卡方近似于万能吧,定量数据应用卡方会损失好多信息,本来挺准确的搞成大概了。应用范围越广的,意义也就越小
绝大多数的论文撰写,均需通过一定数量临床病例(或资料)的观察,研究事物间的相互关系,以探讨客观存在的新规律。如确定新诊断、新治疗等措施是否优于原沿用的方法,就需进行两种方法比较,这就涉及统计处理;统计设计又是整个课题研究设计中一个重要的组成部分。显然,经正确统计处理的结果可信度高,论文的质量也高。
x∧2检验是定性资料的比较t检验,f检验是定量资料的比较
医学论文中常用统计分析方法的合理选择目前,不少医学论文中的统计分析存在较多的问题。有报道,经两位专家审稿认为可以发表的稿件中,其统计学误用率为90%-95%。为帮助广大医务工作者提高统计分析水平,本文将介绍医学论文中常用统计分析方法的选择原则及应用过程中的注意事项。 检验t检验是英国统计学家 1908年根据t分布原理建立起来的一种假设检验方法,常用于计量资料中两个小样本均数的比较。理论上,t检验的应用条件是要求样本来自正态分布的总体,两样本均数比较时,还要求两总体方差相等。但在实际工作中,与上述条件略有偏离,只要其分布为单峰且近似正态分布,也可应用[2]。常用的t检验有如下三类:①单个样本t检验:用于推断样本均数代表的总体均数和已知总体均数有无显著性差别。当样本例数较少(n<60)且总体标准差未知时,选用t检验;反之当样本例数较多或样本例数较少、总体标准差已知时,则可选用u检验 [3]。②配对样本t检验:适用于配对设计的两样本均数的比较,在选用时应注意两样本是否为配对设计资料。常用的配对设计资料主要有如下三种情况:两种同质受试对象分别接受两种不同的处理;同一受试对象或同一样本的两个部分,分别接受不同的处理;同一受试对象处理前后的结果比较。③两独立样本t检验:又称成组t检验,适用于完全随机设计的两样本均数的比较。与配对t检验不同的是,在进行两独立样本t检验之前,还必须对两组资料进行方差齐性检验。若为小样本且方差齐,则选用t检验;反之若方差不齐,则选用校正t检验(t’检验),或采用数据变换的方法(如取对数、开方、倒数等)使两组资料具有方差齐性后再进行t检验,或采用非参数检验[4]。此外,当两组样本例数较多(n1、n2均>50)时,这时应用t检验的计算比较繁琐,可选用u检验[5]。 2.方差分析方差分析适用于两组以上计量资料均数的比较,其应用条件是各组资料取自正态分布的总体且各组资料具有方差齐性。因此,在应用方差分析之前,同样和成组t检验一样需要对各组资料进行正态性检验、方差齐性检验。常用的方差分析有如下几类:①完全随机设计的方差分析:主要用于推断完全随机设计的多个样本均数所代表的总体均数之间有无显著性差别。完全随机设计是将观察对象随机分为两组或多组,每组接受一种处理,形成两个或多个样本。②随机区组设计的方差分析:随机区组设计首先是将全部受试对象按某种或某些特性分为若干区组,然后区组内的每个研究对象接受不同的处理,通过这种设计,既可以推断处理因素又可以推断区组因素是否对试验效应产生作用。此外,由于这种设计还使每个区组内研究对象的水平尽可能地相近,减少了个体间差异对研究结果的影响,比成组设计更容易检验出处理因素间的差别。③析因设计的方差分析:将两个或两个以上处理因素的各种浓度水平进行排列组合、交叉分组的试验设计。它不仅可以检验每个因素各水平之间是否有差异,还可以检验各因素之间是否有交互作用,同时还可以找到处理因素的各种浓度水平之间的最佳组合。此外,还有正交设计、拉丁方设计等多种方差分析法,实验者在应用时可以参考相关的统计学著作。目前,某些医学论文中有这样的情况,就是用t 检验代替方差分析对实验数据进行统计学处理,这是不可取的。t 检验只适用于推断两个小样本均数之间有无显著性差别,而采用t 检验对多组均数进行两两比较,会增加犯I 型错误的概率,即可能把本来无差别的两个总体均数判为有差别,使结论的可信度降低[6]。对多个样本均数进行比较时,正确的方法是先进行方差分析,若检验统计量有显著性意义时,再进行多个样本均数的两两(多重)比较。3.卡方检验(χ2检验)χ2检验是一种用途比较广泛的假设检验方法,但是在医学论文中常用于分类计数资料的假设检验,即用于两个样本率、多个样本率、样本内部构成情况的比较,样本率与总体率的比较,某现象的实际分布与其理论分布的比较。但是当样本满足正态近似条件时,如样本例数n与样本率p满足条件np与n(1— p)均大于5,则可以计算假设检验统计量u值来进行判断。常用的χ2检验分为如下几类:①2×2表χ2检验:适用于两个样本率或构成比的比较,在应用时,当整个试验的样本例数n≥40且某个理论频数1≤T<5时,需对χ2值进行连续性校正。因为T值太小,会导致χ2值增大,易出现假阳性结论。此外,若样本例数n<40,或有某个T值<1,此时即使采用校正公式计算的χ2值也有偏差,需要用2×2表χ2检验的确切概率检验法(Fisher确切检验法)。②配对资料χ2检验:适用于配对设计的两个样本率或构成比的比较,即通过单一样本的数据推断两种处理结果有无显著性差别。在应用时,如果甲处理结果为阳性而乙处理结果为阴性的样本例数n1与甲处理结果为阴性而乙处理结果为阳性的样本例数n2之和<40,需要对计算的χ2值进行校正。③R×C表χ2检验:适用于多个样本率或构成比的比较。在R×C表χ2检验中,若检验统计量有显著性意义时,还需要对多个样本率或构成比进行两两比较,即分割R×C表,使之成为非独立的四格表,并对每两个率之间有无显著性差别作出结论。 2×2表资料在应用时可分为如下几种类型:横断面研究设计的2×2表资料、队列研究设计的2×2表资料、病例-对照研究设计的2×2表资料、配对研究设计的2×2表资料。