首页

> 期刊论文知识库

首页 期刊论文知识库 问题

臭氧含量的测定文献综述论文

发布时间:

臭氧含量的测定文献综述论文

氟里昂在高空破坏了O2与O3之间的转换平衡,CL对O3分解成O2起加速作用.

臭氧层是存在于地球上空16~48千米平流层内薄薄的一层气体。因为它以吸收太阳光中杀伤力很强的光线,特别是紫外线,从而使生命有可能存在。

臭氧层是存在于地球上空16~48千米平流层内薄薄的一层气体。因为它以吸收太阳光中杀伤力很强的光线,特别是紫外线,从而使生命有可能存在。 人造卫星上的仪器可以测量臭氧层的厚度的范围。观测证明,在南级上空臭氧层处出现日渐增大的“空洞”。如果到达地球的有害辐射增多,这对动植物的影响将是灾难性的。造成的后果之一是人类皮肤癌病例将会增加。 臭氧层发生变化的部分原因是由氟氯碳化物引起的,这类化合物常用于生产气雾剂、电冰箱致冷剂、干洗剂以及某些塑料。今天,许多制造商在产品中采用了各种对保护臭氧层有利的化学品。 由于臭氧层中空洞的存在,人们被劝告要戴上遮阳幅和涂上防晒霜。 这幅地图显示的是臭氧洞。1986年,那里的臭氧量仅是30年前的一半。 臭氧层已受到影响的不仅是在南极上空。1988年,曾发现北半球上空臭氧层已比20年前要薄百分之三。这种变化足以使皮肤癌的病例增加。 在平流层中,一部分氧气分子可以吸收小于240μm波长的太阳光中的紫外线,并分解形成氧 原子。这些氧原子与氧分子相结合生成臭氧,生成的臭氧可以吸收太阳光而被分解掉,也可 与氧原子相结合,再度变成氧分子。其过程可用下面的化学反应方程式来表示: O2+Hυ → 2O� O2+O+M+O3 → M� O3+hυ → J〔10〕O2+O� O3+O → 2O2 M为反应第三体,它们是氮气和氧气分子,其作用是与生成的臭氧相碰撞,接受过剩的能量 以使臭氧稳定。臭氧的浓度取决于上述纯氧反应理论生成反应和消除反应的平衡状态,它可 以大体上重现出臭氧浓度的高度分布。但是从定量角度看,这一理论得出的平流层臭氧浓度 是实际臭氧浓度的2倍左右。� 纯氧理论出现的问题,主要是没有考虑到大气中的微量成份的催化作用,通过链式反应消除 臭氧。其链式反应方程式如下: 图1-2-1 X+O3→XO+O2� XO+O→X+O2 合计 O+O2→2O2� 其中X为H,OH,NO,Cl。 如果考虑了上述大气中微量成分消除臭氧的反应,再考虑 大气运动效果,则大体上可以再现实际的臭氧高度分布。 在平流层中,臭氧的生成和消亡处于动态平衡,正常情况下维持 一定的浓度,此种动态平 衡亦可用图1-2-1表示。 1.臭氧层被破坏的危害 臭氧是一种有刺激性气体,高浓度的臭氧呈淡蓝色。在低空的臭氧对人体有害,但在高空的臭氧层对人体有益,它们可以阻挡、吸收和反射大部分紫外线,让紫外线不再对人体有害。可以说,没有臭氧层就没有生机盎然的地球。如果臭氧层被破坏,紫外线就会长驱直入,造成皮肤癌、基因突变等一系列人类目前很难治疗的疾病,还会破坏生态平衡,并导致物种的灭绝。 2.臭氧层被破坏的现状 据可靠消息,南极上空已出现臭氧层漏洞,如果不加控制,将以每年107平方公里的速度扩散(保守数据),将每年增加57万因紫外线得病的患者(保守数据),并且,基因突变的概率会大大增加。其他地区也出现臭氧层稀薄,并很可能出现漏洞。 3.臭氧层被破坏的原因 关于臭氧层被破坏的原因说法多种多样,有氟氯破坏说,有南极同温云说,有飞机扰动说,但氟氯破坏说最具说服性。 氟氯破坏即氟利昂破坏。氟利昂是一种冷冻剂。为什么氟利昂能破坏臭氧呢?这得从臭氧说起。普通的氧为O2,但它在极端条件下会变成氧离子O2-,再和氧结合变成了臭氧O32-,它极不稳定,容易还原成氧。而氟利昂含有氟和氯,容易从O32-中拉出O2-,使它还原成O2,也就是所谓破坏臭氧。 4.为什么不易禁用氟利昂 这是因为氟利昂制热、冷快,并且它是“最好的”元素。为什么这样说呢?因为发明它的人发现,在元素周期表里,越往上非金属性越强,毒性越弱;越往右活泼性越弱,反应越不强烈,而这正是科学家所需要的。于是经过反复试验,找到了氟和氟利昂,他们在元素周期表的右上角。如果改用其他元素,必然也会有一些缺点。 5.“无氟冰箱”真的无氟? 其实按目前的科学水平来讲,还不太可能找到氟的替代品。所谓“无氟冰箱”的冷冻剂也只是在试验当中的冷冻剂,有的时候还在用少量氟利昂,所以目前没有很好的真正无氟的“无氟冰箱”。但是在不久后,有可能找到氟的替代品,也就有可能生产“无氟冰箱”。 臭氧空洞的由来 来自美国宇航局新闻公报的消息说,2000年10月,南极上空的臭氧空洞面积达到2900万平方公里,这是迄今为止观测到臭氧空洞的最大面积。那么南极臭氧洞是怎么回事?大气中的臭氧空洞还会持续多久? 其实,人们对地球大气中的臭氧并不陌生,它由三个氧原子构成,是普通氧气的同胞兄弟。通过长期研究,科学家们证实,臭氧是地球大气中的一种微量气体组份,它是由于大气中的氧分子被太阳的紫外辐射分解成氧原子后再与周围的氧分子迅速结合而形成的。在地球大气中,大约有90%的臭氧含量集中在离地球表面10—50公里的高度范围内,这就是人们所说的大气臭氧层。 大气中的臭氧含量只占大气的百万分之几,其平均密度约为每立方厘米×10-10克。如果把地球大气中所有的臭氧都集中在地球表面上,则它只形成约3毫米厚的一层气体,其总重量也不过为30亿吨左右。然而它对地球大气中的化学、辐射和动力学过程有着重要影响。更重要的是,大气中的臭氧可以吸收掉太阳紫外辐射中绝大部分对生命有伤害的紫外辐射,从而使地球上一切生命免受过量太阳紫外辐射的伤害而得以正常生存和繁衍。 可以毫不夸大地说,地球上的一切生命就像离不开水和氧气一样离不开大气臭氧层,大气臭氧是地球上一切生灵的天然保护伞。 对大气中的臭氧的较系统观测研究始于20世纪中期,从那时起在全世界范围内逐渐形成了对大气臭氧的全球观测系统并按世界气象组织(WMO)的规定的统一规范对大气臭氧进行着日常业务观测。观测结果表明,较长时间以来,全球大气中的臭氧含量没有发现有明显变化。 但是1985年,人们未预料到的事发生了,这一年,英国科学家乔·弗曼等人首次报道,1980—1984年间,南极上空每年春季(即10月)臭氧含量与同年3月相比大幅度下降,出现了臭氧洞。这对人类自身的生存构成了威胁,从而引起了世界各国政府和人民大众的普遍关注,并构成了当今人类面临的重大环境问题之一。 所谓南极臭氧洞是指南极地区上空大气臭氧总含量季节性大幅度下降的一种现象,并非臭氧完全消失出现了真正的洞,南极臭氧洞通常于每年8月中旬开始逐渐形成,10月中、上旬达到最大面积,并于11月底或12月初臭氧洞消失。对迄今已掌握的卫星和地面观测资料的分析表明,南极大陆上空大气中臭氧含量的明显减少始于20世纪70年代末,1982年10月南极上空首次出现了臭氧含量低于200DU(DU为多普逊臭氧单位)的区域形成了臭氧洞,在随后的几年里臭氧洞的面积不断扩大,洞内的臭氧含量不断降低。进入20世纪90年代以来,南极臭氧洞继续发展,臭氧洞的最大面积已由80年代末的2000万平方公里左右扩展到目前的大约2900万平方公里。 南极上空臭氧层的严重耗损向人们提出了一个严肃的科学问题:是什么原因导致了南极臭氧洞的形成?究竟谁是破坏大气臭氧层的元凶?自1985年首次关于南极臭氧洞的报道以来,科学家们围绕南极臭氧洞的形成原因开展了大量地实地考察和理论研究工作,在一段时间内曾争论不休,众说纷纭,先后提出了多种假说。到目前为止,基于大量研究结果,科学家们已基本上取得了共识,即认识到南极臭氧洞是人类活动造成的,是人类向大气中排放的氟氯烃化合物(CFCS)等导致了大气臭氧层的破坏。20世纪以来,随着工业的发展,人们在制冷剂、发泡剂、喷雾剂以及灭火剂中广泛使用性质稳定、不易燃烧、价格便宜的氟氯烃物质以及性质相似的卤族化合物,这些物质在大气中滞留的时间很长(有的可达100年以上)容易积累,当它们上升到高层大气之后,在强烈太阳紫外辐射作用下会使臭氧分子遭到破坏。人类向大气中排放的氟氯烃等物质对大气臭氧的破坏是全球性的,在南极地区,只是由于其上空特殊的热力和动力学条件才造成了臭氧含量的季节性大幅度下降,形成了臭氧洞。 早在20世纪70年代初期,科学家们指出人类向大气中排放的氟氯烃等物质会使大气中的臭氧遭到破坏,随后联合国环境署制定了“世界保护臭氧层行动计划”,80年代初一些国家率先开始了保护臭氧层的行动,并于1985年21个国家的政府代表签署了《保护臭氧层维也纳公约》,呼吁各国政府采取联合行动,保护臭氧层。1987年9月,36个国家和10个国际组织的140名代表和观察员在加拿大蒙特利尔集会,通过了《关于消耗臭氧层物质的蒙特利尔议定书》,进一步提出了控制消耗臭氧层物质的具体措施和方案。到目前为止,《议定书》的缔约方已达到165个之多,反映了世界各国政府对保护臭氧层工作的重视和责任。不仅如此,联合国环境署还规定从1995年起,每年9月16日为“国际保护臭氧层日”,以增加世界人民保护臭氧层的意识,提高参与保护臭氧层行动的积极性。 我国政府和科学家们非常关心保护大气臭氧层这一全球性的重大环境问题。我国早于1989年就加入了《保护臭氧层维也纳公约》,先后积极派团参与了历次的《公约》和《议定书》的缔约国会议,并于1991年加入了修正后的《议定书》。我国还成立了保护臭氧层领导小组,开始编制并完成了《中国消耗臭氧层物质逐步淘汰国家方案》。根据这一方案,我国已于1999年7月1日冻结了氟氯化碳的生产,并将于2010年前,全部停止生产和使用所有消耗臭氧层物质。 全球范围内大气臭氧层的耗损和南极臭氧洞的出现是大自然报复行动,是人类自己酿制的苦果,人类要为此付出代价。近20年来,全球平均臭氧浓度每10年约减少3%,南极和北极上空臭氧耗损严重。值得注意的是,在人群集中的北半球中纬度地区,20世纪90年代以来,在冬季连续观测到了1957年以来的最低臭氧值,在青藏高原地区上空夏季也出现了臭氧的低值中心。这些观测事实表明,在全球范围内,大气臭氧层确实在变薄,在高纬度地区尤为明显。科学家们预言,这种臭氧层变薄的过程还会继续下去。 那么,这种令人担心的臭氧层变薄还会持续多长时间呢?科学家们的回答是,这完全取决于人类自己。最近,诺贝尔化学奖获得者保罗·克鲁森预告,臭氧洞可望在30—40年后消失,显然,这是一种比较乐观的估计。按照目前科学界对大气臭氧层耗损原因的认识,臭氧层变薄主要是由于人类向大气中排放消耗臭氧层物质引起的,目前,这种物质在大气中的浓度还在继续增加,即使按照《蒙特利尔议定书》的约定,在2000年前全世界都停止对消耗臭氧层物质的生产和使用(实际上已不可能),但由于这种物质在大气中寿命很长,它们在大气中的浓度也还会继续增加,并可能在21世纪初达到最大值后,才开始逐渐减少。这就意味着,如果大气中的一些基本过程没有明显变化,那么大气中臭氧的耗损会一直延续到21世纪中期以后。 当然,大气臭氧层变化涉及到发生在大气中的一系列复杂的物理、化学和动力学过程,其中有些问题目前尚未被科学家所认识,因此,上述预言在科学上均有一定的不确定性。但无论如何,人类应当从臭氧空洞出现这一事实中反思自己的行为,对目前臭氧层耗损可能导致的恶化人类生存环境的后果采取相应对策,并应当刻不容缓地采取行之有效的坚决行动,确实保护好人类赖以生存的大气臭氧层。 成因: 在高层大气中(高度范围约离地面 15~24 km),由氧吸收太阳紫外线辐射而生成可观量的臭氧(O3)。光子首先将氧分子分解成氧原子,氧原子与氧分子反应生成臭氧: O2 2O O+O2→O3 O3和O2属于同素异形体,在通常的温度和压力条件下,两者都是气体。 当O3的浓度在大气中达到最大值时,就形成厚度约20km的臭氧层。臭氧能吸收波长在220~330nm范围内的紫外光,从而防止这种高能紫外线对地球上生物的伤害。 现象: 过去人类的活动尚未达到平流层(海拔约30km)的高度,而臭氧层主要分布在距地面20~25km的大气层中,所以未受到重视。近年来不断测量的结果已证实臭氧层已经开始变薄,乃至出现空洞。1985年,发现南极上方出现了面积与美国大陆相近的臭氧层空洞,1989年又发现北极上空正在形成的另一个臭氧层空洞。此后发现空洞并非固定在一个区域内,而是每年在移动,且面积不断扩大。 危害: 臭氧层变薄和出现空洞,就意味着有更多的紫外辐射线到达地面。紫外线对生物具有破坏性,对人的皮肤、眼睛,甚至免疫系统都会造成伤害,强烈的紫外线还会影响鱼虾类和其他水生生物的正常生存,乃至造成某些生物灭绝,会严重阻碍各种农作物和树木的正常生长,又会使由CO2量增加而导致的温室效应加剧。 人类活动产生的微量气体,如氮氧化物和氟氯烷等,对大气中臭氧的含量有很大的影响。引起臭氧层被破坏的原因有多种解释,其中公认的原因之一是氟里昂(氟氯甲烷类化合物)的大量使用。氟里昂被广泛应用于制冷系统、发泡剂、洗净剂、杀虫剂、除臭剂、头发喷雾剂等。氟里昂化学性质稳定,易挥发,不溶于水。但进入大气平流层后,受紫外线辐射而分解产生CI原子,CI原子则可引发破坏O3循环的反应: CI+O3→CIO+O2 CIO+O→CIO2 由第一个反应消耗掉的CI原子,在第二个反应中又重新产生,又可以和另外一个O3起反应,因此每一个CI原子能参与大量的破坏O3的反应,这两个反应加起来的总反应是: O3+O→2O2 反应的最后结果是将O3转变为O2,而CI原子本身只作为催化剂,反复起分解O3的作用。O3就被来自氟里昂分子释放出的CI原子引发的反应而破坏。 另外,大型喷气机的尾气和核爆炸烟尘的释放高度均能达到平流层,其中含有各种可与O3作用的污染物,如NO和某些自由基等。人口的增长和氮肥的大量生产等也可以危害到臭氧层。在氮肥的生产中去向大气释放出各种氮的化合物,其中一部分可能是有害的氧化亚氮(N2O),它会引发下列反应: N2O+O→N2+O2 N2+O2→2NO NO+O3→NO2+O2 NO2+O→NO+O2 O3+O→2O2 NO按后两个反应式循环反应,使O3分解。 措施: 为了保护臭氧层免遭破坏,于1987年签定了蒙特利尔条约,即禁止使用氟氯烷和其他的卤代烃的国际公约。然而,臭氧层变薄的速度仍在加快。不论是南极地区上空,还是北半球的中纬度地区上空,O3含量都呈下降趋势。与此同时,关于臭氧层破坏机制的争论也很激烈。例如大气的连续运动性质使人们难以确定臭氧含量的变化究竟是由动态涨落引起的,还是由化学物质破坏引起的,这是争论的焦点之一。由于提出不同观点的科学家在各自所在的地区对大气臭氧进行的观测是局部和有限的,因此建立一个全球范围的臭氧浓度和紫外线强度的监测网络,可能是十分必要的。 联合国环境计划署对臭氧消耗所引起的环境效应进行了估计,认为臭氧每减少1%,具有生理破坏力的紫外线将增加13%,因此,臭氧的减少对动植物尤其是人类生存的危害是公认的事实。保护臭氧层须依靠国际大合作,并采取各种积极、有效的对策。

