例子:《容易忽略的答案》大千世界,无奇不有,在我们数学王国里也有许多有趣的事情。比如,在我现在的第九册的练习册中,有一题思考题是这样说的:“一辆客车从东城开向西城,每小时行45千米,行了小时后停下,这时刚好离东西两城的中点18千米,东西两城相距多少千米?王星与小英在解上面这道题时,计算的方法与结果都不一样。王星算出的千米数比小英算出的千米数少,但是许老师却说两人的结果都对。这是为什么呢?你想出来了没有?你也列式算一下他们两人的计算结果。”其实,这道题我们可以很快速地做出一种方法,就是:45×=(千米),=(千米),×2=261(千米),但仔细推敲看一下,就觉得不对劲。其实,在这里我们忽略了一个非常重要的条件,就是“这时刚好离东西城的中点18千米”这个条件中所说的“离”字,没说是还没到中点,还是超过了中点。如果是没到中点离中点18千米的话,列式就是前面的那一种,如果是超过中点18千米的话,列式应该就是45×=(千米),=(千米),×2=189(千米)。所以正确答案应该是:45×=(千米),=(千米),×2=261(千米)和45×=(千米),=(千米),×2=189(千米)。两个答案,也就是说王星的答案加上小英的答案才是全面的。在日常学习中,往往有许多数学题目的答案是多个的,容易在练习或考试中被忽略,这就需要我们认真审题,唤醒生活经验,仔细推敲,全面正确理解题意。否则就容易忽略了另外的答案,犯以偏概全的错误。
各门科学的数学化 数学究竟是什么呢?我们说,数学是研究现实世界空间形式和数量关系的一门科学.它在现代生活和现代生产中的应用非常广泛,是学习和研究现代科学技术必不可少的基本工具. 同其他科学一样,数学有着它的过去、现在和未来.我们认识它的过去,就是为了了解它的现在和未来.近代数学的发展异常迅速,近30多年来,数学新的理论已经超过了18、19世纪的理论的总和.预计未来的数学成就每“翻一番”要不了10年.所以在认识了数学的过去以后,大致领略一下数学的现在和未来,是很有好处的. 现代数学发展的一个明显趋势,就是各门科学都在经历着数学化的过程. 例如物理学,人们早就知道它与数学密不可分.在高等学校里,数学系的学生要学普通物理,物理系的学生要学高等数学,这也是尽人皆知的事实了. 又如化学,要用数学来定量研究化学反应.把参加反应的物质的浓度、温度等作为变量,用方程表示它们的变化规律,通过方程的“稳定解”来研究化学反应.这里不仅要应用基础数学,而且要应用“前沿上的”、“发展中的”数学. 再如生物学方面,要研究心脏跳动、血液循环、脉搏等周期性的运动.这种运动可以用方程组表示出来,通过寻求方程组的“周期解”,研究这种解的出现和保持,来掌握上述生物界的现象.这说明近年来生物学已经从定性研究发展到定量研究,也是要应用“发展中的”数学.这使得生物学获得了重大的成就. 谈到人口学,只用加减乘除是不够的.我们谈到人口增长,常说每年出生率多少,死亡率多少,那么是否从出生率减去死亡率,就是每年的人口增长率呢?不是的.事实上,人是不断地出生的,出生的多少又跟原来的基数有关系;死亡也是这样.这种情况在现代数学中叫做“动态”的,它不能只用简单的加减乘除来处理,而要用复杂的“微分方程”来描述.研究这样的问题,离不开方程、数据、函数曲线、计算机等,最后才能说清楚每家只生一个孩子如何,只生两个孩子又如何等等. 还有水利方面,要考虑海上风暴、水源污染、港口设计等,也是用方程描述这些问题再把数据放进计算机,求出它们的解来,然后与实际观察的结果对比验证,进而为实际服务.这里要用到很高深的数学. 谈到考试,同学们往往认为这是用来检查学生的学习质量的.其实考试手段(口试、笔试等等)以及试卷本身也是有质量高低之分的.现代的教育统计学、教育测量学,就是通过效度、难度、区分度、信度等数量指标来检测考试的质量.只有质量合格的考试才能有效地检测学生的学习质量. 至于文艺、体育,也无一不用到数学.我们从中央电视台的文艺大奖赛节目中看到,给一位演员计分时,往往先“去掉一个最高分”,再“去掉一个最低分”.然后就剩下的分数计算平均分,作为这位演员的得分.从统计学来说,“最高分”、“最低分”的可信度最低,因此把它们去掉.这一切都包含着数学道理. 我国著名的数学家关肇直先生说:“数学的发明创造有种种,我认为至少有三种:一种是解决了经典的难题,这是一种很了不起的工作;一种是提出新概念、新方法、新理论,其实在历史上起更大作用的、历史上著名的正是这种人;还有一种就是把原来的理论用在崭新的领域,这是从应用的角度有一个很大的发明创造.”我们在这里所说的,正是第三种发明创造.“这里繁花似锦,美不胜收,把数学和其他各门科学发展成综合科学的前程无限灿烂.”
数学小论文二 各门科学的数学化 数学究竟是什么呢?我们说,数学是研究现实世界空间形式和数量关系的一门科学.它在现代生活和现代生产中的应用非常广泛,是学习和研究现代科学技术必不可少的基本工具. 同其他科学一样,数学有着它的过去、现在和未来.我们认识它的过去,就是为了了解它的现在和未来.近代数学的发展异常迅速,近30多年来,数学新的理论已经超过了18、19世纪的理论的总和.预计未来的数学成就每“翻一番”要不了10年.所以在认识了数学的过去以后,大致领略一下数学的现在和未来,是很有好处的. 现代数学发展的一个明显趋势,就是各门科学都在经历着数学化的过程. 例如物理学,人们早就知道它与数学密不可分.在高等学校里,数学系的学生要学普通物理,物理系的学生要学高等数学,这也是尽人皆知的事实了. 又如化学,要用数学来定量研究化学反应.把参加反应的物质的浓度、温度等作为变量,用方程表示它们的变化规律,通过方程的“稳定解”来研究化学反应.这里不仅要应用基础数学,而且要应用“前沿上的”、“发展中的”数学. 再如生物学方面,要研究心脏跳动、血液循环、脉搏等周期性的运动.这种运动可以用方程组表示出来,通过寻求方程组的“周期解”,研究这种解的出现和保持,来掌握上述生物界的现象.这说明近年来生物学已经从定性研究发展到定量研究,也是要应用“发展中的”数学.这使得生物学获得了重大的成就. 谈到人口学,只用加减乘除是不够的.我们谈到人口增长,常说每年出生率多少,死亡率多少,那么是否从出生率减去死亡率,就是每年的人口增长率呢?不是的.事实上,人是不断地出生的,出生的多少又跟原来的基数有关系;死亡也是这样.这种情况在现代数学中叫做“动态”的,它不能只用简单的加减乘除来处理,而要用复杂的“微分方程”来描述.研究这样的问题,离不开方程、数据、函数曲线、计算机等,最后才能说清楚每家只生一个孩子如何,只生两个孩子又如何等等. 还有水利方面,要考虑海上风暴、水源污染、港口设计等,也是用方程描述这些问题再把数据放进计算机,求出它们的解来,然后与实际观察的结果对比验证,进而为实际服务.这里要用到很高深的数学. 谈到考试,同学们往往认为这是用来检查学生的学习质量的.其实考试手段(口试、笔试等等)以及试卷本身也是有质量高低之分的.现代的教育统计学、教育测量学,就是通过效度、难度、区分度、信度等数量指标来检测考试的质量.只有质量合格的考试才能有效地检测学生的学习质量. 至于文艺、体育,也无一不用到数学.我们从中央电视台的文艺大奖赛节目中看到,给一位演员计分时,往往先“去掉一个最高分”,再“去掉一个最低分”.然后就剩下的分数计算平均分,作为这位演员的得分.从统计学来说,“最高分”、“最低分”的可信度最低,因此把它们去掉.这一切都包含着数学道理. 我国著名的数学家关肇直先生说:“数学的发明创造有种种,我认为至少有三种:一种是解决了经典的难题,这是一种很了不起的工作;一种是提出新概念、新方法、新理论,其实在历史上起更大作用的、历史上著名的正是这种人;还有一种就是把原来的理论用在崭新的领域,这是从应用的角度有一个很大的发明创造.”我们在这里所说的,正是第三种发明创造.“这里繁花似锦,美不胜收,把数学和其他各门科学发展成综合科学的前程无限灿烂.” 正如华罗庚先生在1959年5月所说的,近100年来,数学发展突飞猛进,我们可以毫不夸张地用“宇宙之大、粒子之微、火箭之速、化工之巧、地球之变、生物之谜、日用之繁等各个方面,无处不有数学”来概括数学的广泛应用.可以预见,科学越进步,应用数学的范围也就越大.一切科学研究在原则上都可以用数学来解决有关的问题.可以断言:只有现在还不会应用数学的部门,却绝对找不到原则上不能应用数学的领域.
各门科学的数学化 数学究竟是什么呢?我们说,数学是研究现实世界空间形式和数量关系的一门科学.它在现代生活和现代生产中的应用非常广泛,是学习和研究现代科学技术必不可少的基本工具. 同其他科学一样,数学有着它的过去、现在和未来.我们认识它的过去,就是为了了解它的现在和未来.近代数学的发展异常迅速,近30多年来,数学新的理论已经超过了18、19世纪的理论的总和.预计未来的数学成就每“翻一番”要不了10年.所以在认识了数学的过去以后,大致领略一下数学的现在和未来,是很有好处的. 现代数学发展的一个明显趋势,就是各门科学都在经历着数学化的过程. 例如物理学,人们早就知道它与数学密不可分.在高等学校里,数学系的学生要学普通物理,物理系的学生要学高等数学,这也是尽人皆知的事实了. 又如化学,要用数学来定量研究化学反应.把参加反应的物质的浓度、温度等作为变量,用方程表示它们的变化规律,通过方程的“稳定解”来研究化学反应.这里不仅要应用基础数学,而且要应用“前沿上的”、“发展中的”数学. 再如生物学方面,要研究心脏跳动、血液循环、脉搏等周期性的运动.这种运动可以用方程组表示出来,通过寻求方程组的“周期解”,研究这种解的出现和保持,来掌握上述生物界的现象.这说明近年来生物学已经从定性研究发展到定量研究,也是要应用“发展中的”数学.这使得生物学获得了重大的成就. 谈到人口学,只用加减乘除是不够的.我们谈到人口增长,常说每年出生率多少,死亡率多少,那么是否从出生率减去死亡率,就是每年的人口增长率呢?不是的.事实上,人是不断地出生的,出生的多少又跟原来的基数有关系;死亡也是这样.这种情况在现代数学中叫做“动态”的,它不能只用简单的加减乘除来处理,而要用复杂的“微分方程”来描述.研究这样的问题,离不开方程、数据、函数曲线、计算机等,最后才能说清楚每家只生一个孩子如何,只生两个孩子又如何等等. 还有水利方面,要考虑海上风暴、水源污染、港口设计等,也是用方程描述这些问题再把数据放进计算机,求出它们的解来,然后与实际观察的结果对比验证,进而为实际服务.这里要用到很高深的数学. 谈到考试,同学们往往认为这是用来检查学生的学习质量的.其实考试手段(口试、笔试等等)以及试卷本身也是有质量高低之分的.现代的教育统计学、教育测量学,就是通过效度、难度、区分度、信度等数量指标来检测考试的质量.只有质量合格的考试才能有效地检测学生的学习质量. 至于文艺、体育,也无一不用到数学.我们从中央电视台的文艺大奖赛节目中看到,给一位演员计分时,往往先“去掉一个最高分”,再“去掉一个最低分”.然后就剩下的分数计算平均分,作为这位演员的得分.从统计学来说,“最高分”、“最低分”的可信度最低,因此把它们去掉.这一切都包含着数学道理. 我国著名的数学家关肇直先生说:“数学的发明创造有种种,我认为至少有三种:一种是解决了经典的难题,这是一种很了不起的工作;一种是提出新概念、新方法、新理论,其实在历史上起更大作用的、历史上著名的正是这种人;还有一种就是把原来的理论用在崭新的领域,这是从应用的角度有一个很大的发明创造.”我们在这里所说的,正是第三种发明创造.“这里繁花似锦,美不胜收,把数学和其他各门科学发展成综合科学的前程无限灿烂.” 正如华罗庚先生在1959年5月所说的,近100年来,数学发展突飞猛进,我们可以毫不夸张地用“宇宙之大、粒子之微、火箭之速、化工之巧、地球之变、生物之谜、日用之繁等各个方面,无处不有数学”来概括数学的广泛应用.可以预见,科学越进步,应用数学的范围也就越大.一切科学研究在原则上都可以用数学来解决有关的问题.可以断言:只有现在还不会应用数学的部门,却绝对找不到原则上不能应用数学的领域.