研究者应注意不同类型的2×2表资料的统计分析方法略有差别,比如在分析队列研究设计的2×2表资料时,如果用χ2公式计算得到P<,研究者则应再计算相对危险度(RR)并检验总体RR与1之间的差异是否具有统计学意义。此外,在进行R×C表χ2检验时,还有如下两个主要的注意事项:首先,T值最好不要<5,若有1/5的T值<5,χ2检验结论是不可靠的,解决的办法有三种:增大样本量;删去T值太小的行和列;将T值太小的行或列与性质相近的邻行或邻列的实际频数合并。其次,不同类型的R×C表资料选择的统计分析方法是不一样。①双向无序的R×C表资料:可以选用一般的χ2公式计算。②单向有序的R×C表资料:如果是原因变量为有序变量的单向有序R×C表资料,可以将其视为双向无序的R×C表资料而选用一般的χ2检验公式计算,但如果是结果变量为有序变量的单向有序R×C表资料,选用的统计分析方法有秩和检验、Radit分析和有序变量的logistic回归分析等。③双向有序且属性不同的R×C表资料:对于这类资料采用的统计分析方法不能一概而论,应根据研究者的分析目而合理选择。如果研究者只关心原因变量与结果变量之间的差异是否具有统计学意义时,此时,原因变量的有序性就显得无关紧要了,可将其视为结果变量为有序变量的单向有序R×C表资料进行分析。如果研究者希望考察原因变量与结果变量之间是否存在线性相关关系,此时需要选用处理定性资料的相关分析方法如Spearman秩相关分析方法等。如果两个有序变量之间的相关关系具有统计学意义,研究者希望进一步了解这两个有序变量之间的线性关系,此时宜选用线性趋势检验。如果研究者希望考察列联表中各行上的频数分布是否相同,此时宜选用一般的χ因此,对于适用参数检验的资料,最好还是用参数检验。秩和检验是最常用的非参数检验,它包括如下几类:①配对资料的符号秩和检验(Wilcoxon配对法):是配对设计的非参数检验。当n≤25时,可通过秩和检验对实验资料进行分析;当n>25时,样本例数超出T界值表的范围,可按近似正态分布用u检验对实验资料进行分析。②两样本比较的秩和检验(Wilcoxon Mann-Whitney检验):适用于比较两样本分别代表的总体分布位置有无差异。如果样本甲的例数为n1,样本乙的例数为n2,且n1<n2;当n1≤10、n2—n1≤10时,可通过两样本比较的秩和检验对实验资料进行分析;当n1、n2超出T界值表的范围时,同样可按近似正态分布用u检验对实验资料进行分析。③多个样本比较的秩和检验(Wilcoxon Kruskal-Wallis检验):适用于比较各样本分别代表的总体的位置有无差别,它相当于单因素方差分析的非参数检验,计算方法主要有直接法和频数表法等。此外,在进行上述3类秩和检验(前两类秩和检验实际上已经被u检验替代)时,如果相同秩次较多,则需要对计算的检验统计量进行校正。公式计算。④双向有序且属性相同的R×C表资料:这类资料实际上就是配对设计2×2表资料的延伸,在分析这类资料时,实验者的目的主要是研究两种处理方法检测结果之间是否具有一致性,因此常用的统计分析方法为一致性检验或Kappa检验。4. 非参数检验非参数检验可不考虑总体的参数、分布而对总体的分布或分布位置进行检验。它通常适用于下述资料[2]:①总体分布为偏态或分布形式未知的计量资料(尤其样本例数n<30时);②等级资料;③个别数据偏大或数据的某一端无确定的数值;④各组离散程度相差悬殊,即各总体方差不齐。该方法具有适应性强等优点,但同时也损失了部分信息,使得检验效率降低。即当资料服从正态分布时,选用非参数检验法代替参数检验法会增大犯Ⅱ类错误的概率。
统计资料的显著性检验(significant test)方法的选择是医学论文中常常遇见的问题,退稿原因中常有显著性检验方法选择不当。如t检验、u检验、χ2检验等,虽然各有其应用范围和要求,但也其共同之处。作者可根据统计资料的类型,选择一种或几种检验方法。但当作者在获得一组、两组或两组以上的数据资料时,选择何种显著性检验,是至关重要的问题。不同的资料类型其统计指标、统计检验的方法是不同的
楼主你得加个分吧。楼上内容蛮官方的。真的....向楼上学习。
刚在那个什么 创新医学网 上看见过 医学论文 写作辅导的文章 这个知道是不是 你要的答案 统计资料的显著性检验(significant test)方法的选择是医学论文中常常遇见的问题,退稿原因中常有显著性检验方法选择不当。如t检验、u检验、χ2检验等,虽然各有其应用范围和要求,但也其共同之处。作者可根据统计资料的类型,选择一种或几种检验方法。但当作者在获得一组、两组或两组以上的数据资料时,选择何种显著性检验,是至关重要的问题。不同的资料类型其统计指标、统计检验的方法是不同的,见表1。 医学生物研究中,许多指标都是服从正态分布(u分布)的,而随着样本含量加大或自由度增大,t分布、χ2分布、F分布都趋向于正态分布见图1、图2。 在《中华创伤杂志》第12卷1~6期和增刊中文章所涉及的统计方法(表2),表明了正态分布的广泛性、常见性。 故当作者获得数据资料后,首先应进行正态性检眩�范ㄊ欠为标准正态分布(或近似正态分布)或不属于正态分布。笔者首先推荐概率单位法。 当统计资料属于正态分布或近似正态分布时,差异显著性检验方法的选裕�诜合其应用条件下,一般可按表3进行选择。 显著性检验应用时的主要注意事项:(1)率值或均值在进行显著性检验前,应注意样本的代表性和可比性。(2)检验结果接近显著性界限时:要多方面考虑,是否确实不存在差异;或是观察例数不够,而需加大样本例剩换是检验公式运用不当,可用其他检验印证。