臭氧的测量包括铅直气柱中臭氧总量的测量和臭氧浓度铅直分布的测量两种。测量方法分直接法和间接法:前者对臭氧进行采样分析;后者在臭氧层外进行测量,大都用光谱分析方法。臭氧测量结果,除采用通常的单位表示外,还用多布森单位,记为DU,它等于千分之一厘米(标准状态臭氧层厚)。

臭氧间接测量法:光谱分析法是观测穿过大气层的太阳直射光或散射光的光谱,然后计算出臭氧含量及其铅直分布。在臭氧吸收带中(见大气臭氧层),太阳直射光或散射光穿过大气层,受到臭氧分子的吸收,并受到气体分子和气溶胶粒子的散射。波长为λ的单色太阳光,通过大气层时辐射强度的削弱服从比尔定律。测量臭氧的常用光学仪器有多布森分光光度计和M-83滤光片臭氧仪。多布森分光光度计被认为是测量臭氧的标准仪器。其他类型的仪器都必须定期用它校准。M-83滤光片臭氧仪主要在苏联和欧洲的部分国家使用。用气象卫星也可以测得全球臭氧的分布。如雨云4号卫星上用后向散射紫外光谱仪(BUV)和红外干涉光谱仪(IRIS)进行大气臭氧的观测。前者测量大气对太阳光的后向紫外散射,它接收2500~3400埃中12个波段的紫外光谱,由此反演出大气臭氧含量全球的分布;后者除了测量大气温度和湿度外,还测量大气臭氧(微米波段,在此波段中接收4个波长的辐射)。将这两种光谱仪结合起来,可以探测大气臭氧浓度随高度的分布,例如在雨云6号卫星上,有临边辐射反演辐射仪(LRIR),它接收大气臭氧微米辐射带的信息,用辐射传输方程反演,可获得臭氧的铅直分布。