"数学是一切科学之母"、"数学是思维的体操",它是一门研究数与形的科学,它不处不在。要掌握技术,先要学好数学,想攀登科学的高峰,更要学好数学。 数学,与其他学科比起来,有哪些特点?它有什么相应的思想方法?它要求我们具备什么样的主观条件和学习方法?本讲将就数学学科的特点,数学思想以及数学学习方法作简要的阐述。 一、数学的特点(一) 数学的三大特点严谨性、抽象性、广泛的应用性所谓数学的严谨性,指数学具有很强的逻辑性和较高的精通性,一般以公理化体系来体现。 什么是公理化体系呢?指得是选用少数几个不加定义的概念和不加逻辑证明的命题为基础,推出一些定理,使之成为数学体系,在这方面,古希腊数学家欧几里得是个典范,他所著的《几何原本》就是在几个公理的基础上研究了平面几何中的大多数问题。在这里,哪怕是最基本的常用的原始概念都不能直观描述,而要用公理加以确认或证明。 中学数学和数学科学在严谨性上还是有所区别的,如,中学数学中的数集的不断扩充,针对数集的运算律的扩充并没有进行严谨的推证,而是用默认的方式得到,从这一点看来,中学数学在严谨性上还是要差很多,但是,要学好数学却不能放松严谨性的要求,要保证内容的科学性。 比如,等差数列的通项是通过前若干项的递推从而归纳出通项公式,但要予以确认,还需要用数学归纳法进行严格的证明。 数学的抽象性表现在对空间形式和数量关系这一特性的抽象。它在抽象过程中抛开较多的事物的具体的特性,因而具有十分抽象的形式。它表现为高度的概括性,并将具体过程符号化,当然,抽象必须要以具体为基础。 至于数学的广泛的应用性,更是尽人皆知的。只是在以往的教学、学习中,往往过于注重定理、概念的抽象意义,有时却抛却了它的广泛的应用性,如果把抽象的概念、定理比作骨骼,那么数学的广泛应用就好比血肉,缺少哪一个都将影响数学的完整性。高中数学新教材中大量增加数学知识的应用和研究性学习的篇幅,就是为了培养同学们应用数学解决实际问题的能力。 二、高中数学的特点往往有同学进入高中以后不能适应数学学习,进而影响到学习的积极性,甚至成绩一落千丈。为什么会这样呢?让我们先看看高中数学和初中数学有些什么样的转变吧。 1、理论加强2、课程增多3、难度增大4、要求提高三、掌握数学思想高中数学从学习方法和思想方法上更接近于高等数学。学好它,需要我们从方法论的高度来掌握它。我们在研究数学问题时要经常运用唯物辩证的思想去解决数学问题。数学思想,实质上就是唯物辩证法在数学中的运用的反映。中学数学学习要重点掌握的的数学思想有以上几个:集合与对应思想,初步公理化思想,数形结合思想,运动思想,转化思想,变换思想。 例如,数列、一次函数、解析几何中的直线几个概念都可以用函数(特殊的对应)的概念来统一。又比如,数、方程、不等式、数列几个概念也都可以统一到函数概念。 再看看下面这个运用"矛盾"的观点来解题的例子。 已知动点Q在圆x2+y2=1上移动,定点P(2,0),求线段PQ中点的轨迹。 分析此题,图中P、Q、M三点是互相制约的,而Q点的运动将带动M点的运动;主要矛盾是点Q的运动,而点Q的运动轨迹遵循方程x02+y02=1①;次要矛盾关系:M是线段PQ的中点,可以用中点公式将M的坐标(x,y)用点Q的坐标表示出来。 x=(x0+2)/2 ②y=y0/2 ③显然,用代入的方法,消去题中的x0、y0就可以求得所求轨迹。 数学思想方法与解题技巧是不同的,在证明或求解中,运用归纳、演绎、换元等方法解题问题可以说是解题的技术性问题,而数学思想是解题时带有指导性的普遍思想方法。在解一道题时,从整体考虑,应如何着手,有什么途径?就是在数学思想方法的指导下的普遍性问题。 有了数学思想以后,还要掌握具体的方法,比如:换元、待定系数、数学归纳法、分析法、综合法、反证法等等。只有在解题思想的指导下,灵活地运用具体的解题方法才能真正地学好数学,仅仅掌握具体的操作方法,而没有从解题思想的角度考虑问题,往往难于使数学学习进入更高的层次,会为今后进入大学深造带来很有麻烦。 在具体的方法中,常用的有:观察与实验,联想与类比,比较与分类,分析与综合,归纳与演绎,一般与特殊,有限与无限,抽象与概括等。 要打赢一场战役,不可能只是勇猛冲杀、一不怕死二不怕苦就可以打赢的,必须制订好事关全局的战术和策略问题。解数学题时,也要注意解题思维策略问题,经常要思考:选择什么角度来进入,应遵循什么原则性的东西。一般地,在解题中所采取的总体思路,是带有原则性的思想方法,是一种宏观的指导,一般性的解决方案。 中学数学中经常用到的数学思维策略有: 以简驭繁、数形结全、进退互用、化生为熟、正难则反、倒顺相还、动静转换、分合相辅如果有了正确的数学思想方法,采取了恰当的数学思维策略,又有了丰富的经验和扎实的基本功,一定可以学好高中数学。 四、学习方法的改进身处应试教育的怪圈,每个教师和学生都不由自主地陷入"题海"之中,教师拍心某种题型没讲,高考时做不出,学生怕少做一道题,万一考了损失太惨重,在这样一种氛围中,往往忽视了学习方法的培养,每个学生都有自己的方法,但什么样的学习方法才是正确的方法呢?是不是一定要"博览群题"才能提高水平呢? 现实告诉我们,大胆改进学习方法,这是一个非常重大的问题。 (一) 学会听、读我们每天在学校里都在听老师讲课,阅读课本或者资料,但我们听和读对不对呢? 让我们从听(听讲、课堂学习)和读(阅读课本和相关资料)两方面来谈谈吧。 学生学习的知识,往往是间接的知识,是抽象化、形式化的知识,这些知识是在前人探索和实践的基础上提炼出来的,一般不包含探索和思维的过程。因此必须听好老师讲课,集中注意力,积极思考问题。弄清讲得内容是什么?怎么分析?理由是什么?采用什么方法?还有什么疑问?只有这样,才可能对教学内容有所理解。 听讲的过程不是一个被动参预的过程,在听讲的前提下,还要展开来分析:这里用了什么思想方法,这样做的目的是什么?为什么老师就能想到最简捷的方法?这个题有没有更直接的方法? "学而不思则罔,思而不学则殆",在听讲的过程中一定要有积极的思考和参预,这样才能达到最高的学习效率。 阅读数学教材也是掌握数学知识的非常重要的方法。只有真正阅读和数学教材,才能较好地掌握数学语言,提高自学能力。一定要改变只做题不看书,把课本当成查公式的辞典的不良倾向。阅读课本,也要争取老师的指导。阅读当天的内容或一个单元一章的内容,都要通盘考虑,要有目标。 比如,学习反正弦函数,从知识上来讲,通过阅读,应弄请以下几个问题: (1) 是不是每个函数都有反函数,如果不是,在什么情况下函数有反函数? (2)正弦函数在什么情况下有反函数?若有,其反函数如何表示? (3)正弦函数的图象与反正弦函数的图象是什么关系? (4)反正弦函数有什么性质? (5)如何求反正弦函数的值? (二) 学会思考爱因斯坦曾说:"发展独立思考和独立判断的一般能力应当始终放在首位",勤于思考,善于思考,是对我们学习数学提出的最基本的要求。一般来说,要尽力做到以下两点。 1、善于发现问题和提出问题2、善于反思与反求
各门科学的数学化 数学究竟是什么呢?我们说,数学是研究现实世界空间形式和数量关系的一门科学.它在现代生活和现代生产中的应用非常广泛,是学习和研究现代科学技术必不可少的基本工具. 同其他科学一样,数学有着它的过去、现在和未来.我们认识它的过去,就是为了了解它的现在和未来.近代数学的发展异常迅速,近30多年来,数学新的理论已经超过了18、19世纪的理论的总和.预计未来的数学成就每“翻一番”要不了10年.所以在认识了数学的过去以后,大致领略一下数学的现在和未来,是很有好处的. 现代数学发展的一个明显趋势,就是各门科学都在经历着数学化的过程. 例如物理学,人们早就知道它与数学密不可分.在高等学校里,数学系的学生要学普通物理,物理系的学生要学高等数学,这也是尽人皆知的事实了. 又如化学,要用数学来定量研究化学反应.把参加反应的物质的浓度、温度等作为变量,用方程表示它们的变化规律,通过方程的“稳定解”来研究化学反应.这里不仅要应用基础数学,而且要应用“前沿上的”、“发展中的”数学. 再如生物学方面,要研究心脏跳动、血液循环、脉搏等周期性的运动.这种运动可以用方程组表示出来,通过寻求方程组的“周期解”,研究这种解的出现和保持,来掌握上述生物界的现象.这说明近年来生物学已经从定性研究发展到定量研究,也是要应用“发展中的”数学.这使得生物学获得了重大的成就. 谈到人口学,只用加减乘除是不够的.我们谈到人口增长,常说每年出生率多少,死亡率多少,那么是否从出生率减去死亡率,就是每年的人口增长率呢?不是的.事实上,人是不断地出生的,出生的多少又跟原来的基数有关系;死亡也是这样.这种情况在现代数学中叫做“动态”的,它不能只用简单的加减乘除来处理,而要用复杂的“微分方程”来描述.研究这样的问题,离不开方程、数据、函数曲线、计算机等,最后才能说清楚每家只生一个孩子如何,只生两个孩子又如何等等. 还有水利方面,要考虑海上风暴、水源污染、港口设计等,也是用方程描述这些问题再把数据放进计算机,求出它们的解来,然后与实际观察的结果对比验证,进而为实际服务.这里要用到很高深的数学. 谈到考试,同学们往往认为这是用来检查学生的学习质量的.其实考试手段(口试、笔试等等)以及试卷本身也是有质量高低之分的.现代的教育统计学、教育测量学,就是通过效度、难度、区分度、信度等数量指标来检测考试的质量.只有质量合格的考试才能有效地检测学生的学习质量. 至于文艺、体育,也无一不用到数学.我们从中央电视台的文艺大奖赛节目中看到,给一位演员计分时,往往先“去掉一个最高分”,再“去掉一个最低分”.然后就剩下的分数计算平均分,作为这位演员的得分.从统计学来说,“最高分”、“最低分”的可信度最低,因此把它们去掉.这一切都包含着数学道理. 我国著名的数学家关肇直先生说:“数学的发明创造有种种,我认为至少有三种:一种是解决了经典的难题,这是一种很了不起的工作;一种是提出新概念、新方法、新理论,其实在历史上起更大作用的、历史上著名的正是这种人;还有一种就是把原来的理论用在崭新的领域,这是从应用的角度有一个很大的发明创造.”我们在这里所说的,正是第三种发明创造.“这里繁花似锦,美不胜收,把数学和其他各门科学发展成综合科学的前程无限灿烂.” 正如华罗庚先生在1959年5月所说的,近100年来,数学发展突飞猛进,我们可以毫不夸张地用“宇宙之大、粒子之微、火箭之速、化工之巧、地球之变、生物之谜、日用之繁等各个方面,无处不有数学”来概括数学的广泛应用.可以预见,科学越进步,应用数学的范围也就越大.一切科学研究在原则上都可以用数学来解决有关的问题.可以断言:只有现在还不会应用数学的部门,却绝对找不到原则上不能应用数学的领域.