(3)多个样本比例数的χ2检验,差异显著性,只能说明多组比例数不同或不完全相同,而不能确定哪个比例数不同,要进一步进行显著性检验才能了解两个样本比例数是否构成相同。表1 一般情况下不同资料的统计指标与检验方法的关系资料类型 统计指标 统计检验方法 计量资料 均数、标准差 t检验、F检验等 计数资料 率、构成比 χ2检验等 半定量资料 率、构成比 秩和检验、Ridit分析表2 《中华创伤杂志》第12卷1~6期、 增刊显著性检验方法使用频数检验方法 应用次数 检验方法 应用次数 t检验 27 直线相关与回归分析 5 χ2检验 16 拟合线性回归 1 F检验 24 相关分析 6 Q检验 2 非参数统计 4 u检验 1 未注明方法 6表3 常用显著性检验方法的选择统计资料比较类型 显著性检验 小样本均数与总体均数相比较 t检验 小样本均数相比较 t检验、F检验 两个或多个大样本均数与 总体均数相比较 u检验、t检验 大样本均数相比较 u检验、t检验 配对计量资料 配对t检验 两个率的比较 u检验、χ2检验 多个样本率的的比较 χ2检验 配对计数资料两种属性的 相关分析及其差别的比较 χ2检验
T检验,亦称student t检验(Student's t test),主要用于样本含量较小(例如n<30),总体标准差σ未知的正态分布资料。t检验是对各回归系数的显著性所进行的检验,(--这个太不全面了,这是指在多元回归分析中,检验回归系数是否为0的时候,先用F检验,考虑整体回归系数,再对每个系数是否为零进行t检验。t检验还可以用来检验样本为来自一元正态分布的总体的期望,即均值;和检验样本为来自二元正态分布的总体的期望是否相等) 希望对你有所帮助
×2检验的理论依据:根据样本的频数分布来推断总体的分布。
×2检验就是统计样本的实际观测值与理论推算值之间的偏离程度的数值。对样本的频数分布所来自的总体分布是否服从某种理论分布或某种假设分布所作的假设检验。
实际观测值与理论推算值之间的偏离程度就决定其×2值的大小。理论值与实际值之间偏差越大,×2值就越大,越不符合;偏差越小,×2值就越小,越趋于符合;若两值完全相等时,×2值就为0,表明理论值完全符合。
×2检验的用途:
一、适合性检验(吻合度检验)
是指对样本的理论数先通过一定的理论分布推算出来,然后用实际观测值与理论数相比较,从而得出实际观测值与理论数之间是否吻合。因此又叫吻合度检验。
二、独立性检验
是指研究两个或两个以上的计数资料或属性资料之间是相互独立的或者是相互联系的假设检验,通过假设所观测的各属性之间没有关联,然后证明这种无关联的假设是否成立。
三、同质性检验
在连续型资料的假设检验中,对一个样本方差的同质性检验,也需进行×2检验。
绝大多数的论文撰写,均需通过一定数量临床病例(或资料)的观察,研究事物间的相互关系,以探讨客观存在的新规律。如确定新诊断、新治疗等措施是否优于原沿用的方法,就需进行两种方法比较,这就涉及统计处理;统计设计又是整个课题研究设计中一个重要的组成部分。显然,经正确统计处理的结果可信度高,论文的质量也高。
(1)首先应分清是两样本率比较的四格表资料还是配对设计的四格表资料。(2)对于两样本率比较的四格表资料,就根据各格的理论值T和总例数n的大小选择不同的χ2计算公式:①当n≥40且所有的T≥5时,用χ2检验的基本公式χ2=或四格表资料检验的专用公式χ2=[(ad-bc)2*n]/[(a+b)(c+d)(a+c)(b+d)];②当n≥40但有1≤T<5时,用四格表资料χ2检验的校正公式χc2=Σ[(|A-T|)/T]或改用四格表资料的Fisher确切概率法;③当n<40或T<1时,用四格表资料的Fisher确切概率法。或资料满足两样本率的u检验的条件,也可用u检验。(3)对于配对设计的四格表资料,若检验两种方法的检测结果无差别时:①当(b+c)≥40时,χ2=(b-c)2/(b+c);②当(b+c)<40时,χc2=(|b-c|-1)2/(b+c)。
医学统计学当中用星号表示的一般是χ2检验。
医学统计学当中用星号表示的一般是χ2检验,其中χ2检验是反应变量和分组变量都为二分类变量或多分类(无序)变量时,两变量间关系的分析方法。
所谓等级资料是将观察单位按某个指标量的大小分成等级或按某种属性的不同程度分成等级后分组计数。同学们要明白其中分类汇总各组观察单位数后而得到的资料。其变量值具有半定量性质,表现为等级大小或属性程度。
医学论文统计方法之X2检验
医学论文中计数资料最常用的统计方法为X2检验,计量资料最常用的统计方法为t检验。值得注意的是,各种假设检验方法均有其适用条件,应根据资料特点来选用最适当的方法,避免统计方法选择与使用不当。
同学们要注意的是必要时,研究设计阶段也应该有统计专业的人员参与,从最源头进行控制和修正,以免降低研究的水平,以至于造成整个研究的失败。
医学统计论文
医学统计是研究如何搜集、整理和分析医学研究对象的数据和作出推断的一门学科,下面是我为大家收集整理的是医学统计论文,仅供参考。
摘要: 不同的统计分析方法均有其适用的范围和应用的条件,研究者在书写医学论文时应根据论文设计及资料的类型进行合理的试验设计,选择恰当的统计分析方法,切记勿盲目套用。同时,还应注意得出的结果和结论应满足设计的要求。医学统计方法的正确运用,是充分利用试验研究获得的数据,也是最终得出科学、可信的结论的必要条件。
关 键词 :医学统计;方法;运用;原理;选择
一、统计学方法简介