臭氧直接测量法用电化学或化学发光方法测量臭氧含量,可不受大气透明度和天气条件的限制,白天或黑夜均可进行观测。

臭氧测量方法各有优缺点,常常要用多种方法互相补充,互相比较,以求获得完整可靠的资料。

脂肪含量测定论文文献

我有绑定IP的高校帐号,可以帮你下载相关资料。 文献检索互助团队,打造百度知道优秀团队

饲料粗脂肪的测定方法动物饲料—粗脂肪的测定—索氏提取法 1 范围 本标准规定了饲料脂肪含量的测定方法,本方法适用于各种单一、混合、配合饲料和预混料。 2 原理 索氏脂肪抽提器中用乙醚提取试样,称提取物的重量,除脂肪外还有有机酸,磷脂、脂溶性维生素,叶绿素等,因而测定结果称粗脂肪或乙醚提取物。 3 试剂 无水乙醚(分析纯) 4 仪器设备 实验室用样品粉碎机或研钵。 分样筛:孔径。 分析天平:感量。 电热恒温水浴锅:室温~100℃。 恒温烘箱:温度50~200℃。 索氏脂肪提取器(带球形冷凝管):100或150ml。 滤纸或滤纸筒:中速、脱脂。 干燥器:内装有效的干燥剂,用氯化钙或变色硅胶。 5 试样制备 选取有代表性的试样,用四分法将试样缩减至500g,粉碎至40目,再用四分法缩减至200g,于密封容器中保存。 6分析步骤 仲裁法:使用索氏脂肪提取器测定 索氏提取器应干燥无水,抽提瓶(内有沸石数粒)在105±2℃烘箱中烘干60min,干燥器中冷却30min,称重。再烘干30min,同样冷却称重,两次重量之差小于为恒重。 称取试样1~5g(准确至),于滤纸筒中,或用滤纸包好,放入105℃的烘箱中,烘干120min(或称测水分后的干试样,折算成风干样重),滤纸筒应高于提取器虹吸管的高度,滤纸包的长度应以全部浸泡于乙醚中为准。将滤纸筒或包放入抽提管,在抽提瓶中加无水乙醚60~100ml,在60~75℃的水浴(用蒸馏水)上加热,使乙醚回流,控制乙醚回流次数为每小时约10次,共回流约50次(含油高的试样约70次)或检查抽提管流出的乙醚挥发后不留下油迹为抽提终点。 取出试样,仍用原提取器回收乙醚直抽提瓶全部收完,取下抽提瓶,在水浴上蒸去残余乙醚。擦净瓶外壁。将抽提瓶放入105±2℃烘箱中烘干120min,干燥器中冷却30min称重,再烘干30min,同样冷却称重,两次重量之差小于为恒重。7 结果计算 试样的脂肪含量W1 用下列公式计算,以每千克的克数表示, 粗脂肪(%)=100(m2-m1)/m 式中: m——风干试样质重量,g; m1——已恒重的抽提瓶重量,g; m2——已恒重的盛有脂肪的抽提瓶重量,g; 重复性 每个试样取两平行样进行测定,以其算术平均值为结果。 粗脂肪含量在10%以上(含10%)允许相对偏差为3%。 粗脂肪含量在10%以下时,允许相对偏差为5%。 13 参考文献 GB/T 6433-94 饲料粗脂肪测定方法这是我们测定粗脂肪的方法,参考一下吧 查看原帖>>