有一次,妈妈烙饼,锅里能放两张饼。我就想,这不是一个数学问题吗?烙一张饼用两分钟,烙正、反面各用一分钟,锅里最多同时放两张饼,那么烙三张饼最多用几分钟呢?我想了想,得出结论:要用3分钟:先把第一、第二张饼同时放进锅内,1分钟后,取出第二张饼,放入第三张饼,把第一张饼翻面;再烙1分钟,这样第一张饼就好了,取出来。然后放第二张饼的反面,同时把第三张饼翻过来,这样3分钟就全部搞定。 我曾看见过这样的一个报道:一个教授问一群外国学生:“12点到1点之间,分针和时针会重合几次?”那些学生都从手腕上拿下手表,开始拨表针;而这位教授在给中国学生讲到同样一个问题时,学生们就会套用数学公式来计算。 1、三角形很稳定,许多支架都是三角形的许多支架用三个脚支撑用了一个数学公理三点确定一个平面 2、一些人在木门上钉斜条,是为了克服四边形的不稳定性。卷闸门也是一样的道理。 3、河南登封观星台、南京中山陵都是中心对称图形 4、蚊帐的孔是六边形的~ 5、筷子是圆锥型的。光碟是圆形的。 6、电线是线段冰箱是长方体门是长方形轮胎是圆形地球是圆形 数学是一门很有用的学科。自从人类出现在地球上那天起,人们便在认识世界、改造世界的同时对数学有了逐渐深刻的了解。早在远古时代,就有原始人“涉猎计数”与“结绳记事”等种种传说。可见,“在早期一些古代文明社会中已产生了数学的开端和萌芽”(引自《古今数学思想》第一册P1——作者注)。“在BC3000年左右巴比伦和埃及数学出现以前,人类在数学上没有取得更多的进展”,而“在BC600—BC300年间古希腊学者登场后”,数学便开始“作为一名有组织的、独立的和理性的学科”(引自《古今数学思想》第一册P1——作者注)登上了人类发展史的大舞台。 如今,数学知识和数学思想在工农业生产和人们日常生活中有极其广泛的应用。譬如,人们购物后须记账,以便年终统计查询;去银行办理储蓄业务;查收各住户水电费用等,这些便利用了算术及统计学知识。此外,社区和机关大院门口的“推拉式自动伸缩门”;运动场跑道直道与弯道的平滑连接;底部不能靠近的建筑物高度的计算;隧道双向作业起点的确定;折扇的设计以及黄金分割等,则是平面几何中直线图形的性质及解Rt三角形有关知识的应用。由于这些内容所涉及的高中数学知识不是很多,在此就不赘述了。 由此可见,古往今来,人类社会都是在不断了解和探究数学的过程中得到发展进步的。数学对推动人类文明起了举足轻重的作用。 例如:在教学“求两个数的最小公倍数”时,课始,我创设了这样一个情景:皇塘每6分钟有一辆中巴车开往常州(向东),8分钟有一辆中巴车开往丹阳(向北)。现在刚好有两辆中巴车同时分别开往常州和丹阳,问再过几分钟,又有两辆中巴同时开往常州和丹阳?数学在我们得生活当中是无处不在到,小到买菜的讨价还价,大到火箭的设计......其实我们在学习数学得过程中是为了培养自己得逻辑判断能力,让自己得思维更严谨,我们在学校学习数学,不单单只是为了去记住一个公式,而是在学习这个公式得推倒得过程中渐渐得培养了自己得思维逻辑能力,可以说,一个人的数学学好了,对于一件事得判断能力会大大增强,所以学好数学,不单单只是为了应付考试,而是在学习一项在社会生存得基本技能.
生活中,处处都有数学的身影,超市里,餐厅里,家里,学校里………都离不开数学。下面是我整理的数学科技论文800字,希望你能从中得到感悟! 数学科技论文800字篇一 数学究竟是什么呢?我们说,数学是研究现实世界空间形式和数量关系的一门科学.它在现代生活和现代生产中的应用非常广泛,是学习和研究现代科学技术必不可少的基本工具. 同其他科学一样,数学有着它的过去、现在和未来.我们认识它的过去,就是为了了解它的现在和未来.近代数学的发展异常迅速,近30多年来,数学新的理论已经超过了18、19世纪的理论的总和.预计未来的数学成就每“翻一番”要不了10年.所以在认识了数学的过去以后,大致领略一下数学的现在和未来,是很有好处的. 现代数学发展的一个明显趋势,就是各门科学都在经历着数学化的过程. 例如物理学,人们早就知道它与数学密不可分.在高等学校里,数学系的学生要学普通物理,物理系的学生要学高等数学,这也是尽人皆知的事实了. 又如化学,要用数学来定量研究化学反应.把参加反应的物质的浓度、温度等作为变量,用方程表示它们的变化规律,通过方程的“稳定解”来研究化学反应.这里不仅要应用基础数学,而且要应用“前沿上的”、“发展中的”数学. 再如生物学方面,要研究心脏跳动、血液循环、脉搏等周期性的运动.这种运动可以用方程组表示出来,通过寻求方程组的“周期解”,研究这种解的出现和保持,来掌握上述生物界的现象.这说明近年来生物学已经从定性研究发展到定量研究,也是要应用“发展中的”数学.这使得生物学获得了重大的成就. 谈到人口学,只用加减乘除是不够的.我们谈到人口增长,常说每年出生率多少,死亡率多少,那么是否从出生率减去死亡率,就是每年的人口增长率呢?不是的.事实上,人是不断地出生的,出生的多少又跟原来的基数有关系;死亡也是这样.这种情况在现代数学中叫做“动态”的,它不能只用简单的加减乘除来处理,而要用复杂的“微分方程”来描述.研究这样的问题,离不开方程、数据、函数曲线、计算机等,最后才能说清楚每家只生一个孩子如何,只生两个孩子又如何等等. 还有水利方面,要考虑海上风暴、水源污染、港口设计等,也是用方程描述这些问题再把数据放进计算机,求出它们的解来,然后与实际观察的结果对比验证,进而为实际服务.这里要用到很高深的数学. 谈到考试,同学们往往认为这是用来检查学生的学习质量的.其实考试手段(口试、笔试等等)以及试卷本身也是有质量高低之分的.现代的教育统计学、教育测量学,就是通过效度、难度、区分度、信度等数量指标来检测考试的质量.只有质量合格的考试才能有效地检测学生的学习质量. 至于文艺、体育,也无一不用到数学.我们从中央电视台的文艺大奖赛节目中看到,给一位演员计分时,往往先“去掉一个最高分”,再“去掉一个最低分”.然后就剩下的分数计算平均分,作为这位演员的得分.从统计学来说,“最高分”、“最低分”的可信度最低,因此把它们去掉.这一切都包含着数学道理. 我国著名的数学家关肇直先生说:“数学的发明创造有种种,我认为至少有三种:一种是解决了经典的难题,这是一种很了不起的工作;一种是提出新概念、新方法、新理论,其实在历史上起更大作用的、历史上著名的正是这种人;还有一种就是把原来的理论用在崭新的领域,这是从应用的角度有一个很大的发明创造.”我们在这里所说的,正是第三种发明创造.“这里繁花似锦,美不胜收,把数学和其他各门科学发展成综合科学的前程无限灿烂.” 正如华罗庚先生在1959年5月所说的,近100年来,数学发展突飞猛进,我们可以毫不夸张地用“宇宙之大、粒子之微、火箭之速、化工之巧、地球之变、生物之谜、日用之繁等各个方面,无处不有数学”来概括数学的广泛应用.可以预见,科学越进步,应用数学的范围也就越大.一切科学研究在原则上都可以用数学来解决有关的问题.可以断言:只有现在还不会应用数学的部门,却绝对找不到原则上不能应用数学的领域. 数学科技论文800字篇二 生活中,处处都有数学的身影,超市里,餐厅里,家里,学校里………都离不开数学。我也有几次对数学的亲身经历呢,我挑其中两件事来给大家说一说。 记得三年级,有一次,我和妈妈逛超市,超市现在正在搞春节打折活动,每件商品的折数各不相同。我一眼就看中了一袋旺旺大礼包,净含量是628克,原价35元,现在打八折,可是打八折怎么算呢?我问妈妈。妈妈告诉我,打八折就是乘以,也就是35*(元)。我恍然大悟。我准备把这袋旺旺大礼包买下来,可是,妈妈告诉我,可能后面的旺旺大礼包更便宜,要去后面看看。走着走着,果然,我又看见了卖旺旺大礼包的,净含量是650克,原价40元,现在也打八折。这下,我犯了愁,净含量不同,原价也不同,哪个划算呢?我又问妈妈。妈妈告诉我35*(元),40*(元),一袋是628克,现价28元,另一袋是650克,现价32元。用28/628≈,32/650≈0。049,>,所以第二袋划算一点儿,于是,我们买下了第二袋。通过这次购物,我知道了怎样计算打折数,怎样计算哪种物品更划算一些。 记得四年级,有一次,我和一个朋友出去玩,朋友的妈妈给我们俩出了一道题:1~100报数,每人可以报1个数,2个数,3个数,谁先报到100,谁就获胜。话音刚落,我便思考怎样才能获胜,我想:这肯定是一道数学策略问题,不能盲目地去报,里面肯定有数学问题,用1+3=4,100/4=25,我不能当第一个报的,只能当最后一个报的,她报x个数,我就报(4-x)个数,就可以获胜,我抱着疑惑的心理去和她报数,显然,她没有思考获胜的策略,我用我的方法去和她报数,到了最后,我果然报到了100,我获胜了。原来这道数学问题是一道典型的对策问题,需要思考,才能获胜。到了六年级,我也学到了这类知识,只不过,更加难了,通过这次游玩,我喜欢上了对策问题,也更加爱思考,寻找数学中的奥秘。 数学,就像一座高峰,直插云霄,刚刚开始攀登时,感觉很轻松,但我们爬得越高,山峰就变得越陡,让人感到恐惧。这时候,只有真正喜爱数学的人才会有勇气继续攀登下去,所以,站在数学的高峰上的人,都是发自内心喜欢数学的,站在峰脚的人是望不到峰顶的。只有在生活中发现数学,感受数学,才能让自己的视野更加开阔! 看了“数学科技论文800字”的人还看: 1. 科技论文800字 2. 科技论文800字左右 3. 科技论文800字以上 4. 高一科技论文800字 5. 高中生科技论文800字
蜜蜂靠什么发出嗡嗡声?权威专家都认为:是靠翅膀振动发声。我省监利县12岁的小学生聂利大胆挑战这一说法。她说:“蜜蜂有自己的发音器官,不是靠翅膀振动发声。” 聂利是监利县黄歇口镇中心小学六年级学生。在甘肃省兰州市8月举行的第18届全国青少年科技创新大赛上, 她撰写的论文《蜜蜂并不是靠翅膀振动发 声》,荣获优秀科技项目银奖和高士其科普专项奖。 2001年秋,聂利从《小学自然学习辅导》一书中得知,蜜蜂、苍蝇、蚊子等昆虫都没有发音器官,但它们在飞行时不断高速扇动翅膀,使空气振动,会产生嗡嗡的声音。后来,聂利在《十万个为什么》一书中也看到这种说法。 去年春天,她到一个养蜂场去玩,发现许多蜜蜂聚集在蜂箱上,翅膀没动,仍然嗡嗡叫个不停,她因此对教材、科普读物的说法产生怀疑,并开始试验和研究。她把蜜蜂的双翅用胶水粘在木板上,或者剪去蜜蜂的双翅,都能听到蜜蜂的叫声。两种方法交替进行了42次,结果表明:蜜蜂不振动翅膀也能发声。 为了探究蜜蜂的发音器官,她把蜜蜂粘在木板上,用放大镜仔细查找,观察了一个多月,终于在蜜蜂的双翅根部发现两粒比油菜籽还小的黑点,蜜蜂叫时,黑点上下鼓动。她用大头针捅破小黑点,蜜蜂就不发声了。她又找来一些蜜蜂,不损伤双翅,只刺破小黑点,放在蚊帐里。蜜蜂飞来飞去,再也没有声音。她将这一发现写成论文,认为蜜蜂的发音器官就是这两个小黑点。 据了解,中国教育协会、小学自然教学专业委员会会刊全文发表了聂利的论文。 新闻链接:昆虫专家称可能是个了不起的发现 昨日省内多位从事昆虫研究的专家在接受记者采访时均称,蜜蜂是靠翅膀振动发声的。华中师范大学生命科学院副教授陈国生说,膜翅目昆虫一般没有发声器官,而蜜蜂属于膜翅目昆虫。省昆虫学会理事长、华中农业大学教授徐冠军说,还未发现有资料报道蜜蜂有发声器官。 听说聂利的发现后,徐冠军教授说,由于他没有见证聂利小朋友的试验,也从未做过这样的试验,所以尚不敢对她的发现下结论。如果这位小朋友的发现是真实的话,肯定是个了不起的发现。