统计学方法包括统计软件包、统计分析方法以及检验水准三方面的内容。其中医学论文中常提到检验水准即α,它是用来表示组间实际无差别而统计结果判断有差别,犯这类错误的概率。实际工作中常取α=,当研究数据计算的P值小于时,组间差异比较被认为有统计学意义。统计学方法包括统计描述和假设检验两个方面的内容。统计描述是指根据资料及原始数据分布的类型,选择正确的指标来描叙资料及数据的特征。而假设检验即组间差异性检验,是医学论文中最常用的统计学方法。资料类型则包括能用具体数据表示的定量资料与不能用具体数值表示但能反映被观察对象某一特征的定性资料。定性资料的统计描述包括率、相对比和构成比。而参数法及非参数法是常用的定量资料统计分析方法。参数法一般包括t检验、方差分析,非参数法常用的有秩和检验。
二、试验设计中的统计学原理
合理的试验设计与统计处理的可信度存在直接联系,研究者在编写医学论文时应对医学研究设计方法进行说明。在进行试验设计时应遵循随机、对照、均衡和重复四大原则。在进行试验设计的时候通常会涉及到研究对象的选择,研究对象的分组及选择合理的检测指标三个方面的内容。
医学论文就是通过对样本的研究来进行推断总体,找出其共性,得出结论。因此研究者在选择研究对象时应注意选择样本应具有一定数量,能反映出该事物的规律性特征,但又应注意例数不能太多,以免造成不必要的浪费。其选择的原则就是在保证试验结果可靠性的前提下选择最少的样本例数。研究者在选择样本对象后应对其基本特征进行详细的描述,比如患者的年龄、性别、病理分期、疾病诊断的标准等。此外在试验中所用到的试剂、仪器的型号、规格等都应作出说明,以供读者借鉴和做出判断。选定好研究对象后就要对其进行分组。在进行分组时研究者一般遵循统计学中的“随机分配”、“设立对照”以及“均衡”、“重复”的原则。随机化原则是提高组间均衡性的一个重要手段,也是资料分析时进行统计推断的前提。有对照才有比较,在进行组间比较时,应确定好处理因素与实验效应的关系。均衡性则是要使得对结果产生影响的非处理因素尽可能保持一致,这样才能保证对照的结果让人信服。观察实验效应的.指标主要有主观指标与客观指标。正所谓主观指标就是通过问答的方式调查受试者自己判断的主观感受;而客观指标则是通过仪器来检验和测量所得出的结果。在进行试验设计时应选择客观性较强、高灵敏性和精确性的指标。
三、统计学方法的选择
统计学方法的正确选择是直接影响到论文结论可信度的重要依据,因此研究者在编写论文时应注意选择合适的统计学方法。不同的统计学方法应用的范围不同。研究者在编写医学论文时常根据论文研究的目的、资料类型、试验设计的方案、样品大小、水平数、特定条件、数据分布特征以及综合分析等来选择对应的统计方法,同时还要根据专业知识与资料的实际情况,结合统计学原则,灵活地选择。当定性资料正态分布时,研究者一般用均数和标准差来表示统计描述指标;当定性资料不符合正态分布时,则可选用中位数及级差来表示;当定量资料正态分布且组间方差齐时一般选用参数法,反之则选用非参数法。t检验一般适用于小样本(n<50)的定量资料且方差齐的两组数据之间的比较。其特点是在均方差不知道的情况下,可以检验样本平均数的显著性,大样本(n≥50)采用u检验;多个样本均数两两比较则用方差分析,如差异有统计学意义,可采用q检验;Dunnett检验则适用于多个实验组与一个对照组均数的比较。定性资料中,表现为互不相容的类别或属性,分为二分类和多类反应,如治疗结果为显著和好转的人数等,该种资料可选用字检验,大样本(n≥50)时采用u检验。如:患者的治疗结果评定为痊愈、显著有效、好转、无效或死亡。该种资料可选用秩和检验或u检验。总之,不论论文中选用的是哪种统计学方法,都要计算出检验值,然后再根据统计量值来判定P值的大小,结论一般描述为“差异有(无)统计学意义”。
四、常见统计学方法的误用分析及对策
1.统计方法误用。最常见统计方法误用是对等级资料进行比较时应用秩和检验而误用卡方检验。例如:在评价采取不同治疗方法的两组急性脑血管病患者疗效中,治疗组显著有效、有效、无效三种分型分别为15例、10例、8例,对照组分别为14例、11例、9例。本资料例数较少,应选用等级比较的秩和检验,而有些作者却认为只要是率的比较就可以采用字检验。研究者在选择统计学方法时应根据相应的原则,对文章研究目的、资料类型、样品大小、水平数、数据分布特征等进行综合分析后,再来选择对应的统计方法。
2.选用检验方法错误。在有些论文中,作者常将本应用方差分析和q检验的误用t检验。t检验一般适用于小样本(n<50)定量资料且方差齐的两组数据之间的比较,而方差分析及q检验主要用于对多个样本均数进行比较,几种不同治疗或处理方法等的同时比较。例如:在讨论中、西以及中西医结合治疗急性脑血管病时,两组患者的年龄、病程、病情严重程度等差别均无统计学意义,比较三组患者的一些指标变化。组间多重比较应用q检验,但文中作者采用的是t检验,对三组均数进行两两比较。这不仅造成了资料的利用率低,也增加了假阳性的概率,降低了试验结果的可信度。
五、结论表述中的统计学应用
资料的统计处理不是医学研究工作的最终目的,而是通过统计学分析为研究结论提供依据或者线索。因此,在对统计资料进行分析后应把握统计学术语,对结论做出科学的分析跟解释。在根据统计结果得出专业结论时研究者应遵循一个重要原则,就是统计结论都是概率性的,不能绝对地肯定或否定。研究者习惯上将“P<”称为显著性,不应误解为差别很大或者在医学上有显著的价值。统计推断是以一定的概率界值为依据,说明来自同一总体的可能性大小。“差异有统计学意义”说明在试验中的差异不能用抽象误差进行解释;“差异无统计学意义”表明在试验既定的条件下,差异可能是因抽象误差引起的,在增加样本数量的情况下,差异可能变成“有统计学意义”。
参考文献:
[1]医学统计工作的基本内容[J].国际检验医学杂志,2013(19):2563.
[2]关红阳,郭轶男.医学统计t检验的分析研究[J].中国校外教育,2013(30):114.