脂类代谢与人体健康 脂类物质包括脂肪和类脂二类物质,脂肪又称甘油三酯,由甘油和脂肪酸组成;类脂包括胆固醇及其酯、磷脂及糖脂等。脂类物质是细胞质和细胞膜的重要组分;脂类代谢与糖代谢和某些氨基酸的代谢密切相关;脂肪是机体的良好能源,脂肪的潜能比等量的蛋白质或糖高1倍以上、通过氧化可为机体提供丰富的热能;固醇类物质是某些激素和维生素D及胆酸的前体。脂类代谢与人类的某些疾病(如酮血症、酮尿症、脂肪肝、高血脂症、肥胖症和动脉粥样硬化、冠心病等)有密切关系,因此,脂类代谢对人体健康有重要意义。 一、脂类的消化与吸收 1.脂肪的消化与吸收 食物中的脂肪在口腔和胃中不被消化,因唾液中没有水解脂肪的酶,胃液中虽含有少量脂肪酶,但胃液中的pH为1~2,不适于脂肪酶作用。脂肪的消化作用主要是在小肠中进行,由于肠蠕动和胆汁酸盐的乳化作用,脂肪分散成细小的微团,增加了与脂肪酶的接触面,通过消化作用,脂肪转变为甘油一酯、甘油二酯、脂肪酸和甘油等,它们与胆固醇、磷脂及胆汁酸盐形成混合微团。这种混合微团在与十二指肠和空肠上部的肠粘膜上皮细胞接触时,甘油一酯、甘油二酯和脂肪酸即被吸收,这是一种依靠浓度梯度的简单扩散作用。吸收后,短链的脂肪酸由血液经门静脉入肝;长链的脂肪酸、甘油一酯和甘油二酯在肠粘膜细胞的内质网上重新合成甘油三酯,再与磷脂、胆固醇、胆固醇酯及载脂蛋白构成了乳糜微粒,通过淋巴管进入血液循环。 2.类脂的消化与吸收 食物中胆固醇的吸收部位主要是空肠和回肠,游离胆固醇可直接被吸收;胆固醇酯则经胆汁酸盐乳化后,再经胆固醇酯酶水解生成游离胆固醇后才被吸收,吸收进入肠粘膜细胞的胆固醇再酯化成胆固醇酯,胆固醇酯中的大部分掺入乳糜微粒,少量参与组成极低密度脂蛋白,经淋巴进入血液循环。食物中的磷脂在磷脂酶的作用下,水解为脂肪酸、甘油、磷酸、胆碱或胆胺,被肠粘膜吸收后,在肠壁重新合成完整的磷脂分子,参与组成乳糜微粒而进入血液循环。 二、脂肪的代谢 1.脂肪酸的合成 体内的脂肪酸的来源有二:一是机体自身合成,以脂肪的形式储存在脂肪组织中,需要时从脂肪组织中动员。饱和脂肪酸主要靠机体自身合成;另一来源系食物脂肪供给,特别是某些不饱和脂肪酸,动物机体自身不能合成,需从植物油摄取。它们是动物不可缺少的营养素,故称必需脂肪酸。它们又是前列腺素、血栓素及白三烯等生理活性物质的前体。前列腺素可使血管扩张,血压下降,并能抑制血小板的聚集。而血栓素作用与此相反,有促凝血作用。白三烯能引起支气管平滑肌收缩,与过敏反应有关。 脂肪酸的生物合成是在胞液中多酶复合体系催化下进行的,原料主要来自糖酵解产生的乙酸辅酶A和还原型辅酶Ⅱ,最后合成软脂酸。软脂酸在内质网和线粒体分别与丙二酰单酰辅酶A和乙酸辅酶A作用,均可以使碳链的羧基端延长到18~26℃。机体还可利用软脂酸、硬脂酸等原料,在去饱和酶的催化下,合成不饱和脂肪酸,但不能合成亚油酸、亚麻酸和花生四烯酸等必需脂肪酸。 2.脂肪的合成 脂肪在体内的合成有两条途径,一种是利用食物中脂肪转化成人体的脂肪,另一种是将糖转变为脂肪,这是体内脂肪的主要来源,是体内储存能源的过程。糖代谢生成的磷酸二羟丙酮在脂肪和肌肉中转变为 磷酸甘油,与机体自身合成或食物供给的两分子脂肪酸活化生成的脂酰辅酶A作用生成磷脂酸,然后脱去磷酸生成甘油二酯,再与另一分子脂酰辅酶A作用,生成甘油三酯。 3.脂肪的分解 脂肪组织中储存的甘油三酯,经激素敏感脂肪酶的催化,分解为甘油和脂肪酸运送到全身各组织利用,甘油经磷酸化后,转变为磷酸二羟丙酮,循糖酵解途径进行代谢。胞液中的脂肪酸首先活化成脂酰辅酶A,然后由肉毒碱携带通过线粒体内膜进入基质中进行 氧化,产生的乙酰辅酶A进入三羧酶循环彻底氧化,这是体内能量的重要来源。 4.酮体的产生和利用 脂肪酸在肝中分解氧化时产生特有的中间代谢产物——酮体,酮体包括乙酰乙酸、 羟丁酸和丙酮,由乙酰辅酶A在肝脏合成。肝脏自身不能利用酮体,酮体经血液运送到其它组织,为肝外组织提供能源。在正常情况下,酮体的生成和利用处于平衡状态。 三、类脂的代谢 1.胆固醇的代谢 体内胆固醇主要在肝细胞内合成,胆固醇在体内不能彻底氧化分解,但可以转变成许多具有生物活性的物质,肾上腺皮质激素、雄激素及雌激素均以胆固醇为原料在相应的内分泌腺细胞中合成。胆固醇在肝中转变为胆汁酸盐,并随胆汁排入消化道参与脂类的消化和吸收。皮肤中的7-脱氧胆固醇在日光紫外线的照射下,可转变为维生素 ,后者在肝及肾羟化转变为1,25- 的活性形式,参与钙、磷代谢。 2.磷脂的代谢 含磷酸的脂类称为磷脂,由甘油构成的磷脂统称为甘油磷脂,它包括卵磷脂和脑磷脂,是构成生物膜脂双层结构的基本骨架,含量恒定为固定脂。卵磷脂是合成血浆脂蛋白的重要组分。由鞘氨醇构成的磷脂称为鞘磷脂,是生物膜的重要组分,参与细胞识别及信息传递。磷脂酸是合成磷脂的前体,在磷酸酶作用下生成甘油二酯,然后与CDP-胆碱或CDP-胆胺反应生成卵磷脂和脑磷脂。鞘氨醇由软脂酸辅酶A和丝氨酸反应形成。鞘氨醇经长链脂酰辅酶A酰化而形成N-酸基鞘氨醇,即神经酰胺,又进一步和CDP-胆碱作用而形成鞘磷脂。 四、血浆脂蛋白代谢 1.血脂的组成及含量 血浆中所含的脂类统称血脂,它的组成包括甘油三酯、磷脂、胆固醇及其酯以及游离的脂肪酸等。血脂的来源有二:一为外源性,从食物摄取的脂类经消化吸收进入血液;二是内源性,由肝、脂肪细胞以及其它组织合成后释放入血液。血脂受膳食、年龄、性别、职业以及代谢等的影响,波动范围较大。正常人空腹12~24 h血脂的组成及含量见表1。 表1 正常成人空腹时血浆中脂类的组成和含量脂类物质 nmol/L mg/dl 脂类总量 4~7(g/L) 400~700甘油三酯 ~ 10~160胆固醇总量 ~ 150~250磷 脂 ~ 150~250游离脂肪酸 ~ 8~25血浆中脂类的正常值范围因测定方法不同而有一定的差别。另外,血脂含量与全身脂类相比,只占极小部分,但所有脂类均通过血液转运至各组织。因此,血脂的含量可以反映全身脂类的代谢概况。 血脂的来源与去路如下:2.血浆脂蛋白的分类、组成及功能 正常人血浆含脂类虽多,却仍清彻透明,说明血脂在血浆中不是以自由状态存在,而与血浆中的蛋白质结合,以血浆脂蛋白的形式运输。载脂蛋白主要有apoA、apoB、apoC、apoD和apoE等五类,还有若干亚型。血浆脂蛋白的结构为球状颗粒,表面为极性分子和亲水基团,核心为非极性分子和疏水基团。各种血浆脂蛋白因所含脂类及蛋白质量不同,其密度、颗粒大小、表面电荷、电泳行为及免疫性均有不同,一般用超速离心法和电泳法将它们分为四类,彼此对应,即:HDL高密度脂蛋白( 脂蛋白)、VLDL极低密度脂蛋白(前 脂蛋白)、LDL低密度脂蛋白( 脂蛋白)和CM乳糜微粒。CM是在空肠粘膜细胞内合成,转运外源性脂肪;VLDL是在肝细胞内合成,转运内源性脂肪;LDL是在血浆中由VLDL转变而来,转运胆固醇至各组织;HDL是在肝细胞内合成,转运胆固醇和磷脂至肝脏。 五、脂类代谢紊乱引起的常见疾病 1.血浆脂蛋白的异常引起的疾病正常时,血浆脂类水平处于动态平衡,能保持在一个稳定的范围。如在空腹时血脂水平升高,超出正常范围,称为高血脂症。因血脂是以脂蛋白形式存在,所以血浆脂蛋白水平也升高,称为高脂蛋白血症。根据国际暂行的高脂蛋白血症分型标准,将高脂蛋白血症分为6型,各型高脂蛋白血症血浆脂蛋白及脂类含量变化见表2。 表2 各型高脂蛋白血浆脂蛋白及脂类含量变化类型 血浆脂蛋白变化 血脂含量变化 发生率 Ⅰ 高乳糜微粒血症 甘油三酯升高 罕见 (乳糜微粒升高) 胆固醇升高 Ⅱa 高 脂蛋白血症 甘油三酯正常 常见 (低密度脂蛋白升高) 胆固醇升高 Ⅱb 高 脂蛋白血症 甘油三酯升高 常见 高前 脂蛋白血症 胆固醇升高 (低密度脂蛋白及极 低密度脂蛋白升高 Ⅲ 高 脂蛋白血症 甘油三酯升高 较少 高前 脂蛋白血症 胆固醇升高 (出现“宽 ”脂蛋白 低密度脂蛋白升高 Ⅳ 高前 脂蛋白血症 甘油三酯升高 常见 (极低密度脂蛋白升高) 胆固醇升高 Ⅴ 高乳糜微粒血症 甘油三酯升高 高前 脂蛋白血症 胆固醇升高 不常见按发病原因又可分为原发性高脂蛋白血症和继发性高脂蛋白血症。原发性高脂蛋白血症是由于遗传因素缺陷所造成的脂蛋白的代谢紊乱,常见的是Ⅱa和Ⅳ型;继发性高脂蛋白血症是由于肝、肾病变或糖尿病引起的脂蛋白代谢紊乱。 高脂蛋白血症发生的原因可能是由于载脂蛋白、脂蛋白受体或脂蛋白代谢的关键酶缺陷所引起的脂质代谢紊乱。包括脂类产生过多、降解和转运发生障碍,或两种情况兼而有之,如脂蛋白脂酶活力下降、食入胆固醇过多、肝内合成胆固醇过多、胆碱缺乏、胆汁酸盐合成受阻及体内脂肪动员加强等均可引起高脂蛋白血症。动脉粥样硬化是严重危害人类健康的常见病之一,发生的原因主要是血浆胆固醇增多,沉积在大、中动脉内膜上所致。其发病过程与血浆脂蛋白代谢密切相关。现已证明,低密度脂蛋白和极低密度脂蛋白增多可促使动脉粥样硬化的发生,而高密度脂蛋白则能防止病变的发生。这是因为高密度脂蛋白能与低密度脂蛋白争夺血管壁平滑肌细胞膜上的受体,抑制细胞摄取低密度脂蛋白的能力,从而防止了血管内皮细胞中低密度脂蛋白的蓄积。所以在预防和治疗动脉粥样硬化时,可以考虑应用降低低密度脂蛋白和极低密度脂蛋白及提高高密度脂蛋白的药物。肥胖人与糖尿病患者的血浆高密度脂蛋白水平较低,故易发生冠心病。 2.酮血症、酮尿症及酸中毒 正常情况下,血液中酮体含量很少,通常小于1mg/100mL。尿中酮体含量很少,不能用一般方法测出。但在患糖尿病时,糖利用受阻或长期不能进食,机体所需能量不能从糖的氧化取得,于是脂肪被大量动员,肝内脂肪酸大量氧化。肝内生成的酮体超过了肝外组织所能利用的限度,血中酮体即堆积起来,临床上称为“酮血症”。患者随尿排出大量酮体,即“酮尿症”。酮体中的乙酰乙酸和 羟丁酸是酸性物质,体内积存过多,便会影响血液酸碱度,造成“酸中毒”。 3.脂肪肝及肝硬化 由于糖代谢紊乱,大量动员脂肪组织中的脂肪,或由于肝功能损害,或者由于脂蛋白合成重要原料卵磷脂或其组成胆碱或参加胆碱含成的甲硫氨酸及甜菜碱供应不足,肝脏脂蛋白合成发生障碍,不能及时将肝细胞脂肪运出,造成脂肪在肝细胞中堆积,占据很大空间,影响了肝细胞的机能,肝脏脂肪的含量超过10%,就形成了“脂肪肝”。脂肪的大量堆积,甚至使许多肝细胞破坏,结缔组织增生,造成“肝硬化”。 4.胆固醇与动脉粥样硬化 虽然胆固醇是高等真核细胞膜的组成部分,在细胞生长发育中是必需的,但是血清中胆固醇水平增高常使动脉粥样硬化的发病率增高。动脉粥样硬化斑的形成和发展与脂类特别是胆固醇代谢紊乱有关。胆固醇进食过量、甲状腺机能衰退,肾病综合症,胆道阻塞和糖尿病等情况常出现高胆固醇血症。 近年来发现遗传性载脂蛋白(APO)基因突变造成外源性胆固醇运输系统不健全,使血浆中低密度脂蛋白与高密度脂蛋白比例失常,例如APO AI,APO CIII缺陷产生血中高密度脂蛋白过低症,APO-E-2基因突变产生高脂蛋白血症,此情况下食物中胆固醇的含量就会影响血中胆固醇的含量,因此病人应采用控制膳食中胆固醇治疗。引起动脉粥样硬化的另一个原因是低密度脂蛋白的受体基因的遗传性缺损,低密度脂蛋白不能将胆固醇送入细胞内降解,因此内源性胆固醇降解受到障碍,致使血浆中胆固醇增高。 5.肥胖症 肥胖症是一种发病率很高的疾病,轻度肥胖没有明显的自觉症状,而肥胖症则会出现疲乏、心悸、气短和耐力差,且容易发生糖尿病、动脉粥样硬化、高血压和冠心病等。除少数由于内分泌失调等原因造成的肥胖症外,多数情况下是由于营养失调所造成。由于摄入食物的热量大于人体活动需要量,体内脂肪沉积过多、体重超过标准20%以上者称为肥胖症。预防肥胖,要应用合理饮食,尤其是控制糖和脂肪的摄入量,加上积极而又适量的运动是最有效的减肥处方。 脂肪是人体内的主要储能物质,机体所需能量的50%以上由脂肪氧化供给;脂肪还协助脂溶性维生素的吸收,因此,脂肪是人体的重要营养素之一;包括胆固醇、胆固醇酯和磷脂等在内的类脂广泛分布于全身各组织中,是构成生物膜的主要物质,它与膜上许多酶蛋白结合而发挥膜的功能,胆固醇还是机体内合成胆汁酸、维生素 和类固醇的重要物质。脂类代谢受多种因素影响,特别是受到神经体液的调节,如肾上腺素、生长激素、高血糖素、促肾上腺素、糖皮质类固醇、甲状腺素和甲状腺刺激素促进脂肪组织释放脂肪酸,而胰岛素和前列腺素的作用则相反。适量的含脂类食物的摄入和适当的体育锻炼,有利于脂类代谢保持正常,一旦某种因素发生变化引起脂类代谢反常时,便导致疾病,危害人体健康。

