能治的,而且很多遗传代谢病还可以治得特别好。 震惊之下,杨艳玲跟着日本老师开始学习遗传代谢内分泌疾病的筛查和诊断治疗,看了大量的各年龄段的遗传病病人,积累了一定的临床经验。 1996年,回国后的杨艳玲开始专攻遗传代谢病,一个病例一个病例地把这个领域建立起来,现在身为儿科遗传学教授的她,已经是国内遗传代谢病领域首屈一指的大牌专家了。 苯丙酮尿症: 饮食疗法就能治好的 “ 绝症 ” 采访杨艳玲,有一个词出镜率特别高——“傻孩子”,每当说出这个词时,她的语气满是浓浓的心疼和怜惜。 “为什么说患了遗传代谢病的孩子都是傻孩子呢?” “因为患病的孩子90%都侵犯到了大脑,而且大部分都是第一胎。” “为什么孕前检查不出来呢?” “因为做不到。现在已知命名的有21000多种遗传病,其中90%以上的疾病是常染色体隐性遗传,而每个人身上都带着大约100~400个基因致病突变,而且绝大多数是隐性的,所以无从检查。隐性遗传就是夫妻双方都携带致病基因,但是他们自己并不知道。当这两人撞在一起,就可能把两人共同的遗传缺陷传给孩子,导致遗传代谢病。所以说这茫茫人海中,两个携带相同的致病基因的人走到一起也真是太有缘份了。” “那么,如果一个人携带致病基因,另一个人没有,孩子会怎么样?” “那孩子有50%的可能性是携带致病基因,只是携带是没关系的。上帝创造人类很有技巧,他让每个人身上都带着缺陷降生,世上没有完美的人。但是,因为夫妻双方携带同样的致病基因缺陷的几率非常高,所以遗传病防不胜防。这个是世界难题。” 杨艳玲主要研究遗传代谢病,国际已经命名的有600多种,其中有一些是小分子代谢病,有一些是大分子代谢病,不是所有病都能治,但是小分子代谢病里面,像苯丙酮尿症,中国新生儿筛查覆盖率已经到了86%了,诊断和治疗技术也非常成熟,不仅最有社会价值,也成为很多遗传代谢病的诊治模板。 从1953年的德国开始,首先研发出了苯丙酮尿症的治疗方法,即饮食治疗方法,通过饮食干预,苯丙酮尿症病人可以健康成长并正常的工作、结婚、生育。说它具有创新性,是因为从不治之症到可以治疗,并且治得非常好;说它是模板,是因为将苯丙酮尿症的饮食治疗和药物治疗的原理,推广到其他的病种,同样也获得了很好的效果。 遗传代谢病最基本的发病原理就是身体里产生了大量的垃圾导致自身中毒,饮食和药物治疗原理即通过饮食和药物给病人解毒,让他自身产生比较好的代谢功能,维持生命机能。恢复的程度要看病种,比如生物素缺乏、多巴反应性肌张力不全,还有维生素B6反应性癫痫,这些疾病只要针对性治疗都能很快控制。比如维生素B6反应性的癫痫,只要给病人服用维生素B6,病人就能好转,多数马上就不抽风了。 甲基丙二酸尿症: [if !supportLineBreakNewLine] [endif] 漂洋过海去做检查的尿样 1996年,杨艳玲从日本回国,当时国内的遗传代谢病领域尚处于很落后的状态,很多病医生都没见过没听过,更不必说那些诊断检测的仪器了,“这直接导致很多病被发现后,尿样只能漂洋过海去检测的奇特现象。”杨艳玲感慨地说。 第一个有此“出国”殊荣的尿样来自一位患有甲基丙二酸尿症的女孩儿,杨艳玲回忆当时的情景说,那时是吴希如老师在病房查房,发现有个病人严重的大细胞贫血,严重的神经系统损害,癫痫,震颤,无法行走,对比这些症状,吴老师马上说,这怎么那么像文献上的甲基丙二酸尿症?但那个病当时在中国根本没有条件确诊,如果没有正确的诊断,治疗起来就很盲目。正好杨艳玲跟日本的老师们关系比较好,于是,这位患者的尿样就漂洋过海地送到了日本,很快日本回复说确实是甲基丙二酸尿症,建议用维生素B12及叶酸等进行治疗。按此方法孩子很快就好转了,现在已经快二十岁了,非常健康。 杨艳玲说,如果当时没有得到及时治疗,这个孩子现在肯定不在人世了。但是,由于吴老师首先意识到这个病,然后找渠道把尿样送出去确诊,挽救了这个孩子的生命。就这样,通过海外的合作,杨艳玲诊断了中国第一例甲基丙二酸尿症,还在国际上发表了相关论文。 在这个病例之后,经过筛查,这种病例越来越多,从1996年到现在,光是北大妇儿医院,积累的甲基丙二酸尿症病例已经有500多个了,绝大多数都是因为脑子的问题,比如说癫痫,昏迷,或者是智力倒退,瘫痪,经过在小儿神经内科的筛查、确诊和治疗,有很多病人康复。 后来,遗传代谢病的研究获得了国家的重视,卫生部作为重点项目支持,2003年,实验室终于买了第一台气相色谱质谱联用分析仪,进行尿有机酸分析,病人的尿样再也不用漂洋过海,在自己的医院就可以解决诊断问题了。 说起这台仪器,杨艳玲很兴奋,“通过尿有机酸分析,可以同时筛查34种有机酸尿症,包括丙酸尿症、甲基丙二酸尿症都可以涵盖,所有的病种在我们科都被筛出来了,最关键它是无创性的,只验一泡尿,检测一下尿中的代谢垃圾,就可以知道这个孩子是不是患了其中某一种疾病。在当时,这台仪器是非常先进的,现在通过我们的推广和培训,不断的传播这些疾病的诊断筛查治疗知识,在国内很多城市也都已经装上了。” 相比较筛查和诊治,杨艳玲更关心这些孩子经过治疗后的情况,能不能上学、工作、结婚生育,都是随着病人长大会面临的问题。过去人们对遗传病比较悲观,后来能诊断治疗了,治着治着又发现这些病的预后比原先预料的要好得多,就像甲基丙二酸尿症,已经有相当一部分孩子正常上学了,而且不是弱智学校,上的是正常学校。 虽然这些病要终身治疗,但治疗方法却不难,就是维生素B12加上叶酸、左卡尼汀、甜菜碱,都是比较容易得到的,费用也就一个月几百块,就可以把这些孩子治得很好。 “我们医院诊治过的孩子,现在上托儿所、小学、大学的都有了,有几个都大学毕业了,工作得非常好。有一个北京的孩子在银行工作,还有一个女孩子不仅结婚还生了一个孩子,当时我们都说这样的孩子自己能活着都不简单。”说起那些孩子,杨艳玲的语气里有着掩不住的疼爱。 肉碱缺乏症: [if !supportLineBreakNewLine] [endif] 一场纠纷引出的国内首例 遗传病大多治起来比较困难,或是智力渐渐出问题或是瘫痪,家长会有一个缓慢的接受过程。但是原发性肉碱缺乏症不一样,很多情况下孩子会猝死,或是新生儿猝死,或是运动中猝死,对此杨艳玲感触最深。 原发性肉碱缺乏症的发病原因也是常染色体隐性遗传,基因的功能是维持人体里面的肉碱的吸收、利用和转运,当父母都各携带了一个致病基因时,就造成了父母比普通人血液里肉碱的水平要低,如果妈妈怀孕了,必须负担两个人的营养,这时母亲和胎儿的代谢负担就会非常严重。 杨艳玲遇到的国内第一例原发性肉碱缺乏症跟医疗纠纷有关的病例。 一位产妇在一家三甲医院生的孩子,刚生下来挺好,没想到72小时后孩子在妈妈怀里断气了。家属认为是产科医生的责任,后来做了尸检,才发现孩子是特别严重的心肌病,是由于先天性遗传代谢病引起的心脏骤停。 为了能把病因查清楚,这家人找到了杨艳玲,她把孩子保存下来的尸解样本做了基因分析,证实了孩子的死因是原发性肉碱缺乏症,因为肉碱缺乏导致的结果主要就是心肌损伤和骨骼肌的损伤,并且从父母身上也发现携带了致病突变,这样才算是弄清了死因。 后来,这位妈妈在杨艳玲的帮助下开始了二次怀孕,怀孕前杨艳玲先给夫妻二人补充了左卡尼汀,提高身体的代谢功能,顺利怀孕后又一直给孕妇做监测。当怀孕四五个月开始,孕妇出现了脂肪肝和高脂血症,血液里的肉碱特别低,经过检测,证明是由于胎儿肉碱缺乏,不断跟妈妈抢夺肉碱导致。 虽然知道胎儿患有肉碱缺乏症,但孕妇表示只要这个病是能治疗的,就要把孩子生下来。于是,杨艳玲让孕妇开始服用左卡尼汀,用了一周药后,孕妈妈的脂肪肝和血脂全部正常了。足月后孩子也正常出生了,全家人欣喜若狂。 而在孩子出生后,妈妈哺乳期间也一直在服用左卡尼汀,让孩子通过母乳获得足够的左卡尼汀,孩子发育很好,现在已经正常上学了。 杨艳玲说,孩子大了以后也一直在做监测,小时吃母乳,大了吃牛羊肉,里面含的肉碱比较高,一旦监测发现血液的肉碱不够,家长会把左卡尼汀加量,所以这孩子一直维持得挺好的。假如没有之前的尸解诊断和产前诊断,这个家族很可能再次发生不幸。 线粒体病: [if !supportLineBreakNewLine] [endif] 替妈妈们平冤的 “ 双方遗传 ” 杨艳玲的科研重点还包括一组难治的遗传代谢病——线粒体病,线粒体是细胞里的发动机,发动机出了问题,细胞功能也就随之丧失,所以死亡率非常高,在五岁之内超过20%,而且相当一部分是在一岁之内死亡。这组疾病一直是医学上的大难题。 经过十几年的努力,杨艳玲的课题组对于线粒体病的研究有了很多国内、外首例的发现,但其中一个病例杨艳玲讲述的时候很是振奋,因为这项研究替很多妈妈平了冤昭了雪。 那是我国第一例核基因异常引起的线粒体病,在病因不明之前被认为是母系遗传的。但国外研究发现,线粒体病中90%以上是由夫妻双方遗传,只有10%的可能与妈妈相关,有90%的可能性是父亲也参与遗传了,这一结论颠覆了以往孩子一得线粒体病就认为是妈妈遗传的观念,为妈妈们摘掉了一顶大帽子。 此外,线粒体病的诊断主要依据基因的分析,而线粒体病的典型症状是脏器的损害,比如说脑、心脏、肝、肾甚至胃肠道的损害,如果做病理检查,就需要取孩子的肌肉或肝活检,这种活检无疑难度太大了,大夫下不去手,家长舍不得。多方探讨后,北大医院中心实验室决定研发其他的方法,一个是通过血液细胞做无创的基因分析,另一个则是利用尿液,离心尿液,把尿里的细胞沉渣拿来做基因分析,也非常有效,解决了很多线粒体疾病的病因诊断问题。 在对线粒体病的治疗上,过去一直都比较悲观,而现在杨艳玲的课题组发现线粒体疾病里面有一些病治疗起来效果很不错,比较说丙酮酸脱氢酶复合物的缺陷,这组疾病对维生素B1的反应特别好,已经有好几个病人经过大剂量的维生素B1的治疗,恢复得非常好,上托儿所、上学、工作的都很棒。 而对于一些特别难治的线粒体病,可以通过鸡尾酒疗法,就是把线粒体需要的维生素如维生素B1,辅酶Q10、左卡尼汀、维C、维E等大剂量堆在一起,让家长给孩子每天服用,有很多孩子的线粒体功能也逐渐恢复了。 杨艳玲说,未来我们要解决更多线粒体病人的病因诊断问题,对症治疗。病因诊断另一个重要的目的是产前诊断。这些病人的家庭一般都有诉求,下一个孩子怎么办,如果没有明确的病因诊断,没有正确的基因突变结果的分析,下一胎的产前诊断是没法做的。所以我们在线粒体疾病的产前诊断上做了很多的工作,很多在国际上发表的文章都很受欢迎,有不少是国内首例特别有创新价值。
有些遗传病饮食可控制遗传学研究的迅速发展,不仅提示了许多遗传病的发病机理,而且对遗传病的预防和治疗也拟定出许多有效措施,使遗传病逐步变为“可治之症”,其中一部分可通过饮食调理来控制。蚕豆病,是由遗传性因素导致体内缺乏6-磷酸葡萄糖脱氢酶所致。故患者不能吃蚕豆及其制品,特别是新鲜的蚕豆,否则会引起急性溶血性贫血,严重时会危及生命。值得注意的是,具有6-磷酸葡萄糖脱氢酶缺陷的人,不仅可因吃蚕豆引起溶血性贫血,同时对某些药物,如伯氨喹啉、阿的平,以及磺胺、呋喃类和解热镇痛剂等药物过敏,用药时必须特别慎重。这类遗传病只要避开这些食物和药物,就不会发病。 苯丙酮尿症是由于患者肝脏内苯丙氨酸羟化酶缺乏,苯丙氨酸不能转化为酪氨酸,只能转变为苯丙酮酸,血中苯丙氨酸的浓度增高。患儿除了从小便中排出苯丙酮酸而称为苯丙酮尿症之外,主要是由于血中大量的苯丙氨酸使脑细胞的发育和功能受到影响导致智力低下。预防发病,只需尽早(出生后3个月内)采取限食疗法。婴儿确诊后饮食应以米粉及奶糕为主食,随着患儿年龄增长,可选用大米、小米、大白菜、土豆及菠菜等,如有条件,可给予特殊制备的低苯丙酸蛋白质食物。一般到8岁左右,饮食限制可适当放宽。半乳糖血症是患者体内由于缺乏葡萄糖-1-磷酸尿苷转移酶,致使患者不能利用半乳糖,所以不能喂人奶和牛奶。因为牛奶中含有乳糖,而乳糖分解后会产生半乳糖。血液中的半乳糖水平过高可能引起脑损伤、肝硬化、白内障,甚至造成死亡。但只要从出生之日起就停止进食乳类食物,改喂谷类或代奶粉等,坚持3年以上,就可以防止发病。肝豆状核变性,此病又称威尔森病,是一种常染色体隐性遗传的铜代谢障碍所引起的疾病。可分为以肝脏损害为主要症状的“肝型”患者和以神经症状为主要的“脑型”患者。因为该病是铜代谢障碍所致,故低铜饮食是治疗的有效措施之一。 此外,果糖不耐症患者需戒食含果糖的糖果和饮料。遗传性低血糖患者只要每天坚持少量多次吃糖就行。患有镰状细胞性贫血的人,当失水时,其细胞就会变成镰刀形,因此病人若每天坚持饮足够的水就有助于缓解症状。
遗传与变异 ---新形式下的基因突变 ( 2005动物科学院 X X X ) 摘要:染色体:1、染色体的结构 有丝分裂中期,每一染色体都具有两条染色单体,称为姐妹染色体。两单体之间由着丝粒连接,着丝粒处凹陷缩窄,称初级缢痕。着丝粒将染色体划分为短臂(p)和长臂(q)。在短臂和长臂的末端分别有一特化部位称为端粒。某些染色体的长、短臂上还可见凹陷缩窄的部分,称为次级缢痕。人类近端着丝粒染色体的短臂末端有一球形结构,称为随体。2、染色体的类型 人类染色体分为三种类型:中着丝粒染色体、亚中着丝粒染色体和近端着丝粒染色体。3、染色体的数目 人类体细胞(二倍体细胞,2n)染色体数目为46条(23对,2n=46),其中22对为常染色体,1对为性染色体(女性的两条性染色体为形态相同的XX染色体;男性只有一条X染色体,另一条是较小的Y染色体);正常生殖细胞(单倍体细胞,n)是23条染色体(n=23)。 关键词:遗传;变异;基因突变 遗传从现象来看是亲子代之间的相似的现象,即俗语所说的“种瓜得瓜,种豆得豆”。它的实质是生物按照亲代的发育途径和方式,从环境中获取物质,产生和亲代相似的复本。 遗传是相对稳定的,生物不轻易改变从亲代继承的发育途径和方式。因此,亲代的外貌、行为习性,以及优良性状可以在子代重现,甚至酷似亲代。而亲代的缺陷和遗传病,同样可以传递给子代。 遗传是一切生物的基本属性,它使生物界保持相对稳定,使人类可以识别包括自己在内的生物界。 变异是指亲子代之间,同胞兄弟姊妹之间,以及同种个体之间的差异现象。俗语说“一母生九子,九子各异”。世界上没有两个绝对相同的个体,包括挛生同胞在内,这充分说明了遗传的稳定性是相对的,而变异是绝对的。 生物的遗传与变异是同一事物的两个方面,遗传可以发生变异,发生的变异可以遗传,正常健康的父亲,可以生育出智力与体质方面有遗传缺陷的子女,并把遗传缺陷(变异)传递给下一代。 遗传和变异的物质基础 生物的遗传和变异是否有物质基础的问题,在遗传学领域内争论了数十年之久。 在现代生物学领域中,一致公认生物的遗传物质在细胞水平上是染色体,在分子水平上是基因,它们的化学构成是脱氧核糖核酸(DNA),在极少数没有DNA的原核生物中,如烟草花叶病毒等,核糖核酸(RNA)是遗传物质。 真核生物的细胞具有结构完整的细胞核,在细胞质中还有多种细胞器,真核生物的遗传物质就是细胞核内的染色体。但是, 细胞质在某些方面也表现有一定的遗传功能。人类亲子代之间的物质联系是精子与卵子,而精子与卵子中具有遗传功能的物质是染色体,受精卵根据染色体中DNA蕴藏的遗传信息,发育成和亲代相似的子代。 一、遗传与变异的奥秘 俗话说“种瓜得瓜,种豆得豆”,这是生物遗传的根本特征。人类与其他生物一样,在世代的交替中,子女(子代)总是保持着父母(亲代)的某些基本特征,这种现象就是遗传。但子代又会与亲代有所差异,有的差异还很明显。子代与亲代的这植钜炀褪潜湟臁R糯�捅湟焓巧��淖罨�咎卣髦�唬�ü��镆淮��姆敝程逑殖隼础? 遗传和可以遗传的变异都是由遗传物质决定的。这种遗传物质就是细胞染色体中的基因。人类染色体与绝大多数生物一样,是由DNA(脱氧核糖核酸)链构成的,基因就是在DNA链上的特定的一个片段。由于亲代染色体通过生殖过程传递到子代,这就产生了遗传。染色体在生物的生活或繁殖过程中也可能发生畸变,基因内部也可能发生突变,这都会导致变异。 如遗传学指出:患色盲的父亲,他的女儿一般不表现出色盲,但她已获得了其亲代的色盲基因,她的下一代中,儿子将因获得色盲基因而患色盲。 我们观察我们身边很多有生命的物种:动物、植物、微生物以及我们人类,虽然种类繁多,但在经历了很多年后,人还是人,鸡还是鸡,狗还是狗,蚂蚁、大象、桃树、柳树以及各种花草等等,千千万万种生物仍能保持各自的特征,这些特征包括形态结构的特征以及生理功能的特征。正因为生物界有这种遗传特性,自然界各种生物才能各自有序地生存、生活,并繁衍子孙后代。 大家可能会问,生物是一代一代遗传下来,每种生物的形态结构以及生理功能应该是一模一样的,但为什么父母所生子女,一人一个样,一人一种性格,各有各自的特征。又如把不同人的皮肤或肾脏等器官互相移植,还会发生排斥现象,彼此不能接受,这又如何解释呢?科学家研究的结果告诉我们,生物界除了遗传现象以外还有变异现象,也就是说个体间有差异。例如,一对夫妇所生的子女,各有各的模样,丑陋的父母生出漂亮的孩子,平庸的父母生出聪明的孩子,这类情况也并不罕见。全世界恐怕很难找出两个一模一样的人,既使是单卵双生子,外人看起来好像一模一样,但是与他们朝夕相处的父母却能分辨出他们之间的微细差异,这种现象就是变异。人类中多数变异现象是由于父母亲遗传基因的不同组合。每个孩子都从父亲那里得到遗传基因的一半,从母亲那里得到另一半,每个孩子所得到的遗传基因虽然数量相同,但内容有所不同,因此每个孩子都是一个新的组合体,与父母不一样,兄弟姐妹之间也不一样,而形成彼此间的差异。正因为有变异现象,人类才有众多的民族。人们可以很容易地从人群中认出张三、李四,如果没有变异,大家全都是一个样子,社会上的麻烦事就多了。除了外形有不同,变异还包括构成身体的基本物质--蛋白质也存在着变异,每个人都有他自己特异的蛋白质。所以,如果皮肤或器官从一个人移植到另一个人身上便会发生排斥现象,这就是因为他们之间的蛋白质不一样的缘故。 还有一类变异是遗传基因的突变,这类突变往往是由环境中的条件所诱发的,这种突变的基因还可以遗传给下一代。许多基因突变的结果会造成遗传病。 变异也可以完全由环境因素所造成,例如患小儿麻痹症后遗的跛足,感染大脑炎后形成的痴呆等这些性状都是由环境因素所造成的,是因为病毒感染使某些组织受损害,造成生理功能的异常,不是遗传物质的改变,所以不是遗传的问题,因此也不会遗传给下一代。 