初中科学教学的目的是提高学生的科学探索观念和逻辑思维能力,丰富科学知识基础,奠定探索科学观念,提升观察力。下文是我为大家搜集整理的关于初一科学小论文范文的内容,欢迎大家阅读参考! 初一科学小论文范文篇1 浅谈初中科学实验优化 摘 要:对于初中科学这样具有实践性的课程,实验在课堂教学中的地位和作用是毋庸置疑的,但在教学实践中,因学校条件和学生素质的限制,很多实验无法按照“预期计划”进行,这就需要教师在教学中从学校和学生实际出发,对实验进行改进,从而达到增强实验效果和培养学生的创新性思维的目的。在本文中笔者讲述了通过一系列的实验改进来提高初中实验教学。 关键字:科学实验;优化 一、引语 布鲁纳曾经说过:“一个人要想使现有的知识成为自己的知识,他必须亲自从事‘发现的行动’。”初中科学正是以学生观察、分析、实验、发现为基础的一门学科,而实验作为一项集观察、分析、创新等为一体的活动,随着课程改革的不断深化,对之要求也是越来越高。因此,在科学教学中,我们应重视实验教学,尤其是优化学生实验教学,从而更有效地培养学生的创新精神和实践能力。 二、实验教学优化操作实施 1.巧妙指导预习实验,提高课堂准备性 所谓实验预习就是做好实验的前提,提高了学生课堂的准备性。通过预习,学生可充分理解和熟悉实验的基本原理、方法、步骤,仪器的使用及实验注意事项,明确实验目的,能够带着问题进入课堂,从而极大提高实验课堂的质量与效率。因此,实验前我们应指导学生预习,每做一个实验前,我都明确提出以下几点:(1)本实验的原理是什么;(2)要达到什么目的;(3)实验分几个步骤;(4)操作过程有哪些具体要求和注意点。同时教师需要提醒学生理清实验步骤,因为实验步骤是学生动手规范操作的要领,只有理解、掌握才能规范操作,实验才能成功。预习时可以提示学生将实验步骤由繁化简,抓住每一步的关键词语串起来作为步骤,能收到较好的实验效果。 如:八年级下册第二章第3节“化学反应与质量守恒”这一课中,关于氧气的制取和性质的研究实验。我们可以让学生通过预习来找出不同的原理,应该使用怎么样的反应装置,收集氧气该用什么方法,这是根据什么性质。还可以将实验室制氧气的步骤可归纳为:查、装、定、点、收、离、熄(谐音:茶庄定点收利息)。这样,学生在做实验时思路就非常清晰,有条不紊,使实验取得更好的效果。 2.合理改进演示实验,培养学生创造性 实验教学能让学生的思维活跃起来,是培养学生创新思维和创新能力的重要途径。结合科学实验的特点,让学生从多角度、各方面去观察、思考,从而提出多种设想和解决问题的方法,可以培养学生的求异创新思维。现行的教材中的有些演示实验,存在着这样或者那样的一些缺点,但是经过我们的合理的改进后,就会大大提高演示的效果,同时也可以培养学生的创新精神。 如:八年级上册第二章第3节“大气的压强”这一课中,有一个这样的活动:在玻璃杯里盛满水,在杯口覆盖一张硬纸片。先用左手托住纸片,将杯子倒转过来。当左手拿开后,水是否会流出来?为什么?这个实验的本意是要告诉我们,大气压强把纸给托住了。但是很多学生认为纸片是被水给黏住了,教师为了验证水是被大气压托住而不是被水黏住,往往会把里面的水倒掉,再把纸片扣上去做一次,很不巧的是,由于纸片很轻巧,很容易在这次实验中被水黏住了。虽然教师会给予解释,但学生往往不是很信服。怎么解决这个问题呢,师生之间通过讨论想到了玻璃钟罩和抽气机。具体的做法是:把杯子的底部穿过一根线,用蜡做好密封,然后装满水,放上纸片,然后倒扣过来,在绳子的另一端系上吸盘,吸盘倒吸在玻璃钟罩的顶部。纸片没有掉下来。然后用抽气机给玻璃钟罩抽气,随着里面气压的降低,纸片就会掉了下来。这样就可以充分的证明纸片是被大气压托住的,而不是被水黏住的。 3.充分利用趣味实验,激发学习积极性 “兴趣是最好的老师”,学生的兴趣一旦被激发,教学的进展将大大提高。而实验课上能引起学生学习兴趣的方法很多,只要我们教师时刻想到要引导学生的兴趣,挖掘教材中的实验趣味因素,不难设计出巧妙的趣味实验。在课堂教学中引入趣味实验,有利于控制学生的注意力,激发学生的学习兴趣。 如:八年级上册第一章第2节“水的组成”这一课中,有一个水的电解实验。在一般情况下,这是一个演示实验,由老师用水电解器做给学生看,然后再告诉学生哪个是氧气,哪个是氢气,以及区分它们的方法。实际上对于这个实验,我们只要稍微加以改进是可以把它做成趣味实验的,而且还能做成学生实验,让学生分组来完成。改进的实验用到这些器材:干电池四节、输液软管一条、大头针两枚、开关一个、培养皿一个、水、导线若干,依次连接在一起。闭合开关后,输液管中的水就会开始电解,产生氧气和氢气,将输液管另一端放在装有水的培养皿中,就会看到大量的气泡产生,这样就可以解释水电解生产了气体。同时,如果把燃着的火柴放在气泡上方的话,还会产生爆鸣声,这就是氢气不纯燃烧的现象。这样的实验,充满了趣味性,同时又可以对学生进行安全教育。 4.适当拓展课外实验,提高学生实践性 美国教育家杜威就曾提出这样的观点:“‘从做中学’也就是‘从活动中学’‘从经验中学习’,它使得学校里知识的获得与生活过程中的活动联系了起来。由于儿童能从那些真正有教育意义和有兴趣的活动中进行学习,那就有助于儿童的生长和发展。”科学中的概念、原理都比较抽象枯燥。但是,如果我们能启发学生把理论知识升华,并运用到现实生活中,将能起到更好的教学效果,也能激起学生强烈的求知欲望,而且还可培养学生的创造性思维。 如:八年级下册第二章第3节“化学反应与质量守恒”这一课中,有这样一个问题:“蜡烛燃烧完后,什么都没有了,难道这符合质量守恒定律吗?”如果教师仅仅从口头上分析一下质量守恒的原因,学生肯定是不感兴趣也是不深刻的。我就根据这个问题,组织学生讨论:蜡烛燃烧后真的什么都没有了吗?然后从生活的经验出发,让学生说说是否观察到蜡烛燃烧有没有什么现象,会不会蕴含着哪些科学原理,最后布置学生设计一个课外小实验,把蜡烛燃烧后的产物收集起来,并设计实验判断产物,根据产物推断蜡烛由哪些元素组成的。通过这一课外实验,使学生理解了如何用质量守恒定律来分析蜡烛燃烧现象,体会到学习的内容与日常生活有着千丝万缕的联系,激发了学生的学习兴趣,增强了学习的积极性和主动性。 还比如说,在八年级上册第三章第1节“环境对生物行为的影响”这一课中,有一个植物的向性实验。由于实验的时间较长,我们是没有办法在课堂上完成的。学到这里时,教师可以布置这样的课外实验,让学生来做,来研究玉米的生长情况。当然,为了取材的方便,我们是可以把它换成黄豆来做的。让学生从实践中观察根是向地生长、茎是背地生长;同时,我们还可以对这个实验做下扩展,让学生研究下种子萌发的条件,做到一举两得。 三、结语 优化初中科学实验教学,使学生像科学家发现真理一样,通过动手和动脑去获取知识,这样既培养了学生的兴趣爱好和特长,也有利于开发学生的智力。因此,我们教师要不断研究实验课的教法和学法,培养学生的兴趣,发挥学生的主体作用,使实验课成为培养学生创新意识的重要场所。学生在实验活动中启动了思维,激发了学习的主动性,而教师则真正成为学生学习的引路人。 参考文献: 1.中华人民共和国教育部制定.国家科学课程标准(实验)[S].北京:北京师范大学出版社,2001. 2.朱清时.科学第3册课本[M].浙江:浙江教育出版社,2006(6). 3.朱清时.科学第4册课本[M].浙江:浙江教育出版社,2005(11). 4.郑康春.谈初中科学实验教学的优化[J].中学课程辅导.教学研究,2009(8). 初一科学小论文范文篇2 浅论初中科学概念教学策略 [摘要] 科学概念教学对于科学教学具有重要意义。当前,科学概念教学过程中还存在一些不符合科学课程理念的教学方法、策略,影响教学质量。本文以文献研究成果为基础,依据概念转变学习理论提出了提高科学概念教学有效性的具体操作策略:(1)探测前概念,制造认知冲突;(2)“架桥”前概念,切合科学概念;(3)加强实验创新,推动概念转变。 [关键词] 前概念 概念转变 科学概念 教学策略 一、问题的由来 科学概念是自然界客观事物的本质属性在人脑中的反映,不仅包括一般的科学事实和概念,还包括科学的观念和对科学的看法。科学概念是科学思维的基本单位,学生掌握科学概念是发展科学能力的必要前提。科学概念教学是形成学生科学概念的基本途径,也是科学教学的基本环节,提高科学概念教学的有效性至关重要。目前,科学概念教学主要存在以下问题: 1.受教学评价体制、落后教学观念等因素的影响,教师喜欢以自身概念体系为标准,运用机械训练的策略,导致学生概念学习水平停留在陈述性知识层面,对概念缺乏实质的理解,无法实际应用。 2.科学教材中许多概念和规律是以探究的方式呈现的,也有单独设立的探究活动。但有些教师不了解学生科学概念形成的心理机制,缺乏多样化的教学策略,科学概念探究只注重结论而不是有意义的探究过程,缺乏对科学概念本质内涵的揭示,学生无法真正建构概念。 以上第2个问题的解决对于教学更具有现实意义,本文着重探讨如何运用教学策略提高基本探究的科学概念教学有效性。 二、概念转变学习理论 认知心理学研究表明,科学概念学习之前学生已形成许多日常概念,称为前概念,有些前概念近似科学概念,而有些却是“错误概念”或“相异概念”,与科学概念不相容。以建构主义为基础的概念转变学习理论认为科学学习就是学生原有概念的改变、发展和重建过程,是学生前概念向科学概念的转变过程;强调学生对科学新概念同化、顺应式“自我建构”,重视学生情感态度和元认知等因素在概念学习中的作用。基于这种观点,科学概念教学要以前概念为前提,以小组合作学习为基本组织形式,以科学探究为基本方式,以促进概念转变为根本目的。 三、促进科学概念转变的教学策略 教学策略是为了达成教学目的、完成教学任务,而在对教学活动清晰认识的基础上,对教学活动进行调节和控制的一系列执行过程。科学概念教学是一场发生在有限时间、空间里的师生互动,有效组织承载概念内涵的活动,帮助学生从活动中整理获取重要信息,促进学生思维的活跃等都要依赖教学策略合理运用。下文以文献查阅为基础、结合案例分析的形式,探讨提高科学概念教学过程有效性的教学策略,这些教学策略都基于“概念学习就是概念转变”这一观点。 (一)探测前概念,引发认知冲突 前概念泛指学生原有经验基础上的一些观点和看法,因人而异植根于学生原有的认知结构中,具有隐憋性、长期性、稳定性、缺乏概括性、牢固性等特点,师生都不易察觉。概念转变的起点是前概念,教师要借助一些方法了解学生的前概念,借机引发学生认知冲突,提升探究动机,进入意义建构概念的状态。 策略分析: 1.教师可以利用学生原有经验匹配的熟悉情景来“唤醒”前概念,再设置挑战性问题,激发学习兴趣,提高参与动机; 2.借助概念图、概念层、关健概念、连接、层级、连接词关系来探测学生的前概念,暴露学生学习相关前概念; 3.利用学生不同背景差异这种宝贵的学习资源,引导加强协商对话的小组合作,让学生不同的观点自由碰撞,自行暴露“错误概念”并意识到原有的认知结构与现有情景存在冲突,产生进一步探究的动机,进入有意义的学习状态。 概念图是探测前概念和评价概念转化的知识管理工具,适用于概念层级联系比较明显的知识章节。教师还可以通过提问、课前调查、访谈等方法了解学生的前概念。 (二)“架桥”前概念,切合科学概念 布朗和克莱门特提出并验证了“架桥”策略在概念转变教学的应用问题。“架桥”策略是通过生活事例与目标概念之间做出明确类比建立类比关系。初中学生思维抽象逻辑思给尚未发展完善,具体的形象成分在思维过程中仍起着重要作用,难以直接理解许多抽象科学概念。抽象的科学概念需要通过“架桥”类比策略帮助学生建立前概念与科学概念之间的关系,促成概念理解。“架桥”策略符合维果斯基的“最近发展区”理论观点,能有效得促成概念的转变。 策略分析: 1.学生对于抽象科学概念缺乏感性认识,教师直接介入教学,学生的兴趣与注意程度难以保证,需要一些熟悉情境来激活学生的有用经验,提取与科学概念学习相关的前概念。 2.学生难以由当前情境建构科学概念时,教师可以利用生活事例进行类比铺垫激活学生形成相似前概念情景,促进情景迁移,理解科学概念。 3.选择的事例与科学概念的内部逻辑关系必须一致,否则会让学生思维陷入混乱。 (三)加强实验创新,推动概念转变 新概念的可理解性、合理性、有效性是实现概念转变的条件。在科学教材中,许多概念和规律是以探究的方式呈现的,但不一定符合学生的认知能力水平。教师要根据学生实际能力水平,利用现有实验设备、器材,组织安排实验探究的顺序,精巧设计成本低、趣味浓、创意新的“差异性实验”,有违学生“常识”的实验,吸引学生的注意力,激活学生的思维。注重掌握科学方法、发展科学能力的同时体验科学概念的合理性、有效性,从根本上动摇并推翻学生错误的前概念,为科学概念的建构奠定坚实基础。 策略分析: 1.在开展探究之前,教师利用相关事例,暴露学生前概念的同时,又造成学生原有经验和实验结果相违背的认知冲突,增强了学生自主探究的欲望,明确了探究的定向目标。 2.学生感受到进行了“有意义”的自主探究,同时自主讨论、汇报、分析、比较得出的结论所建立的密度概念合情合理,更为有效; 3.实验创新不是要求追求科学家探究的精度,而主要是指实验组织出现的排序,还有尽量充分地利用生活的实验素材,会让学生觉得科学就在身边。 本文对于科学概念教学策略的探讨局限于教学实施过程中,要更加有效地促进概念转变需要结合概念教学前的准备策略和教学后的评价策略进行系统思考,我们期待更多相关的研究。 参考文献: [1]胡卫平,刘建伟.概念转变模型:理论基础、主要内容、发展与修正[J].学科教育,2004,(6):34. [2]袁维新.科学概念的建构性教学模式与策略探析[J].教育科学,2007,23(1):25. [3]和学新.教学策略的涵义、结构及其类型[J].教学与管理,2005,(2):5-7. [4]李高峰,刘恩山.前科学概念的研究进展[N].内蒙古师范大学学报(哲学社会科学版),2007-7 (46). [5]唐小俊.促进概念转变的教学策略研究[J].教育探索,2008,(6) :12. [6]袁维新.西方科学教学中概念转变学习理论的形成与发展[J].比较教育研究,2004,(3):35. 猜你喜欢: 1. 初中科技小论文范文 2. 初一科学论文范文 3. 初一科学论文800字范文 4. 初中科学教育小论文 5. 初中科学论文格式范文