饲料粗脂肪的测定方法动物饲料—粗脂肪的测定—索氏提取法 1 范围 本标准规定了饲料脂肪含量的测定方法,本方法适用于各种单一、混合、配合饲料和预混料。 2 原理 索氏脂肪抽提器中用乙醚提取试样,称提取物的重量,除脂肪外还有有机酸,磷脂、脂溶性维生素,叶绿素等,因而测定结果称粗脂肪或乙醚提取物。 3 试剂 无水乙醚(分析纯) 4 仪器设备 实验室用样品粉碎机或研钵。 分样筛:孔径。 分析天平:感量。 电热恒温水浴锅:室温~100℃。 恒温烘箱:温度50~200℃。 索氏脂肪提取器(带球形冷凝管):100或150ml。 滤纸或滤纸筒:中速、脱脂。 干燥器:内装有效的干燥剂,用氯化钙或变色硅胶。 5 试样制备 选取有代表性的试样,用四分法将试样缩减至500g,粉碎至40目,再用四分法缩减至200g,于密封容器中保存。 6分析步骤 仲裁法:使用索氏脂肪提取器测定 索氏提取器应干燥无水,抽提瓶(内有沸石数粒)在105±2℃烘箱中烘干60min,干燥器中冷却30min,称重。再烘干30min,同样冷却称重,两次重量之差小于为恒重。 称取试样1~5g(准确至),于滤纸筒中,或用滤纸包好,放入105℃的烘箱中,烘干120min(或称测水分后的干试样,折算成风干样重),滤纸筒应高于提取器虹吸管的高度,滤纸包的长度应以全部浸泡于乙醚中为准。将滤纸筒或包放入抽提管,在抽提瓶中加无水乙醚60~100ml,在60~75℃的水浴(用蒸馏水)上加热,使乙醚回流,控制乙醚回流次数为每小时约10次,共回流约50次(含油高的试样约70次)或检查抽提管流出的乙醚挥发后不留下油迹为抽提终点。 取出试样,仍用原提取器回收乙醚直抽提瓶全部收完,取下抽提瓶,在水浴上蒸去残余乙醚。擦净瓶外壁。将抽提瓶放入105±2℃烘箱中烘干120min,干燥器中冷却30min称重,再烘干30min,同样冷却称重,两次重量之差小于为恒重。7 结果计算 试样的脂肪含量W1 用下列公式计算,以每千克的克数表示, 粗脂肪(%)=100(m2-m1)/m 式中: m——风干试样质重量,g; m1——已恒重的抽提瓶重量,g; m2——已恒重的盛有脂肪的抽提瓶重量,g; 重复性 每个试样取两平行样进行测定,以其算术平均值为结果。 粗脂肪含量在10%以上(含10%)允许相对偏差为3%。 粗脂肪含量在10%以下时,允许相对偏差为5%。 13 参考文献 GB/T 6433-94 饲料粗脂肪测定方法这是我们测定粗脂肪的方法,参考一下吧

中含量的测定毕业论文

实验用品】仪器:50mL碱式滴定管,移液管,250mL容量平,250mL锥形瓶,分析天平,托盘天平。试剂:邻苯二甲酸氢钾(),,NaOH溶液,酚酞指示剂。【实验步骤】溶液的标定(1)在电子天平上,用差减法称取三份邻苯二甲酸氢钾基准物分别放入三个250mL锥形瓶中,各加入30-40mL去离子水溶解后,滴加1-2滴酚酞指示剂。(2)用待标定的NaOH溶液分别滴定至无色变为微红色,并保持半分钟内不褪色即为终点。(3)记录滴定前后滴定管中NaOH溶液的体积。计算NaOH溶液的浓度和各次标定结果的相对偏差。2.食醋中醋酸含量的测定(1)用移液管吸取食用醋试液一份,置于250mL容量瓶中,用水稀释至刻度,摇匀。(2)用移液管吸取稀释后的试液,置于250mL锥形瓶中,加入酚酞指示剂1-2滴,用NaOH标准溶液滴定,直到加入半滴NaOH标准溶液使试液呈现微红色,并保持半分钟内不褪色即为终点。(3)重复操作,测定另两份试样,记录滴定前后滴定管中NaOH溶液的体积。测定结果的相对平均偏差应小于。(4)根据测定结果计算试样中醋酸的含量,以g/L表示。【实验研讨】1.醋酸是一种有机弱酸,其离解常数Ka=×,可用标准碱溶液直接滴定,反应如下:化学计量点时反应产物是NaAc,是一种强碱弱酸盐,其溶液pH在左右,酚酞的颜色变化范围是8-10,滴定终点时溶液的pH正处于其内,因此采用酚酞做指示剂,而不用甲基橙和甲基红。2.食用醋中的主要成分是醋酸(乙酸),同时也含有少量其他弱酸,如乳酸等。凡是CKa>的一元弱酸,均可被强碱准确滴定。因此在本实验中用NaOH滴定食用醋,测出的是总酸量,测定结果常用:3.食用醋中约含3%-5%的醋酸,可适当稀释后再进行滴定。白醋可以直接滴定,一般的食醋由于颜色较深,可用中性活性炭脱色后再行滴定。4.是标定NaOH的基准物质,因此称取时要用电子天平,并要用差减法,使其称量结果尽量精确。而称量NaOH就不需要十分准确,用托盘天平即可。5.酚酞指示剂有无色变为微红时,溶液的pH约为。变红的溶液在空气中放置后,因吸收了空气中的CO2,又变为无色。6.以标定的NaOH标准溶液在保存时若吸收了空气中的CO2,以它测定食醋中醋酸的浓度,用酚酞做为指示剂,则测定结果会偏高。为使测定结果准确,应尽量避免长时间将NaOH溶液放置于空气中。呵呵是COPY别人的

有很多的哈,1.天然产物中微量元素含量的测定2.天然产物中萃取某种成分方法的研究

酱油测的应该是氨基态氮的含量吧。方法如下:1 校正PH计。2 吸取试样A毫升(氨基态氮的含量为1~5mg)于烧杯中,加5滴30%过氧化氢.将烧杯置于电磁搅拌器上,电极插入烧杯内试样中适当位置。如需要加适量蒸馏水。3 开动电磁搅拌器,先用氢氧化钠溶液慢慢中和试样中的有机酸。当pH达到左右时,再用氢氧化钠溶液调至,并保持1min不变。然后慢慢加入10~15mL中性甲醛溶液(量取200mL甲醛溶液于400mL烧杯中,置于电磁搅拌器上, 边搅拌边用氢氧化钠溶液调至).1min后用氢氧化钠标准滴定溶液滴定至.记录消耗氢氧化钠标准滴定溶液的毫升数。4 结果表示 测定结果表示见公式: c·V·K×14 X = ———————-×100 m 式中:X--每100g(或100mL)试样中氨基态氮的毫克数,mg/100g(或mg/100mL); c--氢氧化钠标准滴定溶液的浓度,mol/L; V--加入中性甲醛溶液后,滴定试样消耗氢氧化钠标准滴定溶液的体积,mL; m--试样的质量,g(或体积mL); K--稀释倍数; 14--1 mL 1N氢氧化钠标准滴定溶液相当于氮的毫克数。

铅含量测定论文参考文献

采用GB 食品中铅的测定方法。

1、石墨炉原子吸收光谱法(第一法):

样品经灰化或酸消解后,注入原子吸收分光光度计石墨炉中,电热原子化后吸收纳米共振线,在一定浓度范围,其吸收值与铅含量成正比,与标准系列比较定量。

2、火焰原子吸收光谱法(第二法):

样品经处理后,铅离子在一定pH条件下与乙二基二硫代氨基甲酸钠(DDTc)形成络合物,经4一甲基戊酮-α萃取分离,导入原子吸收光谱仪中,火焰原子化后,吸收纳米共振线,其吸收量与铅含量成正比,与标准系列比较定量。

3、二硫腙比色法(第三法):

样品经消化后,在pH ~时,铅离子与二硫腙生成红色络合物,溶于三氯甲烷。加入柠檬酸铵、氰化钾和盐酸羟胺等,防止铁、铜、锌等离子干扰,与标准系列比较定量。

扩展资料

控制方法

1、遏制污染源头

我国是铅生产的大国,现在我国铅产量已经位居世界第一,因此,铅矿在生产过程中如果控制不当极易发生大范围的铅污染事件,2012年初在陕西省凤翔发生的铅中毒事件,就是由于在开采前没有及时搬迁附近居民,导致铅矿开采污染事件发生。

2、控制流通途径

传播途径包括通过水源、餐具、罐头等方式污染食品,定期检测受威胁区水体中铅含量的水平,严防重金属铅通过正常的流通途径进入食品,此外,定期对市场上的食品随机进行铅含量监测,发现超标食品及时处理。

3、治疗受害人群

铅对人体危害巨大,儿童身体中铅含量达到10μg/dL左右时,将会比同龄儿童智力低9%,定期对受威胁地区人群进行血铅监测,及时治疗中毒病人,是当前必须考虑的问题之一。

参考资料来源:百度百科-铅含量测定

楼主可以先在各在数据库上搜索一下,对自己需要的,把文献名称等相关信息发到文献求助版去。for more answers about analytics and testing or chemistry questions, you may go to antpedia dot com, good luck.楼主的题目也太大了..上知网万方维普找吧,有很多.