总之,遗传与变异是遗传现象中不可分离的两个方面,我们有从父母获得的遗传物质,保证我们人类的基本特征经久不变。在遗传过程中还不断地发生变异,每个人又在一定的环境下发育成长,才有了人类的多种多样。 二、遗传变异的科学理论 遗传的分子基础 (一)遗传物质的存在形式 (1)染色体是遗传物质的载体,遗传信息以基因的形式蕴藏于DNA分子中; (2)每个人体体细胞含两个染色体组,每个染色体组的DNA构成一个基因组; (3)广义的基因组包括细胞核染色体基因组和线粒体基因组; (4)人类细胞核染色体基因组中90%左右为DNA重复序列,10%为单一序列; (5)多基因家族是真核基因组中重要的结构之一。 (二)基因的结构及其功能 、真核生物基因的分子结构 (1)、基因的DNA序列由编码序列和非编码序列两部分构成,编码序列是不连续的,被非编码序列分隔开,形成镶嵌排列的断裂形式,因此称为断裂基因;编码序列称为外显子,非编码序列称为内含子; (2)、在每个外显子和内含子的接头区存在高度保守的一致序列,称为外显子-内含子接头,即在每个内含子的5’端开始的两个核苷核为GT,3’端末尾是AG,特称之为GT-AG法则; (3)、真核生物基因的大小相关悬殊,外显子和内含子的关系也不是固定不变的; (4)、DNA分子两条链中,5’→3’链称为编码链,其碱基排列序列中储存着遗传信息;3’→5’链称为反编码链,是RNA合成的模板; (5)、每个断裂基因中第一个外显子和最后一个外显子的外侧都有一段不被转录的非编码区,称为侧翼序列,其上有一系列调控序列,对基因的表达起调控作用。这些结构包括: ①启动子:位于基因转录起始处,是RNA聚合酶的结合部位,能启动基因转录。 ②增强子:位于基因转录起始点的上游或下游,能增强启动子转录,提高转录效率; ③终止子:位于3’端非编码区下游的一段序列,在转录中提供转录终止信号。 、基因的复制 (1)、基因的复制是以DNA复制为基础的,每个DNA分子上有多个复制单位(复制子); (2)、每个复制子有一个复制起点,从起点开始双向复制,在起点两侧各形成一复制叉; (3)、DNA聚合酶只能使DNA链的3’端加脱氧核苷核,故复制只能沿5’→3’方向进行; (4)、与复制叉同向的新链复制是连续的,速度也较快,称为前导链;与复制叉反向的新链复制是不连续的(先要在RNA引物存在下合成一个个冈崎片段,然后在DNA连接酶作用下补上一段DNA),速度也较慢,称为后随链;故DNA的复制是半不连续复制; (5)、复制后的DNA分子都含有一条旧链和一条新链,故DNA的复制又是半保留复制。 、基因的表达 基因表达是DNA分子中所蕴藏的遗传信息通过转录和翻译形成具有生物活性的蛋白质或通过转录形成RNA发挥功能作用的过程。 (1)、转录:是在RNA聚合酶催化下,以DNA为模板合成RNA的过程。 ①新合成好的RNA称为不均一核RNA(也叫核内异质RNA,hnRNA); ②hnRNA要经过“戴帽”和“加尾”以及剪接等加工过程才能形成成熟的mRNA。 (2)、翻译:是以mRNA为模板指导蛋白质合成的过程。 ①mRNA分子中每3个相邻的碱基为三联体,能决定一种氨基酸,称为密码子; ②翻译后的初始产物大多无功能,需经进一步加工才可成为有一定活性的蛋白质。 、基因表达的调控(了解操纵子学说) 、基因的突变 (1)、基因突变的概念:基因突变是DNA分子中的核苷核序列发生改变,导致遗传密码编码信息改变,造成基因表达产物蛋白质的氨基酸变化,从而引起表型的改变。 (2)、基因突变的方式 ①碱基替换 也叫点突变,包括转换和颠换两种方式。其后果可以造成同义突变、错义突变、无义突变或终止密码突变(延长突变)等生物学效应。 ②移码突变 是DNA分子中某一位点增加或减少一个或几个碱基对,造成该位点以后的遗传编码信息全部发生改变。 ③动态突变 微卫星DNA或短串联重复序列,尤其是三核苷酸的重复,在靠近基因或位于基因序列中时,其重复次数在一代一代的传递中会出现明显增加的现象,导致某些遗传病的发生。 (3)、基因突变的修复 ①切除修复 是一种多步骤的酶反应过程,首先将受损的DNA部位切除,然后再合成一个片段连接到切除的部位以修补损伤。 ②重组修复 又称复制后修复,是在DNA受损产生胸腺嘧啶二聚体(T-T)以后,当DNA复制到损伤部位时,再与T-T相对应的部位出现切口,完整的DNA链上产生一个断裂点。此时,在重组蛋白作用下,完整的亲链与有重组的子链发生重组,亲链的核苷酸片段补充了子链上的缺失。重组后亲链的切口在DNA聚合酶作用下,以对侧子链为模板,合成单链DNA片段来填补,随后在DNA连接酶作用下,以磷酸二酯键使新片段与旧链相连接,而完成修复过程。 2、遗传的细胞基础 染色质:在间期细胞核,染色质的功能状态不同,折叠程度也不同,分为常染色质和异染色质两种。1、常染色质 在细胞间期处于解螺旋状态,具有转录活性,呈松散状,染色较浅;2、异染色质 在细胞间期处于凝缩状态,很少进行转录或无转录活性,染色较深;3、性染色质 在间期细胞核中染色体的异染色质部分显示出来的一种特殊结构,有两种:(1)、X染色质 正常女性间期细胞核中有一个染色较深,大小约为10nm的椭圆形小体(了解Lyon假说)。(2)、Y染色质 正常男性间期细胞核用荧光染料染色后,核内可见一个圆形或椭圆形的强荧光小体,直径为3nm左右。 染色体:1、染色体的结构 有丝分裂中期,每一染色体都具有两条染色单体,称为姐妹染色体。两单体之间由着丝粒连接,着丝粒处凹陷缩窄,称初级缢痕。着丝粒将染色体划分为短臂(p)和长臂(q)。在短臂和长臂的末端分别有一特化部位称为端粒。某些染色体的长、短臂上还可见凹陷缩窄的部分,称为次级缢痕。人类近端着丝粒染色体的短臂末端有一球形结构,称为随体。2、染色体的类型 人类染色体分为三种类型:中着丝粒染色体、亚中着丝粒染色体和近端着丝粒染色体。3、染色体的数目 人类体细胞(二倍体细胞,2n)染色体数目为46条(23对,2n=46),其中22对为常染色体,1对为性染色体(女性的两条性染色体为形态相同的XX染色体;男性只有一条X染色体,另一条是较小的Y染色体);正常生殖细胞(单倍体细胞,n)是23条染色体(n=23)。 (三)人类的正常核型:色体数目、形态结构特征的分析叫核型分析。1、非显带核型 根据丹佛体制,将正常人类体细胞的46条染色体分为23对7个组(A、B、C、D、E、F和G组)。在描述一个核型时,首先写出染色体总数(包括性染色体),然后是一个“,”号,最后是性染色体。正常男性核型描述为46,XY;女性为46,XX。2、显带核型 用各种特殊的染色方法使染色体沿长轴显现出一条条明暗交替或深浅相间的带,故又叫带型。根据ISCN规定,描述一特定带时,需要写明4项内容:①染色体号;②臂号;③区号;④带号。 遗传的基本规律:孟德尔提出的分离定律和自由组合定律以及摩尔根提出的连锁与交换定律构成了遗传的基本规律,通称为遗传学三大定律。分离律说的是遗传性状有显隐性之分,这样具有明显显隐性差异的一对性状称为相对性状。相对性状中的显性性状受显性基因控制,隐性性状由一对纯合隐性基因决定。杂合体往往表现显性基因的性状。基因在体细胞中成对存在,在形成配子时,彼此分离,进入不同的子细胞。减数分裂时同源染色体彼此分离,分别进入不同的生殖细胞是分离律的细胞学基础。自由组合律是说生物在形成配子时,不同对基因独立行动,可分可合,以均等的机会组合到同一个配子中去。减数分裂过程中非同源染色体随机组合于生殖细胞是自由组合律的细胞学基础。连锁与交换律是说位于同一条染色体上的基因是互相连锁的,它们常一起传递(连锁律),但有时也会发生分离和重组,是因为同源染色体上的各对等位基因进行了交换。减数分裂中,同源染色体联会和交换是交换律的细胞学基础。 单基因性状的遗传:遗传性状受一对基因控制的,称单基因性状的遗传。单基因性状又叫质量性状。1、决定某种遗传性状的等位基因,在传递时服从分离律;2、当决定两种遗传性状的基因位于不同对染色体上时,这两种单基因性状的传递符合自由组合律。3、如果决定两种遗传性状的基因位于同一对染色体上时,它们的传递将从属于连锁与交换律。 多基因性状的遗传:由多基因控制的性状往往与单基因性状不同,其变异往往是连续的量的变异,称为数量性状。每对基因对多基因性状形成的效应是微小的,称为微效基因。微效基因的效应往往是累加的。多基因遗传性状除受多基因遗传基础影响外,也受环境因素影响。(熟悉多基因遗传假说,了解多基因遗传的特点) 遗传的变异:(一)染色体异常与疾病;染色体异常类;形成机; 数目畸变 整倍性改变 单倍体 多倍体 双雄受精,双雄受精,核内复制 非整倍性改变 亚二倍体 染色体不分离,染色体丢失 超二倍体 结构畸变 缺失(del) 受多种因素影响,如物理因素、化学因素和生物因素等 重复(dup) 倒位(inv) 易位(t) 环状染色体 双着丝粒染色体 等臂染色体 1、一个个体内同时存在两种或两种以上核型的细胞系,这种个体称嵌合体。 2、染色体结构畸变的描述方式有简式和详式两种。 (二)人类的单基因遗传病1、常染色体显性遗传(AD)病 (1)、AD系谱特点:①致病基因位于常染色体上,遗传与性别无关;②患者双亲中至少有一方是患者,但多为杂合体;③患者与正常个体结婚,后代有1/2的发病风险;④系谱中可看到连续传递现象。 (2)、其它AD类型:①不完全显性或半显性,是指杂合体的表现型介于显性纯合体与隐性纯合体的表现型之间;②不规则显性,是指杂合体由于某种原因不一定表现出相应的症状,即使发病,但病情程度也有差异;③共显性,是指一对等位基因无显隐性之分,杂合状态下,两种基因的作用都能表现出来;④延迟显性,有显性致病基因的杂合体在生命早期不表现出相应症状,当到一定年龄后,其作用才表达出来。 2、常染色体隐性遗传(AR)病 (1)、AR系谱特点:①致病基因的遗传与性别无关,男女发病机会均等;②患者双亲往往表型正常,但都是致病基因的携带者,患者的同胞中约有1/4的可能将会患病,3/4表型正常,但表型正常者中2/3是可能携带者;③系谱中看不到连续传递现象,常为散发;④近亲婚配后代发病率比非近亲婚配后代发病率高。 (2)、常见AR病:苯丙酮尿症、白化病、先天性聋哑、高度近视和镰状细胞贫血等。 3、X连锁显性遗传(XD)病 (1)、XD系谱特点:①系谱中女性患者多于男性患者,且女患者病情较轻;②患者双亲中至少有一方是患者;③男性患者后代中,女儿都为患者,儿子都正常;女性患者后代中,子女各有1/2的患病风险;④系谱中可看到连续传递现象。 (2)、常见XD病:抗维生素D性佝偻病。 4、X连锁隐性遗传(XR)病 (1)、XR系谱特点:①人群中男性患者远多于女性患者;②双亲无病时,儿子可能发病,女儿则不会发病;③由于交叉遗传,患者的兄弟、舅父、姨表兄弟和外甥各有1/2的发病风险;④如果女性是患者,父亲一定是患者,母亲一定是携带者或患者。 (2)、常见XR病:甲型血友病、红绿色盲。 5、Y连锁遗传(YL)病 全男性遗传 (三)多基因遗传病 1、有关多基因遗传病的几个重要概念 (1)、易感性 在多基因遗传病中,由多基因遗传基础决定某种多基因病发病风险高低。 (2)、易患性 由遗传基础和环境因素共同作用,决定了一个个体是否易于患病。 (3)、发病阈值 当一个个体的易患性高达一定水平即达到一个限度时,这个个体就将患病,这个易患性的限度称为阈值。 (4)、遗传度 在多基因遗传病中,易患性受遗传基础和环境因素的双重影响,其中遗传基础所起作用大小的程度称为遗传度或遗传率。一般用百分率(%)来表示。 2、多基因遗传病的特点 (1)、有家族聚集倾向,患者亲属的发病率高于群体发病; (2)、随着亲属级别的降低,患者亲属的发病风险迅速降低; (3)、近亲婚配时,子女患病风险增高; (4)、发病率有种族(或民族)差异。 三、遗传与变异在当代 人类基因组计划的工作草图已于今年的6月26日绘制完成,但要将全部30多亿个碱基完全装配完成还需要一段时间,预计要到明年的6月份。即使完成了人类基因组计划的“精图”,也只是我们认识人类基因功能的开始,完全弄清基因的功能及其相互间的作用,至少还要40年的时间。毋庸赘言,这是一项浩繁巨大的工程。 迄今为止,人们对整个人类基因组中所含有的基因数目尚存争议,有人说是3万,有人说是14万,相差非常大。在整个人类基因组序列中,只存在1%的差异,就是这1%的差异导致了人种、肤色、身高、眼睛、胖瘦以及疾病的易感性等方面的不同。科学家除继续研究基因的数量和功能外,基因在多大程度上受外界环境和体内因素的影响以及这种改变是否可以一代代地延续下去,也是需要解决的问题。 上述问题涉及到后成说(epigenetics)这一范畴。后成说是研究通过其他的化学途径,而不是通常所说的碱基突变,使基因活性发生半永久性改变的一门科学。后成说的重要性一直存有很大争议。如果后成说真有科学依据的话,那么它将是解释不同个体之间,甚至不同物种之间存在差异的关键所在,同时还将是疾病发生的一个重要机制。 不同基因的表达:基因含有合成蛋白质的指令,蛋白质合成的过程称为基因表达。但是遗传学家们很早以前就知道通过对DNA链碱基上的化学基团进行修饰来调控基因表达、影响蛋白质的合成。最常见的修饰方式是基因的甲基化(甲基是由一个碳原子和三个氢原子组成的基团),即在基因上添加甲基基团,结果常常会终止基因表达。 科研人员通过对某些哺乳动物的研究发现,此类修饰只存在于个体中,而不遗传给后代,因为这种修饰在精子和卵子细胞中常常被清除。最近有人发现,后成特征在小鼠中可以遗传。在悉尼大学生化学家怀特劳博士所做的实验中,遗传学相同的小鼠,同其父母相比,更像它们的母亲。因为它们继承了其母亲的卵子DNA的甲基化类型。该型甲基化在决定小鼠毛色中起着非常重要的作用。 怀特劳博士小组的大量的研究数据表明,要探明动物是如何把物理特征或疾病易感性传给后代的,有必要先搞清可遗传的后成特征。如果后成特征可遗传,那么这些特征所引起的疾病应能够像普通的基因突变一样在家系之间传递。该研究小组对小鼠的后成标记在传代过程中如何关闭和表达进行了深入地研究。研究人员将一个可以产生特异类型红细胞的基因(称为转基因)导入具有相同遗传学特征小鼠的基因组中(接受该基因的小鼠称之为转基因鼠)。研究发现这些转基因小鼠体内的转基因正以不同的方式表达。有些转基因小鼠体内40%的红细胞表达该基因,而另一些则根本就不表达。同时该小组还对小鼠毛色进行了研究,发现与毛色有关的DNA甲基化增高与转基因的不表达(或称为“沉默”表达)有关。但是在这种情况下,后成性改变可来自父方,也可以来自母方。 令人费解的是,虽然这种基因表达的沉默现象至少可以维持三代,但不是不可逆转的。在该型的后代小鼠与非同类小鼠交配时,发现在后代小鼠中不存在甲基化和表达沉默现象,转基因又可在小鼠的幼崽中获得表达。如果这种基因沉默和再活化现象是自然发生的话,那么就可以解释个体之间和代与代之间差异的原因。 后成说还可以解释物种之间的差异。最近普林斯顿大学的迪尔格曼通过两种相近小鼠的交配,将多个小鼠基因上的后成特征破坏。这些小鼠相互之间不能进行正常的交配,并且它们杂交的后代表现为生长异常。研究人员认为这种生长异常与杂交后代基因上的甲基化模式破坏有关。他们推测后成性效应非常显著,仅靠改变这些特征就可以造就新物种。 大家都知道,物种的产生是遗传变异逐渐积累的结果。但是,迪尔格曼认为有些物种出现之快不是该假说所能解释的。所以物种后成说的假设有一定优势。例如,甲基化可以迅速地关闭整条基因的表达,并引起根本的改变。这种改变足以阻止新的品种与旧品种之间的杂交,尤其是阻止新物种的产生。 四、结论 变异基因的表达:许多生物学家对此种假说表示不屑。基因序列虽不能完全解释动物的特征,但是至少可以解释一些由基因突变所引起的疾病。 疾病基因突变假说的倡导者把癌症作为经典的实例,来说明在个体DNA水平上,到底有多少碱基差错才能导致肿瘤。但加州大学伯克利分校的杜斯博格博士不同意这一观点,认为癌症并不是由基因异常引起的,而是由另一形式的后成现象 染色体异常引起的。 根据癌症基因突变假说,指导细胞分裂和死亡的基因突变使正常的细胞分裂和死亡过程遭到破坏,导致细胞不受控制地生长。但是,最近杜斯博格博士领导的研究小组报道,至今还没有人证实突变的基因会使正常的细胞变为癌细胞。他还指出,如果突变基因对细胞分裂具有显著影响的话,为什么有些情况下,突变发生的数月甚至数年后才发展为癌症,这是非常奇怪的现象。他认为可以用后成性非整倍现象对上述问题加以解释,非整倍性是指细胞具有错误的染色体个数。 在细胞分裂时,染色体排列整齐,通过纺锤体(一种蛋白质的支架)分配到子代细胞中。杜斯博格推测,致癌的化学物质可以影响纺锤体,因此,造成子代细胞具有或多或少的染色体。由于这种错误分配的染色体不稳定,细胞分裂时染色体之间相互混合并发生非自然的重组。 大多数重组对细胞而言是至关重要的,但最终会产生一个分裂异常的细胞。产生这种异常细胞的概率非常小,这种低概率事件可以解释为什么从接触致癌物质到细胞发生癌变,要经过这么长时间。细胞的非整倍性是5000多种肿瘤的一种显著特征。 与个体碱基突变相比,染色体数的增加或减少使细胞表征发生显著改变。因为染色体数目的改变(即非整倍性),可以导致成千上万种蛋白质活性发生改变,而不仅仅是一种或两种蛋白质,导致细胞分裂的失控。假如这种假说成立的话,那么现在试图通过定点修复癌基因来治疗癌症的策略将毫无效果。 杜斯博格博士10年前曾因自己的假说而声名狼藉,他认为人类免疫缺陷病毒(HIV)并不能引起艾滋病。一系列的HIV和艾滋病的研究表明,杜斯博格的理论是极其荒谬的。这严重地损害了他的声誉,因此,他的其他理论也很容易被人忽视。但是,他的非整倍性假说似乎非常有价值。癌症中非整倍体的普遍性尚需进一步阐明。