一、什么是科学小论文 有些同学把写科学小论文看得很神秘,认为是科学工作者的事,对我们少年儿童是高不可攀的。这完全是一种误解,同学们不仅能写而且可以写出质量较高的论文来。 科学工作者写的科学论文,是指作者根据所制定的科研项目和确定的科研课题,通过实验、观察等手段,获得大量的科学数据,在此基础上,再进行分析研究,得出科学结论,从而写出的科研报告。同学们写的科学小论文,比科学工作者写的科学论文要短一些、浅一些。 科学小论文实际上是同学们在课内外学科学活动中进行科学观察、实验或考察后一种成果的书面总结。它的表现形式是多种多样的:可以是对某一事物进行细致观察和深入思考后得出结论;可以是动手实验后分析得出的结论;也可以是对某地进行考察后的总结;还可以*逻辑推理得出结论…… 那么,科学小论文有没有质量标准呢?有。它必须具备"三性"。 1、科学性。科学性是科学小论文有别于其他各类体裁文章的重要特点之一,是科学小论文的生命。它要求选题科学,研究的方法正确,论据确凿,论证合理且符合逻辑,文字简洁准确。 2、创造性。小论文的选题、主要观点要有自己新的发现、独特的见解,而且对人们的生产生活等有一定的实际意义,同样的小论文没有参加过各级科学讨论会,也没有在各级报刊上发表过。当然,你如果在别人研究的基础上进一步研究,提出新颖、独到而又论据充分、言之有理的见解也是可行的,不失创造性。 3、实践性。论文选题必须是作者本人在科学探索活动中发现的;支持主要观点的论据必须是作者通过观察、考察、实验等研究手段亲自获得的,有实践依据;论文必须是作者本人撰写的。不能有凭空捏造、猜测、成人包办代替的迹象。 以上"三性"是衡量科学小论文的质量标准。如写"太阳花",尽管你的观察细致入微,它的姿态描写得栩栩如生,它的品格剖析得完美无缺,但如果没有获得科学的、有意义的结论,那最多只能算是一篇好的散文或观察日记,而不是科学小论文。 写科学小论文是一件很艰辛的工作,更是一项非常有意义的活动。成功属于勇于探索、不懈追求的青少年朋友! 二科学小论文的类型 科学小论文最常见的形式有科学观察小论文、科学实验小论文、科学考察小论文和科学说明小论文。 (一)科学观察小论文 科学观察小论文,是指青少年对某事物或自然现象通过周密细致的观察,并对取得的材料和数据进行认真的分析、综合研究后得出结论,作出科学的解释和描述。 需要注意的是,科学观察小论文中研究的对象是客观存在的自然事物或现象,是在自然发光的条件下不加以人为控制发生的,所以文中所描述的内容应是作者所观察的对象、过程和它产生的条件、各种现象,不能附加人为的任何条件或个人偏见。另外,观察是一项长期的、系统的、反复进行的活动,需要作者耐心、细致、锲而不舍的精神。 (二)科学实验小论文 科学实验小论文,有时也称"实验报告",是青少年对研究的对象创设特定的条件,经过反复实验,对获取的材料和数据进行分析、综合得出结论而写出的文章。它着眼于对实验过程的客观叙述以及实验现象的科学解释。 实验目的明确,实验步骤详尽,数据准确,说明力强,得出的结论真实可信,不失为一篇优秀的科学实验小论文。 (三)科学考察小论文 你想研究某一与人们生活息息相关的水域污染程度、某地的空气污染源,弄清某奇石奇山的演化过程、某范围动植物资源及分布情况等,你就得实地考察。通过调查、访问、实地勘探等考察方式为主要研究手段写出的小论文称为科学考察小论文。有时也称为"科学考察报告"、"科学调查报告"。 荣获第五届全国青少年科学讨论会一等奖的《愿胜天水库的水常绿》一文中,小作者们对水库的地理生态环境、库容等作了实地考察,并力所能及地进行了实测,找出水库存在的隐患,提出了较为合理的建议。文中除写明了考察时间、对象、内容及综合分析得出的结论外,还绘出了"胜天水库集雨图"、"强烈侵蚀中山示意图",加上一些实际数据,使读者对考察对象有比较概括清晰的认识。 写科学考察小论文时,有时还应将有关动植物、岩石、土壤等标本或照片附在文后,以增强说服力。 (四)科学说明小论文 科学说明小论文是指作者通过利用翔实可*的资料对某一自然现象或自然事物进行解释和说明的一类小论文。一般来说,它并不直接采用观察、实验、考察等研究手段,而主要是从书刊资料、师长等地方获取丰富的第二手材料,并经过自己的综合分析、逻辑推理,用自己所理解的语言阐明某一观点。 《为什么说贵阳是祖国的第二春城》是获第二届全国青少年科学讨论会三等奖的小论文,该文作者的研究方法有其特别之处,一是利用广播、电视,坚持记录整理贵阳与昆明两地的天气和温度;二是利用现成的科研成果《中国气候图集》找出有代表性的重庆、北京的气温情况来同贵阳、昆明相比较;三是从书上查证昆明与贵阳1、4、7月和10月的平均气温,进而综合分析得出结论。 这类文章虽然没有前三类的亲自实践得到论据,但它毕竟是通过作者精心地收集整理资料,综合分析提出了新的观点,新的见解,所以也承认它是科学小论文。 特别提醒的是,写科学说明小论文是,千万不要提出一个问题后就赶忙查资料,再不加分析地原本照抄、作出解释,这样没有新意,没有新的见解的文章只能算是一般性科普文章,不能称为科学小论文,更不能培养自己研究问题的能力。 三、科学小论文的选题 写作小论文的第一步,就是要确定研究的对象,考虑研究什么问题,这就是选题。有人说,选择好题等于完成小论文的一半,可见小论文选题的重要性。 有的同学说,大自然的奇妙现象太多了,研究什么好呢?有的同学说,大自然的事物我都已看惯了,没有发现什么新奇现象。再说,我想研究的东西别人已经研究过了,写了没多大意义。 实际上,只要你明白了选题的基本原则,掌握常见的几种选题方法,而且在日常学习、生活和科技活动中做个有心人,就一定能发现值得探讨的题目。 科学小论文选题的方法很多,个人可根据不同的情况适时选择。下面介绍几种常见的选题方法,供同学们选题时参考。 1、偶然发现法。一个星期天,松滋的胡长城同学在屋后的小沟边玩耍。沟里有许多小蝌蚪游来游去。忽然,他发现有一个小蝌蚪与其它蝌蚪不和似的,孤独地在一边游。他用小树枝把那脱群的蝌蚪拔到成群的蝌蚪中去,不一会儿,它又孤独地游到一边去了。他感到奇怪,就用瓶子将他和另外成群的几个小蝌蚪分别装起来,放在家里饲养观察。最后,不合群的小蝌蚪成了青蛙,其它长成了癞蛤蟆。通过长期观察,它弄清了青蛙和癞蛤蟆的幼子之别,写出了一篇优秀小论文。 这种选题没有事先考虑,只是对偶然发现的一瞬即逝的现象产生了兴趣,从而抓住不放,追根求源。 2、课堂延伸法。小学自然课《动物与环境》中,同学们研究了蚯蚓与光、温度及水分的关系,弄清了蚯蚓喜欢阴暗、超市、温暖的环境,而且学会了用差异法进行试验以判断失误因果联系。课后,你可用学过的方法研究蜈蚣、蟋蟀、蚂蚁等小动物的生活环境,你可以继续研究蚯蚓的其他奥秘:如蚯蚓有眼睛吗?蚯蚓张耳朵吗?蚯蚓的再生能力、松土能力等。 3、问题探究法。苍蝇这个小东西真讨厌,它是传染疾病的罪魁祸首呢!但他也真怪,它经常接触各种细菌而自己却为什么不会的病呢? 睡觉可以解除疲劳,恢复精力,那整天在水里悠闲游荡的鱼类也睡觉吗? …… 日常生活和学习中,你肯定会有一些不懂的问题,你能不能把它作为小论文的研究对象呢? 湖南省道县五年级学生毛登圣,一天和几个同学一起在学校附近的竹林里玩,为竹子里面究竟是空的还是装有什么东西而争论不休。 细心的毛登圣一直把这个问题记在心里,它课余查资料,做实验,用大量的证据得出了结论:竹子里面不是空的,装有空气,有氧、氮、二氧化碳等气体。据此写的《竹子里面有什么》小论文,荣获了第一届全国青少年科学小论文竞赛一等奖。 4、教师指导法。如果你饲养了一只小动物或栽培了一些花卉,项研究它们但又不知从哪方面入手,你可去请教老师,让老师根据你的实际情况和条件选择课题。 如果你参加了学校的科技小组,你可以把研究的设想告诉老师,请老师确定研究的题目,你再围绕题目去观察、实验。 5、成语、谚语科学验证法。成语大多是人们在长期的社会生活和实践中创造出来的,但有的是来自寓言故事、民间传说,也有些是约定俗成的。其中少数成语不一定符合客观实际。你可以用科学的方法去辨析和验证。 "水滴石穿"这个成语是大家熟悉的,意思是水不住地滴下来,能把石头滴穿,比喻只要坚持不懈,力量虽小也能做出看来很难办到的事情。但常识告诉我们,"水滴"只不过是一滴液体,他力量很小,冲击速度也不算太快,怎么能把坚硬的岩石滴穿呢?成员同学从对这个成语的科学性产生怀疑开始,通过做模拟实验和查阅资料,验证了这个成语的科学性。 "春东风,雨祖宗"是一句流传得比较广泛的气象谚语。一位同学3月份一个月的气温、风向、天气情况作了详细观察记录,然后利用科学统计法得出了这句谚语的适用范围,为气象预报提供了参考基数。 "葵花朵朵向太阳"这还有假吗?但湖南蒋林波同学对这一定论发起了挑战。他通过两年的实验观察,以令人信服的论据得出了"葵花并不是总向太阳转""向日葵跟着太阳转应该是指花蕾期,到开花后,就不转动了"的结论。 由此看来,即使对早已被公认的结论,也要认真地研究,不要人云亦云。只有这样,才能有所创新。 特别要注意的是,选题时要考虑主客观条件。俗话说:"知己知彼,百战不殆"。选题时要龙清楚自己的长处是什么,短处是什么,自己对研究的问题是否有兴趣,有没有这个能力把它研究清楚,自己是否达到了这个知识层次和认识水平,自己受否有毅力去完成这个题目以及是否具备研究这个问题的实验器材、场地等。 如果完成《探索一种蛇的奥秘》这个题目,研究前就必须掌握有关蛇的基础知识,具备捕捉蛇的本领,能够区别有毒蛇和无毒蛇,掌握被毒蛇咬伤的救护方法。此外,还要具备饲养蛇的器具等。否则,还是换一个更切合主客观条件的选题为好。 四小论文的取材与分析 选题确定后,就可进行取材与分析了,具体内容为制订研究计划,收集整理资料,深入实地考察,进行观察实验,分析各种材料,归纳得出结论。 (一)取材 1、直接观察。就是用眼睛仔细去看,它是人们对自然现象在自然发生条件下进行考察的一种方法。 观察时要认真仔细,不放过任何细微末节。云南庄跃平同学利用2_0_天时间详细观察了家鸽孵化的全过程,几乎每天都有新发现,连小鸽子身上一粒黑点、眼皮上的皱纹都没放过,所以写出的小论文《家鸽孵化的观察》真实可信,内容丰富。同时,观察时要做好详细记载,否则就不可能得到真实的第一手材料了。 2、动手实验。实验方法是人为地干预、控制所研究的对象,它比观察更利于发挥同学们的能动性去揭示隐藏的自然奥秘。 昆虫的后腿有什么作用?湖北的张俊同学先后捉来了蝗虫、蜢蚱、蟋蟀等十几种昆虫,分别将它们的后腿切断,通过反复实验,观察比较,发现了昆虫的许多特殊功能。 3、实地考察。包括调查、访问、实地勘探等方式。考察前,必须明确考察目的,准备好必需的工具、仪器、药品、生活用具等。