水中铅测定方法详解(1) 在中性和碱性溶液中,双硫腙与铅反应生成单取代双硫腙络合物,溶于有机溶剂而呈洋红色。反应灵敏,最大吸收波长为520nm,摩尔吸光系数(ε)6.86×104L/(mol·cm)。 有机溶剂通常使用三氯甲烷或四氯化碳,四氯化碳可比三氯甲烷在较低pH值萃取铅,不形成二铅酸盐,且四氯化碳不溶于水,挥发性较低,比重较大。另一方面,铅一双硫腙络合物在三氯甲烷中溶解度较大,可萃取较大量的铅。由于双硫腙在三氯甲烷中溶解度比四氯化碳为大,因此,当需要从三氯甲烷中完全除去双硫腙时,必须保持较高的pH值。 当使用三氯甲烷作溶剂时,铅可在pH8~11.5被定量萃取。,通常采用百里酚蓝(pH8.O~9.6)作指示剂,调节水相由绿变蓝(pH~9.5),然后进行萃取。亦有建议在高pH值进行萃取,如SnydercsJ提出,在含柠檬酸铵和氰化钾的pH9.5~10.0水溶液中,用双硫腙一三氯甲烷溶液萃取铅,继用稀硝酸反萃取,最后用氨性氰化物溶液调节至,以双硫腙三氯甲烷溶液萃取,在pHll.5的高pH值下,使过量双硫腙成为铵盐而进入水层。 影响铅的萃取率,除pH外,还与所用溶剂、存在阴离子的种类和数量、两相的体积比、双硫腙在有机相中的浓度等参数有关。阴离子由于与铅形成络合物而影响萃取平衡,如在同样的pH,当含一定浓度的乙酸盐、酒石酸盐和柠檬酸盐时,可使萃取率降低。 双硫腙法测定铅,可采用单色法,亦可采用混色法,前者以氨性氰化物溶液洗去有机层中过量的双硫腙后,测量络合物的吸光度,后者则有机层中残留过量的双硫腙不经除去直接测量吸光度,操作简便。然而对铅含量极微的水样,由于受基体影响,当采用混色法测定,以无铅水制备的空白试验为参比时,往往会出现负值,而单色法则无此现象。 干扰及其消除 在最适pH萃取铅时,Ag+、Hg2+、Pd2+、Au3+、Cu2+、Zn2+、cd2+、Co2+和Ni2+亦可与双硫腙络合而被萃取,可加氰化物掩蔽之。如有大量的Ag+、Hg2+、Pd2+、Au3+和Cu2+存在(每一种金属离子超过1mg),则最好是在强酸性溶液中,甩双硫腙一氯仿溶液预先将这些金属离子萃取除去。而后再测定铅。 Bi2+、In3+、Tl+和Sn2+不能为氰化物所掩蔽,铋在较低pH时比铅易于被双硫腙萃取,因此可将水层调节至一定pH(通常为2.O~3.5),铋被萃取而铅仍在水液中,然后提高pH值而萃取 铅。亦可先在较高pH值,使铋和铅一起被萃取,然后用缓冲液洗有机层使铅进入水层(如用 C014作溶剂则pH为2.3~2.5,用CHCl3则为pH3.4),或用碱性溶液(通常pH大于1l的0.5~ 1%氰化钾溶液)洗有机层,使铋先行解离。 铋量很大时,可用溴和氢溴酸处理,使成三溴化铋使其挥发。 铟的干扰:铟萃取的最适pH为5.2~6.3(CCl4)和8.3~9.6(CHCl3),因此可采用pH值大 于lO,以CCl4为溶剂,当铟存在100倍过量时,可进行铅的萃取。 铊的干扰严重:可调节pH至6.0~6.4,用双硫腙萃取铅,此时铊不被萃取。或将萃取物与 0.5%氰化钾溶液振摇,此时铊一双硫腙盐解离而铅一双硫腙盐则不解离。 大量的铊亦可以在2~4mol/L HCl中,用乙醚萃取除去。 Fe3+可由于氰化物的存在而形成高铁氰化物,使双硫腙氧化而干扰,如加盐酸羟胺、肼、亚硫酸钠或其他还原剂,使变成亚铁氰化物则不干扰。铜亦可能有类似的干扰。 含大量Fe3+时,可在1.2mol/L HCl介质中,加过量铜铁试剂,用CHCl3萃取之,此时铅不被沉淀亦不被萃取,而Cu3+、Bi3+、Tl3+和Sn2+亦被除去,过量铜铁试剂用CHCl3萃取除去。 Sn2+可引起干扰,而Sn4+则不干扰,含量大时,可形成溴化锡挥发除去。 在碱性介质中可产生沉淀的金属(氢氧化物),以柠檬酸铵或酒石酸盐络合掩蔽之。 另外还有一些金属可妨碍铅的萃取,特别如钛(5mg或以上)可阻碍铅从pH7~11的氨性柠檬酸盐溶液中的完全萃取。含高浓度铝时,亦有类似情况。遇此场合,可先用硫化物沉淀分离,必要时加少量铜作为共沉淀剂。 阴离子的影响,硫化物是较重要的,试剂级的氰化钾中常发现含有硫化物。其他阴离子如柠檬酸盐、酒石酸盐。存在高浓度时,因络合作用而阻碍铅的萃取。高浓度的磷酸盐、胶体状的硅酸亦可使铅的萃取发生困难,必要时以较浓的双硫腙溶液反复萃取之。 铅一双硫腙络合物可被稀酸溶液所解离这一性质,有助于干扰物质的分离,即第一次用较浓的双硫腙溶液萃取分离之后,用稀酸液振摇,使铅返回水相,然后再调节至最适pH,第二次用双硫腙溶液从水相中萃取铅 。水中铅测定方法详解(2)(《生活饮用水检验规范》部分)在地壳中,铅是一种相对少的元素,以低浓度广泛存在于未受污染的沉积岩与土壤中。未受污染的海水约含0.03μg/L,而接近表层与海岸则浓度可增高10倍。淡水的含量较高,约为1~50μg/L。由于使用含铅汽油和冶炼厂的烟尘使大气中含有铅,从而使水中浓度增高。工业生产,采矿或冶炼厂废水均可污染水体。使用含铅高的管道或含铅化合物的塑料管作自来水管,可使饮水中铅含量增高。铅可在人体内蓄积,主要毒性为引起贫血、神经机能失调和肾损伤。27.1水中铅的测定方法有原子吸收分光光度法、分光光度法、示波极谱法、电位溶出法等。与其它元素相比,铅测定方法的发展较慢。虽也有一些新方法的报导,但有实用价值的不多。孙勤枢等报导的氧化电位溶出法是一种较好的方法,可以同时测定水中铜、铅、铁、锌、镉。其中铅的线性范围为0.1~3400μg/L,用来测定水中铅与原子吸收法基本一致,但精密度优于原子吸收法。在报导的分光光度法中,比较好的有碘化钾-丁基罗丹明B-阿拉伯胶-曲拉通x-100体系分光光度法。该法灵敏度较高,摩尔吸光系数为6.2×105L·mol-1·cm-1,可以满足要求。水中常见的离子无干扰,少见的离子如Ag+、Cu2+、Cd2+、Hg2+等,可用巯基棉预处理消除。它测定湖水中铅的结果与原子吸收法一致。 27.1原子吸收法测铅,灵敏度及精密度均不太理想。有文献报道同时应用高性能空心阴极灯,超声波雾化器和缝管式原子捕集器可使灵敏度大为提高,精密度明显改善。详细情况请参考第二篇第五节。 27.2无火焰原子吸收法测定铅时,经常使用次灵敏线283.3nmo虽然用灵敏线217.0nm测定铅的灵敏度比用次灵敏线283.3nm高约2倍,但在217.0nm处的能量很难与氘灯能量平衡。若用塞曼效应校正背景时可采用217.0nm分析线。 27.2参见25镉的注解25.2。 27.2.1有文献指出:用HGA-72型石墨炉测定铅时发现,K、Na、Al的氯化物不干扰铅的测定,ca、co、Fe、Mn的氯化物对铅的测定有干扰。浓度为1g/L的NiCl2能将铅的信号全部抑制。除了浓度为lg/L的NaNO3干扰铅的信号约为20%外,其余的硝酸盐对铅的测定没有影响。若使用经LaCl3处理过的石墨管测定,浓度高达500mg/L的氯化物也不干扰铅的测定。 27.2.2 当铅浓度为10μg/L时,10mg/L的K、Cd、Zn、Be、Fe、Mn无干扰,100mg/L的Na、Ca 无干扰,S042-、P043-有干扰,加入7.5g/L的La可降低干扰。 27.2.3.4可作为铅的基体改进剂的无机试剂还有:NH4NO3,(NH4)2HPO4,CaCl2,Pt和Pd等。有机试剂有:草酸、抗坏血酸和硫脲等。 27.3.2双硫腙分光光度法是一种比较古老的方法,但至今仍有一定的实用价值。双硫腙在弱碱性溶液中与铅形成红色络合物。 27.3.3.4有人作过试验,使用的双硫腙透光率为60%比70%的标准曲线线性关系好,试验结果见表27.1。 表27.1 双硫腙透光率对线性的影响 27.3.5.2.2水中钙、镁离子在碱性溶液中可形成沉淀析出,影响对铅的萃取,加入柠檬酸铵可防止析出沉淀,因柠檬酸铵可与钙、镁等离子形成稳定的络合物。 27.3.5.2.2铜、锌等金属离子也与双硫腙反应生成红色络合物,对铅的测定有干扰。加入 氰化钾可与这些离子形成稳定的络阴离子如 [Cu(CN)4]3-和[Zn(CN)4]2- ,故可消除它们的干扰。