遗传携带者的检出 遗传携带者(genetic carrier)是指表型正常,但带有致病遗传物质的个体。一般包括: ①隐生遗传杂合子;②显性遗传病的未显者;③表型尚正常的迟发外显者;④染色体平衡易位的个体。 遗传携带者的检出对遗传病的预防具有积极的意义。因为人群中,虽然许多隐性遗传病的发病率不高,但杂合子的比例却相当高。例如苯酮尿症的纯合子在人群中如为1:1000,携带者(杂合子)的频率为2:50,为纯合子频率的200倍。对发病率很低的遗传病,一般不做杂合子的群体筛查,仅对患者亲属及其对象进行筛查,也可以收到良好效果。对发病率高的遗传病,普查携带者效果显著。例如我国南方各省的α及β地中海贫血的发病率特别高(共占人群8%-12%,有的省或地区更高),因此检出双方同为α或同为β地贫杂合子的机会很多,这时,进行婚姻及生育指导,配合产前诊断,就可以从第一胎起防止重型患儿出生,从而收到巨大的社会效益和经济效益,不仅降低了本病的发病率,而且防止了不良基因在群体中播散。 染色体平衡易位携带者生育死胎及染色体病患儿的机会很大(参阅第二章),因此,对染色体平衡易位的亲属进行检查十分重要。 隐性致病基因杂合子检出方法的理论根据是基因的剂量效应,即基因产物的剂量,杂合子介于纯合子与正常个体之间,约为正常个体的半量,但因机体内外环境各种因素对基因表达的影响,以及检测方法的不同(直接测定基因产物或测定基因间接产物),使测定值在正常与杂合子之间,杂合子与纯合子之间发生重叠,造成判断的困难。 杂合子携带者的检测方法大致可分为:临床水平、细胞水平、酶和蛋白质水平及分子水平。从临床水平,一般只能提供线索,不能准确检出,故已基本弃用。细胞水平主要是染色体检查,多用于平衡易位携带者的检出。酶和蛋白质水平的测定(包括代谢中间产物的测定),目前对于一些分子代谢病杂合子检测尚有一定的意义,但正逐渐被基因水平的方法所取代。即随着分子遗传学的发展,可以从分子水平即利用DNA或RNA分析技术直接检出杂合子,而且准确,特别是对一些致病基因的性质和异常基因产物还不清楚的遗传病,或用一般生化方法不能准确检测的遗传病,例如慢性进行舞蹈病、甲型和乙型血友病、DMD、苯酮尿症等;最后,对一些迟发外显携带者还可作症状前诊断,因而有可能采取早期预防性措施,如成人多囊肾病等(参阅第十三章)。目前,用基因分析检测杂合子的方法日益增多,并逐步向简化、快速、准确的方向发展,以求扩大到高危人群的筛查。
我看到过(亚洲遗传病病例研究)里面专门写这样的论文`~
“一旦戴上‘遗传病’的帽子,就意味着这个孩子只能抱回家等死了!” 很多年前,不仅老百姓这样想,就连毕业于北京医科大学,在北京大学第一医院做了好些年儿科大夫的杨艳玲也这样想过。 直到1991年杨艳玲去日本东京读研究生,她的老师恰好是遗传代谢病、内分泌疾病筛查的专家,从那时起杨艳玲才知道有些遗传病是能治的,而且很多遗传代谢病还可以治得特别好。 震惊之下,杨艳玲跟着日本老师开始学习遗传代谢内分泌疾病的筛查和诊断治疗,看了大量的各年龄段的遗传病病人,积累了一定的临床经验。 1996年,回国后的杨艳玲开始专攻遗传代谢病,一个病例一个病例地把这个领域建立起来,现在身为儿科遗传学教授的她,已经是国内遗传代谢病领域首屈一指的大牌专家了。 苯丙酮尿症: 饮食疗法就能治好的 “ 绝症 ” 采访杨艳玲,有一个词出镜率特别高——“傻孩子”,每当说出这个词时,她的语气满是浓浓的心疼和怜惜。 “为什么说患了遗传代谢病的孩子都是傻孩子呢?” “因为患病的孩子90%都侵犯到了大脑,而且大部分都是第一胎。” “为什么孕前检查不出来呢?” “因为做不到。现在已知命名的有21000多种遗传病,其中90%以上的疾病是常染色体隐性遗传,而每个人身上都带着大约100~400个基因致病突变,而且绝大多数是隐性的,所以无从检查。隐性遗传就是夫妻双方都携带致病基因,但是他们自己并不知道。当这两人撞在一起,就可能把两人共同的遗传缺陷传给孩子,导致遗传代谢病。所以说这茫茫人海中,两个携带相同的致病基因的人走到一起也真是太有缘份了。” “那么,如果一个人携带致病基因,另一个人没有,孩子会怎么样?” “那孩子有50%的可能性是携带致病基因,只是携带是没关系的。上帝创造人类很有技巧,他让每个人身上都带着缺陷降生,世上没有完美的人。但是,因为夫妻双方携带同样的致病基因缺陷的几率非常高,所以遗传病防不胜防。这个是世界难题。” 杨艳玲主要研究遗传代谢病,国际已经命名的有600多种,其中有一些是小分子代谢病,有一些是大分子代谢病,不是所有病都能治,但是小分子代谢病里面,像苯丙酮尿症,中国新生儿筛查覆盖率已经到了86%了,诊断和治疗技术也非常成熟,不仅最有社会价值,也成为很多遗传代谢病的诊治模板。 从1953年的德国开始,首先研发出了苯丙酮尿症的治疗方法,即饮食治疗方法,通过饮食干预,苯丙酮尿症病人可以健康成长并正常的工作、结婚、生育。说它具有创新性,是因为从不治之症到可以治疗,并且治得非常好;说它是模板,是因为将苯丙酮尿症的饮食治疗和药物治疗的原理,推广到其他的病种,同样也获得了很好的效果。 遗传代谢病最基本的发病原理就是身体里产生了大量的垃圾导致自身中毒,饮食和药物治疗原理即通过饮食和药物给病人解毒,让他自身产生比较好的代谢功能,维持生命机能。恢复的程度要看病种,比如生物素缺乏、多巴反应性肌张力不全,还有维生素B6反应性癫痫,这些疾病只要针对性治疗都能很快控制。比如维生素B6反应性的癫痫,只要给病人服用维生素B6,病人就能好转,多数马上就不抽风了。 甲基丙二酸尿症: [if !supportLineBreakNewLine] [endif] 漂洋过海去做检查的尿样 1996年,杨艳玲从日本回国,当时国内的遗传代谢病领域尚处于很落后的状态,很多病医生都没见过没听过,更不必说那些诊断检测的仪器了,“这直接导致很多病被发现后,尿样只能漂洋过海去检测的奇特现象。”杨艳玲感慨地说。 第一个有此“出国”殊荣的尿样来自一位患有甲基丙二酸尿症的女孩儿,杨艳玲回忆当时的情景说,那时是吴希如老师在病房查房,发现有个病人严重的大细胞贫血,严重的神经系统损害,癫痫,震颤,无法行走,对比这些症状,吴老师马上说,这怎么那么像文献上的甲基丙二酸尿症?但那个病当时在中国根本没有条件确诊,如果没有正确的诊断,治疗起来就很盲目。正好杨艳玲跟日本的老师们关系比较好,于是,这位患者的尿样就漂洋过海地送到了日本,很快日本回复说确实是甲基丙二酸尿症,建议用维生素B12及叶酸等进行治疗。按此方法孩子很快就好转了,现在已经快二十岁了,非常健康。 杨艳玲说,如果当时没有得到及时治疗,这个孩子现在肯定不在人世了。但是,由于吴老师首先意识到这个病,然后找渠道把尿样送出去确诊,挽救了这个孩子的生命。就这样,通过海外的合作,杨艳玲诊断了中国第一例甲基丙二酸尿症,还在国际上发表了相关论文。 在这个病例之后,经过筛查,这种病例越来越多,从1996年到现在,光是北大妇儿医院,积累的甲基丙二酸尿症病例已经有500多个了,绝大多数都是因为脑子的问题,比如说癫痫,昏迷,或者是智力倒退,瘫痪,经过在小儿神经内科的筛查、确诊和治疗,有很多病人康复。 后来,遗传代谢病的研究获得了国家的重视,卫生部作为重点项目支持,2003年,实验室终于买了第一台气相色谱质谱联用分析仪,进行尿有机酸分析,病人的尿样再也不用漂洋过海,在自己的医院就可以解决诊断问题了。 说起这台仪器,杨艳玲很兴奋,“通过尿有机酸分析,可以同时筛查34种有机酸尿症,包括丙酸尿症、甲基丙二酸尿症都可以涵盖,所有的病种在我们科都被筛出来了,最关键它是无创性的,只验一泡尿,检测一下尿中的代谢垃圾,就可以知道这个孩子是不是患了其中某一种疾病。在当时,这台仪器是非常先进的,现在通过我们的推广和培训,不断的传播这些疾病的诊断筛查治疗知识,在国内很多城市也都已经装上了。” 相比较筛查和诊治,杨艳玲更关心这些孩子经过治疗后的情况,能不能上学、工作、结婚生育,都是随着病人长大会面临的问题。过去人们对遗传病比较悲观,后来能诊断治疗了,治着治着又发现这些病的预后比原先预料的要好得多,就像甲基丙二酸尿症,已经有相当一部分孩子正常上学了,而且不是弱智学校,上的是正常学校。 虽然这些病要终身治疗,但治疗方法却不难,就是维生素B12加上叶酸、左卡尼汀、甜菜碱,都是比较容易得到的,费用也就一个月几百块,就可以把这些孩子治得很好。 “我们医院诊治过的孩子,现在上托儿所、小学、大学的都有了,有几个都大学毕业了,工作得非常好。有一个北京的孩子在银行工作,还有一个女孩子不仅结婚还生了一个孩子,当时我们都说这样的孩子自己能活着都不简单。”说起那些孩子,杨艳玲的语气里有着掩不住的疼爱。 肉碱缺乏症: [if !supportLineBreakNewLine] [endif] 一场纠纷引出的国内首例 遗传病大多治起来比较困难,或是智力渐渐出问题或是瘫痪,家长会有一个缓慢的接受过程。但是原发性肉碱缺乏症不一样,很多情况下孩子会猝死,或是新生儿猝死,或是运动中猝死,对此杨艳玲感触最深。 原发性肉碱缺乏症的发病原因也是常染色体隐性遗传,基因的功能是维持人体里面的肉碱的吸收、利用和转运,当父母都各携带了一个致病基因时,就造成了父母比普通人血液里肉碱的水平要低,如果妈妈怀孕了,必须负担两个人的营养,这时母亲和胎儿的代谢负担就会非常严重。 杨艳玲遇到的国内第一例原发性肉碱缺乏症跟医疗纠纷有关的病例。 一位产妇在一家三甲医院生的孩子,刚生下来挺好,没想到72小时后孩子在妈妈怀里断气了。家属认为是产科医生的责任,后来做了尸检,才发现孩子是特别严重的心肌病,是由于先天性遗传代谢病引起的心脏骤停。 为了能把病因查清楚,这家人找到了杨艳玲,她把孩子保存下来的尸解样本做了基因分析,证实了孩子的死因是原发性肉碱缺乏症,因为肉碱缺乏导致的结果主要就是心肌损伤和骨骼肌的损伤,并且从父母身上也发现携带了致病突变,这样才算是弄清了死因。 后来,这位妈妈在杨艳玲的帮助下开始了二次怀孕,怀孕前杨艳玲先给夫妻二人补充了左卡尼汀,提高身体的代谢功能,顺利怀孕后又一直给孕妇做监测。当怀孕四五个月开始,孕妇出现了脂肪肝和高脂血症,血液里的肉碱特别低,经过检测,证明是由于胎儿肉碱缺乏,不断跟妈妈抢夺肉碱导致。 虽然知道胎儿患有肉碱缺乏症,但孕妇表示只要这个病是能治疗的,就要把孩子生下来。于是,杨艳玲让孕妇开始服用左卡尼汀,用了一周药后,孕妈妈的脂肪肝和血脂全部正常了。足月后孩子也正常出生了,全家人欣喜若狂。 而在孩子出生后,妈妈哺乳期间也一直在服用左卡尼汀,让孩子通过母乳获得足够的左卡尼汀,孩子发育很好,现在已经正常上学了。 杨艳玲说,孩子大了以后也一直在做监测,小时吃母乳,大了吃牛羊肉,里面含的肉碱比较高,一旦监测发现血液的肉碱不够,家长会把左卡尼汀加量,所以这孩子一直维持得挺好的。假如没有之前的尸解诊断和产前诊断,这个家族很可能再次发生不幸。 线粒体病: [if !supportLineBreakNewLine] [endif] 替妈妈们平冤的 “ 双方遗传 ” 杨艳玲的科研重点还包括一组难治的遗传代谢病——线粒体病,线粒体是细胞里的发动机,发动机出了问题,细胞功能也就随之丧失,所以死亡率非常高,在五岁之内超过20%,而且相当一部分是在一岁之内死亡。这组疾病一直是医学上的大难题。 经过十几年的努力,杨艳玲的课题组对于线粒体病的研究有了很多国内、外首例的发现,但其中一个病例杨艳玲讲述的时候很是振奋,因为这项研究替很多妈妈平了冤昭了雪。 那是我国第一例核基因异常引起的线粒体病,在病因不明之前被认为是母系遗传的。但国外研究发现,线粒体病中90%以上是由夫妻双方遗传,只有10%的可能与妈妈相关,有90%的可能性是父亲也参与遗传了,这一结论颠覆了以往孩子一得线粒体病就认为是妈妈遗传的观念,为妈妈们摘掉了一顶大帽子。 此外,线粒体病的诊断主要依据基因的分析,而线粒体病的典型症状是脏器的损害,比如说脑、心脏、肝、肾甚至胃肠道的损害,如果做病理检查,就需要取孩子的肌肉或肝活检,这种活检无疑难度太大了,大夫下不去手,家长舍不得。多方探讨后,北大医院中心实验室决定研发其他的方法,一个是通过血液细胞做无创的基因分析,另一个则是利用尿液,离心尿液,把尿里的细胞沉渣拿来做基因分析,也非常有效,解决了很多线粒体疾病的病因诊断问题。 在对线粒体病的治疗上,过去一直都比较悲观,而现在杨艳玲的课题组发现线粒体疾病里面有一些病治疗起来效果很不错,比较说丙酮酸脱氢酶复合物的缺陷,这组疾病对维生素B1的反应特别好,已经有好几个病人经过大剂量的维生素B1的治疗,恢复得非常好,上托儿所、上学、工作的都很棒。 而对于一些特别难治的线粒体病,可以通过鸡尾酒疗法,就是把线粒体需要的维生素如维生素B1,辅酶Q10、左卡尼汀、维C、维E等大剂量堆在一起,让家长给孩子每天服用,有很多孩子的线粒体功能也逐渐恢复了。 杨艳玲说,未来我们要解决更多线粒体病人的病因诊断问题,对症治疗。病因诊断另一个重要的目的是产前诊断。这些病人的家庭一般都有诉求,下一个孩子怎么办,如果没有明确的病因诊断,没有正确的基因突变结果的分析,下一胎的产前诊断是没法做的。所以我们在线粒体疾病的产前诊断上做了很多的工作,很多在国际上发表的文章都很受欢迎,有不少是国内首例特别有创新价值。
1、通过遗传学研究人类起源2、在遗传学的指导下通过生物工程开发转基因作物3、基因治疗
遗传与变异 ---新形式下的基因突变 ( 2005动物科学院 X X X ) 摘要:染色体:1、染色体的结构 有丝分裂中期,每一染色体都具有两条染色单体,称为姐妹染色体。两单体之间由着丝粒连接,着丝粒处凹陷缩窄,称初级缢痕。着丝粒将染色体划分为短臂(p)和长臂(q)。在短臂和长臂的末端分别有一特化部位称为端粒。某些染色体的长、短臂上还可见凹陷缩窄的部分,称为次级缢痕。人类近端着丝粒染色体的短臂末端有一球形结构,称为随体。2、染色体的类型 人类染色体分为三种类型:中着丝粒染色体、亚中着丝粒染色体和近端着丝粒染色体。3、染色体的数目 人类体细胞(二倍体细胞,2n)染色体数目为46条(23对,2n=46),其中22对为常染色体,1对为性染色体(女性的两条性染色体为形态相同的XX染色体;男性只有一条X染色体,另一条是较小的Y染色体);正常生殖细胞(单倍体细胞,n)是23条染色体(n=23)。 关键词:遗传;变异;基因突变 遗传从现象来看是亲子代之间的相似的现象,即俗语所说的“种瓜得瓜,种豆得豆”。它的实质是生物按照亲代的发育途径和方式,从环境中获取物质,产生和亲代相似的复本。 遗传是相对稳定的,生物不轻易改变从亲代继承的发育途径和方式。因此,亲代的外貌、行为习性,以及优良性状可以在子代重现,甚至酷似亲代。而亲代的缺陷和遗传病,同样可以传递给子代。 遗传是一切生物的基本属性,它使生物界保持相对稳定,使人类可以识别包括自己在内的生物界。 变异是指亲子代之间,同胞兄弟姊妹之间,以及同种个体之间的差异现象。俗语说“一母生九子,九子各异”。世界上没有两个绝对相同的个体,包括挛生同胞在内,这充分说明了遗传的稳定性是相对的,而变异是绝对的。 生物的遗传与变异是同一事物的两个方面,遗传可以发生变异,发生的变异可以遗传,正常健康的父亲,可以生育出智力与体质方面有遗传缺陷的子女,并把遗传缺陷(变异)传递给下一代。 遗传和变异的物质基础 生物的遗传和变异是否有物质基础的问题,在遗传学领域内争论了数十年之久。 在现代生物学领域中,一致公认生物的遗传物质在细胞水平上是染色体,在分子水平上是基因,它们的化学构成是脱氧核糖核酸(DNA),在极少数没有DNA的原核生物中,如烟草花叶病毒等,核糖核酸(RNA)是遗传物质。 真核生物的细胞具有结构完整的细胞核,在细胞质中还有多种细胞器,真核生物的遗传物质就是细胞核内的染色体。但是, 细胞质在某些方面也表现有一定的遗传功能。人类亲子代之间的物质联系是精子与卵子,而精子与卵子中具有遗传功能的物质是染色体,受精卵根据染色体中DNA蕴藏的遗传信息,发育成和亲代相似的子代。 一、遗传与变异的奥秘 俗话说“种瓜得瓜,种豆得豆”,这是生物遗传的根本特征。人类与其他生物一样,在世代的交替中,子女(子代)总是保持着父母(亲代)的某些基本特征,这种现象就是遗传。但子代又会与亲代有所差异,有的差异还很明显。子代与亲代的这植钜炀褪潜湟臁R糯�捅湟焓巧��淖罨�咎卣髦�唬�ü��镆淮��姆敝程逑殖隼础? 遗传和可以遗传的变异都是由遗传物质决定的。这种遗传物质就是细胞染色体中的基因。人类染色体与绝大多数生物一样,是由DNA(脱氧核糖核酸)链构成的,基因就是在DNA链上的特定的一个片段。由于亲代染色体通过生殖过程传递到子代,这就产生了遗传。染色体在生物的生活或繁殖过程中也可能发生畸变,基因内部也可能发生突变,这都会导致变异。 如遗传学指出:患色盲的父亲,他的女儿一般不表现出色盲,但她已获得了其亲代的色盲基因,她的下一代中,儿子将因获得色盲基因而患色盲。 我们观察我们身边很多有生命的物种:动物、植物、微生物以及我们人类,虽然种类繁多,但在经历了很多年后,人还是人,鸡还是鸡,狗还是狗,蚂蚁、大象、桃树、柳树以及各种花草等等,千千万万种生物仍能保持各自的特征,这些特征包括形态结构的特征以及生理功能的特征。正因为生物界有这种遗传特性,自然界各种生物才能各自有序地生存、生活,并繁衍子孙后代。 大家可能会问,生物是一代一代遗传下来,每种生物的形态结构以及生理功能应该是一模一样的,但为什么父母所生子女,一人一个样,一人一种性格,各有各自的特征。又如把不同人的皮肤或肾脏等器官互相移植,还会发生排斥现象,彼此不能接受,这又如何解释呢?科学家研究的结果告诉我们,生物界除了遗传现象以外还有变异现象,也就是说个体间有差异。例如,一对夫妇所生的子女,各有各的模样,丑陋的父母生出漂亮的孩子,平庸的父母生出聪明的孩子,这类情况也并不罕见。全世界恐怕很难找出两个一模一样的人,既使是单卵双生子,外人看起来好像一模一样,但是与他们朝夕相处的父母却能分辨出他们之间的微细差异,这种现象就是变异。人类中多数变异现象是由于父母亲遗传基因的不同组合。每个孩子都从父亲那里得到遗传基因的一半,从母亲那里得到另一半,每个孩子所得到的遗传基因虽然数量相同,但内容有所不同,因此每个孩子都是一个新的组合体,与父母不一样,兄弟姐妹之间也不一样,而形成彼此间的差异。正因为有变异现象,人类才有众多的民族。人们可以很容易地从人群中认出张三、李四,如果没有变异,大家全都是一个样子,社会上的麻烦事就多了。除了外形有不同,变异还包括构成身体的基本物质--蛋白质也存在着变异,每个人都有他自己特异的蛋白质。