多看看文献。本来就没实际性的”墨水“,肯定不容易写。
现代医学发展过程中,随着医学检验到检验医学的飞速发展,在患者的临床诊疗工作中,检验医学结果为临床医学诊疗工作提供着重要的客观诊断和疗效判断依据。下面是我为大家整理的医学检验论文,供大家参考。
临床医学检验质量控制问题研究
医学检验论文摘要
摘要:目的:探讨临床医学检验质量控制过程中存在的问题及对策。 方法 :本次选取我院2013年5月-2015年5月收治的医学检验患者200例,随机分组,就常规检验管理(对照组,n=100)与依据检验过程中存在的问题行针对性管理(观察组,n=100)的效果展开对比。结果:观察组选取的标本检验患者准确率为98%,明显高于对照组的85%,差异有统计学意义(P<)。观察组患者临床检验满意度为98%,明显高于对照组的86%,差异有统计学意义(P<)。结论:针对实验室质量管理中存在的问题,制定针对性对策,包括标本采集、检验仪器设备和试剂、检验人员等多方面管理,可提高检验质量。
医学检验论文内容
关键词:医学检验;质量控制;问题;对策
现代医学中,临床检验为重要内容,可为疾病诊治、监测、预后评估提供准确参考依据,随着医疗科技取得的卓越发展成就,医学检验技术随之也不断发展,而检验结果的准确性是保障疾病有效诊断和控制的关键,直接关系到医疗质量,故重视医学检验质量控制,对提高治疗效果,改善医患关系意义重大[1]。本次调查选取临床检验患者,随机分组,就加强质量控制管理与常规管理成效展开对比,现 总结 结果如下。
1资料与方法
一般资料
选取我院2013年5月-2015年5月收治的临床检验患者200例,男104例,女96例,分别行化学检验、微生物检验、免疫学检验、血液学检验等。随机分为观察组和对照组各100例,两组间一般情况无明显差异(P>),具可比性。
方法
对照组在检验过程中应用常规管理方案,观察组重视针对存在问题,制定针对性解决对策并实施,具 体操 作步骤如下:
质量控制问题:
(1)标本采集问题:受检者饮食、运动、所用药物均可对检测结果产生影响,同时,患者地理位置、年龄、性别、民族也可影响检测结果。采集标本时,需嘱患者将正在使用的药物停用,在安静或正常活动下对标本采集。但若操作不当,如完成静脉血采集后,将血液直接在试管内注入,而针头不拔掉,会出现标本溶血。从正输液的手臂血管行采血操作,会稀释血液标本。
(2)试验和检验设备问题:仪器保养不妥、仪器老化,均可使检测的灵敏度受到影响,在准确性上出现问题;因检验人员水平有限,或未掌握仪器的功能,标准操作,注意事项,引发检验过程中出现问题;如试剂更换时,相关仪器参数未改变,规范保存样品的意识不强,诱导操作失误,促使检测结果出现较大的误差。所应用的试剂,未按规范要求设定,有误差事件发生。
(3)人为问题:医疗科技在近年发展迅猛,检验仪器渐趋高端,有越来越高的自动化程度,但仍需人来对各项操作完成。故检测试验中,检验人员操作误差是引发结果误差的主要原因之一。人员操作误差主要包括:样品暴露时间过长、操作习惯不标准、样品检测峰面积积分存在习惯上的差异及对检测结果的重视度不足等,均可引发不良事件发生。
(4)室间质评和室内质控:室内质控即室内质量控制,重视室内质控的开展是监测仪器设备、检验方法、操作环境、过程、试剂等稳定性检测的重要举措,也是保障获取正确检验结果的风向标。实验室间质量评价为室间质评,加强室间质评,可对检验结果的准确性和可信性评价,确保结果与其他单位一致或具可比性。
(5)检验分析后问题:医学检验中,结果的复查和审核为最后一道保障质量的防线,检验人员通常对先进仪器设备过分依赖,易有出错 报告 的情况,如全自动血液分析仪检出异常结果,未按人工规则复查,出具错误报告等。
应对 措施 分析:
(1)检验前质量控制:①保证标本质量:采集样本前,重视应用人文关怀理念,与患者及家属积极沟通和解释,对病情、情绪、生理变化了解,将所需检查项目的目的、意义、采样和自留样本注意事项、影响检查因素告知,以提高配合依从,在平静、安静状态下完成采集,保障了样本的真实、合格,避免了由此引发的误差事件。②样品合格:严格执行三查七对采集,确认和核查患者信息,标本采集时,对时间、部位、体位、取样方式、数量严格要求。如采集血样,通常在空腹16h内,早上9:00前,患者保持平静、安静正常状态进行。尿标本采集时,患者需饮食规律,避免性生活、 体育运动 、饮酒,女性月经后采集,需注意清洁尿道口、外生殖器及周围皮肤清洁,以避免被经血、阴道分泌物污染。样品一经采集,即具实效应,需及时送检,若不具备及时送检条件,需正确存放,以防变质或变性,对检测结果造成影响[2]。
(2)检验中质量控制:①仪器维护:仪器正常运行在检验过程中意义重大,检验人员需做好保养和维护,定期性能评价和校准,确保性能稳定和正常运行,一旦有问题出现,需向供应商及时通知,更换或 修理 。同时培训检验科医技人员,防止人为操作失误。②需保证检验试剂合格,对试剂保存环境、时效严格管理,启用前需注意防保质期和生产日期,避免因试剂失效或变质诱导结果错误。建立保管和使用试剂制度,确保有效性和安全性,提高检验结果的准确性。③提高检验人员综合素养:现代仪器均为精细化操作,检验人员需具备理论知识和操作技能。故需加强技术操作培训和业务学习,娴熟掌握仪器操作规程、检测原理、干扰因素、检测结果的图形、数据,报警的含义及如何维护,保养调试,掌握性能评价和校准标准,防范操作失误。同时,要具备强烈的责任心和爱心,与自身技术水平结合,针对患者疑问,合理做出解释,主动与其他科室交流,对患者病情进行了解,并与临床症状结合,对结果是否准确做出评估,以使自身检验能力提高。
(4)积极开展室内质控、室间质评管理:检测标本前,校准仪器,行室内质控,对仪器设备各项检验参数和性能检测,正常状态下,才可对标本检测。如失控,需记录,并分析原因,积极纠正,再行检测。注意质控品精密度。重视室间质评,确保检测结果与其他单位具有一致性、可比性。
统计学分析
文中涉及数据采用统计学软件分析,计数资料行χ2检验,P<差异有统计学意义。
2结果
观察组选取的标本检验患者准确率为98%,明显高于对照组的85%,差异有统计学意义(P<)。观察组患者临床检验满意度为98%,明显高于对照组的86%,差异有统计学意义(P<)。
3讨论
医学检验在现代医学中作用显著,是一门综合性学科,其质量管理的好坏直接影响整体医疗水平[3]。引发检验结果出现误差的问题较多,需行综合分析,针对问题积极防控,以降低标本检验不合格率。本次调查中,观察组针对检验前标本采集、检测过程中存在的不足以及人员、仪器设备、试剂等因素引发问题的原因展开探讨,并制定针对性防控对策,如重视采集标本前与患者沟通,加强仪器、设备保养和检测,重视针对检验人员综合素养加以培养,积极开展室内质控和室间质评,对降低检验失败率,提高患者满意度意义重大[4]。本次结果证实观察组情况明显优于对照组。综上,针对实验室质量管理中存在的问题,制定针对性对策,包括标本采集、检验仪器设备和试剂、检验人员等多方面管理,可提高检验质量。
医学检验论文文献
[1]郝莉丽.临床医学检验分析前的质量控制〔J〕.基层医学论坛,2014,18(20):2672-2673.