考察过程中,一定要把时间、地点、过程及考察的结果随时随地详细地记录清楚,有时还要采回必要的标本、样品,将比较重要的现象拍照,这些都是很有用的第一手材料。 4、查阅资料。有些材料由于时间、空间或客观条件的限制,不可能亲自去观察、实验、考察,这就得查阅书刊或请教老师、家长等,这种间接地获取的材料叫第二手材料。有些问题是你的知识水平、能力和条件所不能解决的,而这个问题又是你的选题中必须解决的问题,你就得去查资料,把它弄清楚。 (二)分析 取得材料后,就要进行分析研究,从中选出可以作为论据的材料,还要根据论点进行去粗去精,去伪存真,按照科学的态度进行整理分析,并得出自己的论点和看法。 首先,应审核各种材料的真伪虚实,有些查阅到的材料是早已过时的观点,有些解释只适合某范围内,有些材料没有普遍性,有些材料在记录时有错误或本身就是自己虚构的,这样的材料应坚决不用。 其次,要注意材料的典型性,也就是选择的材料要能说明问题,不要多,而要精,与论点无关或关系不大的材料应舍弃。 第三,将选择的材料进行归类,研究他们之间的共同点与不同点,以及相互联系,然后概括得出结论即论点。论文论点是从对材料的分析\研究中产生的,不能先定论点,后找适合证明论点的材料.如熊小佳同学研究蚯蚓的视力,她选择了4个材料(1)用木棍\红领巾、铅笔等在蚯蚓面前晃动的现象;(2)蚯蚓面对各种食物的反应;(3)蚯蚓放在"屋"门口的反应;(4)请叫爷爷得出关于蚯蚓是否有眼睛的材料。它通过前三个实验分析,初步判断蚯蚓没有眼睛,是*嗅觉找到食物,*感光细胞找到阴暗的地方。第四个材料更加证实了她的推论,使得论点论证充分,有较强的说服力。 五科学小论文的撰写 对材料的整理分析完成后,就可以开始撰写了。写作虽没有固定的格式,但一般应按提出问题、作出假设、研究分析、得出结论的步骤进行。一般来说,科学小论文应包括以下几个部分。 标题标题是小论文的"眼睛",好的标题确切简明,富有吸引力,能给读者以新鲜的感受和深刻的印象,起画龙点睛的作用。 所谓"确切",就是小论文的标题必须概括文章的中心内容,使人一目了然,不能离题或扣题不紧,更不能用夸大的字眼。所谓"简明"是指标题要精炼,既要概括全面,又能突出主题,做到言简意骇。 开头开头的方式多种多样,依研究内容、自己喜欢的写作风格而定,但一般应开门见山地提出你讨论的问题,你是怎样想到要研究这个问题的。 《为什么说贵阳是祖国的第二春城》一文开头:"我住在贵阳,常听人们说'昆明是春城,贵阳是第二春城'。至于为什么,我也弄不明白,我决心记录天气预报,看贵阳真是第二春城吗?"由常言产生验证其科学性的欲望。 有些文章的问题是在偶然观察中产生、发现的,你也可以开头先根据时间顺序叙述其过程,再适时提出问题。 正文 即分析问题、解决问题部分。它包括对提出问题作出假设、观察、实验、考察过程、发现的现象、判断、推理得出结论等,这是小论文的核心部分。 应注意的是:研究步骤要写得详略得当,实验过程、数据的来历、现象要写清楚,叙述时应有一定的顺序。数据材料要准确,可设计成能说明问题的表格、图解,必要时可附上拍摄的照片、采集的标本等,以增强说服力。获得的结论要有自己独特的见解,并且和论据保持一致性,论据要有严密的逻辑性。文字要简洁生动,层次清晰,条理分明。 结尾 小论文的结尾应写你得出的结论和对某一问题的建议。 《蚯蚓的视力》一文结尾:"噢,我明白了,蚯蚓是不折不扣的瞎子,它是*嗅觉来寻找爱吃的食物,用感光器来辨别光的强弱。"以得出结论做为结尾,同开头提出问题相呼应,收到良好效果。 小论文的初稿完成后,还要反复修改。看开头是否简明扼要,论据是否典型真实,论证是否符合逻辑,论点是否新颖一致,段落是否衔接自然,语言是否通顺准确等。改好后再让同学和老师帮助修改,逐步完善
蚂蚁为什么不会迷路?蚂蚁,相信大家都很熟悉。那又有谁能真正地了解蚂蚁呢?蚂蚁为什么不会迷路呢?带着这个问题,我查阅了一些书籍。书上说,蚂蚁从蚁穴出发到达目的地后,沿途会留下一些气味,返回蚁穴。用触角相互碰一下,通知其他的蚂蚁。科学家曾经就这个问题作了一个试验。科学家先确定一只蚂蚁,将他沿途到达目的地的地方用力擦干净。当这只蚂蚁返回时,在被擦去气味的地方突然间停了下来。原地边转圈边寻找着什么。从而得到蚂蚁是靠气味来辨别方向的。我为了证实这个结论,我做了个试验。我首先准备了一个十厘米左右的细小树枝,在树枝的一头放上一个诱饵——小糖果。我把这个装置放在一个蚁穴附近。不一会儿,有一只蚂蚁出来探路了。我把他引上木棍后,他到达了糖果的地方,仿佛在闻一闻、嗅一嗅。我趁此机会将木棍的中断部分截下一厘米的木棍。当这只蚂蚁返回的时候,就在被截去的地方左转右转,就是找不到回家的路。过了一会儿,我又重复了上面的试验,蚂蚁仍然没有找到回家的路。通过这两次实验,我终于知道蚂蚁为什么不会迷路的秘密了。原来蚂蚁是根据气味来辨别方向的。知道了蚂蚁的这一秘密后,我在想:是否我们可以制作一种蚂蚁报警器呢?当蚂蚁走到报警器附近时,报警器就能“闻”出蚂蚁的气味,然后发出鸣叫声,让我们知道蚂蚁跑到橱柜里了或其他地方“同学们,蛋壳都带来了吗?”老师问。“带来了!”我们异口同声地回答。为了今天的科学课,老师让我们带蛋壳来。带蛋壳做什么呢?是做不倒翁吗?我们都很好奇。“今天,我们要用这两个半截蛋壳做一个小实验。做之前,请大家先猜猜,我用这枝铅笔朝着蛋壳垂直往下刺,是口朝上的蛋壳先破呢,还是口朝下的蛋壳先破?”“当然是口朝下的先破!”大多数同学都抢着回答。“口朝上的先破!”同桌偏要和大家作对。老师微笑着说:“那好,下面我们就来做做实验,看谁的答案才是正确的。”老师叫了一名同学上讲台,让他用铅笔对准自己手上口朝上的蛋壳。老师一声令下,同学手一放,铅笔刺到了蛋壳上,蛋壳没有破。老师又让他试了几次,铅笔第三次刺下的时候,终于刺破了蛋壳。接着,老师又让他用铅笔刺口朝下的蛋壳。“一下、两下、三下……”我们一起数着;但那半个蛋壳就像穿了盔甲一样,被刺了十几下还是不破。“耶!我猜对了!”同桌高兴得手舞足蹈。虽然我们都不服气,但经过多次试验,我们发现,同样的两个半边蛋壳,用铅笔垂直去刺,的确是口朝上的比较容易破
又抄...数学班第一仲抄..
可以自己删减删减。 数学论文 一、数学技能的含义及作用 技能是顺利完成某种任务的一种动作或心智活动方式。它是一种接近自动化的、复杂而较为完善的动作系统,是通过有目的、有计划的练习而形成的。数学技能是顺利完成某种数学任务的动作或心智活动方式。它通常表现为完成某一数学任务时所必需的一系列动作的协调和活动方式的自动化。这种协调的动作和自动化的活动方式是在已有数学知识经验基础上经过反复练习而形成的。如学习有关乘数是两位数的乘法计算技能,就是在掌握其运算法则的基础上通过多次的实际计算而形成的。数学技能与数学知识和数学能力既有密切的联系,又有本质上的区别。它们的区别主要表现为:技能是对动作和动作方式的概括,它反映的是动作本身和活动方式的熟练程度;知识是对经验的概括,它反映的是人们对事物和事物之间相互联系的规律性的认识;能力是对保证活动顺利完成的某些稳定的心理特征的概括,它所体现的是学习者在数学学习活动中反映出来的个体特征。三者之间的联系,可以比较清楚地从数学技能的作用中反映出来。 数学技能在数学学习中的作用可概括为以下几个方面: 第一,数学技能的形成有助于数学知识的理解和掌握; 第二,数学技能的形成可以进一步巩固数学知识; 第三,数学技能的形成有助于数学问题的解决; 第四,数学技能的形成可以促进数学能力的发展; 第五,数学技能的形成有助于激发学生的学习兴趣; 第六,调动他们的学习积极性。 二、数学技能的分类 小学生的数学技能,按照其本身的性质和特点,可以分为操作技能(又叫做动作技能)和心智技能(也叫做智力技能)两种类型。 l.数学操作技能。操作技能是指实现数学任务活动方式的动作主要是通过外部机体运动或操作去完成的技能。它是一种由各个局部动作按照一定的程序连贯而成的外部操作活动方式。如学生在利用测量工具测量角的度数、测量物体的长度,用作图工具画几何图形等活动中所形成的技能就是这种外部操作技能。操作技能具有有别于心智技能的一些比较明显的特点:一是外显性,即操作技能是一种外显的活动方式;二是客观性,是指操作技能活动的对象是物质性的客体或肌肉;王是非简约性,就动作的结构而言,操作技能的每个动作都必须实施,不能省略和合并,是一种展开性的活动程序。如用圆规画圆,确定半径、确定圆心、圆规一脚绕圆心旋转一周等步骤,既不能省略也不能合并,必须详尽地展开才能完成的任务。 2.数学心智技能。数学心智技能是指顺利完成数学任务的心智活动方式。它是一种借助于内部言语进行的认知活动,包括感知、记忆、思维和想象等心理成分,并且以思维为其主要活动成分。如小学生在口算、笔算、解方程和解答应用题等活动中形成的技能更多地是一些数学心智技能。数学心智技能同样是经过后天的学习和训练而形成的,它不同于人的本能。另外,数学心智技能是一种合乎法则的心智活动方式,“所谓合乎法则的活动方式是指活动的动作构成要素及其次序应体现活动本身的客观法则的要求,而不是任意的”。这些特性,反映了数学心智技能和数学操作技能的共性。数学心智技能作为一种以思维为主要活动成分的认知活动方式,它也有着区别于数学操作技能的个性特征,这些特征主要反映在以下三个方面。 第一,动作对象的观念性。数学心智技能的直接对象不是具有物质形式的客体本身,而是这种客体在人们头脑里的主观映象。如20以内退位减法的口算,其心智活动的直接对象是“想加法算减法”或其他计算方法的观念,而非某种物质化的客体。 第二,动作实施过程的内隐性。数学心智技能的动作是借助内部言语完成的,其动作的执行是在头脑内部进行的,主体的变化具有很强的内隐性,很难从外部直接观测到。如口算,我们能够直接了解到的是通过学生的外部语言所反映出来的计算结果,学生计算时的内部心智活动动作是无法看到的。 第三,动作结构的简缩性。数学心智技能的动作不像操作活动那样必须把每一个动作都完整地做出来,也不像外部言语那样对每一个动作都完整地说出来,它的活动过程是一种高度压缩和简化的自动化过程。因此,数学心智技能中的动作成分是可以合并、省略和简化的。如20以内进位加法的口算,学生熟练以后计算时根本没有去意识“看大数”、“想凑数”、“分小数”、“凑十”等动作,整个计算过程被压缩成一种脱口而出的简略性过程。 三、数学技能的形成过程 1.数学操作技能的形成过程。 数学操作技能作为一种外显的操作活动方式,它的形成大致要经过以下四个基本阶段。 (1)动作的定向阶段。这是操作技能形成的起始阶段,主要是学习者在头脑里建立起完成某项数学任务的操作活动的定向映象。包括明确学习目标,激起学习动机,了解与数学技能有关的知识,知道技能的操作程序和动作要领以及活动的最后结果等内容。概括起来讲,这一阶段主要是了解“做什么”和“怎样做”两方面的内容。如画角,这一阶段主要是了解需画一个多少度的角(即知道做什么)和画角的步骤(即怎么做),以此给画角的操作活动作出具体的定向。动作定向的作用是在头脑里初步建立起操作的自我调节机制;通过对“做什么”和“怎么做”的了解而明确实施数学活动的程序与步骤,从而保证在操作中更好地掌握其动作的活动方式。 (2)动作的分解阶段。这是操作技能进入实际学习的最初阶段,其作法是把某项数学技能的全套动作分解成若干个单项动作,在老师的示范下学生依次模仿练习,从而掌握局部动作的活动方式。如用圆规按照给定的半径画圆,在这一阶段就可把整个操作程序分解成三个局部动作:①把圆规的两脚张开,按照给定的半径定好两脚间的距离;②把有针尖的一脚固定在一点上,确定出圆心;③将有铅笔尖的一脚绕圆心旋转一周,画出圆。通过对这三个具有连续性的局部动作的依次练习,即可掌握画圆的要领。学生在这一阶段学习的方式主要是模仿,一方面根据老师的示范进行模仿;另一方面也可以根据有关操作规则的文字描述进行模仿,如根据几何作图规则对各个动作活动方式的表述进行模仿。模仿不一定都是被动的和机械的,“模仿可以是有意的和无意的;可以是再造性的,也可以是创造性的。”②模仿是数学操作技能形成的一个不可缺少的条件。 (3)动作的整合阶段。在这一阶段,把前面所掌握的各个局部动作按照一定的顺序连接起来,使其形成一个连贯而协调的操作程序,并固定下来。