所以,如果皮肤或器官从一个人移植到另一个人身上便会发生排斥现象,这就是因为他们之间的蛋白质不一样的缘故。 还有一类变异是遗传基因的突变,这类突变往往是由环境中的条件所诱发的,这种突变的基因还可以遗传给下一代。许多基因突变的结果会造成遗传病。 变异也可以完全由环境因素所造成,例如患小儿麻痹症后遗的跛足,感染大脑炎后形成的痴呆等这些性状都是由环境因素所造成的,是因为病毒感染使某些组织受损害,造成生理功能的异常,不是遗传物质的改变,所以不是遗传的问题,因此也不会遗传给下一代。 总之,遗传与变异是遗传现象中不可分离的两个方面,我们有从父母获得的遗传物质,保证我们人类的基本特征经久不变。在遗传过程中还不断地发生变异,每个人又在一定的环境下发育成长,才有了人类的多种多样。 二、遗传变异的科学理论 遗传的分子基础 (一)遗传物质的存在形式 (1)染色体是遗传物质的载体,遗传信息以基因的形式蕴藏于DNA分子中; (2)每个人体体细胞含两个染色体组,每个染色体组的DNA构成一个基因组; (3)广义的基因组包括细胞核染色体基因组和线粒体基因组; (4)人类细胞核染色体基因组中90%左右为DNA重复序列,10%为单一序列; (5)多基因家族是真核基因组中重要的结构之一。 (二)基因的结构及其功能 、真核生物基因的分子结构 (1)、基因的DNA序列由编码序列和非编码序列两部分构成,编码序列是不连续的,被非编码序列分隔开,形成镶嵌排列的断裂形式,因此称为断裂基因;编码序列称为外显子,非编码序列称为内含子; (2)、在每个外显子和内含子的接头区存在高度保守的一致序列,称为外显子-内含子接头,即在每个内含子的5’端开始的两个核苷核为GT,3’端末尾是AG,特称之为GT-AG法则; (3)、真核生物基因的大小相关悬殊,外显子和内含子的关系也不是固定不变的; (4)、DNA分子两条链中,5’→3’链称为编码链,其碱基排列序列中储存着遗传信息;3’→5’链称为反编码链,是RNA合成的模板; (5)、每个断裂基因中第一个外显子和最后一个外显子的外侧都有一段不被转录的非编码区,称为侧翼序列,其上有一系列调控序列,对基因的表达起调控作用。这些结构包括: ①启动子:位于基因转录起始处,是RNA聚合酶的结合部位,能启动基因转录。 ②增强子:位于基因转录起始点的上游或下游,能增强启动子转录,提高转录效率; ③终止子:位于3’端非编码区下游的一段序列,在转录中提供转录终止信号。 、基因的复制 (1)、基因的复制是以DNA复制为基础的,每个DNA分子上有多个复制单位(复制子); (2)、每个复制子有一个复制起点,从起点开始双向复制,在起点两侧各形成一复制叉; (3)、DNA聚合酶只能使DNA链的3’端加脱氧核苷核,故复制只能沿5’→3’方向进行; (4)、与复制叉同向的新链复制是连续的,速度也较快,称为前导链;与复制叉反向的新链复制是不连续的(先要在RNA引物存在下合成一个个冈崎片段,然后在DNA连接酶作用下补上一段DNA),速度也较慢,称为后随链;故DNA的复制是半不连续复制; (5)、复制后的DNA分子都含有一条旧链和一条新链,故DNA的复制又是半保留复制。 、基因的表达 基因表达是DNA分子中所蕴藏的遗传信息通过转录和翻译形成具有生物活性的蛋白质或通过转录形成RNA发挥功能作用的过程。 (1)、转录:是在RNA聚合酶催化下,以DNA为模板合成RNA的过程。 ①新合成好的RNA称为不均一核RNA(也叫核内异质RNA,hnRNA); ②hnRNA要经过“戴帽”和“加尾”以及剪接等加工过程才能形成成熟的mRNA。 (2)、翻译:是以mRNA为模板指导蛋白质合成的过程。 ①mRNA分子中每3个相邻的碱基为三联体,能决定一种氨基酸,称为密码子; ②翻译后的初始产物大多无功能,需经进一步加工才可成为有一定活性的蛋白质。 、基因表达的调控(了解操纵子学说) 、基因的突变 (1)、基因突变的概念:基因突变是DNA分子中的核苷核序列发生改变,导致遗传密码编码信息改变,造成基因表达产物蛋白质的氨基酸变化,从而引起表型的改变。 (2)、基因突变的方式 ①碱基替换 也叫点突变,包括转换和颠换两种方式。其后果可以造成同义突变、错义突变、无义突变或终止密码突变(延长突变)等生物学效应。 ②移码突变 是DNA分子中某一位点增加或减少一个或几个碱基对,造成该位点以后的遗传编码信息全部发生改变。 ③动态突变 微卫星DNA或短串联重复序列,尤其是三核苷酸的重复,在靠近基因或位于基因序列中时,其重复次数在一代一代的传递中会出现明显增加的现象,导致某些遗传病的发生。 (3)、基因突变的修复 ①切除修复 是一种多步骤的酶反应过程,首先将受损的DNA部位切除,然后再合成一个片段连接到切除的部位以修补损伤。 ②重组修复 又称复制后修复,是在DNA受损产生胸腺嘧啶二聚体(T-T)以后,当DNA复制到损伤部位时,再与T-T相对应的部位出现切口,完整的DNA链上产生一个断裂点。此时,在重组蛋白作用下,完整的亲链与有重组的子链发生重组,亲链的核苷酸片段补充了子链上的缺失。重组后亲链的切口在DNA聚合酶作用下,以对侧子链为模板,合成单链DNA片段来填补,随后在DNA连接酶作用下,以磷酸二酯键使新片段与旧链相连接,而完成修复过程。 2、遗传的细胞基础 染色质:在间期细胞核,染色质的功能状态不同,折叠程度也不同,分为常染色质和异染色质两种。1、常染色质 在细胞间期处于解螺旋状态,具有转录活性,呈松散状,染色较浅;2、异染色质 在细胞间期处于凝缩状态,很少进行转录或无转录活性,染色较深;3、性染色质 在间期细胞核中染色体的异染色质部分显示出来的一种特殊结构,有两种:(1)、X染色质 正常女性间期细胞核中有一个染色较深,大小约为10nm的椭圆形小体(了解Lyon假说)。(2)、Y染色质 正常男性间期细胞核用荧光染料染色后,核内可见一个圆形或椭圆形的强荧光小体,直径为3nm左右。 染色体:1、染色体的结构 有丝分裂中期,每一染色体都具有两条染色单体,称为姐妹染色体。两单体之间由着丝粒连接,着丝粒处凹陷缩窄,称初级缢痕。着丝粒将染色体划分为短臂(p)和长臂(q)。在短臂和长臂的末端分别有一特化部位称为端粒。某些染色体的长、短臂上还可见凹陷缩窄的部分,称为次级缢痕。人类近端着丝粒染色体的短臂末端有一球形结构,称为随体。2、染色体的类型 人类染色体分为三种类型:中着丝粒染色体、亚中着丝粒染色体和近端着丝粒染色体。3、染色体的数目 人类体细胞(二倍体细胞,2n)染色体数目为46条(23对,2n=46),其中22对为常染色体,1对为性染色体(女性的两条性染色体为形态相同的XX染色体;男性只有一条X染色体,另一条是较小的Y染色体);正常生殖细胞(单倍体细胞,n)是23条染色体(n=23)。 (三)人类的正常核型:色体数目、形态结构特征的分析叫核型分析。1、非显带核型 根据丹佛体制,将正常人类体细胞的46条染色体分为23对7个组(A、B、C、D、E、F和G组)。在描述一个核型时,首先写出染色体总数(包括性染色体),然后是一个“,”号,最后是性染色体。正常男性核型描述为46,XY;女性为46,XX。2、显带核型 用各种特殊的染色方法使染色体沿长轴显现出一条条明暗交替或深浅相间的带,故又叫带型。根据ISCN规定,描述一特定带时,需要写明4项内容:①染色体号;②臂号;③区号;④带号。 遗传的基本规律:孟德尔提出的分离定律和自由组合定律以及摩尔根提出的连锁与交换定律构成了遗传的基本规律,通称为遗传学三大定律。分离律说的是遗传性状有显隐性之分,这样具有明显显隐性差异的一对性状称为相对性状。相对性状中的显性性状受显性基因控制,隐性性状由一对纯合隐性基因决定。杂合体往往表现显性基因的性状。基因在体细胞中成对存在,在形成配子时,彼此分离,进入不同的子细胞。减数分裂时同源染色体彼此分离,分别进入不同的生殖细胞是分离律的细胞学基础。自由组合律是说生物在形成配子时,不同对基因独立行动,可分可合,以均等的机会组合到同一个配子中去。减数分裂过程中非同源染色体随机组合于生殖细胞是自由组合律的细胞学基础。连锁与交换律是说位于同一条染色体上的基因是互相连锁的,它们常一起传递(连锁律),但有时也会发生分离和重组,是因为同源染色体上的各对等位基因进行了交换。减数分裂中,同源染色体联会和交换是交换律的细胞学基础。 单基因性状的遗传:遗传性状受一对基因控制的,称单基因性状的遗传。单基因性状又叫质量性状。1、决定某种遗传性状的等位基因,在传递时服从分离律;2、当决定两种遗传性状的基因位于不同对染色体上时,这两种单基因性状的传递符合自由组合律。3、如果决定两种遗传性状的基因位于同一对染色体上时,它们的传递将从属于连锁与交换律。 多基因性状的遗传:由多基因控制的性状往往与单基因性状不同,其变异往往是连续的量的变异,称为数量性状。每对基因对多基因性状形成的效应是微小的,称为微效基因。微效基因的效应往往是累加的。多基因遗传性状除受多基因遗传基础影响外,也受环境因素影响。(熟悉多基因遗传假说,了解多基因遗传的特点) 遗传的变异:(一)染色体异常与疾病;染色体异常类;形成机; 数目畸变 整倍性改变 单倍体 多倍体 双雄受精,双雄受精,核内复制 非整倍性改变 亚二倍体 染色体不分离,染色体丢失 超二倍体 结构畸变 缺失(del) 受多种因素影响,如物理因素、化学因素和生物因素等 重复(dup) 倒位(inv) 易位(t) 环状染色体 双着丝粒染色体 等臂染色体 1、一个个体内同时存在两种或两种以上核型的细胞系,这种个体称嵌合体。 2、染色体结构畸变的描述方式有简式和详式两种。 (二)人类的单基因遗传病1、常染色体显性遗传(AD)病 (1)、AD系谱特点:①致病基因位于常染色体上,遗传与性别无关;②患者双亲中至少有一方是患者,但多为杂合体;③患者与正常个体结婚,后代有1/2的发病风险;④系谱中可看到连续传递现象。 (2)、其它AD类型:①不完全显性或半显性,是指杂合体的表现型介于显性纯合体与隐性纯合体的表现型之间;②不规则显性,是指杂合体由于某种原因不一定表现出相应的症状,即使发病,但病情程度也有差异;③共显性,是指一对等位基因无显隐性之分,杂合状态下,两种基因的作用都能表现出来;④延迟显性,有显性致病基因的杂合体在生命早期不表现出相应症状,当到一定年龄后,其作用才表达出来。 2、常染色体隐性遗传(AR)病 (1)、AR系谱特点:①致病基因的遗传与性别无关,男女发病机会均等;②患者双亲往往表型正常,但都是致病基因的携带者,患者的同胞中约有1/4的可能将会患病,3/4表型正常,但表型正常者中2/3是可能携带者;③系谱中看不到连续传递现象,常为散发;④近亲婚配后代发病率比非近亲婚配后代发病率高。 (2)、常见AR病:苯丙酮尿症、白化病、先天性聋哑、高度近视和镰状细胞贫血等。 3、X连锁显性遗传(XD)病 (1)、XD系谱特点:①系谱中女性患者多于男性患者,且女患者病情较轻;②患者双亲中至少有一方是患者;③男性患者后代中,女儿都为患者,儿子都正常;女性患者后代中,子女各有1/2的患病风险;④系谱中可看到连续传递现象。 (2)、常见XD病:抗维生素D性佝偻病。 4、X连锁隐性遗传(XR)病 (1)、XR系谱特点:①人群中男性患者远多于女性患者;②双亲无病时,儿子可能发病,女儿则不会发病;③由于交叉遗传,患者的兄弟、舅父、姨表兄弟和外甥各有1/2的发病风险;④如果女性是患者,父亲一定是患者,母亲一定是携带者或患者。 (2)、常见XR病:甲型血友病、红绿色盲。 5、Y连锁遗传(YL)病 全男性遗传 (三)多基因遗传病 1、有关多基因遗传病的几个重要概念 (1)、易感性 在多基因遗传病中,由多基因遗传基础决定某种多基因病发病风险高低。 (2)、易患性 由遗传基础和环境因素共同作用,决定了一个个体是否易于患病。 (3)、发病阈值 当一个个体的易患性高达一定水平即达到一个限度时,这个个体就将患病,这个易患性的限度称为阈值。 (4)、遗传度 在多基因遗传病中,易患性受遗传基础和环境因素的双重影响,其中遗传基础所起作用大小的程度称为遗传度或遗传率。一般用百分率(%)来表示。 2、多基因遗传病的特点 (1)、有家族聚集倾向,患者亲属的发病率高于群体发病; (2)、随着亲属级别的降低,患者亲属的发病风险迅速降低; (3)、近亲婚配时,子女患病风险增高; (4)、发病率有种族(或民族)差异。 三、遗传与变异在当代 人类基因组计划的工作草图已于今年的6月26日绘制完成,但要将全部30多亿个碱基完全装配完成还需要一段时间,预计要到明年的6月份。即使完成了人类基因组计划的“精图”,也只是我们认识人类基因功能的开始,完全弄清基因的功能及其相互间的作用,至少还要40年的时间。毋庸赘言,这是一项浩繁巨大的工程。 迄今为止,人们对整个人类基因组中所含有的基因数目尚存争议,有人说是3万,有人说是14万,相差非常大。在整个人类基因组序列中,只存在1%的差异,就是这1%的差异导致了人种、肤色、身高、眼睛、胖瘦以及疾病的易感性等方面的不同。科学家除继续研究基因的数量和功能外,基因在多大程度上受外界环境和体内因素的影响以及这种改变是否可以一代代地延续下去,也是需要解决的问题。 上述问题涉及到后成说(epigenetics)这一范畴。后成说是研究通过其他的化学途径,而不是通常所说的碱基突变,使基因活性发生半永久性改变的一门科学。后成说的重要性一直存有很大争议。如果后成说真有科学依据的话,那么它将是解释不同个体之间,甚至不同物种之间存在差异的关键所在,同时还将是疾病发生的一个重要机制。 不同基因的表达:基因含有合成蛋白质的指令,蛋白质合成的过程称为基因表达。但是遗传学家们很早以前就知道通过对DNA链碱基上的化学基团进行修饰来调控基因表达、影响蛋白质的合成。最常见的修饰方式是基因的甲基化(甲基是由一个碳原子和三个氢原子组成的基团),即在基因上添加甲基基团,结果常常会终止基因表达。 科研人员通过对某些哺乳动物的研究发现,此类修饰只存在于个体中,而不遗传给后代,因为这种修饰在精子和卵子细胞中常常被清除。最近有人发现,后成特征在小鼠中可以遗传。在悉尼大学生化学家怀特劳博士所做的实验中,遗传学相同的小鼠,同其父母相比,更像它们的母亲。因为它们继承了其母亲的卵子DNA的甲基化类型。该型甲基化在决定小鼠毛色中起着非常重要的作用。 怀特劳博士小组的大量的研究数据表明,要探明动物是如何把物理特征或疾病易感性传给后代的,有必要先搞清可遗传的后成特征。如果后成特征可遗传,那么这些特征所引起的疾病应能够像普通的基因突变一样在家系之间传递。该研究小组对小鼠的后成标记在传代过程中如何关闭和表达进行了深入地研究。研究人员将一个可以产生特异类型红细胞的基因(称为转基因)导入具有相同遗传学特征小鼠的基因组中(接受该基因的小鼠称之为转基因鼠)。研究发现这些转基因小鼠体内的转基因正以不同的方式表达。有些转基因小鼠体内40%的红细胞表达该基因,而另一些则根本就不表达。同时该小组还对小鼠毛色进行了研究,发现与毛色有关的DNA甲基化增高与转基因的不表达(或称为“沉默”表达)有关。但是在这种情况下,后成性改变可来自父方,也可以来自母方。 令人费解的是,虽然这种基因表达的沉默现象至少可以维持三代,但不是不可逆转的。在该型的后代小鼠与非同类小鼠交配时,发现在后代小鼠中不存在甲基化和表达沉默现象,转基因又可在小鼠的幼崽中获得表达。如果这种基因沉默和再活化现象是自然发生的话,那么就可以解释个体之间和代与代之间差异的原因。 后成说还可以解释物种之间的差异。最近普林斯顿大学的迪尔格曼通过两种相近小鼠的交配,将多个小鼠基因上的后成特征破坏。这些小鼠相互之间不能进行正常的交配,并且它们杂交的后代表现为生长异常。研究人员认为这种生长异常与杂交后代基因上的甲基化模式破坏有关。他们推测后成性效应非常显著,仅靠改变这些特征就可以造就新物种。 大家都知道,物种的产生是遗传变异逐渐积累的结果。但是,迪尔格曼认为有些物种出现之快不是该假说所能解释的。所以物种后成说的假设有一定优势。例如,甲基化可以迅速地关闭整条基因的表达,并引起根本的改变。这种改变足以阻止新的品种与旧品种之间的杂交,尤其是阻止新物种的产生。 四、结论 变异基因的表达:许多生物学家对此种假说表示不屑。基因序列虽不能完全解释动物的特征,但是至少可以解释一些由基因突变所引起的疾病。 疾病基因突变假说的倡导者把癌症作为经典的实例,来说明在个体DNA水平上,到底有多少碱基差错才能导致肿瘤。但加州大学伯克利分校的杜斯博格博士不同意这一观点,认为癌症并不是由基因异常引起的,而是由另一形式的后成现象 染色体异常引起的。 根据癌症基因突变假说,指导细胞分裂和死亡的基因突变使正常的细胞分裂和死亡过程遭到破坏,导致细胞不受控制地生长。但是,最近杜斯博格博士领导的研究小组报道,至今还没有人证实突变的基因会使正常的细胞变为癌细胞。他还指出,如果突变基因对细胞分裂具有显著影响的话,为什么有些情况下,突变发生的数月甚至数年后才发展为癌症,这是非常奇怪的现象。他认为可以用后成性非整倍现象对上述问题加以解释,非整倍性是指细胞具有错误的染色体个数。 在细胞分裂时,染色体排列整齐,通过纺锤体(一种蛋白质的支架)分配到子代细胞中。杜斯博格推测,致癌的化学物质可以影响纺锤体,因此,造成子代细胞具有或多或少的染色体。由于这种错误分配的染色体不稳定,细胞分裂时染色体之间相互混合并发生非自然的重组。 大多数重组对细胞而言是至关重要的,但最终会产生一个分裂异常的细胞。产生这种异常细胞的概率非常小,这种低概率事件可以解释为什么从接触致癌物质到细胞发生癌变,要经过这么长时间。细胞的非整倍性是5000多种肿瘤的一种显著特征。 与个体碱基突变相比,染色体数的增加或减少使细胞表征发生显著改变。因为染色体数目的改变(即非整倍性),可以导致成千上万种蛋白质活性发生改变,而不仅仅是一种或两种蛋白质,导致细胞分裂的失控。假如这种假说成立的话,那么现在试图通过定点修复癌基因来治疗癌症的策略将毫无效果。 杜斯博格博士10年前曾因自己的假说而声名狼藉,他认为人类免疫缺陷病毒(HIV)并不能引起艾滋病。一系列的HIV和艾滋病的研究表明,杜斯博格的理论是极其荒谬的。这严重地损害了他的声誉,因此,他的其他理论也很容易被人忽视。但是,他的非整倍性假说似乎非常有价值。癌症中非整倍体的普遍性尚需进一步阐明。