[2]毛颖华.医学检验分析前的质量管理与控制〔J〕.实验与检验医学,2012,30(1):50-51.
[3]董大光.浅谈医学检验分析前质量控制〔J〕.中华全科医学,2012,10(7):1143-1144.
[4]薛建丽.谈在检验操作过程中如何控制医学检验中的误差〔J〕.按摩与康复医学:下旬刊,2011,2(11):221.
民办高校医学检验本科新生认同思考
医学检验论文摘要
【摘要】目的了解民办医学院医学检验本科新生专业认同现状,探讨其影响因素,为加强专业认同 教育 提供依据。方法采用自编的“医学检验学生专业认同调查问卷”,采取整群抽样方式对长沙医学院2015级医学检验专业本科新生进行问卷调查。结果医学检验专业本科新生专业认同(±)分;户口所在地、录取方式、在校担任干部对专业认同无明显影响,性别、家庭收入及就读原因对专业认同影响较大,女性、因自己喜欢而就读、家庭收入低的学生专业认同更高。结论医学检验本科新生的专业认同处于一般水平;就读原因是影响专业认同的最主要因素。教育工作者应根据新生专业认同现状采取相应措施加强学生专业认知教育,提高新生专业认同感。
医学检验论文内容
【关键词】学生,医科;教育,医学,本科;专业认同;调查分析
专业认同是学习者在了解所学专业的基础上,产生情感上的接受和认可,并伴随积极的外在行为和内心适切感,是一种情感、态度乃至认识的移入过程[1],专业的认知既是学生形成积极专业情感的基础,又是学生学习活动积极化的必要条件[2]。在以专业教育为主的本科人才培养模式下,我国大学生专业认同度的高低对其学习有重要影响[3]。目前,国内各大高校医学类专业针对于大学生专业认同情况及影响因素开展了诸多研究,其中以临床与护理专业最多,医学检验专业相对较少,而对民办院校医学检验专业的认知调查则是少之又少。而医学检验专业认同作为专业态度的重要组成成分,不仅要求检验生应具有检验相应学科知识,还是检验生对检验专业设定的目的、意义及作用的看法和认识,对检验工作的理解和信念,直接关系到我国高素质、高水平检验人才队伍的培养。了解新生的专业认同情况,有助于检验教育者发现在专业教育过程中出现的问题,从而稳定检验技术队伍,促进医学检验专业的发展。本文通过调查长沙医学院医学检验专业在校本科生的基本情况,了解专业认同现状,分析其影响因素,为教育工作者优化专业课程建设和教学实践、开展专业认知教育、提高培养质量提供依据。
1资料与方法
调查对象
以长沙医学院2015级医学检验专业本科学生120人为调查对象,采取整群抽象的方式对每一个体进行问卷调查。发放及回收调查表120份,经整理后有效问卷116份,有效回收率为,其中男31人,女85人。由调查员采用集体方式进行问卷发放,被调查者当场完成问卷并进行回收。
调查内容及评价方法
采用自编的“医学检验学生专业认同调查问卷”进行调查。该问卷重测信度大于,内容效度指数为。调查内容包括学生的基本情况、专业认识、专业情感、专业意志、专业技能、专业期望和专业价值观等,采用Likert-5分制评分,分5个等级:非常不符合(非常不满意)为1分,不符合(不满意)为2分,无法确定(一般)为3分,符合(满意)为4分,非常符合(非常满意)为5分。总分125分,得分25~<50分为不认同,50~<100分为一般认同,100~<125分为高度认同[4]。
统计学处理
应用统计软件进行数据分析,计量资料以x±s表示,采用t检验,多组比较采用单因素方差分析,计数资料采用频数或率表示,采用χ2检验,P<为差异有统计学意义。
2结果
医学检验学生专业认同总体状况
专业认同得分为(±)分,专业认同度一般。大部分学生专业认同处于一般认同(50~<100分)占,其中专业认同处于高度认同(100~<125分)占,无不认同学生。
基本情况
医学检验专业新生年龄17~21岁,以女生居多,为85人(),男生31人(),女生专业认同大于男生专业认同;学生生源与家庭经济情况方面,户口在农村64人()略高于户口在城镇的52人(),家庭月收入低于2000元的家庭占,大部分学生家庭经济收入较低,负担可能较大,家庭月收入低于1000元的学生专业认同得分最高。录取方式方面,第一志愿录取的学生较多78人(),其次为第二志愿录取学生(),且专业认同得分第一志愿[(±)分]大于第二志愿[(±)分],大于第三志愿[(±)分]大于其他方式[(±)分];在校担任班干部人数占,普通同学占,班干部与普通学生专业认同得分接近;就读的主要原因中听从父母意见的学生人数最多,占,其次是好找工作占,仅有是因自己喜欢而就读。
专业认同在不同就读原因上的差异
专业认同总分自己喜欢高于父母意见、好找工作、其他原因,差异有统计学意义(P<)。且因自己喜欢而就读本专业的学生在专业认识、专业情感、专业意志、专业价值观、专业技能5个维度方面得分均高于其他三组,且与其他三组在专业意志、专业价值观与专业技能维度上比较,差异均有统计学意义(P<)。
3讨论