1923 年开始在汽油中加入铅用作抗爆剂以后, 更加速了全球性铅的污染。因此可以说如今世界上已难找到土壤铅含量不受人类活动影响的一片“净土”。Kabata - Pendias 和Rendias[5 ]报道在靠近公路的某一块土壤铅含量高达7000μg/ g。潘如圭等[6 ]研究了汽车尾气中铅对公路两侧蔬菜的污染情况。试验结果表明: 在公路两侧200 m 范围内生长的蔬菜均受到汽车尾气中铅的污染。管建国[7 ]等研究了在金属冶炼厂周围和公路两侧200 m 范围内蔬菜的受污染情况, 发现所调查的普通叶菜的铅含量均超过国家食品卫生标准。彭珊珊等[8 ]对我国一些常用茶中Pb 进行了测定, 结果表明茶叶中的铅超过一般标准, 应引起重视。土壤中的铅大部分形成PbS , 少部分形成PbCO3 、PbSO4 和PbCrO4 等无机化合物, 或与有机物螯合。铅的无机化合物大多难以溶解, 而且因受到下列因素影响, 铅在土壤中的迁移能力也很弱: (1) 土壤有机质对铅的络合作用。土壤有机质的—SH , —NH2 基因能与铅离子形成稳定的络合物。(2) 土壤粘土矿物对铅的吸附作用。粘土矿物的阳离子交换位点可对铅离子进行交换性吸附。另外, 铅离子进入水合氧化物的配位壳, 直接通过共价键或配位键结合于固体表面。由于铅在土壤中迁移能力弱, 而且溶解度低, 因而人为因素造成的铅污染大多停留在土壤表层, 随土壤深度的增加其含量急剧降低, 20 cm 以下趋于自然水平。进入土壤中的铅有可能被植物吸收, 或溶解到地表水中, 通过食物链和饮用水进入动物和人体, 进而影响人类健康。近年来的研究发现, 铅对人类健康的影响具有不可逆性和远期效应[9 ] 。Page[2 ]等研究表明, 人体血铅与土壤铅含量存在一定关系:0112 (Pb - B , μg/ 100mg) = ln (Pb - S ,μg/ g) - 4185这一关系式仅说明了某一地区的特殊情况, 并无广泛适用价值, 但它足以表明土壤铅含量与人体健康有直接关系。2 铅污染土壤的修复技术由于铅对人体具有很强的毒性, 近年来对铅污染土壤的修复引起了人们的普遍关注。铅污染土壤的修复技术可以分为两大类: 物理化学修复技术和生物修复技术。物理化学修复技术又可分为隔离包埋技术、固化稳定技术、Pyrometallurgical Separation 、化学稳定技术和电动修复技术等。生物修复技术又可分为微生物修复技术和植物修复技术等。211 隔离包埋技术(isolation and containment)该法采用物理方法将铅污染土壤与其周围环境隔离开来, 减少铅对周围环境的污染或增加铅的土壤环境容量。具体措施为: 以钢铁、水泥、皂土或灰浆等材料, 在污染土壤四周修建隔离墙, 并防止污染地区的地下水流到周围地区。其中以水泥最为便宜, 应用也最为普遍。为减少地表水的下渗, 还可以在污染土壤上覆盖一层合成膜, 或在污染土壤下面铺一层水泥和石块混合层。212 固化稳定技术(solidification and stabilization)固化稳定技术包括两个方面: 采用化学方法降低铅在土壤中的可溶性和可提取性, 同时采用物理方法将污染土壤包埋在一个坚固基质中。Wheeler 报道[10 ]将水泥、炉渣和石灰混合物加入污染土壤中, 搅拌均匀凝固之后, 形成一个大石块, 将污染土壤包埋在其中。也有人采用电导产热原理给土壤加热升温, 当土壤冷却后, 土壤凝固成玻璃样块状结构, 称之为玻璃化。该方法包括三个具体步骤: (1) 在土壤两端插上电极电流通过土壤形成环路, 土壤温度上升并熔化。(2) 在自然冷却过程中, 土壤凝固形成玻璃样土块。(3) 在土块上覆盖一层干净土壤。这一技术已经实际应用于铅污染土壤的修复。·13 · 广东微量元素科学 2001 年 GUANGDONG WEILIANG YUANSU KEXUE 第8 卷第9 期 © 1995-2006 Tsinghua Tongfang Optical Disc Co., Ltd. All rights Pyrometallurgical Separation在一定温度下, 金属就会熔解或升华为气态。Pyrometallurgical separation 技术利用这一原理,将铅等重金属从污染土壤中“蒸发”出来以达到净化土壤的目的。“蒸发”出来的金属可以再回收或固定, 同时富含金属的剩余炉渣也可用于进一步提炼[11 ] 。铅污染土壤在高温熔化之前要进行预处理, 以促进铅的熔解。这一技术主要应用于具有较高回收效率的严重污染土壤(5 %~20 %) 。214 化学稳定技术(chemical stabilization)化学稳定技术就是应用化学反应将污染土壤中的重金属氧化或还原, 从而达到降低土壤中重金属的活性[11 ] 。对于铅污染土壤, 可用还原剂(二氧化硫、亚硫酸盐或硫酸亚铁) 将铅离子还原, 以减少土壤中铅的可提取量。这一技术也可作为其他修复技术(如固化稳定技术) 的前处理步骤。但必须注意的是, 还原剂的施用可能会造成二次污染。初步研究表明, 施用石灰调节土壤PH7 可降低铅在土壤中的溶解度, 减少植物对铅的吸收[13 ] 。研究表明, 施用羟基磷灰石[14 ] 、水合氧化锰[15 ] 、磷灰岩[16 ,17 ]也可促进铅的沉淀, 减少土壤中的可溶态和可提取态铅。Vidac 和Pohland[18 ]已将这一技术运用于地下水的修复。215 电动修复技术(electrokinetice technology)在污染土壤两端插上电极, 接通电源后, 土壤中的带电粒子向电性相反的电极移动, 最终积聚或沉淀在电极上, 以达到清除污染土壤中重金属的目的。在欧洲, 这一技术不仅应用于铅污染土壤[19 ] , 同时也应用于铜、锌、铬、镍和镉等污染土壤的修复。216 微生物修复技术(microremediation)微生物修复主要是借助微生物的生化反应来清除或稳定环境中的有害物质。根据原理不同可分为生物还原沉淀、生物甲基化和生物吸附三种。生物还原沉淀是应用硫酸还原菌(SRB) 将硫酸根还原为HS - 再与铅生成不溶性的Pb2S。生物甲基化是利用微生物将土壤中的重金属甲基化,甲基化的金属更容易蒸发, 可做为Pyrometallurgical Separation 的预处理。生物吸附是利用细菌细胞和藻类来吸附地下水或其他污染水体中的有害物质。Leusch 等[20 ]报道一种海藻( S . f luitans )对铅的最大吸附量可达到369 mg/ g。Rahmani 等[21 ]研究了浮萍(Lemna minor) 对污染水体中铅的清除能力。结果表明浮萍在亚致死水平下也能有效清除水体中的铅。217 植物提取修复技术(phytoextration)植物提取修复技术主要是利用超积累植物, 将土壤中各种过量元素或化合物大量转移到植株体内特别是地上部分, 从而修复污染土壤[22 ] 。超积累植物相当于一个太阳能驱动泵将土壤中的过量元素不断泵到植株体内[23 ] 。植物修复技术可分为两种, Salt 等[24 ]把利用超积累植物来吸收土壤重金属的方法称之为持续植物提取(continuous phytoextraction) ; 而把利用螯合剂来促进植物吸收土壤重金属的方法称之为诱导植物提取(inducced phytoextraction) 。21711 持续植物提取(continuous phytoextraction)运用持续植物提取技术来修复铅污染土壤的关键是植物超积累铅的能力。一般认为, 只有铅积累量达到1000μg/ g (干重) 才能称为铅超积累植物[25 ] 。已见报道的铅超积累植物有Brassica .nigua [26 ] , Brassica . pekinensis [27 ] , Brassica . juncea [27 ]和T. rotungifolium [28 ] 。其中T. rotungi2folium 的铅积累量最大, 可达到8200μg/ g (干重) [28 ] 。目前对于植物吸收、运输和积累铅以及耐铅胁迫的机制研究甚少。Liu 等[29 ]研究发现印度芥菜( Brassica juncea) 可在根部积累大量的铅但只有极少部分运输到地上部。原因一方面可能是由于根部细胞内存在高浓度磷酸盐或碳酸盐,在细胞内近中性pH 条件下, 铅主要以磷酸盐或碳酸盐形式沉淀在根细胞壁或细胞内; 另一方面·14 · 广东微量元素科学 2001 年 GUANGDONG WEILIANG YUANSU KEXUE 第8 卷第9 期 © 1995-2006 Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.铅从根部向中柱迁移的过程还会受到内皮层凯氏带的阻拦。Wozny 等[30 ]认为铅进入中柱后随蒸腾流被动运输到地上部分。运输过程中铅可能会与中柱内的阳离子交换位点结合, 从而被固定在茎部中柱内。研究表明, 铅可与多种小分子有机物螯合[31~33 ] 。推测铅也有可能与各种小分子有机酸、植物螯合肽结合, 减少与阳离子交换位点结合的机会, 从而增加进入了叶部的数量。作者在对浙江西部的某一铅锌矿土壤进行调查时, 发现一种可高浓度积累铅和锌的植物, 据初步调查结果, 其地上部分锌和铅的最高积累量分别达到了5000μg/ g 和1182μg/ g。对于这种植物超积累锌和铅的生理生化机制, 正在进一步的研究中。21712 诱导植物提取(inducced phytoextraction)对于在土壤中极难移动的铅元素, 施用螯合剂可促进植物对其的吸收。施用螯合剂诱导植物超富集作用被称为螯合诱导修复技术。Romheld 和Marschner[34 ]认为螯合物与金属结合后, 金属螯合物可以从内皮层裂口处进入根内, 然后被迅速地转移到茎叶。在用14C - EDTA - Pb 作标记的试验中, Blaylock 等[35 ]发现, 在含这种标记物的介质中生长的植物地上部能快速积累铅, 表明铅与螯合物结合有利于植物对铅的吸收。Salt 等[36 ]认为金属与螯合物结合后阻止了金属的沉淀和吸附, 从而提高了金属的可提取性。螯合诱导修复技术既可选用一般植物也可选用超积累植物。在土壤铅浓度为2500μg/ g 的污染土壤上种植玉米和豌豆, 加入EDTA 后, 植物地上部铅的浓度从500μg/ g 提高到10000μg/ g ; 而且EDTA 还能极大的提高铅从根系向地上部的运输能力,每千克土中加入110 g EDTA , 24 h 后, 玉米木质部中铅的浓度是对照的100 倍, 从根系到地上部的运输转化量是对照的120 倍[37 ] 。不同螯合剂促进植物对铅吸收的效应与螯合剂促进铅从土壤解吸的效应相一致: EDTA > HEDTA >DTPA > EGTA > EDDHA。螯合诱导技术对超积累植物吸收金属的强化效应也很明显。印度芥菜是一种可富集多种金属的植物。Blaylock 等[35 ]研究了柠檬酸、苹果酸、乙酸、EDTA、EGTA、CDTA 对印度芥菜( Brassica juncea) 吸收Cd 和Pb 的效应,发现土壤酸化与施加螯合物相结合可显著增加铅的吸收效率。Vassil 等[38 ]报道用铅和EDTA 共同处理印度芥菜, 其地上部分含量高达55 mmol/ kg (干重) , 相当于培养液铅浓度的75 倍。对印度芥菜茎部提取液的直接测定证明, 茎部的大部分铅是与EDTA 结合的形式运输的。由于螯合剂的价格一般较贵, Blaylock 等[35 ]指出螯合剂( EDTA 和乙酸) 将使每吨铅污染土壤修复成本增加715 美元。此外螯合剂在增加土壤中重金属生物有效性的同时, 也增加了重金属离子的移动性。因而对于螯合诱导修复技术的环境风险应加以系统评价。由于已发现的铅超积累植物种类极少, 而且植物生长慢、生物量小, 因而螯合诱导修复技术比持续提取技术更引人注目。但不论哪种植物修复技术都具有其它物理化学方法所没有的优点:(1) 成本低。据估计, 如果某种植物的茎部铅积累量达到1 % , 且每年产量40 t/ hm2 , 那么通过10 年种植将土壤铅含量从114 %下降为014 %所需费用是245000 美元, 而用物理化学修复技术则需要1600000 美元。(2) 植物利用太阳能, 不破坏生态平衡, 同时还能美化环境, 易为公众所接受。(3) 将富铅植物残体用于植物炼矿, 可产生经济效益。相比之下, 虽然植物修复技术所需时间较长, 而且植物的生长要受到环境的影响, 但这些缺点都不成为重要问题。可以预言, 植物修复将成为一种应用广泛、环境良好和经济有效的修复铅污染土壤的方法。参考文献:[3 ] 陈怀满等. 土壤- 植物系统中的重金属污染[M] . 北京: 科学出版社, 1996.[4 ] Nriagu J O , Acyna J M. Quantitative assessment of worldwide contamination of air , water and soil by trace metal[J ] . Nature , 1988 , 333 : 134~139.[5 ] Kabata - Rendias A , Rendias H. Trace elements in the soil and plant [M] . Florida CRC Press , 1994.[6 ] 潘如圭, 宋佩扬. 汽车尾气中铅对蔬菜污染的研究[J ] . 江苏环境科技, 1998 , 11 (3) : 9~11 , 28.[7 ] 管建国, 潘如圭. 蔬菜铅污染状况及其防治对策[J ] . 南京农专学报, 1998 , 14 (3) : 22~27.[8 ] 彭珊珊, 石燕. 茶叶中的铅[J ] . 广东微量元素科学, 1998 , 5 (6) : 32~33.[9 ] 沙拉麦提, 沙达提. 儿童的铅接触及危害[J ] . 新疆环境保护, 1996 , 18 (1) : 36~38.[10 ] Wheeler P. Leach repellent [J ] Ground Engng , 1995 , 28 : 20~22.[11 ] USEPA. Engineering Buttetin : Technology Alternatives for the Remediation of Soils Contaminated with Arsenic ,Cadmium , Mercury and Lead [M] . U S Envionmental Protection Agency. Office of Emergency and RemedialResponse , Cincinnati . OH. 1996.[12 ] Evando C R , Dzombak D A. Remediation of metals - comtaminated soils and groundwater . Technology Evalua2tion Report , TE97 - 01 [ R ] . Pittsburgh P A. Ground - water Remediation Technologies Analysis Center ,1997.[13 ] Hooda P S , Alloway B J . The effect of liming on heavy metal concentrations in wheat , carrots and spinach grownon previously sludge - applied soils [J ] . J Agric Sci , 1996 , 127 : 289~294.[14 ] Ma L Q. Factors influencing the effctiveness and stability of aqueous lead immobolization by hydroxyapatite [J ] .J Environ Gual , 1996 , 25 (6) : 1420~1429