“一旦戴上‘遗传病’的帽子,就意味着这个孩子只能抱回家等死了!” 很多年前,不仅老百姓这样想,就连毕业于北京医科大学,在北京大学第一医院做了好些年儿科大夫的杨艳玲也这样想过。 直到1991年杨艳玲去日本东京读研究生,她的老师恰好是遗传代谢病、内分泌疾病筛查的专家,从那时起杨艳玲才知道有些遗传病是能治的,而且很多遗传代谢病还可以治得特别好。 震惊之下,杨艳玲跟着日本老师开始学习遗传代谢内分泌疾病的筛查和诊断治疗,看了大量的各年龄段的遗传病病人,积累了一定的临床经验。 1996年,回国后的杨艳玲开始专攻遗传代谢病,一个病例一个病例地把这个领域建立起来,现在身为儿科遗传学教授的她,已经是国内遗传代谢病领域首屈一指的大牌专家了。 苯丙酮尿症: 饮食疗法就能治好的 “ 绝症 ” 采访杨艳玲,有一个词出镜率特别高——“傻孩子”,每当说出这个词时,她的语气满是浓浓的心疼和怜惜。 “为什么说患了遗传代谢病的孩子都是傻孩子呢?” “因为患病的孩子90%都侵犯到了大脑,而且大部分都是第一胎。” “为什么孕前检查不出来呢?” “因为做不到。现在已知命名的有21000多种遗传病,其中90%以上的疾病是常染色体隐性遗传,而每个人身上都带着大约100~400个基因致病突变,而且绝大多数是隐性的,所以无从检查。隐性遗传就是夫妻双方都携带致病基因,但是他们自己并不知道。当这两人撞在一起,就可能把两人共同的遗传缺陷传给孩子,导致遗传代谢病。所以说这茫茫人海中,两个携带相同的致病基因的人走到一起也真是太有缘份了。” “那么,如果一个人携带致病基因,另一个人没有,孩子会怎么样?” “那孩子有50%的可能性是携带致病基因,只是携带是没关系的。上帝创造人类很有技巧,他让每个人身上都带着缺陷降生,世上没有完美的人。但是,因为夫妻双方携带同样的致病基因缺陷的几率非常高,所以遗传病防不胜防。这个是世界难题。” 杨艳玲主要研究遗传代谢病,国际已经命名的有600多种,其中有一些是小分子代谢病,有一些是大分子代谢病,不是所有病都能治,但是小分子代谢病里面,像苯丙酮尿症,中国新生儿筛查覆盖率已经到了86%了,诊断和治疗技术也非常成熟,不仅最有社会价值,也成为很多遗传代谢病的诊治模板。 从1953年的德国开始,首先研发出了苯丙酮尿症的治疗方法,即饮食治疗方法,通过饮食干预,苯丙酮尿症病人可以健康成长并正常的工作、结婚、生育。说它具有创新性,是因为从不治之症到可以治疗,并且治得非常好;说它是模板,是因为将苯丙酮尿症的饮食治疗和药物治疗的原理,推广到其他的病种,同样也获得了很好的效果。 遗传代谢病最基本的发病原理就是身体里产生了大量的垃圾导致自身中毒,饮食和药物治疗原理即通过饮食和药物给病人解毒,让他自身产生比较好的代谢功能,维持生命机能。恢复的程度要看病种,比如生物素缺乏、多巴反应性肌张力不全,还有维生素B6反应性癫痫,这些疾病只要针对性治疗都能很快控制。比如维生素B6反应性的癫痫,只要给病人服用维生素B6,病人就能好转,多数马上就不抽风了。 甲基丙二酸尿症: [if !supportLineBreakNewLine] [endif] 漂洋过海去做检查的尿样 1996年,杨艳玲从日本回国,当时国内的遗传代谢病领域尚处于很落后的状态,很多病医生都没见过没听过,更不必说那些诊断检测的仪器了,“这直接导致很多病被发现后,尿样只能漂洋过海去检测的奇特现象。”杨艳玲感慨地说。 第一个有此“出国”殊荣的尿样来自一位患有甲基丙二酸尿症的女孩儿,杨艳玲回忆当时的情景说,那时是吴希如老师在病房查房,发现有个病人严重的大细胞贫血,严重的神经系统损害,癫痫,震颤,无法行走,对比这些症状,吴老师马上说,这怎么那么像文献上的甲基丙二酸尿症?但那个病当时在中国根本没有条件确诊,如果没有正确的诊断,治疗起来就很盲目。正好杨艳玲跟日本的老师们关系比较好,于是,这位患者的尿样就漂洋过海地送到了日本,很快日本回复说确实是甲基丙二酸尿症,建议用维生素B12及叶酸等进行治疗。按此方法孩子很快就好转了,现在已经快二十岁了,非常健康。 杨艳玲说,如果当时没有得到及时治疗,这个孩子现在肯定不在人世了。但是,由于吴老师首先意识到这个病,然后找渠道把尿样送出去确诊,挽救了这个孩子的生命。就这样,通过海外的合作,杨艳玲诊断了中国第一例甲基丙二酸尿症,还在国际上发表了相关论文。 在这个病例之后,经过筛查,这种病例越来越多,从1996年到现在,光是北大妇儿医院,积累的甲基丙二酸尿症病例已经有500多个了,绝大多数都是因为脑子的问题,比如说癫痫,昏迷,或者是智力倒退,瘫痪,经过在小儿神经内科的筛查、确诊和治疗,有很多病人康复。 后来,遗传代谢病的研究获得了国家的重视,卫生部作为重点项目支持,2003年,实验室终于买了第一台气相色谱质谱联用分析仪,进行尿有机酸分析,病人的尿样再也不用漂洋过海,在自己的医院就可以解决诊断问题了。 说起这台仪器,杨艳玲很兴奋,“通过尿有机酸分析,可以同时筛查34种有机酸尿症,包括丙酸尿症、甲基丙二酸尿症都可以涵盖,所有的病种在我们科都被筛出来了,最关键它是无创性的,只验一泡尿,检测一下尿中的代谢垃圾,就可以知道这个孩子是不是患了其中某一种疾病。在当时,这台仪器是非常先进的,现在通过我们的推广和培训,不断的传播这些疾病的诊断筛查治疗知识,在国内很多城市也都已经装上了。” 相比较筛查和诊治,杨艳玲更关心这些孩子经过治疗后的情况,能不能上学、工作、结婚生育,都是随着病人长大会面临的问题。过去人们对遗传病比较悲观,后来能诊断治疗了,治着治着又发现这些病的预后比原先预料的要好得多,就像甲基丙二酸尿症,已经有相当一部分孩子正常上学了,而且不是弱智学校,上的是正常学校。 虽然这些病要终身治疗,但治疗方法却不难,就是维生素B12加上叶酸、左卡尼汀、甜菜碱,都是比较容易得到的,费用也就一个月几百块,就可以把这些孩子治得很好。 “我们医院诊治过的孩子,现在上托儿所、小学、大学的都有了,有几个都大学毕业了,工作得非常好。有一个北京的孩子在银行工作,还有一个女孩子不仅结婚还生了一个孩子,当时我们都说这样的孩子自己能活着都不简单。”说起那些孩子,杨艳玲的语气里有着掩不住的疼爱。 肉碱缺乏症: [if !supportLineBreakNewLine] [endif] 一场纠纷引出的国内首例 遗传病大多治起来比较困难,或是智力渐渐出问题或是瘫痪,家长会有一个缓慢的接受过程。但是原发性肉碱缺乏症不一样,很多情况下孩子会猝死,或是新生儿猝死,或是运动中猝死,对此杨艳玲感触最深。 原发性肉碱缺乏症的发病原因也是常染色体隐性遗传,基因的功能是维持人体里面的肉碱的吸收、利用和转运,当父母都各携带了一个致病基因时,就造成了父母比普通人血液里肉碱的水平要低,如果妈妈怀孕了,必须负担两个人的营养,这时母亲和胎儿的代谢负担就会非常严重。 杨艳玲遇到的国内第一例原发性肉碱缺乏症跟医疗纠纷有关的病例。 一位产妇在一家三甲医院生的孩子,刚生下来挺好,没想到72小时后孩子在妈妈怀里断气了。家属认为是产科医生的责任,后来做了尸检,才发现孩子是特别严重的心肌病,是由于先天性遗传代谢病引起的心脏骤停。 为了能把病因查清楚,这家人找到了杨艳玲,她把孩子保存下来的尸解样本做了基因分析,证实了孩子的死因是原发性肉碱缺乏症,因为肉碱缺乏导致的结果主要就是心肌损伤和骨骼肌的损伤,并且从父母身上也发现携带了致病突变,这样才算是弄清了死因。 后来,这位妈妈在杨艳玲的帮助下开始了二次怀孕,怀孕前杨艳玲先给夫妻二人补充了左卡尼汀,提高身体的代谢功能,顺利怀孕后又一直给孕妇做监测。当怀孕四五个月开始,孕妇出现了脂肪肝和高脂血症,血液里的肉碱特别低,经过检测,证明是由于胎儿肉碱缺乏,不断跟妈妈抢夺肉碱导致。 虽然知道胎儿患有肉碱缺乏症,但孕妇表示只要这个病是能治疗的,就要把孩子生下来。于是,杨艳玲让孕妇开始服用左卡尼汀,用了一周药后,孕妈妈的脂肪肝和血脂全部正常了。足月后孩子也正常出生了,全家人欣喜若狂。 而在孩子出生后,妈妈哺乳期间也一直在服用左卡尼汀,让孩子通过母乳获得足够的左卡尼汀,孩子发育很好,现在已经正常上学了。 杨艳玲说,孩子大了以后也一直在做监测,小时吃母乳,大了吃牛羊肉,里面含的肉碱比较高,一旦监测发现血液的肉碱不够,家长会把左卡尼汀加量,所以这孩子一直维持得挺好的。假如没有之前的尸解诊断和产前诊断,这个家族很可能再次发生不幸。 线粒体病: [if !supportLineBreakNewLine] [endif] 替妈妈们平冤的 “ 双方遗传 ” 杨艳玲的科研重点还包括一组难治的遗传代谢病——线粒体病,线粒体是细胞里的发动机,发动机出了问题,细胞功能也就随之丧失,所以死亡率非常高,在五岁之内超过20%,而且相当一部分是在一岁之内死亡。这组疾病一直是医学上的大难题。 经过十几年的努力,杨艳玲的课题组对于线粒体病的研究有了很多国内、外首例的发现,但其中一个病例杨艳玲讲述的时候很是振奋,因为这项研究替很多妈妈平了冤昭了雪。 那是我国第一例核基因异常引起的线粒体病,在病因不明之前被认为是母系遗传的。但国外研究发现,线粒体病中90%以上是由夫妻双方遗传,只有10%的可能与妈妈相关,有90%的可能性是父亲也参与遗传了,这一结论颠覆了以往孩子一得线粒体病就认为是妈妈遗传的观念,为妈妈们摘掉了一顶大帽子。 此外,线粒体病的诊断主要依据基因的分析,而线粒体病的典型症状是脏器的损害,比如说脑、心脏、肝、肾甚至胃肠道的损害,如果做病理检查,就需要取孩子的肌肉或肝活检,这种活检无疑难度太大了,大夫下不去手,家长舍不得。多方探讨后,北大医院中心实验室决定研发其他的方法,一个是通过血液细胞做无创的基因分析,另一个则是利用尿液,离心尿液,把尿里的细胞沉渣拿来做基因分析,也非常有效,解决了很多线粒体疾病的病因诊断问题。 在对线粒体病的治疗上,过去一直都比较悲观,而现在杨艳玲的课题组发现线粒体疾病里面有一些病治疗起来效果很不错,比较说丙酮酸脱氢酶复合物的缺陷,这组疾病对维生素B1的反应特别好,已经有好几个病人经过大剂量的维生素B1的治疗,恢复得非常好,上托儿所、上学、工作的都很棒。 而对于一些特别难治的线粒体病,可以通过鸡尾酒疗法,就是把线粒体需要的维生素如维生素B1,辅酶Q10、左卡尼汀、维C、维E等大剂量堆在一起,让家长给孩子每天服用,有很多孩子的线粒体功能也逐渐恢复了。 杨艳玲说,未来我们要解决更多线粒体病人的病因诊断问题,对症治疗。病因诊断另一个重要的目的是产前诊断。这些病人的家庭一般都有诉求,下一个孩子怎么办,如果没有明确的病因诊断,没有正确的基因突变结果的分析,下一胎的产前诊断是没法做的。所以我们在线粒体疾病的产前诊断上做了很多的工作,很多在国际上发表的文章都很受欢迎,有不少是国内首例特别有创新价值。
有些遗传病饮食可控制遗传学研究的迅速发展,不仅提示了许多遗传病的发病机理,而且对遗传病的预防和治疗也拟定出许多有效措施,使遗传病逐步变为“可治之症”,其中一部分可通过饮食调理来控制。蚕豆病,是由遗传性因素导致体内缺乏6-磷酸葡萄糖脱氢酶所致。故患者不能吃蚕豆及其制品,特别是新鲜的蚕豆,否则会引起急性溶血性贫血,严重时会危及生命。值得注意的是,具有6-磷酸葡萄糖脱氢酶缺陷的人,不仅可因吃蚕豆引起溶血性贫血,同时对某些药物,如伯氨喹啉、阿的平,以及磺胺、呋喃类和解热镇痛剂等药物过敏,用药时必须特别慎重。这类遗传病只要避开这些食物和药物,就不会发病。 苯丙酮尿症是由于患者肝脏内苯丙氨酸羟化酶缺乏,苯丙氨酸不能转化为酪氨酸,只能转变为苯丙酮酸,血中苯丙氨酸的浓度增高。患儿除了从小便中排出苯丙酮酸而称为苯丙酮尿症之外,主要是由于血中大量的苯丙氨酸使脑细胞的发育和功能受到影响导致智力低下。预防发病,只需尽早(出生后3个月内)采取限食疗法。婴儿确诊后饮食应以米粉及奶糕为主食,随着患儿年龄增长,可选用大米、小米、大白菜、土豆及菠菜等,如有条件,可给予特殊制备的低苯丙酸蛋白质食物。一般到8岁左右,饮食限制可适当放宽。半乳糖血症是患者体内由于缺乏葡萄糖-1-磷酸尿苷转移酶,致使患者不能利用半乳糖,所以不能喂人奶和牛奶。因为牛奶中含有乳糖,而乳糖分解后会产生半乳糖。血液中的半乳糖水平过高可能引起脑损伤、肝硬化、白内障,甚至造成死亡。但只要从出生之日起就停止进食乳类食物,改喂谷类或代奶粉等,坚持3年以上,就可以防止发病。肝豆状核变性,此病又称威尔森病,是一种常染色体隐性遗传的铜代谢障碍所引起的疾病。可分为以肝脏损害为主要症状的“肝型”患者和以神经症状为主要的“脑型”患者。因为该病是铜代谢障碍所致,故低铜饮食是治疗的有效措施之一。 此外,果糖不耐症患者需戒食含果糖的糖果和饮料。遗传性低血糖患者只要每天坚持少量多次吃糖就行。患有镰状细胞性贫血的人,当失水时,其细胞就会变成镰刀形,因此病人若每天坚持饮足够的水就有助于缓解症状。
1、命系统的结构层次依次为:细胞→组织→器官→系统→个体→种群→群落→生态系统细胞是生物体结构和功能的基本单位;地球上最基本的生命系统是细胞
2、光学显微镜的操作步骤:对光→低倍物镜观察→移动视野中央(偏哪移哪)
→高倍物镜观察:①只能调节细准焦螺旋;②调节大光圈、凹面镜
3、原核细胞与真核细胞根本区别为:有无核膜为界限的细胞核
①原核细胞:无核膜,无染色体,如大肠杆菌等细菌、蓝藻
②真核细胞:有核膜,有染色体,如酵母菌,各种动物
注:病毒无细胞结构,但有DNA或RNA
4、蓝藻是原核生物,自养生物
5、真核细胞与原核细胞统一性体现在二者均有细胞膜和细胞质
6、细胞学说建立者是施莱登和施旺,细胞学说建立揭示了细胞的统一性和生物体结构的统一性。细胞学说建立过程,是一个在科学探究中开拓、继承、修正和发展的过程,充满耐人寻味的曲折
7、组成细胞(生物界)和无机自然界的化学元素种类大体相同,含量不同
8、组成细胞的元素
①大量无素:C、H、O、N、P、S、K、Ca、Mg
②微量无素:Fe、Mn、B、Zn、Mo、Cu
③主要元素:C、H、O、N、P、S
④基本元素:C
⑤细胞干重中,含量最多元素为C,鲜重中含最最多元素为O
9、生物(如沙漠中仙人掌)鲜重中,含量最多化合物为水,干重中含量最多的
化合物为蛋白质。
10、(1)还原糖(葡萄糖、果糖、麦芽糖)可与斐林试剂反应生成砖红色沉淀;脂肪可苏丹III染成橘黄色(或被苏丹IV染成红色);淀粉(多糖)遇碘变蓝色;蛋白质与双缩脲试剂产生紫色反应。
(2)还原糖鉴定材料不能选用甘蔗
(3)斐林试剂必须现配现用(与双缩脲试剂不同,双缩脲试剂先加A液,再加B液)
11、蛋白质的基本组成单位是氨基酸,氨基酸结构通式为NH2—C—COOH,各种氨基酸的区别在于R基的不同。
12、两个氨基酸脱水缩合形成二肽,连接两个氨基酸分子的化学键(—NH—CO—)叫肽键。
13、脱水缩合中,脱去水分子数=形成的肽键数=氨基酸数—肽链条数
14、蛋白质多样性原因:构成蛋白质的氨基酸种类、数目、排列顺序千变万化,多肽链盘曲折叠方式千差万别。
15、每种氨基酸分子至少都含有一个氨基(—NH2)和一个羧基(—COOH),并且都有一个氨基和一个羧基连接在同一个碳原子上,这个碳原子还连接一个氢原子和一个侧链基因。
16、遗传信息的携带者是核酸,它在生物体的遗传变异和蛋白质合成中具有极其重要作用,核酸包括两大类:一类是脱氧核糖核酸,简称DNA;一类是核糖核酸,简称RNA,核酸基本组成单位核苷酸。
17、蛋白质功能:
①结构蛋白,如肌肉、羽毛、头发、蛛丝
②催化作用,如绝大多数酶
③运输载体,如血红蛋白
④传递信息,如胰岛素
⑤免疫功能,如抗体
18、氨基酸结合方式是脱水缩合:一个氨基酸分子的羧基(—COOH)与另一个氨基酸分子的氨基(—NH2)相连接,同时脱去一分子水,如图:
HOHHH
NH2—C—C—OH+H—N—C—COOHH2O+NH2—C—C—N—C—COOH
R1HR2R1OHR2
19、DNA、RNA
全称:脱氧核糖核酸、核糖核酸
分布:细胞核、线粒体、叶绿体、细胞质
染色剂:甲基绿、吡罗红
链数:双链、单链
碱基:ATCG、AUCG
五碳糖:脱氧核糖、核糖
组成单位:脱氧核苷酸、核糖核苷酸
代表生物:原核生物、真核生物、噬菌体、HIV、SARS病毒
20、主要能源物质:糖类
细胞内良好储能物质:脂肪
人和动物细胞储能物:糖原
直接能源物质:ATP
21、糖类:
①单糖:葡萄糖、果糖、核糖、脱氧核糖
②二糖:麦芽糖、蔗糖、乳糖
③多糖:淀粉和纤维素(植物细胞)、糖原(动物细胞)
④脂肪:储能;保温;缓冲;减压
22、脂质:磷脂(生物膜重要成分)
胆固醇、固醇(性激素:促进人和动物生殖器官的发育及生殖细胞形成)
维生素D:(促进人和动物肠道对Ca和P的吸收)
23、多糖,蛋白质,核酸等都是生物大分子,
组成单位依次为:单糖、氨基酸、核苷酸。
生物大分子以碳链为基本骨架,所以碳是生命的核心元素。
自由水():良好溶剂;参与生物化学反应;提供液体环境;运送
24、水存在形式营养物质及代谢废物
结合水()
25、无机盐绝大多数以离子形式存在。哺乳动物血液中Ca2+过低,会出现抽搐症状;患急性肠炎的病人脱水时要补充输入葡萄糖盐水;高温作业大量出汗的工人要多喝淡盐水。
26、细胞膜主要由脂质和蛋白质,和少量糖类组成,脂质中磷脂最丰富,功能越复杂的细胞膜,蛋白质种类和数量越多;细胞膜基本支架是磷脂双分子层;细胞膜具有一定的流动性和选择透过性。将细胞与外界环境分隔开
27、细胞膜的功能控制物质进出细胞进行细胞间信息交流
28、植物细胞的细胞壁成分为纤维素和果胶,具有支持和保护作用。
29、制取细胞膜利用哺乳动物成熟红细胞,因为无核膜和细胞器膜。
30、叶绿体:光合作用的细胞器;双层膜
汗。。不会写。。你自己加油吧。。。
论文中引用专有名词怎么才能不被查重
论文查重是各大高校纠正学生学术行为的必要手段。其目的主要是提高每个人的专业水平,最终满足大学要求的毕业条件。很多同学在查重论文的时候会感到困惑,论文查重专业术语在检测范围内吗?接下来我们来了解一下这个问题。
论文查重专业术语是否在检测范围内?