如画圆,在这一阶段就可将三个步骤综合起来形成一体化的操作系统。这时由于局部动作之间尚处在衔接阶段,所以动作还难以维持稳定性和精确性,动作系统中的某些环节在衔接时甚至还会出现停顿现象。不过,总的来讲这一阶段动作之间的相互干扰逐步得到排除,操作过程中的多余动作也明显减少,已形成完整而有序的动作系统。 (4)动作的熟练阶段。这是操作技能形成的最后阶段,在这一阶段通过练习而形成的数学活动方式能适应各种变化情况,其操作表现出高度完善化的特点。动作之间相互干扰和不协调的现象完全消除,动作具有高度的正确性和稳定性,并且不管在什么条件下全套动作都能流畅地完成。如这时的画圆,不需要意志控制就能顺利地完成全套动作,并且能充分保证其正确性。上述分析表明,数学操作技能的形成要经过“定向→分解→整合→熟练”的发展过程。在这一过程中每一个发展阶段都有自己的任务:定向阶段的主要任务是掌握操作的结构系统和每一个步骤操作的要领;分解阶段的主要任务是对活动的操作系列进行分解,并逐一模仿练习;整合阶段的主要任务是在动作之间建立联系,使活动协调一体化;熟练阶段的任务则主要是使整个操作过程高度完善化和自动化。 2.数学心智技能的形成过程。 关于数学心智技能形成过程的研究,人们比较普遍地采用了原苏联心理学家加里培林的研究成果。加里培林认为,心智活动是一个从外部的物质活动到内部心智活动的转化过程,既内化的过程。据此,在这里我们把小学生数学心智技能的形成过程概括为以下四个阶段。 (1)活动的认知阶段。这是数学心智活动的认知准备阶段,主要是让学生了解并记住与活动任务有关的知识,明确活动的过程和结果,在头脑里形成活动本身及其结果的表象。如学习除数是小数的除法计算技能,在这一步就是让学生回忆并记住除法商不变性质和除数是整数的小数除法法则等知识,在此基础上明确计算的程序和每一步计算的具体方法,以此在头脑里形成除数是小数除法计算过程的表象。认知阶段实际上也是一种心智活动的定向阶段,通过这一阶段,学习者可以建立起进行数学心智活动的初步自我调节机制,为后面顺利进行认知活动提供内部控制条件。这一阶段的主要任务是在头脑里确定心智技能的活动程序,并让这种程序的动作结构在头脑里得到清晰的反映。 (2)示范模仿阶段。这是数学心智活动方式进入具体执行过程的开始,这一阶段学生把在头脑里已初步建立起来的活动程序计划以外显的操作方式付诸执行。不过,这种执行通常是在老师指导示范下进行的,老师的示范通常是采用语言指导和操作提示相结合的方式进行的,即在言语指导的同时呈现活动过程中的某些步骤。如计算乘数是两位数的乘法时,一方面根据运算法则指导运算步骤;另一方面在表述运算规定的同时重点示范用乘数十位上的数去乘被乘数所得的部分积的对位,以此让学生在老师的帮助、指导下顺利地掌握两位数乘多位数计算的活动方式。在这一阶段,学生活动的执行水平还比较低,通常停留在物质活动和物质化活动的水平上。“所谓物质活动是指动作的客体是实际事物,所谓物质化活动是指活动不是借助于实际事物本身,而是以它的代替物如模拟的教具、学具,乃至图画、图解、言语等进行的”。③如解答复合应用题,在这一步学生通常就是借助线段图进行分析题中数量关系的智力活动的。 (3)有意识的言语阶段。这一阶段的智力活动离开了活动的物质和物质化的客体而逐步转向头脑内部,学生通过自己的言语指导而进行智力活动,通常表现为一边操作一边口中念念有词。如两位数加两位数的笔算,在这一步学生往往是一边计算,口中一边念:相同数位对位,从个位加起,个位满十向十位进1。很明显,这时的计算过程是伴随着对法则运算规定的复述进行的。在这一阶段,学生出声的外部言语活动还会逐步向不出声的外部言语活动过渡,如两位数加两位数的笔算,在本阶段的后期学生往往是通过默想法则规定的运算步骤进行计算的。这一活动水平的出现,标志着学生的活动已开始向智力活动水平转化。 (4)无意识的内部言语阶段。这是数学心智技能形成的最后的一个阶段,在这一阶段学生的智力活动过程有了高度的压缩和简化,整个活动过程达到了完全自动化的水平,无需去注意活动的操作规则就能比较流畅地完成其操作程序。如用简便方法计算45+99×99+54,在这一阶段学生无需去回忆加法交换律和结合律、乘法分配律等运算定律,就能直接先合并45和54两个加数,然后利用乘法分配律进行计算,即原式=(45+54)+99×99=99×(1+99)=99×100=9900,整个计算过程完全是一种流畅的自动化演算过程。在这一阶段,学生的活动完全是根据自己的内部言语进行思考的,并且总是用非常简缩的形式进行思考的,活动的中间过程往往简约得连自己也察觉不到了,整个活动过程基本上是一种自动化的过程。 四、数学技能的学习方法 1.数学操作技能的学习方法。学习数学操作技能的基本方法是模仿练习法和程序练习法。前者是指学生在学习中根据老师的示范动作或教材中的示意图进行模仿练习,以掌握操作的基本要领,在头脑里形成操作过程的动作表象的一种学习方法。用工具度量角的大小、测量物体的长短、几何图形的作图、几何图形面积和体积计算公式推导过程中的图形转化等技能一般都可以通过模仿练习法去掌握。如推导平行四边形面积计算公式时,把平行四边形转化成长方形的操作技能就可模仿(人教版)教材插图(如图所示)的操作过程去练习和掌握。小学生的学习更多的是模仿老师的示范动作,所以老师的示范对小学生数学动作技能的形成尤为重要。教师要充分运用示范与讲解相结合、整体示范与分步示范相结合等措施,让学生准确无误地掌握操作要领,形成正确的动作表象。所谓程序练习法,就是运用程序教学的原理将所要学习的数学动作技能按活动程序分解成若干局部的动作先逐一练习,最后将这些局部的动作综合成整体形成程序化的活动过程。如用量角器量角的度数、用三角板画垂线和平行线、画长方形等技能的学习都可以采用这种方法。用这种方法学习数学动作技能,分解动作时注意突出重点,重点解决那些难以掌握的局部动作,这样可以有效地提高学习效率。 2.数学心智技能的学习方法。学生的心智技能主要是通过范例学习法和尝试学习法去获得的。范例学习法是指学习时按照课本提供的范例,将数学技能的思维操作程序一步一步地展现出来,然后根据这种程序逐步掌握技能的心智活动方式。整数、小数、分数的四则计算,课本几乎都提供了计算的范例,学习时只需要根据范例有序地进行计算即可掌握计算方法。如被除数和除数末尾都有0的除法的简便算法,课本安排了如下范例,学习时只需要明确范例所反映的计算程序和方法,并按照这种程序和方法进行计算即可掌握被除数和除数末尾都有0的除法简便计算的技能。尝试学习法是指在学习中主要由学生自己去尝试探索问题解决的方法和途径,并在不断修正错误的过程中找出解决问题的操作程序,进而获得数学技能。这是一种探究式的发现学习法,总结运算规律和性质并运用它们进行简便计算、解答复合应用题、求某些比较复杂的组合图形的面积或体积等技能都可以运用这种学习方法去掌握。这种方法较多地运用于题目本身具有较强探究性的变式问题解决的学习,如用简便方法计算1001÷,由于学生在前面已经掌握除法商不变性质,练习时就可通过将除数和被除数部乘以8使除数变成100的途径去实现计算的简便。尝试学习法虽然有利于培养学生的探索精神和解决问题的能力,但耗时太多,学习时最好是将它和范例学习法结合起来,两种学习方法互为补充,这样数学技能的学习就会更加富有成效
自己网上去查一篇啊 而且悬赏分也没有.....
query取得iframe中元素的几种方法在iframe子页面获取父页面元素代码如下:$(
“写什么?怎样写?”这是每个学写小论文的同学都会碰到的问题。一篇好论文的产生,对于它的作者来说是一次创造性的劳动。创造性的劳动对劳动者的要求是很高的。其创作的素材、水平,乃至创作的灵感……,绝不是轻易可以得到的,它们需要作者在自己的学习与生活实践中,去进行长期的积累与思考。从我校征集的论文来看,作者中有的是在平时十分注意对课本知识进行归纳整理、拓展延伸,学习中有许多意想不到的收获;有的是从课外阅读中得到收获与启发后,获得灵感、得以选题;……更有甚者是,有的作者在生活中发现问题注意观察、探究,并与自己的数学学习相联系,对观察、探究的结果进行思考、归纳、总结,升华为理论,写出了令人叫绝的好论文。综观获奖论文的小作者们,他们大多是数学学习的有心人。好论文的作者不仅要有较好的数学感悟,还要有良好的文学修养、综合素养。写小论文的关键,首先就是选题,大家的选题要从自己最熟悉的、最想写的内容入手。下面我结合我校同学部分获奖论文的选题,进行一点简单的选题分析。论文按内容分类,大概有以下几种:①勤于实践,学以致用,对实际问题建立数学模型,再利用模型对问题进行分析、预测;如:探究大桥的热胀冷缩度②对生活中普遍存在而又扰人心烦的小事,提出了巧妙的数学方法来解决它;如: 一台饮水机创造的意想不到的实惠③对数学问题本身进行研究,探索规律,得出了解决问题的一般方法如: 分式“家族”中的亲缘探究如: 纸飞机里的数学④对自己数学学习的某个章节、或某个内容的体会与反思如: “没有条件”的推理如: 小议“黄金分割”如: 奇妙的正五角星① 课题要小而集中,要有针对性;② 见解要真实、独特,有感而发,富有新意;③ 要用自己的语言表述自己要表达的内容(四) 评价数学小论文的标准什么样的数学小论文算是好的论文呢?标准很多,但我以为一篇好的数学小论文必须有以下三个特征——新、真、美。“新”,指的就是选题要有独特的视角,写的内容不是简单地重复别人的东西、不是单纯地下载一段。文字,最好是自己原创的,至少要有自己的创造、自己的观点,属于自己的思想;“真”,指的就是内容要实在、言之有理,既不能空洞无味、也不能冗长拖沓,文章要紧扣主题,力求做到准确、精练,尽量地体现数学的严谨性与科学性;“美”,指的就是语言通顺、文笔流畅,文章要给人以美的享受。当然,从第二届时代数学学习“时代之星”实践与创新论文大赛的名称来看,既有实践又有创新的论文肯定更容易受到评委们的亲睐,所以,我希望同学们更加贴近生活、注意观察、去寻找、去发现,把生活与数学联系起来,把学习撰写论文、争取写出好的论文,作为对自己数学学习的一种评价、一种补充、一种提高,这样你学写小论文的目的就对了,你就会将数学小论文越写越好。“梅花香自苦寒来”,只要肯下大工夫、只要肯吃的起苦,不断地去思考、去揣摸,去学习,好的数学论文就一定会在你的手中诞生。总之,学习撰写论文、争取写出好的论文,对于我们每一位同学来说,始终是一个锻炼自己、提高能力的极好的方式。我相信我校初一、初二的同学们一定会在老师的组织与指导下积极参与第二届《时代数学学习》“时代之星”实践与