毕业论文紫含量测定

先说一下紫外测定样品含量的几种方法:标准曲线法、对照法、吸光系数法吸光系数法是在知道样品摩尔吸光系数或者百分吸光系数的情况下使用,而这两数是非测量值,是要通过通过查物质手册的,查后根据A=ECL,C=A/EL,EL已知,可根据测得A,计算C,此方法在你给定的条件下是做不了的,此法单色光不纯时还存在较大误差,一般不采用;你给定的条件应该采用标注曲线法,配定一系列不同浓度的标准品(根据文献或者预实验结果,文献会告诉你所测物质一般配什么浓度,如果没查到,可先简单配几个浓度,看哪几个浓度条件下,吸光度在之间,最理想值是),根据一系列浓度和吸光度即可画出一条直线,A=K*C,K可求,这个K求出,在将你的样品测定,将A 放到这个公式,求C即可;对照法是在相同条件下配对照品、样品,用同机器,同物质,及同波长,A1/A2=C1/C2,测两个A,已知标准的A,就可以求另A了。当然这个过程中条件选择可查文献或自己摸索,空白就是起到,调零比较的作用。

紫外测定含量计算公式是A=-log(I/I)=-lgT=kLc,A为吸收度,I为入射的单色光强度,I为透射的单色光强度,T为物质的透射比,k为吸收系数,L为被分析物质的光程,c为物质的浓度。分光光度法是光谱法的重要组成部分,是通过测定被测物质在特定波长处或一定波长范围内的吸光度或发光强度,对该物质进行定性和定量分析的方法。常用的技术包括紫外-可见分光光度法、红外分光光度法、荧光分光光度法和原子吸收分光光度法等。

1 应用范围本法适用于化妆品中常用59种防腐剂的鉴别和半守时检测。可检测的浓度相当于化妆品卫生标准允许使用的浓度(1)。2 原理化妆品中防腐剂以萃取、高效薄层板-展开体系分离后,经显色或在紫外光激发下显现样斑。根据未知样斑的Rf 值及显色反应与已知标准的Rf 值及显色特微比较,可以识别可能存在的防腐剂,然后将此品种的防腐剂标准溶液与样品液在同一薄层板上展开,以进一步确认。3 试剂 标准溶液:防腐剂标准列于表2-3-24。表2-3-24 防腐剂的名称、分子式及最大允许用量

相关百科

热门百科

首页
发表服务