1.当论文中直接使用的专业术语包含在文本中时,它将被纳入查重的检测范围,如果专业术语的定义和概念,一般是不会被纳入重复率范围内的。
2.如果专业术语的定义和概念设置正确,论文查重系统会自动识别,但如果格式不正确,检测时会将这部分内容纳入查重范围。因此,建议大家注意其正确的格式。另外,查重网站不正规的情况下,专业术语可能也会计算重复率。所以查重网站的选择也是大家需要注意的。
论文查重网站如何查重?
1.论文查重根据论文划分章节以后,会分章节进行重复率检测,然后计算整篇重复率。章节的区分通常是基于目录,所以目录格式的设置也很重要。
2、不同论文查重网站的规则和标准有很大区别,一般查重系统规则是如果13个字符连续重复,就会被认为重复。
一
“雨人”是一种患上了严重的神经发育疾病,我们叫自闭症。自闭症在医学上也被称为孤独症。孤独症是我国南京医科大学陶国泰教授命名的,所以我们很多时候为了纪念他,在中国又称之为孤独症。在医学上谁最早发现的呢?是由美国约翰霍普金斯大学的肯纳教授。
在肯纳教授1943年发现之前,这个世界有没有自闭症?肯定有,所以其实我们谈论的是一种疾病在医学上被定义,而不是这个疾病的产生。我相信这个疾病自古就有,自打人类的产生就会出现。
那么我们还会听到一种病,大家看到自闭症有时候被分几种,达斯汀·霍夫曼演的雨人有计算的天才,是不是每一个自闭症的孩子都会有计算天赋呢?当然不是。
这种智商天赋跟自闭症有什么关系呢?大家看到其实它们并不是平行的关系,纵坐标是所谓的智商跟天才,横坐标就是自闭症发病的症状的严重性,从左边到右边:左边是严重;右边是轻度。
在这四个象限里面,代表着三到四种不同的患自闭症的孩子:左上角我们看到这种就是达斯汀·霍夫曼扮演的“Rain man”,它叫高功能自闭症,他的症状很严重,但同时有一部分天才;右上角我们叫阿斯伯格综合征,他们的症状略轻,但同时也有计算的天才。
70%~80%的自闭症孩子,都属于中间这个区域,其实并没有明显的或者还没有表现出这种小天赋,甚至在某些程度上还有智力的障碍。
二
让我们来认识一下“阿斯伯格综合征”,这是由阿斯伯格医生发现的。阿斯伯格医生是奥地利维也纳大学很有名的医学教授,我们知道上个世纪30年代的维也纳是全世界医学的中心,诞生了很多有名的大家,比如说弗洛伊德。
当时阿斯伯格医生以德文撰写文献。他发现有这么一类孩子,都是男孩儿,他们有很多小天赋又不喜欢与人交往,整天待在很封闭的内心世界,他把那些小男孩儿称为“小教授”,叫“little professor”。
他用德文撰写的文献,直到十九世纪六十年代才被英国科学家发现,后来就将这种疾病命名为阿斯伯格综合征,为了纪念他。但是大家想过没有,阿斯伯格医生发现的难道只是具有天才的自闭症吗?他们为什么从来没有发现不具有天才的自闭症孩子呢?
我们知道有天才的自闭症孩子,其实只是一小部分对不对?当时为什么从来没有报道过呢?是因为1930年代末的奥地利已经被纳粹德国吞并了,这是一个医学和社会学的悲剧。当时的纳粹德国奉行“积极优生学”,所谓“积极优生学”就是认为有生殖缺陷的孩子,他不值当社会为之耗费能源。
他们会怎么样呢?会把他送进类似于像集中营那样的机构。还不是犹太孩子,就是一般的德国孩子,如果出现先天性的出生缺陷,比如肢体缺陷、智力缺陷、神经发育缺陷,他们会被送进像集中营一样的医院,让孩子慢慢地去世。这是医学界和社会的悲剧。
所以当时阿斯伯格医生也是众多被纳粹德国、被希特勒洗脑的医生之一,他为什么没有出来报道呢?是因为他把具有智力障碍的这些自闭症孩子,其实都送进了所谓这些医院了。
经过了80年,我们知道,其实自闭症孩子并不是不可教育的,教育他们并不是浪费社会的资源,这个后面我会给大家提到。这个也是人类社会花了80年才认识到的,非常不容易。
到现在为止,我们已经很高兴看到全世界都在关注自闭症问题,2007年联合国将4月2号命名为“自闭症的全世界关注日”。
关于自闭症的患病率,有各种说法,美国最新的是1/68,还有英国、韩国、全世界等等不同的数据。中国的最新的患病率,我相信也将在今年由卫生部牵头的各大中心的督察会颁布。
如果每出生68个孩子里面,就有一个自闭症的患儿,那对于人类社会的影响是非常之大的,所以自闭症和孤独症才成为唯一一个连续三次登上美国顶尖的《时代周刊》《新闻周刊》,被全美国社会关注的一种重要疾病。
三
自闭症究竟怎么产生的呢?是不是我们看到某些新闻上写的疫苗、重金属呢?经过严格的医学的科学的实验,我们已经知道自闭症是与基因有关的。
在上个世纪70年代,英国的一个著名的研究发现“21例双生子”——他家里面有21例两个或者三个这种自闭症孩子,发现如果是同卵双生子和异卵双生子的话,他们患自闭症的机率会大大增加,在同卵双生子中一个孩子患自闭症,另外一个患自闭症的机率高达60%以上。
所以这里我们可以学到两点:第一,它肯定是与基因有关的,因为同卵双生他们基因是一模一样的;第二,它又很复杂,不是简单的黑与白的关系,如果是黑与白的关系,那同卵双生一个得病,另外一个肯定会得病,所以我们科学家研究经过了数十年还没有得到清楚答案。
自闭症是一个基因决定的,同时又是基因与环境共同决定的,一种非常复杂的遗传性精神疾病。
知道它与基因有关的话,怎么来寻找这个自闭症的致病基因呢?这又是一个非常艰难的科学问题。我们可以想象在上个世纪70年代,当医生刚刚发现这个双生子有可能提示自闭症跟基因有关的时候,家长就会问“请你把我的孩子的自闭症基因找到,好不好?”
直到1980年之前,科学家还只能用显微镜去观察染色体的畸变,比如说是多了一条、少了一条,还是一块发生了畸变,我们还没有办法对单个基因进行测序。但经过数十年人类基因测序的飞速进展,包括人类基因组计划,我们现在已经可以用全基因组连锁分析、关联分析以及最近的全基因组的和全外显子组的测序。
大家已经生活在一个“千元基因组的时代”“千元外显子的时代”。经常会出来这种广告——花一千元或者几千元,可以得知你基因组的某些信息。这些都象征着我们人类在快速地走进一个获知我们自身遗传信息的时代。
获取这些信息对我们探究这些遗传疾病的原因有什么关系?我们就可以知道这个基因是如何突变的。基因的突变分两种:一种叫“编码突变”;第二种叫“拷贝数的变异”。
所谓“编码突变”,举个例子,我们研究的一个基因叫MECP2,这个基因的编码突变导致了小女孩会患一种严重的神经发育疾病——瑞特综合征——小女孩大概1岁的时候,就患上严重的癫痫而且无法说话,很多时候不能行走、生活不能自理。
患瑞特综合征的女孩,96%以上都有这一个基因的突变,各种编码区的突变破坏了对蛋白质的功能,影响了女孩大脑的发育,这才得病了。这是科学家花了20年获知的。
另外一个方面,如果这个基因变多会怎么样?我们知道这个变少会让女孩得病,但最近2009年科学家也知道,这个基因的变多会让男孩儿患上严重的自闭症。
大家看到左边,这些都是患有严重自闭症的孩子,他们的特点就是红框里面,这个MECP2的基因变多,从一份变成了两份,所以这个就给我们提供了一个很重要的窗户:可以认识到。一个基因的变多就可以让孩子患上那么严重的自闭症。
究竟一个基因让他们大脑发生了什么变化呢?这个是我们的研究,在这之前先给大家简介一下:我们可以通过检测基因来寻找遗传病的原因,那么我们是不是每个人都应该去做基因检测、去测我们的基因组,看一看我们有没有可能患上某些疾病呢?
如何认识这个问题,我举一个例子:比如说唐氏综合症,大家知道这叫21三体,用最经典的方法,在显微镜下如果看到某位孕妇的孩子的21号染色体变成三条,医生一定会建议家长终止妊娠,因为我们知道如果21号染色体是三条的话,生出来的小宝宝一定会患上唐氏综合症,会有严重的智力障碍而且目前还没有药可以解救。
而且这个可以在孕期头三个月就发现,此时终止妊娠对孕妇的损伤是非常小的,所以这是一个直接的证据,现在估计每个孕妇基本都会做,因为25岁以上、35岁以上,孩子有唐氏综合症是有一定机率的,35岁以上有1/300,还是不小的。花费相当便宜的价格,就可以排除这么危险的因素。
那么有遗传突变,会不会一定得病呢?不一定。著名的影星安吉丽娜·茱莉,她母亲跟她姐姐都患上严重的乳腺癌。她对自己的一个基因进行了测序,这个基因的名字叫BRCA,这个基因已经被证明与乳腺癌、妇科肿瘤关系非常密切,她发现自己的BRCA基因跟自己妈妈和姐姐的基因都含有同样突变,那意味着什么?
医生就给她一个建议:经过研究发现你有同样的突变,鉴于您的妈妈、姐姐已经患上严重的乳腺癌了,我们认为您以后患乳腺癌的机率是70%。这个数字是一个非常准确的估计,不是说一定,而是百分之七十几。
对于我们一般人来说,百分之七十几是一个非常令人害怕的数字,对不对?而且一旦罹患乳腺癌跟妇科疾病还是比较致命的,所以安吉丽娜·茱莉采取了一个非常勇敢的举措,她马上切除了自己的乳房跟子宫,这也是一个她自己的决定。虽然这个基因的突变不一定会导致她马上患恶性的癌症,但是提示她患癌症的可能性是非常之大的。
所以如果有肿瘤家族史,我们是非常建议去进行这种重要基因的突变检测,能够告知你潜在的风险、提早做好预防工作,但是你一定要明白携带这个肿瘤基因的突变,并不一定会患肿瘤、患癌症,这还不是一个清楚的关系。
四
就像自闭症一样,有时候很多自闭症的基因并不一定像MECP2一样,我们刚才说MECP2这个基因,只要一倍增他一定会患自闭症;但是其他很多基因它突变以后并不一定会患自闭症,所以这是一个很复杂的关系。
目前自闭症的诊断,还是完全依赖临床的诊断。大家肯定很沮丧,为什么我们不能准确地认识呢?为什么我们不能像黑和白一样到医院就能马上诊断这个孩子是不是患有自闭症呢?但是很抱歉地告诉大家,这还是科学和医学发展的一个历程,为什么呢?
因为自闭症是跟抑郁症和情感障碍,以及多动症和精神分裂一类的精神疾病,精神疾病其实都是很少有客观性的指标的,不是验个血、验个尿液、验一个心跳就能知道的。所以如果说您看到所谓有自闭症的产前筛查,听过这个讲座您要明白这是商家利益陷阱,是人的。
所以怎么样对幼儿进行自闭症遗传风险的评估呢?我们可不可以预知一下我的孩子有没有可能患自闭症?这个要依托于我们基础科研跟医生的一些共同的努力,就像安吉丽娜·茱莉接受了美国医生的咨询那样,要经过医生严格的咨询,要听医生的,不要听除了医生以外的其他人。我们也只能通过医生给您一个建议。
怎么样寻找中国自闭症患者中的致病基因呢?这是一个非常重要的问题,中国是全世界这么一个人口大国,我们中国有多少自闭症的患儿,是令人觉得焦虑的数字。
我们从过去两年到三年中已经启动了一个全中国大规模的外显子测序的计划,众多医院开始了工作,比如上海的精神卫生中心儿科医院、新华医院和山东大学齐鲁儿童医院等等。
但是就像我提到的一样,自闭症的基因检测工作其实是非常难的工作,有突变还不一定患病,可能是众多基因患病,怎么办呢?所以我们现在正在采取像AlphaGo一样的人工智能和深度学习的方法,来帮我们认识这样一种复杂的精神遗传疾病。
讲一下现在开展的研究,我们刚刚开始,但是美国、欧洲已经开展了20年,特别是在过去的5年之内,美国、欧洲开展了大量的全基因组测序:他们收集了成千上万例美国和欧洲的自闭症的孩子的样本来寻找基因。
目前已经发现了多达一百多种与自闭症相关的基因,怎么研究呢?这么一百多种基因又有什么规律呢?他们经过研究发现这一百多种基因大多数都编码一些重要的蛋白质,这些蛋白质关系到我们神经突触的连接。
我们的神经元跟神经元之间是通过纽扣一样的结构联系起来的,这种联系是可塑性的,可以被我们的认知所变化,所以这种联系就会与我们日常的行为跟认知非常相关。所以这提出了一种非常明确的假设——大脑神经网络连接的破坏很有可能是导致了自闭症的原因。
五
科学家怎么样来研究呢?就像刚才沈老师说的一样,我们需要通过动物模型,我们找到了在自闭症病人中的潜在的致病基因,怎么证明这些基因确实会引起自闭症呢?
首先美国科学家做了一个实验,把在人类小男孩儿中可以引起自闭症的基因MECP2做了一个转基因小鼠,最左边是一个正常小鼠,左边第二个是一个携带有人类MECP2基因的小鼠,这个好像跟人的自闭症孩子一样很多时候有重复刻板的行为,我们给小鼠做了一个社交实验,给小鼠做一个选择——你是喜欢跟同伴一起玩?还是一个人呆着?
小鼠跟人一样,也是喜欢跟同伴一起玩,像左边这样喜欢跟另外一只关在笼子里面的小鼠呆在一起,尽管它碰不到,而不喜欢在右边一个人呆着;但是携带有人类MECP2基因突变的小鼠,却表现出它不太喜欢跟同伴呆在一起,提示MECP2这个基因在小鼠里面很可能能导致这种类似的症状。
但是小鼠跟我们人的大脑,还是有巨大差异的。这是一个等比例图,人类大脑和小鼠大脑差得是多么之大。所以我们觉得可不可以这样:用跟人很相像的,我们的表亲猕猴模型,模拟人类复杂的精神疾病呢?
我们过去几年的一个工作就是将影响人类患上自闭症的MECP2基因转到猴子的基因组里去。这个是分别于2011年和2014年诞生于我们中科院上海神经科学研究所的转基因猴。大家想不想知道这个转基因猴会怎么样?它们会像人类患有自闭症吗?
大家发现左边右边的猴子有什么不一样吗?待一会儿你会明显的看到。一般我们说猴子坐不住,是吧?猴急猴急的,像左边这样它会爬来爬去、上窜小跳,很调皮的。但是右面这只猴子却很固执地走一个圆圈而且不掉头,它一旦固定了就不会掉头。
其实右边这只猴子就是携带了我们人类MECP2基因的一只转基因猴。所以通过这样转基因猴的研究方法,我们证明了MECP2转基因的猴可以让他患有重复刻板的行为。
我也想知道,当猴子携带有人类的MECP2基因以后,它会不会像自闭症小朋友一样,不喜欢跟其他小猴子交往呢?左边大家看到两只小猴子坐在一起,这是我们认为猴群里面一个社会交往的行为,它们会坐在一起,我们叫并坐行为。
右边两只我们已经知道它是转基因猴了。科学实验是非常枯燥乏味的,我们这个实验看上去很简单,分了不同年龄做了三年,每年做一次,每次要做很长很长时间,做这个实验的同学每天的工作就是坐在那看电脑。现在我们有一些自动分析的方式,几年前还是人工的方式 。
大家看到右边这两只猴子,有时候会很近,物理距离会很近、会挨着,但是很少会坐在一起、表示出很亲密的这样一种状态。所以通过数年的研究,我们反复地重复各种各样的行为,我们认为得到了这样一种自闭症的猕猴的模型,为我们研究自闭症提供这样一种工具。
怎么样通过转基因猴来研究这个自闭症呢?我们想回答这么一个科学的问题——一个基因的变多,怎样改变我们人类大脑? 因为人的大脑不能直接研究,所以我们问的是一个基因变多,怎么改变灵长类大脑?
猕猴跟灵长类大脑还是非常相象的,monkey是猴子,hunan是人,想通过这样转入只有一个基因的转基因猴的大脑核磁共振成像研究,我们就有可能知道一个自闭症的基因怎么样改变我们灵长类的大脑。
知道以后我们想能不能通过一些潜在的“干预”的方法呢?怎么来干预这个脑疾病呢?我们知道脑疾病是非常复杂的,大家看到这个是我们的一个梦想之路,还没有走通是一个梦想。什么叫“精准医学”?