专业认同结果分析
本调查结果显示,民办院校医学检验专业新生专业认同一般,高于马杰等[5]调查的廊坊卫生职业学院的高职医学检验技术学生专业认同,与康晓琳等[6]调查的内蒙古地区护理本科新生专业认同比较接近,原因可能与民办学校学生生源有关。基本情况调查结果显示,户口所在地、录取方式、在校担任职务情况对专业认同得分影响并不明显,性别、家庭收入及就读本专业的原因对专业认同影响较大。男生专业认同总分低于女生,与__红[7]、胡忠华[4]、彭艳红[8]对大学生专业认同的调查结果部分一致。可能受到传统性别 文化 对专业认同造成的影响[9],如幼师专业、护理专业与社会工作等这一类服务性专业中,男生的专业认同度明显要低于女生。生源与家庭经济情况方面,农村户口的学生仍然较多,占,略高于城镇户口的学生,且家庭月收入低于2000元的家庭占,说明2015级新生大部分家庭经济收入较低,负担依然较大。而该调查结果显示家庭月收入低于1000元的学生专业认同得分最高,可能来自农村家庭收入较低的学生更珍惜入学机会,均比较热爱自己所学的专业,对学习与生活比其他学生有更成熟的认识,所以专业认同比其他家庭收入组的学生高。新生专业认同在就读原因上呈自己喜欢大于父母意见大于好找工作大于其他原因。虽然自己喜欢而就读本专业的学生仅占,但在专业认识、专业情感、专业意志、专业价值观与专业技能唯度得分方面却均高于其他三组,所以就读原因是影响新生专业认同的最主要因素。个人的喜好会直接影响对所学专业的认识与了解,本调查中,自己喜欢而就读本专业的学生()为自己所学的专业而感到自豪,内心已完全接受检验专业,会积极乐观地去面对和解决专业学习中的问题,经常关注检验动态,认为当检验师能够实现人生价值。还有的学生是因父母意见或好找工作而选择本专业,多可能是这部分学生来自农村或低收入家庭,学生和家长在选择专业时更多的是考虑容易就业和将来可以给家人提供医疗便利条件,很少家庭会根据孩子的喜好而选择专业,导致大部分学生缺少对专业的了解,盲目选择而导致专业认同感降低。
提高医学检验技术新生专业认同的对策
刚迈入大学校门的新生,处于建立专业思想和专业情感的特殊阶段,其专业认知的程度直接影响到今后4年的大学学习,因此,如何提高大学生专业认识、树立专业思想、规划职业生涯、培养专业能力显得十分重要。所以,针对医学检验专业大学新生开展的专业认同现状的调查,总结提升大学生专业认知教育的对策,有助于教育管理与教育工作者更好地为学生提供专业指导、日常管理和优质服务。
积极开展专业认知的实践教育活动,拓宽专业认知途径
专业认知教育已成为新生入校后的第一课,建议将专业认知教育纳入学生在校期间专业学习的全过程,还可以结合高校院系专业自身实际情况和专业特点,开展有针对性、多样性的专业认知实践教育活动,聘请专业认知教育讲师或具备资深学术造诣的教授、专家、学科主任、学院院长等,对专业进行权威解读,对就业进行全面分析,使大学新生对所学专业形成初步认识,逐渐明确检验工作人员在医院工作中所承担的角色和检验工作的重要性及意义;还可以通过各种形式的讲座或优秀的学生、 毕业 生现场宣讲和 经验 交流,激发新生对专业产生兴趣,对未来的学业和就业充满信心,对未来的职业生涯产生美好的憧憬,从而提高专业认知度。
辅导员和课程教师双管齐下,做好专业认知教育
“加强大学生的理想信念教育,包括专业认知和人生 职业规划 ”是中共中央国务院规定的思想政治辅导员的职责[10]。高校辅导员可通过座谈调查,深入了解每位大学新生填报志愿的原因、学习专业的目的、对自我的认知、从事职业的期望等,结合新生个体特征制定针对性的专业认知教育计划和职业规划,减少新生的专业困惑,帮助新生尽快适应大学生活与学习。课程教师切实提高知识水平和专业素养,将专业认知教育内容融入到课程教学内容中,尤其是实验课教学过程中,客观评价检验专业的现状和发展方向,结合所授课程多方面、多角度地阐述专业学习内容、方法、学科体系与价值观念,系统引导新生形成良好的专业思想与专业情感,有所侧重地培养学生的专业技能。通过辅导员与课程教师携手齐抓共管,以学生为中心,在专业认知中去实践,在实践中去认知,提高学生的专业认同感,共同探讨与提高医学检验专业人才培养质量。
总之,长沙医学院医学检验本科新生的专业认同处于一般水平,仍有很大的发展提升空间。鉴于专业认知对于大学生成材的重要意义,教育工作者需树立专业认知能力的动态发展观,进一步加强大学生的专业认知教育,切实培育高校新生的专业认同感,提高专业学习的动力与适应性,进而保障医学检验教育事业的健康发展。
医学检验论文文献
[1]秦攀博.大学生专业认同的特点及其相关研究[D].重庆:西南大学,2009.
[2]罗萍,孙玉梅,张进瑜,等.护理本科生对护理专业认知的调查与分析[J].中国护理管理,2005,5(3):35-37.
[3]李海芬,王敬.大学生专业认同现状调查研究[J].高教研究,2014,37(1):9-12.