数学小论文一 关于“0” 0,可以说是人类最早接触的数了。我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”这样说显然是不正确的。我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。” “任何数除以0即为没有意义。”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少。一个整体无法分成0份,即“没有意义”。后来我才了解到a/0中的0可以表示以零为极限的变量(一个变量在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变量在变化过程中其绝对值永远大于任意大的已定正数)。从中得到关于0的又一个定理“以零为极限的变量,叫做无穷小”。 “105、203房间、2003年”中,虽都有0的出现,粗“看”差不多;彼此意思却不同。105、2003年中的0指数的空位,不可删去。203房间中的0是分隔“楼(2)”与“房门号(3)”的(即表示二楼八号房),可删去。0还表示…… 爱因斯坦曾说:“要探究一个人或者一切生物存在的意义和目的,宏观上看来,我始终认为是荒唐的。”我想研究一切“存在”的数字,不如先了解0这个“不存在”的数,不至于成为爱因斯坦说的“荒唐”的人。作为一个中学生,我的能力毕竟是有限的,对0的认识还不够透彻,今后望(包括行动)能在“知识的海洋”中发现“我的新大陆”。 数学小论文二 各门科学的数学化 数学究竟是什么呢?我们说,数学是研究现实世界空间形式和数量关系的一门科学.它在现代生活和现代生产中的应用非常广泛,是学习和研究现代科学技术必不可少的基本工具. 同其他科学一样,数学有着它的过去、现在和未来.我们认识它的过去,就是为了了解它的现在和未来.近代数学的发展异常迅速,近30多年来,数学新的理论已经超过了18、19世纪的理论的总和.预计未来的数学成就每“翻一番”要不了10年.所以在认识了数学的过去以后,大致领略一下数学的现在和未来,是很有好处的. 现代数学发展的一个明显趋势,就是各门科学都在经历着数学化的过程. 例如物理学,人们早就知道它与数学密不可分.在高等学校里,数学系的学生要学普通物理,物理系的学生要学高等数学,这也是尽人皆知的事实了. 又如化学,要用数学来定量研究化学反应.把参加反应的物质的浓度、温度等作为变量,用方程表示它们的变化规律,通过方程的“稳定解”来研究化学反应.这里不仅要应用基础数学,而且要应用“前沿上的”、“发展中的”数学. 再如生物学方面,要研究心脏跳动、血液循环、脉搏等周期性的运动.这种运动可以用方程组表示出来,通过寻求方程组的“周期解”,研究这种解的出现和保持,来掌握上述生物界的现象.这说明近年来生物学已经从定性研究发展到定量研究,也是要应用“发展中的”数学.这使得生物学获得了重大的成就. 谈到人口学,只用加减乘除是不够的.我们谈到人口增长,常说每年出生率多少,死亡率多少,那么是否从出生率减去死亡率,就是每年的人口增长率呢?不是的.事实上,人是不断地出生的,出生的多少又跟原来的基数有关系;死亡也是这样.这种情况在现代数学中叫做“动态”的,它不能只用简单的加减乘除来处理,而要用复杂的“微分方程”来描述.研究这样的问题,离不开方程、数据、函数曲线、计算机等,最后才能说清楚每家只生一个孩子如何,只生两个孩子又如何等等. 还有水利方面,要考虑海上风暴、水源污染、港口设计等,也是用方程描述这些问题再把数据放进计算机,求出它们的解来,然后与实际观察的结果对比验证,进而为实际服务.这里要用到很高深的数学. 谈到考试,同学们往往认为这是用来检查学生的学习质量的.其实考试手段(口试、笔试等等)以及试卷本身也是有质量高低之分的.现代的教育统计学、教育测量学,就是通过效度、难度、区分度、信度等数量指标来检测考试的质量.只有质量合格的考试才能有效地检测学生的学习质量. 至于文艺、体育,也无一不用到数学.我们从中央电视台的文艺大奖赛节目中看到,给一位演员计分时,往往先“去掉一个最高分”,再“去掉一个最低分”.然后就剩下的分数计算平均分,作为这位演员的得分.从统计学来说,“最高分”、“最低分”的可信度最低,因此把它们去掉.这一切都包含着数学道理. 我国著名的数学家关肇直先生说:“数学的发明创造有种种,我认为至少有三种:一种是解决了经典的难题,这是一种很了不起的工作;一种是提出新概念、新方法、新理论,其实在历史上起更大作用的、历史上著名的正是这种人;还有一种就是把原来的理论用在崭新的领域,这是从应用的角度有一个很大的发明创造.”我们在这里所说的,正是第三种发明创造.“这里繁花似锦,美不胜收,把数学和其他各门科学发展成综合科学的前程无限灿烂.” 正如华罗庚先生在1959年5月所说的,近100年来,数学发展突飞猛进,我们可以毫不夸张地用“宇宙之大、粒子之微、火箭之速、化工之巧、地球之变、生物之谜、日用之繁等各个方面,无处不有数学”来概括数学的广泛应用.可以预见,科学越进步,应用数学的范围也就越大.一切科学研究在原则上都可以用数学来解决有关的问题.可以断言:只有现在还不会应用数学的部门,却绝对找不到原则上不能应用数学的领域. 数学小论文三 数学是什么 什么是数学?有人说:“数学,不就是数的学问吗?” 这样的说法可不对。因为数学不光研究“数”,也研究“形”,大家都很熟悉的三角形、正方形,也都是数学研究的对象。 历史上,关于什么是数学的说法更是五花八门。有人说,数学就是关联;也有人说,数学就是逻辑,“逻辑是数学的青年时代,数学是逻辑的壮年时代。” 那么,究竟什么是数学呢? 伟大的革命导师恩格斯,站在辩证唯物主义的理论高度,通过深刻分析数学的起源和本质,精辟地作出了一系列科学的论断。恩格斯指出:“数学是数量的科学”,“纯数学的对象是现实世界的空间形式和数量关系”。根据恩格斯的观点,较确切的说法就是:数学——研究现实世界的数量关系和空间形式的科学。 数学可以分成两大类,一类叫纯粹数学,一类叫应用 数学。 纯粹数学也叫基础数学,专门研究数学本身的内部规律。中小学课本里介绍的代数、几何、微积分、概率论知识,都属于纯粹数学。纯粹数学的一个显著特点,就是暂时撇开具体内容,以纯粹形式研究事物的数量关系和空间形式。例如研究梯形的面积计算公式,至于它是梯形稻田的面积,还是梯形机械零件的面积,都无关紧要,大家关心的只是蕴含在这种几何图形中的数量关系。 应用数学则是一个庞大的系统,有人说,它是我们的全部知识中,凡是能用数学语言来表示的那一部分。应用数学着限于说明自然现象,解决实际问题,是纯粹数学与科学技术之间的桥梁。大家常说现在是信息社会,专门研究信息的“信息论”,就是应用数学中一门重要的分支学科, 数学有3个最显著的特征。 高度的抽象性是数学的显著特征之一。数学理论都算有非常抽象的形式,这种抽象是经过一系列的阶段形成的,所以大大超过了自然科学中的一般抽象,而且不仅概念是抽象的,连数学方法本身也是抽象的。例如,物理学家可以通过实验来证明自己的理论,而数学家则不能用实验的方法来证明定理,非得用逻辑推理和计算不可。现在,连数学中过去被认为是比较“直观”的几何学,也在朝着抽象的方向发展。根据公理化思想,几何图形不再是必须知道的内容,它是圆的也好,方的也好,都无关紧要,甚至用桌子、椅子和啤酒杯去代替点、线、面也未尝不可,只要它们满足结合关系、顺序关系、合同关系,具备有相容性、独立性和完备性,就能够构成一门几何学。 体系的严谨性是数学的另一个显著特征。数学思维的正确性表现在逻辑的严谨性上。早在2000多年前,数学家就从几个最基本的结论出发,运用逻辑推理的方法,将丰富的几何学知识整理成一门严密系统的理论,它像一根精美的逻辑链条,每一个环节都衔接得丝丝入扣。所以,数学一直被誉为是“精确科学的典范”。 广泛的应用性也是数学的一个显著特征。宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,生物之谜,日用之繁,无处不用数学。20世纪里,随着应用数学分支的大量涌现,数学已经渗透到几乎所有的科学部门。不仅物理学、化学等学科仍在广泛地享用数学的成果,连过去很少使用数学的生物学、语言学、历史学等等,也与数学结合形成了内容丰富的生物数学、数理经济学、数学心理学、数理语言学、数学历史学等边缘学科。 各门科学的“数学化”,是现代科学发展的一大趋势。
数字的历史 公元500年前后,随着经济、文化以及佛教的兴起和发展,印度次大陆西北部的旁遮普地区的数学一直处于领先地位。天文学家阿叶彼海特在简化数字方面有了新的突破:他把数字记在一个个格子里,如果第一格里有一个符号,比如是一个代表1的圆点,那么第二格里的同样圆点就表示十,而第三格里的圆点就代表一百。这样,不仅是数字符号本身,而且是它们所在的位置次序也同样拥有了重要意义。以后,印度的学者又引出了作为零的符号。可以这么说,这些符号和表示方法是今天阿拉伯数字的老祖先了。 两百年后,团结在伊斯兰教下的阿拉伯人征服了周围的民族,建立了东起印度,西从非洲到西班牙的撒拉孙大帝国。后来,这个伊斯兰大帝国分裂成东、西两个国家。由于这两个国家的各代君王都奖励文化和艺术,所以两国的首都都非常繁荣,而其中特别繁华的是东都——巴格达,西来的希腊文化,东来的印度文化都汇集到这里来了。阿拉伯人将两种文化理解消化,从而创造了独特的阿拉伯文化。 大约700年前后,阿拉伯人征眼了旁遮普地区,他们吃惊地发现:被征服地区的数学比他们先进。用什么方法可以将这些先进的数学也搬到阿拉伯去呢? 771年,印度北部的数学家被抓到了阿拉伯的巴格达,被迫给当地人传授新的数学符号和体系,以及印度式的计算方法(即我们现在用的计算法)。由于印度数字和印度计数法既简单又方便,其优点远远超过了其他的计算法,阿拉伯的学者们很愿意学习这些先进知识,商人们也乐于采用这种方法去做生意。 后来,阿拉伯人把这种数字传入西班牙。公元10世纪,又由教皇热尔贝�6�1奥里亚克传到欧洲其他国家。公元1200年左右,欧洲的学者正式采用了这些符号和体系。至13世纪,在意大利比萨的数学家费婆拿契的倡导下,普通欧洲人也开始采用阿拉伯数字,15世纪时这种现象已相当普遍。那时的阿拉伯数字的形状与现代的阿拉伯数字尚不完全相同,只是比较接近而已,为使它们变成今天的1、2、3、4、5、6、7、8、9、0的书写方式,又有许多数学家花费了不少心血。 阿拉伯数字起源于印度,但却是经由阿拉伯人传向四方的,这就是它们后来被称为阿拉伯数字的原因。
初一数学小论文今天,在我们数学俱乐部里,老师给我们研究了一道有趣的题目,其实也是一道有些复杂的找规律题目,题目是这样的“有一列数:1,2,3,2,1,2,3,4,3,2,3,4,5,4,3,4,5,……。这列数字中前240个数字的和是多少?”我一拿到题目,心里猛然想到,这题目必须得按照规律来做!!!想法一:开始我便先试着先3个一组来求和,6,5,10,9,12,15,14……。这样一看,这些数字各有特征,关键就是找不出合适的规律。于是,我又找4个一组来求和,8,10,12,16,20……。仔细一看,好像也没什么规律,我只好再试着找5个一组来求和,9,14,19,24……,这样一来就非常明显的看出它们是等数列,我非常高兴,再把240÷5=48(组),5个一组,(1、2、3、2、1),(2、3、4、3、2),(3、4、5、4、3),(4、5、6、5、4)……那么就可以求出末项的和,9+47×5=244,把首项加末项的和乘项数除以2,(9+244)×48÷2=6072。这样就完成了!想法二:我又发现每组开头第一个数字恰好分别是1,2,3,4……48,那么另一种方法就产生了,(1+48)×48÷2×2+(2+49)×48÷2×2+(3+50)×48÷2×2=6072。这样想也合乎情理,也是一个理得清楚而且又实用的方法!想法三:我又发现有N组时,他的和也是把(1+2+3+4+……+N)×5+4N=你要求那N组数的和,比如(1+2+3+4+……+48)×5+4×48=6072。这个规律也是要通过不断来细心观察与研究得来的,这个规律虽然有些抽象,但如果是自己弄明白了,那还要比其他两种方法更容易些。我做的只是其中的三种解法,其实方法还有很多,但是要靠自己来找其中的规律,解其中的奥秘!数学小论文:《容易忽略的答案》大千世界,无奇不有,在我们数学王国里也有许多有趣的事情。比如,在我现在的第九册的练习册中,有一题思考题是这样说的:“一辆客车从东城开向西城,每小时行45千米,行了小时后停下,这时刚好离东西两城的中点18千米,东西两城相距多少千米?王星与小英在解上面这道题时,计算的方法与结果都不一样。王星算出的千米数比小英算出的千米数少,但是许老师却说两人的结果都对。这是为什么呢?你想出来了没有?你也列式算一下他们两人的计算结果。”其实,这道题我们可以很快速地做出一种方法,就是:45×=(千米),=(千米),×2=261(千米),但仔细推敲看一下,就觉得不对劲。其实,在这里我们忽略了一个非常重要的条件,就是“这时刚好离东西城的中点18千米”这个条件中所说的“离”字,没说是还没到中点,还是超过了中点。如果是没到中点离中点18千米的话,列式就是前面的那一种,如果是超过中点18千米的话,列式应该就是45×=(千米),=(千米),×2=189(千米)。所以正确答案应该是:45×=(千米),=(千米),×2=261(千米)和45×=(千米),=(千米),×2=189(千米)。两个答案,也就是说王星的答案加上小英的答案才是全面的。在日常学习中,往往有许多数学题目的答案是多个的,容易在练习或考试中被忽略,这就需要我们认真审题,唤醒生活经验,仔细推敲,全面正确理解题意。否则就容易忽略了另外的答案,犯以偏概全的错误。