首先我们需要寻找这种神经疾病的原因,很多原因是由基因导致的,有了基因以后,我们需要建立模型,这是小鼠,我们还可以建立猕猴模型,最终我们需要像沈老师那样寻找药物的靶点,最终在人类的病患里进行临床的实验。
对于我们大脑疾病来说,在什么平台、什么动物里进行这个实验,就非常重要了。就像我刚才说的,小鼠它也会有非常复杂的认知行为,但是自闭症这样一种复杂的精神疾病,我觉得如果想在人体里进行临床实验的话,还必须在猴子身上得到一些实验,最终才能帮助我们对自闭症的孩子有更多有效的干预。
比如说对于脑疾病的干预 ,我们目前有效的手段并不是很多,有种干预的方法叫“深脑电刺激”,是把一种很纤细的电极植入病人的大脑,这个病人是帕金森症。
我们知道重症帕金森症,很多时候病人肢体震颤以及凝固,比如上台阶都不行,那么通过这种DBS的深脑电刺激治疗,就能显著地改善,像奇迹一样,本来肢体震颤很厉害,通过这种纤细电极的植入,戴上这样一个脑起搏器,一开开关,这种震颤就奇迹般地停止了。
所以发明这个深脑电刺激方法的两位美国科学家,已经在2014年获得了拉斯克奖。这样一种很有意思的方法,大家觉得好像在大脑里插电极很恐怖是吗?其实并不是,我们上海瑞金医院、很多医院都可以做,做完以后并不影响日常的生活,平常的生活质量还是非常高的。
所以可不可以用很多这种我们现在正在发展的,我们叫“神经调控”的方法,来干预我们大脑的功能、治疗我们的疾病呢?也是我们接下来研究的重点之一。
所以我还有个梦想是,我们可不可以改变猴子的基因呢?我们给他多的就是基因,那可不可以用基因编辑的方法,去把多的基因给剔掉,然后是不是这个原来打圈的这个猴子就不打圈了,是吧?所以这都是我们正在开展的研究,也希望有机会以后跟大家分享。
最重要的,我觉得还希望跟大家分享,就是说我们的研究并不是冷冰冰的疾病。2009年回国以后,一开始我就不敢说我是做自闭症的,因为觉得不是做疾病研究的。后来发现做着做着很多病人的家长、医生,包括公益团体都会来找到我,我觉得这是一个超越了基础研究的一些使命,需要我们科学家、医生、公益团体、家长以及自闭症儿童共同的努力。
六
最后给大家介绍一下,我最近在看一些书,我想知道美国1943年肯纳医生定义了自闭症以后,美国社会发现了什么?什么时候会像现在一样对自闭症那么宽容了?一开始就那样吗?美国社会怎么来认识自闭症的?
跟大家分享一下我自己编的一个简易编年史,先是科学再是社会,第一个1938年奥地利的阿斯伯格医生发现了具有社交功能缺陷但是有天赋的男孩儿;1943年肯纳医生发表了第一篇论文,描述了11个自闭症孩子,但是很遗憾,当时肯纳医生他还没有认识到自闭症是先天疾病,还没法认识到是基因决定的疾病,于是认为是父母教养的关系。
想想看其实我觉得当时也不怪他,因为当时一九四几年二战刚打完,所有跟基因有关的事情都被认为是叫“积极优生学”,很糟糕,所以与其认为是基因上有了问题,简直就是被判了死刑,还不如认为是后天的问题。后天怎么办呢?肯定是父母教养的不当。现在我们知道是这一个非常错误的认识,父母已经遭受了孩子患病这样一种打击了,还要遭受医生对他的指责。
后来Rimland博士自己就是自闭症孩子的家长,他发表了这样一本书,找到了很多很多的孩子和家长,他发现家长对他们都是很有爱的,不是因为父母教养的问题,后来又经过反复的争论,最终肯纳医生在医学大会上承认自闭症是一种先天的疾病。
后来1977年双生子研究,科学上提供了第一个证据,认为自闭症是跟基因相关的。后来还发生了一个乌龙,认为它是跟疫苗相关的,我这里就不多提了。最后2012年,全基因组测序和外显子测序被首次用在自闭症的基因测序中,最终这个研究走向了科学的轨道。
给大家分享一下故事,1933年第一位被医生确诊的孩子出生了,他的名字叫Donald,我认为他是一位最幸福的自闭症孩子。为什么呢?
因为他出生在美国中部一个小城市,他家境很殷实,家里是开银行的,在美国中部环境又非常简单,他不需要与社会有很多冲突,在小镇上只有几千人,所有人都认识他、所有人都很宽容他,他上了小学中学还上了大学,他上完大学以后就回到他的家乡,找了一份工作,他也不需要工作,他只是半天上班,半天去打高尔夫球,我认为他是全世界最幸福的一位自闭症孩子,他现在已经80多岁了,还健在。
但是很遗憾,我觉得全世界所有的自闭症孩子都没有他幸福。为什么呢?1962年英国的自闭症家长成立这样一个协会,为什么成立协会?像美国后来也成立了协会,因为在当时的美国,就好像现在的中国一样,自闭症家长是孤立无助的,这种康复机构也很少,医学的医生也很少——全美国就这么几个医生能看——找谁呢?所以当时的家长团结起来,成立这样一个协会,就是为了去争取利益。
大家看到左边这个是1974年罗纳德里根——当时还是州长,后来是总统——签署了《自闭症儿童公平教育法令》,当时的十九世纪六十年代和七十年代的美国,自闭症孩子是不允许进入公立学校的,认为不可以教育,也是有点那个意思。
后来自闭症家长团队起来,去状告美国政府,首先是宾州政府成功了,因为他们发现自闭症孩子确实是可以教育的。所以一系列政策都是因为自闭症家长奋斗产生的,好多家长团体向律师去状告取得的成功等等。
包括后来的《雨人》,这都是美国社会一步一步怎么样来接纳自闭症、认识自闭症,对他们表示宽容的一种历程,我觉得我们中国通过他们的历程,可以学到很多、避免走很多弯路。
最后值得提的是美国最大的一个对冲基金的头,叫Jim Simons,他其实是一个数学家,他开的全美国最成功的一个对冲基金,但他的孩子也是一个自闭症,他的女儿是一个明确的自闭症患者。他2003年成立了美国最大的自闭症研究基金会,专门用于研究自闭症的科学研究,所以从那以后,自闭症的研究也走上了科学的道路。
2007年联合国颁布了“自闭症关注日”,从全世界都开始非常关注这种疾病。那么这也是一个需要跟大家分享的,在上海的一个公益团体。这是上海有名的曹鹏先生,他今年已经94岁高龄了,他们每周都会在建国新路少年宫里面,开一个天使之音音乐沙龙,他们从2008年开始,已经做了9年了。
很多孩子一开始去那的时候症状非常明显,经过数年参加这个沙龙、参加活动到现在可以上台演奏,我去参加了好多次他们的活动,非常令人感动,所以我想大家以后有机会的时候,看一下天使之音音乐沙龙的孩子们的演奏。
还有一个是几年前发现有这样一个公益店,叫金羽翼,讲了康康这样一个故事。康康当时只有十几岁,他画了很多画,这些画都被金羽翼放在网上义卖,大家看到他的画很漂亮,还有其他好多一些孩子画的非常漂亮等等。北京的金羽翼的公益店就帮助自闭症的孩子去画画,然后帮他们做日历义卖。我还在我们所里办过这种义卖。
康康他的妈妈后来我们认识了,她叫邹文女士。康康一开始是一个非常严重的自闭症孩子,非常严重,跟最严重的自闭症孩子没什么两样。但今年已经18岁,可以生活自理,可以到市场买菜给他父母做一顿饭。
更多有关自闭症相关知识点击网页链接了解更多。
开始-所有程序-附件-画图
系谱图,是运用系谱法对生物单基因性状进行分析而绘制的辅助图。
要求:系谱图通常必须给出的信息:性别、性状表现、世代数、亲子关系、代数以及每一个体在世代中的位置。
功能:利于杂交育种、单基因遗传病研究。
这是一个简单的系谱图
遗传缺陷主要分为躯体缺陷、智力缺陷、精神缺陷、发育缺陷、功能缺陷五种。根据生命是在遗传的基础上发生变异的基本原理,兄妹同胞之间生育的孩子不能成人,因为双方是同一个父母,双方的遗传基础一样,后代会无法获得变异,从而会出现白痴、智障等,也就是染色体会缺陷。精神分裂症和抑郁症是一种明显的精神缺陷,这些病人在民事能力和劳动力上都有丧失,且药物治疗作用浅在。尽管双方的血缘关系很近,但双方的遗传基础还有很多不同之处,后代还会发生一定的变异,病人有智力但没有民事能力,实际就是精神病的表现。通过分子遗传学、生命科学向医学的不断介入,人类遗传病最终都会将得到诊断和治疗。 遗传病不一定都是家族式,遗传病人的后代不一定会代代遗传,如果后代在婚配时,主动选择与自己血缘关系无关且没有共同的遗传病的,后代会随着代代进化,最终会变成正常人。遗传病通常具有终身性的特点。单基因遗传病:是一种相对轻微的遗传病,不存在致愚致残和致死性。本病不是三代近亲直接造成,是三代以外的婚配或重性遗传病在经数代进化后的后代。1种病由1对等位基因缺失或畸变,发现单基因遗传病有上千种,如先天弱视、斜视、近视、耳聋、狐臭、嗅盲、色盲症、早衰症、先天哮喘病、静脉曲张、青光眼、平足、并指、六指症、血友病、皮肤病雀斑、多毛症、牙齿过早脱落症,多发性结核、成骨不全症、 牛皮癣 、高胆固醇血症、多囊肾、神经纤维瘤、视网膜母细胞瘤、腓肌萎缩症、软骨发育不全、上睑下垂、白化病、着色性干皮病、鱼鳞症、眼球震颤、视网膜色素变性、抗维生素D佝偻病等.........。多基因遗传病;:每种病与多对基因缺失或畸变有关,具有一定的遗传性,主要与近亲生育有关(三代以内,兄妹同胞以外),病种不多,但对人的危害相对较重。如精神病、癫痫病、精神分裂症、抑郁症、恐惧症,脊柱裂、无脑儿、唇裂、腭裂、多发畸形等。 染色体病:(染色体异常所致的遗传病)主要是兄妹近亲乱伦的产物。上百种。包括先天愚型、特纳氏综合征、克氏综合症、猫叫综合征、 两性 畸形、唐氏综合症等。有致死、致愚、致残性。多因子病:多因素共同作用的疾病,如糖尿病、高血压、肿瘤、癌症........。一个最为有效的方法是.禁止近亲结婚或生育:2.有遗传病史的夫妻还要进行遗传咨询,产前诊断,基因诊断,遗传病筛查,基因克隆与器官再造。3。配偶有血缘关系的,应禁止生育。 中学常考遗传病: 常染色隐性遗传: 白化病 先天性聋哑 苯丙酮尿症 镰刀型贫血症 伴X隐性遗传: 进行性肌营养不良 红绿色盲症 血友病 常染色体显性遗传病: 多指 并指 软骨发育不全 伴X显性遗传病: 抗维生素D佝偻症 伴Y遗传人类外耳道多毛症染色体异常先天愚型(21三体综合征)
有些遗传病饮食可控制遗传学研究的迅速发展,不仅提示了许多遗传病的发病机理,而且对遗传病的预防和治疗也拟定出许多有效措施,使遗传病逐步变为“可治之症”,其中一部分可通过饮食调理来控制。蚕豆病,是由遗传性因素导致体内缺乏6-磷酸葡萄糖脱氢酶所致。故患者不能吃蚕豆及其制品,特别是新鲜的蚕豆,否则会引起急性溶血性贫血,严重时会危及生命。值得注意的是,具有6-磷酸葡萄糖脱氢酶缺陷的人,不仅可因吃蚕豆引起溶血性贫血,同时对某些药物,如伯氨喹啉、阿的平,以及磺胺、呋喃类和解热镇痛剂等药物过敏,用药时必须特别慎重。这类遗传病只要避开这些食物和药物,就不会发病。 苯丙酮尿症是由于患者肝脏内苯丙氨酸羟化酶缺乏,苯丙氨酸不能转化为酪氨酸,只能转变为苯丙酮酸,血中苯丙氨酸的浓度增高。患儿除了从小便中排出苯丙酮酸而称为苯丙酮尿症之外,主要是由于血中大量的苯丙氨酸使脑细胞的发育和功能受到影响导致智力低下。预防发病,只需尽早(出生后3个月内)采取限食疗法。婴儿确诊后饮食应以米粉及奶糕为主食,随着患儿年龄增长,可选用大米、小米、大白菜、土豆及菠菜等,如有条件,可给予特殊制备的低苯丙酸蛋白质食物。一般到8岁左右,饮食限制可适当放宽。半乳糖血症是患者体内由于缺乏葡萄糖-1-磷酸尿苷转移酶,致使患者不能利用半乳糖,所以不能喂人奶和牛奶。因为牛奶中含有乳糖,而乳糖分解后会产生半乳糖。血液中的半乳糖水平过高可能引起脑损伤、肝硬化、白内障,甚至造成死亡。但只要从出生之日起就停止进食乳类食物,改喂谷类或代奶粉等,坚持3年以上,就可以防止发病。肝豆状核变性,此病又称威尔森病,是一种常染色体隐性遗传的铜代谢障碍所引起的疾病。可分为以肝脏损害为主要症状的“肝型”患者和以神经症状为主要的“脑型”患者。因为该病是铜代谢障碍所致,故低铜饮食是治疗的有效措施之一。 此外,果糖不耐症患者需戒食含果糖的糖果和饮料。遗传性低血糖患者只要每天坚持少量多次吃糖就行。患有镰状细胞性贫血的人,当失水时,其细胞就会变成镰刀形,因此病人若每天坚持饮足够的水就有助于缓解症状。
遗传与变异 ---新形式下的基因突变 ( 2005动物科学院 X X X ) 摘要:染色体:1、染色体的结构 有丝分裂中期,每一染色体都具有两条染色单体,称为姐妹染色体。两单体之间由着丝粒连接,着丝粒处凹陷缩窄,称初级缢痕。着丝粒将染色体划分为短臂(p)和长臂(q)。在短臂和长臂的末端分别有一特化部位称为端粒。某些染色体的长、短臂上还可见凹陷缩窄的部分,称为次级缢痕。人类近端着丝粒染色体的短臂末端有一球形结构,称为随体。2、染色体的类型 人类染色体分为三种类型:中着丝粒染色体、亚中着丝粒染色体和近端着丝粒染色体。3、染色体的数目 人类体细胞(二倍体细胞,2n)染色体数目为46条(23对,2n=46),其中22对为常染色体,1对为性染色体(女性的两条性染色体为形态相同的XX染色体;男性只有一条X染色体,另一条是较小的Y染色体);正常生殖细胞(单倍体细胞,n)是23条染色体(n=23)。 关键词:遗传;变异;基因突变 遗传从现象来看是亲子代之间的相似的现象,即俗语所说的“种瓜得瓜,种豆得豆”。它的实质是生物按照亲代的发育途径和方式,从环境中获取物质,产生和亲代相似的复本。 遗传是相对稳定的,生物不轻易改变从亲代继承的发育途径和方式。因此,亲代的外貌、行为习性,以及优良性状可以在子代重现,甚至酷似亲代。而亲代的缺陷和遗传病,同样可以传递给子代。 遗传是一切生物的基本属性,它使生物界保持相对稳定,使人类可以识别包括自己在内的生物界。 变异是指亲子代之间,同胞兄弟姊妹之间,以及同种个体之间的差异现象。俗语说“一母生九子,九子各异”。世界上没有两个绝对相同的个体,包括挛生同胞在内,这充分说明了遗传的稳定性是相对的,而变异是绝对的。 生物的遗传与变异是同一事物的两个方面,遗传可以发生变异,发生的变异可以遗传,正常健康的父亲,可以生育出智力与体质方面有遗传缺陷的子女,并把遗传缺陷(变异)传递给下一代。 遗传和变异的物质基础 生物的遗传和变异是否有物质基础的问题,在遗传学领域内争论了数十年之久。 在现代生物学领域中,一致公认生物的遗传物质在细胞水平上是染色体,在分子水平上是基因,它们的化学构成是脱氧核糖核酸(DNA),在极少数没有DNA的原核生物中,如烟草花叶病毒等,核糖核酸(RNA)是遗传物质。 真核生物的细胞具有结构完整的细胞核,在细胞质中还有多种细胞器,真核生物的遗传物质就是细胞核内的染色体。但是, 细胞质在某些方面也表现有一定的遗传功能。人类亲子代之间的物质联系是精子与卵子,而精子与卵子中具有遗传功能的物质是染色体,受精卵根据染色体中DNA蕴藏的遗传信息,发育成和亲代相似的子代。 一、遗传与变异的奥秘 俗话说“种瓜得瓜,种豆得豆”,这是生物遗传的根本特征。人类与其他生物一样,在世代的交替中,子女(子代)总是保持着父母(亲代)的某些基本特征,这种现象就是遗传。但子代又会与亲代有所差异,有的差异还很明显。子代与亲代的这植钜炀褪潜湟臁R糯�捅湟焓巧��淖罨�咎卣髦�唬�ü��镆淮��姆敝程逑殖隼础? 遗传和可以遗传的变异都是由遗传物质决定的。这种遗传物质就是细胞染色体中的基因。人类染色体与绝大多数生物一样,是由DNA(脱氧核糖核酸)链构成的,基因就是在DNA链上的特定的一个片段。由于亲代染色体通过生殖过程传递到子代,这就产生了遗传。染色体在生物的生活或繁殖过程中也可能发生畸变,基因内部也可能发生突变,这都会导致变异。 如遗传学指出:患色盲的父亲,他的女儿一般不表现出色盲,但她已获得了其亲代的色盲基因,她的下一代中,儿子将因获得色盲基因而患色盲。 我们观察我们身边很多有生命的物种:动物、植物、微生物以及我们人类,虽然种类繁多,但在经历了很多年后,人还是人,鸡还是鸡,狗还是狗,蚂蚁、大象、桃树、柳树以及各种花草等等,千千万万种生物仍能保持各自的特征,这些特征包括形态结构的特征以及生理功能的特征。正因为生物界有这种遗传特性,自然界各种生物才能各自有序地生存、生活,并繁衍子孙后代。 大家可能会问,生物是一代一代遗传下来,每种生物的形态结构以及生理功能应该是一模一样的,但为什么父母所生子女,一人一个样,一人一种性格,各有各自的特征。又如把不同人的皮肤或肾脏等器官互相移植,还会发生排斥现象,彼此不能接受,这又如何解释呢?科学家研究的结果告诉我们,生物界除了遗传现象以外还有变异现象,也就是说个体间有差异。例如,一对夫妇所生的子女,各有各的模样,丑陋的父母生出漂亮的孩子,平庸的父母生出聪明的孩子,这类情况也并不罕见。全世界恐怕很难找出两个一模一样的人,既使是单卵双生子,外人看起来好像一模一样,但是与他们朝夕相处的父母却能分辨出他们之间的微细差异,这种现象就是变异。人类中多数变异现象是由于父母亲遗传基因的不同组合。每个孩子都从父亲那里得到遗传基因的一半,从母亲那里得到另一半,每个孩子所得到的遗传基因虽然数量相同,但内容有所不同,因此每个孩子都是一个新的组合体,与父母不一样,兄弟姐妹之间也不一样,而形成彼此间的差异。正因为有变异现象,人类才有众多的民族。人们可以很容易地从人群中认出张三、李四,如果没有变异,大家全都是一个样子,社会上的麻烦事就多了。除了外形有不同,变异还包括构成身体的基本物质--蛋白质也存在着变异,每个人都有他自己特异的蛋白质。所以,如果皮肤或器官从一个人移植到另一个人身上便会发生排斥现象,这就是因为他们之间的蛋白质不一样的缘故。 还有一类变异是遗传基因的突变,这类突变往往是由环境中的条件所诱发的,这种突变的基因还可以遗传给下一代。许多基因突变的结果会造成遗传病。 变异也可以完全由环境因素所造成,例如患小儿麻痹症后遗的跛足,感染大脑炎后形成的痴呆等这些性状都是由环境因素所造成的,是因为病毒感染使某些组织受损害,造成生理功能的异常,不是遗传物质的改变,所以不是遗传的问题,因此也不会遗传给下一代。 