[4]胡忠华.四川省护理本科生专业认同调查分析[D].成都:四川大学,2007.
[5]马杰,彭海平,史志春,等.高职医学检验技术学生的专业认同现状调查研究—以廊坊卫生职业学院为例[J].佳木期职业学院学报,2015(2):12-13.
[6]康晓琳,王艳茹,李晓静,等.内蒙地区四所高校护理本科新生专业认同情况调查及影响因素分析[J].护理学报,2013,20(7B):22-24.
[7]__红.男性护生实习期间真实体验质性研究[J].护士进修杂志,2006,21(10):875.
[8]彭艳红.高师小学教育本科专业学生专业认同的研究[D].重庆:西南大学,2008.
[9]黄分霞.高校新生专业认同的问题与出路[J].产业与科技论坛,2012,11(17):170-172.
[10]宋建飞.高校大学生专业认知教育探讨———基于大学新生专业认知度的问卷调查[J].扬州大学学报:高教研究版,2014,18(6):94-98.
有关医学检验论文推荐:
1. 医学检验实践报告范文
2. 医学检验毕业论文范文
3. 医学检验社会实践报告范文
4. 关于医学检验的论文
5. 关于医学检验论文
6. 医学检验技术论文
7. 医学检验述职报告范文
1、单样本检验:检验一个正态分布的总体的均值是否在满足零假设的值之内,例如检验一群军校男生的身高的平均是否符合全国标准的170公分界线。
2、独立样本t检验(双样本):其零假设为两个正态分布的总体的均值之差为某实数,例如检验二群人之平均身高是否相等。若两总体的方差是相等的情况下(同质方差),自由度为两样本数相加再减二;若为异方差(总体方差不相等),自由度则为Welch自由度,此情况下有时被称为Welch检验。
3、配对样本t检验(成对样本t检验):检验自同一总体抽出的成对样本间差异是否为零。例如,检测一位病人接受治疗前和治疗后的肿瘤尺寸大小。若治疗是有效的,我们可以推定多数病人接受治疗后,肿瘤尺寸将缩小。
4、检验一回归模型的偏回归系数是否显著不为零,即检验解释变量X是否存在对被解释变量Y的解释能力,其检验统计量称之为t-比例(t-ratio)。
由来
学生t检验是威廉·戈塞为了观测酿酒品质于1908年所提出的,“学生 (student)”则是他的笔名。
基于克劳德·健力士(Claude Guinness)聘用从牛津大学和剑桥大学出来的最好的毕业生,以将生物化学及统计学应用到健力士工业流程的创新政策,戈塞受雇于都柏林的健力士酿酒厂担任统计学家。戈塞提出了t检验以降低啤酒重量监控的成本。
戈塞于1908年在《Biometrika》期刊上公布t检验,但因其老板认为其为商业机密而被迫使用笔名,统计学论文内容也跟酿酒无关。实际上,其他统计学家是知道戈塞真实身份的。
1. 检验有单样本t检验,配对t检验和两样本t检验。 单样本t检验 :是用样本均数代表的未知总体均数和已知总体均数进行比较,来观察此组样本与总体的差异性。 配对t检验:是采用配对设计方法观察以下几种情形,1,两个同质受试对象分别接受两种不同的处理;2,同一受试对象接受两种不同的处理;3,同一受试对象处理前后。 F检验又叫方差齐性检验。在两样本t检验中要用到F检验。 从两研究总体中随机抽取样本,要对这两个样本进行比较的时候,首先要判断两总体方差是否相同,即方差齐性。若两总体方差相等,则直接用t检验,若不等,可采用t'检验或变量变换或秩和检验等方法。 其中要判断两总体方差是否相等,就可以用F检验。2. t检验和方差分析的前提条件及应用误区 用于比较均值的t检验可以分成三类,第一类是针对单组设计定量资料的;第二类是针对配对设计定量资料的;第三类则是针对成组设计定量资料的。后两种设计类型的区别在于事先是否将两组研究对象按照某一个或几个方面的特征相似配成对子。无论哪种类型的t检验,都必须在满足特定的前提条件下应用才是合理的。 若是单组设计,必须给出一个标准值或总体均值,同时,提供一组定量的观测结果,应用t检验的前提条件就是该组资料必须服从正态分布;若是配对设计,每对数据的差值必须服从正态分布;若是成组设计,个体之间相互独立,两组资料均取自正态分布的总体,并满足方差齐性。之所以需要这些前提条件,是因为必须在这样的前提下所计算出的t统计量才服从t分布,而t检验正是以t分布作为其理论依据的检验方法。 值得注意的是,方差分析与成组设计t检验的前提条件是相同的,即正态性和方差齐性。 t检验是目前医学研究中使用频率最高,医学论文中最常见到的处理定量资料的假设检验方法。t检验得到如此广泛的应用,究其原因,不外乎以下几点:现有的医学期刊多在统计学方面作出了要求,研究结论需要统计学支持;传统的医学统计教学都把t检验作为假设检验的入门方法进行介绍,使之成为广大医学研究人员最熟悉的方法;t检验方法简单,其结果便于解释。简单、熟悉加上外界的要求,促成了t检验的流行。但是,由于某些人对该方法理解得不全面,导致在应用过程中出现不少问题,有些甚至是非常严重的错误,直接影响到结论的可靠性。将这些问题归类,可大致概括为以下两种情况:不考虑t检验的应用前提,对两组的比较一律用t检验;将各种实验设计类型一律视为多个单因素两水平设计,多次用t检验进行均值之间的两两比较。以上两种情况,均不同程度地增加了得出错误结论的风险。而且,在实验因素的个数大于等于2时,无法研究实验因素之间的交互作用的大小。
不是一定的。硕士论文做独立样本t检验关键是看有多少个样本,如果就是一个处理组和一个对照组,可以进行T检验,若无显著差异进行t检验则无意义。t检验,亦称studentt检验(Student'sttest),主要用于样本含量较小(例如n<30),总体标准差σ未知的正态分布。t检验是用t分布理论来推论差异发生的概率,从而比较两个平均数的差异是否显著。