总之,遗传与变异是遗传现象中不可分离的两个方面,我们有从父母获得的遗传物质,保证我们人类的基本特征经久不变。在遗传过程中还不断地发生变异,每个人又在一定的环境下发育成长,才有了人类的多种多样。 二、遗传变异的科学理论 遗传的分子基础 (一)遗传物质的存在形式 (1)染色体是遗传物质的载体,遗传信息以基因的形式蕴藏于DNA分子中; (2)每个人体体细胞含两个染色体组,每个染色体组的DNA构成一个基因组; (3)广义的基因组包括细胞核染色体基因组和线粒体基因组; (4)人类细胞核染色体基因组中90%左右为DNA重复序列,10%为单一序列; (5)多基因家族是真核基因组中重要的结构之一。 (二)基因的结构及其功能 、真核生物基因的分子结构 (1)、基因的DNA序列由编码序列和非编码序列两部分构成,编码序列是不连续的,被非编码序列分隔开,形成镶嵌排列的断裂形式,因此称为断裂基因;编码序列称为外显子,非编码序列称为内含子; (2)、在每个外显子和内含子的接头区存在高度保守的一致序列,称为外显子-内含子接头,即在每个内含子的5’端开始的两个核苷核为GT,3’端末尾是AG,特称之为GT-AG法则; (3)、真核生物基因的大小相关悬殊,外显子和内含子的关系也不是固定不变的; (4)、DNA分子两条链中,5’→3’链称为编码链,其碱基排列序列中储存着遗传信息;3’→5’链称为反编码链,是RNA合成的模板; (5)、每个断裂基因中第一个外显子和最后一个外显子的外侧都有一段不被转录的非编码区,称为侧翼序列,其上有一系列调控序列,对基因的表达起调控作用。这些结构包括: ①启动子:位于基因转录起始处,是RNA聚合酶的结合部位,能启动基因转录。 ②增强子:位于基因转录起始点的上游或下游,能增强启动子转录,提高转录效率; ③终止子:位于3’端非编码区下游的一段序列,在转录中提供转录终止信号。 、基因的复制 (1)、基因的复制是以DNA复制为基础的,每个DNA分子上有多个复制单位(复制子); (2)、每个复制子有一个复制起点,从起点开始双向复制,在起点两侧各形成一复制叉; (3)、DNA聚合酶只能使DNA链的3’端加脱氧核苷核,故复制只能沿5’→3’方向进行; (4)、与复制叉同向的新链复制是连续的,速度也较快,称为前导链;与复制叉反向的新链复制是不连续的(先要在RNA引物存在下合成一个个冈崎片段,然后在DNA连接酶作用下补上一段DNA),速度也较慢,称为后随链;故DNA的复制是半不连续复制; (5)、复制后的DNA分子都含有一条旧链和一条新链,故DNA的复制又是半保留复制。 、基因的表达 基因表达是DNA分子中所蕴藏的遗传信息通过转录和翻译形成具有生物活性的蛋白质或通过转录形成RNA发挥功能作用的过程。 (1)、转录:是在RNA聚合酶催化下,以DNA为模板合成RNA的过程。 ①新合成好的RNA称为不均一核RNA(也叫核内异质RNA,hnRNA); ②hnRNA要经过“戴帽”和“加尾”以及剪接等加工过程才能形成成熟的mRNA。 (2)、翻译:是以mRNA为模板指导蛋白质合成的过程。 ①mRNA分子中每3个相邻的碱基为三联体,能决定一种氨基酸,称为密码子; ②翻译后的初始产物大多无功能,需经进一步加工才可成为有一定活性的蛋白质。 、基因表达的调控(了解操纵子学说) 、基因的突变 (1)、基因突变的概念:基因突变是DNA分子中的核苷核序列发生改变,导致遗传密码编码信息改变,造成基因表达产物蛋白质的氨基酸变化,从而引起表型的改变。 (2)、基因突变的方式 ①碱基替换 也叫点突变,包括转换和颠换两种方式。其后果可以造成同义突变、错义突变、无义突变或终止密码突变(延长突变)等生物学效应。 ②移码突变 是DNA分子中某一位点增加或减少一个或几个碱基对,造成该位点以后的遗传编码信息全部发生改变。 ③动态突变 微卫星DNA或短串联重复序列,尤其是三核苷酸的重复,在靠近基因或位于基因序列中时,其重复次数在一代一代的传递中会出现明显增加的现象,导致某些遗传病的发生。 (3)、基因突变的修复 ①切除修复 是一种多步骤的酶反应过程,首先将受损的DNA部位切除,然后再合成一个片段连接到切除的部位以修补损伤。 ②重组修复 又称复制后修复,是在DNA受损产生胸腺嘧啶二聚体(T-T)以后,当DNA复制到损伤部位时,再与T-T相对应的部位出现切口,完整的DNA链上产生一个断裂点。此时,在重组蛋白作用下,完整的亲链与有重组的子链发生重组,亲链的核苷酸片段补充了子链上的缺失。重组后亲链的切口在DNA聚合酶作用下,以对侧子链为模板,合成单链DNA片段来填补,随后在DNA连接酶作用下,以磷酸二酯键使新片段与旧链相连接,而完成修复过程。 2、遗传的细胞基础 染色质:在间期细胞核,染色质的功能状态不同,折叠程度也不同,分为常染色质和异染色质两种。1、常染色质 在细胞间期处于解螺旋状态,具有转录活性,呈松散状,染色较浅;2、异染色质 在细胞间期处于凝缩状态,很少进行转录或无转录活性,染色较深;3、性染色质 在间期细胞核中染色体的异染色质部分显示出来的一种特殊结构,有两种:(1)、X染色质 正常女性间期细胞核中有一个染色较深,大小约为10nm的椭圆形小体(了解Lyon假说)。(2)、Y染色质 正常男性间期细胞核用荧光染料染色后,核内可见一个圆形或椭圆形的强荧光小体,直径为3nm左右。 染色体:1、染色体的结构 有丝分裂中期,每一染色体都具有两条染色单体,称为姐妹染色体。两单体之间由着丝粒连接,着丝粒处凹陷缩窄,称初级缢痕。着丝粒将染色体划分为短臂(p)和长臂(q)。在短臂和长臂的末端分别有一特化部位称为端粒。某些染色体的长、短臂上还可见凹陷缩窄的部分,称为次级缢痕。人类近端着丝粒染色体的短臂末端有一球形结构,称为随体。2、染色体的类型 人类染色体分为三种类型:中着丝粒染色体、亚中着丝粒染色体和近端着丝粒染色体。3、染色体的数目 人类体细胞(二倍体细胞,2n)染色体数目为46条(23对,2n=46),其中22对为常染色体,1对为性染色体(女性的两条性染色体为形态相同的XX染色体;男性只有一条X染色体,另一条是较小的Y染色体);正常生殖细胞(单倍体细胞,n)是23条染色体(n=23)。 (三)人类的正常核型:色体数目、形态结构特征的分析叫核型分析。1、非显带核型 根据丹佛体制,将正常人类体细胞的46条染色体分为23对7个组(A、B、C、D、E、F和G组)。在描述一个核型时,首先写出染色体总数(包括性染色体),然后是一个“,”号,最后是性染色体。正常男性核型描述为46,XY;女性为46,XX。2、显带核型 用各种特殊的染色方法使染色体沿长轴显现出一条条明暗交替或深浅相间的带,故又叫带型。根据ISCN规定,描述一特定带时,需要写明4项内容:①染色体号;②臂号;③区号;④带号。 遗传的基本规律:孟德尔提出的分离定律和自由组合定律以及摩尔根提出的连锁与交换定律构成了遗传的基本规律,通称为遗传学三大定律。分离律说的是遗传性状有显隐性之分,这样具有明显显隐性差异的一对性状称为相对性状。相对性状中的显性性状受显性基因控制,隐性性状由一对纯合隐性基因决定。杂合体往往表现显性基因的性状。基因在体细胞中成对存在,在形成配子时,彼此分离,进入不同的子细胞。减数分裂时同源染色体彼此分离,分别进入不同的生殖细胞是分离律的细胞学基础。自由组合律是说生物在形成配子时,不同对基因独立行动,可分可合,以均等的机会组合到同一个配子中去。减数分裂过程中非同源染色体随机组合于生殖细胞是自由组合律的细胞学基础。连锁与交换律是说位于同一条染色体上的基因是互相连锁的,它们常一起传递(连锁律),但有时也会发生分离和重组,是因为同源染色体上的各对等位基因进行了交换。减数分裂中,同源染色体联会和交换是交换律的细胞学基础。 单基因性状的遗传:遗传性状受一对基因控制的,称单基因性状的遗传。单基因性状又叫质量性状。1、决定某种遗传性状的等位基因,在传递时服从分离律;2、当决定两种遗传性状的基因位于不同对染色体上时,这两种单基因性状的传递符合自由组合律。3、如果决定两种遗传性状的基因位于同一对染色体上时,它们的传递将从属于连锁与交换律。 多基因性状的遗传:由多基因控制的性状往往与单基因性状不同,其变异往往是连续的量的变异,称为数量性状。每对基因对多基因性状形成的效应是微小的,称为微效基因。微效基因的效应往往是累加的。多基因遗传性状除受多基因遗传基础影响外,也受环境因素影响。(熟悉多基因遗传假说,了解多基因遗传的特点) 遗传的变异:(一)染色体异常与疾病;染色体异常类;形成机; 数目畸变 整倍性改变 单倍体 多倍体 双雄受精,双雄受精,核内复制 非整倍性改变 亚二倍体 染色体不分离,染色体丢失 超二倍体 结构畸变 缺失(del) 受多种因素影响,如物理因素、化学因素和生物因素等 重复(dup) 倒位(inv) 易位(t) 环状染色体 双着丝粒染色体 等臂染色体 1、一个个体内同时存在两种或两种以上核型的细胞系,这种个体称嵌合体。 2、染色体结构畸变的描述方式有简式和详式两种。 (二)人类的单基因遗传病1、常染色体显性遗传(AD)病 (1)、AD系谱特点:①致病基因位于常染色体上,遗传与性别无关;②患者双亲中至少有一方是患者,但多为杂合体;③患者与正常个体结婚,后代有1/2的发病风险;④系谱中可看到连续传递现象。 (2)、其它AD类型:①不完全显性或半显性,是指杂合体的表现型介于显性纯合体与隐性纯合体的表现型之间;②不规则显性,是指杂合体由于某种原因不一定表现出相应的症状,即使发病,但病情程度也有差异;③共显性,是指一对等位基因无显隐性之分,杂合状态下,两种基因的作用都能表现出来;④延迟显性,有显性致病基因的杂合体在生命早期不表现出相应症状,当到一定年龄后,其作用才表达出来。 2、常染色体隐性遗传(AR)病 (1)、AR系谱特点:①致病基因的遗传与性别无关,男女发病机会均等;②患者双亲往往表型正常,但都是致病基因的携带者,患者的同胞中约有1/4的可能将会患病,3/4表型正常,但表型正常者中2/3是可能携带者;③系谱中看不到连续传递现象,常为散发;④近亲婚配后代发病率比非近亲婚配后代发病率高。 (2)、常见AR病:苯丙酮尿症、白化病、先天性聋哑、高度近视和镰状细胞贫血等。 3、X连锁显性遗传(XD)病 (1)、XD系谱特点:①系谱中女性患者多于男性患者,且女患者病情较轻;②患者双亲中至少有一方是患者;③男性患者后代中,女儿都为患者,儿子都正常;女性患者后代中,子女各有1/2的患病风险;④系谱中可看到连续传递现象。 (2)、常见XD病:抗维生素D性佝偻病。 4、X连锁隐性遗传(XR)病 (1)、XR系谱特点:①人群中男性患者远多于女性患者;②双亲无病时,儿子可能发病,女儿则不会发病;③由于交叉遗传,患者的兄弟、舅父、姨表兄弟和外甥各有1/2的发病风险;④如果女性是患者,父亲一定是患者,母亲一定是携带者或患者。 (2)、常见XR病:甲型血友病、红绿色盲。 5、Y连锁遗传(YL)病 全男性遗传 (三)多基因遗传病 1、有关多基因遗传病的几个重要概念 (1)、易感性 在多基因遗传病中,由多基因遗传基础决定某种多基因病发病风险高低。 (2)、易患性 由遗传基础和环境因素共同作用,决定了一个个体是否易于患病。 (3)、发病阈值 当一个个体的易患性高达一定水平即达到一个限度时,这个个体就将患病,这个易患性的限度称为阈值。 (4)、遗传度 在多基因遗传病中,易患性受遗传基础和环境因素的双重影响,其中遗传基础所起作用大小的程度称为遗传度或遗传率。一般用百分率(%)来表示。 2、多基因遗传病的特点 (1)、有家族聚集倾向,患者亲属的发病率高于群体发病; (2)、随着亲属级别的降低,患者亲属的发病风险迅速降低; (3)、近亲婚配时,子女患病风险增高; (4)、发病率有种族(或民族)差异。 三、遗传与变异在当代 人类基因组计划的工作草图已于今年的6月26日绘制完成,但要将全部30多亿个碱基完全装配完成还需要一段时间,预计要到明年的6月份。即使完成了人类基因组计划的“精图”,也只是我们认识人类基因功能的开始,完全弄清基因的功能及其相互间的作用,至少还要40年的时间。毋庸赘言,这是一项浩繁巨大的工程。 迄今为止,人们对整个人类基因组中所含有的基因数目尚存争议,有人说是3万,有人说是14万,相差非常大。在整个人类基因组序列中,只存在1%的差异,就是这1%的差异导致了人种、肤色、身高、眼睛、胖瘦以及疾病的易感性等方面的不同。科学家除继续研究基因的数量和功能外,基因在多大程度上受外界环境和体内因素的影响以及这种改变是否可以一代代地延续下去,也是需要解决的问题。 上述问题涉及到后成说(epigenetics)这一范畴。后成说是研究通过其他的化学途径,而不是通常所说的碱基突变,使基因活性发生半永久性改变的一门科学。后成说的重要性一直存有很大争议。如果后成说真有科学依据的话,那么它将是解释不同个体之间,甚至不同物种之间存在差异的关键所在,同时还将是疾病发生的一个重要机制。 不同基因的表达:基因含有合成蛋白质的指令,蛋白质合成的过程称为基因表达。但是遗传学家们很早以前就知道通过对DNA链碱基上的化学基团进行修饰来调控基因表达、影响蛋白质的合成。最常见的修饰方式是基因的甲基化(甲基是由一个碳原子和三个氢原子组成的基团),即在基因上添加甲基基团,结果常常会终止基因表达。 科研人员通过对某些哺乳动物的研究发现,此类修饰只存在于个体中,而不遗传给后代,因为这种修饰在精子和卵子细胞中常常被清除。最近有人发现,后成特征在小鼠中可以遗传。在悉尼大学生化学家怀特劳博士所做的实验中,遗传学相同的小鼠,同其父母相比,更像它们的母亲。因为它们继承了其母亲的卵子DNA的甲基化类型。该型甲基化在决定小鼠毛色中起着非常重要的作用。 怀特劳博士小组的大量的研究数据表明,要探明动物是如何把物理特征或疾病易感性传给后代的,有必要先搞清可遗传的后成特征。如果后成特征可遗传,那么这些特征所引起的疾病应能够像普通的基因突变一样在家系之间传递。该研究小组对小鼠的后成标记在传代过程中如何关闭和表达进行了深入地研究。研究人员将一个可以产生特异类型红细胞的基因(称为转基因)导入具有相同遗传学特征小鼠的基因组中(接受该基因的小鼠称之为转基因鼠)。研究发现这些转基因小鼠体内的转基因正以不同的方式表达。有些转基因小鼠体内40%的红细胞表达该基因,而另一些则根本就不表达。同时该小组还对小鼠毛色进行了研究,发现与毛色有关的DNA甲基化增高与转基因的不表达(或称为“沉默”表达)有关。但是在这种情况下,后成性改变可来自父方,也可以来自母方。 令人费解的是,虽然这种基因表达的沉默现象至少可以维持三代,但不是不可逆转的。在该型的后代小鼠与非同类小鼠交配时,发现在后代小鼠中不存在甲基化和表达沉默现象,转基因又可在小鼠的幼崽中获得表达。如果这种基因沉默和再活化现象是自然发生的话,那么就可以解释个体之间和代与代之间差异的原因。 后成说还可以解释物种之间的差异。最近普林斯顿大学的迪尔格曼通过两种相近小鼠的交配,将多个小鼠基因上的后成特征破坏。这些小鼠相互之间不能进行正常的交配,并且它们杂交的后代表现为生长异常。研究人员认为这种生长异常与杂交后代基因上的甲基化模式破坏有关。他们推测后成性效应非常显著,仅靠改变这些特征就可以造就新物种。 大家都知道,物种的产生是遗传变异逐渐积累的结果。但是,迪尔格曼认为有些物种出现之快不是该假说所能解释的。所以物种后成说的假设有一定优势。例如,甲基化可以迅速地关闭整条基因的表达,并引起根本的改变。这种改变足以阻止新的品种与旧品种之间的杂交,尤其是阻止新物种的产生。 四、结论 变异基因的表达:许多生物学家对此种假说表示不屑。基因序列虽不能完全解释动物的特征,但是至少可以解释一些由基因突变所引起的疾病。 疾病基因突变假说的倡导者把癌症作为经典的实例,来说明在个体DNA水平上,到底有多少碱基差错才能导致肿瘤。但加州大学伯克利分校的杜斯博格博士不同意这一观点,认为癌症并不是由基因异常引起的,而是由另一形式的后成现象 染色体异常引起的。 根据癌症基因突变假说,指导细胞分裂和死亡的基因突变使正常的细胞分裂和死亡过程遭到破坏,导致细胞不受控制地生长。但是,最近杜斯博格博士领导的研究小组报道,至今还没有人证实突变的基因会使正常的细胞变为癌细胞。他还指出,如果突变基因对细胞分裂具有显著影响的话,为什么有些情况下,突变发生的数月甚至数年后才发展为癌症,这是非常奇怪的现象。他认为可以用后成性非整倍现象对上述问题加以解释,非整倍性是指细胞具有错误的染色体个数。 在细胞分裂时,染色体排列整齐,通过纺锤体(一种蛋白质的支架)分配到子代细胞中。杜斯博格推测,致癌的化学物质可以影响纺锤体,因此,造成子代细胞具有或多或少的染色体。由于这种错误分配的染色体不稳定,细胞分裂时染色体之间相互混合并发生非自然的重组。 大多数重组对细胞而言是至关重要的,但最终会产生一个分裂异常的细胞。产生这种异常细胞的概率非常小,这种低概率事件可以解释为什么从接触致癌物质到细胞发生癌变,要经过这么长时间。细胞的非整倍性是5000多种肿瘤的一种显著特征。 与个体碱基突变相比,染色体数的增加或减少使细胞表征发生显著改变。因为染色体数目的改变(即非整倍性),可以导致成千上万种蛋白质活性发生改变,而不仅仅是一种或两种蛋白质,导致细胞分裂的失控。假如这种假说成立的话,那么现在试图通过定点修复癌基因来治疗癌症的策略将毫无效果。 杜斯博格博士10年前曾因自己的假说而声名狼藉,他认为人类免疫缺陷病毒(HIV)并不能引起艾滋病。一系列的HIV和艾滋病的研究表明,杜斯博格的理论是极其荒谬的。这严重地损害了他的声誉,因此,他的其他理论也很容易被人忽视。但是,他的非整倍性假说似乎非常有价值。癌症中非整倍体的普遍性尚需进一步阐明。
遗传学的论文一篇,给点素材你怎么理解,分析探讨具体谈清晰的