数学思维方法是对数学内容的思维运动形式的认识。学习数学思维,就是学习数学思维运动形式。培养数学思维方式的重点是养成良好的思维习惯。下面是我给大家推荐的有关数学思维的教育论文,希望大家喜欢!
《对数学思维与教育的分析》
摘要:首先探讨了一般意义上的数学思维和广义数学思维的内涵,将数学思维划分为掌握数学体系和运用数学思维的方式两部分,并详细分析了两部分的内涵以及教学中常见的问题,最后针对每一部分提出了系统化的合理建议。
关键词:数学思维;数学结构;创造能力;教育
1数学思维的组成简单介绍
广义的数学思维主应该有两方面组成:
关于数学体系的了解,暨数学思维的内容
这是关于数学本质和内容的认识,简单的说就是数学“是什么”。对于数学总体结构的理解是数学思维的基础,也是一切技巧的基础。这里说的不单单是对数学概念和定理的记忆和简单运用,而是对数学原理的深刻理解。
数学思维的方式
数学的思维方式,就是我们解决数学问题的思考的习惯和能力。也就是“怎么做”。解绝问题的方式有很多种,最基本的就是运用前人总结出来的解决问题的方式。然而很多时候,已有的方法是不能完全奏效的。这时候我们就需要运用我们的智慧去分析数学问题的条件,结论和特点。从而对题目进行分解转化,最终解决这个问题。在这个过程中体现出来的思维技巧和思维习惯就是数学思维方式,这也是我们所说的狭义上的“数学思维”。
2数学体系的内涵、问题、教学重点
数学体系的内涵和特点
(1)了解的必要性。
这里所说的“了解数学体系”是指对数学相关内容的整体把握,这是学习数学的基本要求也是运用数学知识的基础。
数学同所有的科学一样,是随着人类的文明的发展一步步发展而来的,本身就有着清晰的发展脉络:由简单的数字运算发展到代数运算,由最初的自然数到复数,由初等的数学方法到分析,数学在不断拓展研究的范围,丰富研究的手段。这要求我们在学习和教学的过程中不能将数学的每一部分分割开来,要尊重数学的整体性,尊重数学本身的传承关系。
和其他学科相比,数学更接近纯理论性的学科:数学的每一个分支往往是从几个基本的假设或者公理出发,通过归纳、推理、演绎、建立起自身的理论体系。数学这门学科十分强调逻辑性和严密性,结构十分的清晰严密。要想使这样的一个系统称为自己手中有力的武器,必须对系统本身有整体上的了解。
(2)了解的要求。
如果学生能够很好的回答以下四个问题,就可以说是达到了教学的目标。
①包含了什么?
学生必须了解自己所学数学的最大范围,也就是自己所掌握的所有数学工具的范围。
②每部分的结构是什么?
数学由几个相对独立的部分组成,每一部分都有自身的特点,相对独立而又自成体系。每一个体系之内的知识是有前后相继的关系的,由简单到复杂,由小的方面扩展到更大的方面,引入新的方法和思想。学生应该熟练的掌握每一部分知识的结构。
③各部分之间的关系是什么?
数学的各个部分自成体系,但又是相互紧密联系的。要真正的了解数学就要十分重视数学各个分支之间的关系,不能将数学割裂成几个孤立的部分
④数学发展的历史是什么?
数学的历史是数学思想发展的真实体现,了解数学发展的历史能够让学生更好的认识数学思维的本质。
存在的问题
部分学生对于数学整体结构的了解主要存在以下两种问题:
孤立。部分学生在学习数学的过程中,割裂知识点之间的关系,忽略知识点之间的前后发展继承的关系,不注重数学各个分支之间的交叉运用,孤立的记忆每个知识点,对数学没有总体观。由此产生的后果:知识点极容易遗忘,知识结构混乱。学习新的数学知识较为困难,方法使用僵化不灵活。
肤浅。部分学生在学习数学的过程中,对一些数学概念或数学原理的发生、发展过程没有深刻的理解,仅仅停留在表面的概括水平上,不能脱离具体表象而形成抽象的概念,自然也无法摆脱局部事实的片面性而把握事物的本质。由此而产生的后果:学生在分析和解决数学问题时,往往只顺着事物的发展过程去思考问题,注重由因到果的思维习惯,不注重变换思维的方式,缺乏多方面解决问题的能力。
数学体系教学重点
(1)教学过程要认真“描点”,作好“连线”的准备。描点,即强化知识点,具体到每课时、每章节、每单元。在强化知识点的内容、重点、难点的同时,要有意识地把该内容向前后延伸,强调该内容是哪些知识的延续和,同时又是以后的哪些知识的准备和基础。
(2)在知识的复习和应用时要尽力“连线”,使“点”成为“线”的元素。在最初的教学中,学生学习到的知识点是零散的、不连惯的。为了减轻学生的记忆负担,教学时要力求把知识归类、连线,使知识类别化、系统化,让学生了解一个知识点就可以掌握与之相关的内容。
(3)教学中要引导学生把“线”结成“网”,以达到“以点带面”的记忆效果。数学知识的主线有若干条,副线也有若干条,所有的线横纵交错。每个知识点在前后向同类主线无限延伸的同时,也在向副线延伸或辐射,甚至在向其他科目、其他领域延伸,使众多的知识点、知识线,密密麻麻地形成一张无边无际的大网。
3数学思维方式的内涵、问题、教学重点
数学思维方式的意义和内涵
思维训练是教学思维论在教学实践中的具体体现。数学思维论是思维科学的一个重要分支,它是构成数学课程论、学习论的灵魂。数学教材是以逻辑思维为主线,贯穿各个知识点。教学中培养学生能力的基础是发展学生思维,发展思维不可能脱离教学内容独立进行。因此,我们可以有理由认为,在数学教学中实施思维训练是教学思维论在教学实践中的体现。
数学思维方式包含两个方面:
(1)对于数学基本技巧的掌握比如换元,数形结合,极限法,拆分结合等等。很多新问题可以通过基本技巧的转化或者组合来解答。这些基本的技巧是前人在长期实践中对数学思维方式的经验的总结和归纳,他们不但是解决很多数学问题的有力工具,同时也很好的反应了数学的基本思维原理。
(2)运用数学思维的习惯。在生活中每当我们遇到新的问题,我们都需要运用我们的智慧去分析问题,然后去选择一个最好的方法解决问题。这就是在运用我们的思维能力。良好的思维习惯能够帮助我们更快更好的解决问题。对于数学问题也不例外。解决数学问题时我们需要养成分析问题、转化问题、将未知转化为已知等良好数学思维习惯。同时能够熟练运用方程、数形结合、分类讨论等思想解决问题。这是数学教学的重要目标之一,也体现了数学对于思维的锻炼。关于数学思维习惯,G•波利亚在他的经典作品《怎样解题》中有很好的阐释。
存在的问题
分析中学生的数学思维品质,部分学生存在着一些明显的缺陷,具体表现为以下几点。
僵化。指学生思维不够灵活,缺乏联想,只停留在课上的内容和解题思路,只会模仿、套用模式解题,一旦题型有变化,就无从下手,不能做到“举一反三”。
迟钝。指学生在解决数学问题时,一方面不大注意挖掘所研究问题中的隐含条件,抓不住问题中的确定条件,影响问题的解决。
消极。指学生习惯于依赖教师的思路,往往在已做过的题型中找思路,并且很难放弃一些陈旧的解题经验,思维僵化,不能根据新问题的特点作出灵活的反应。
造成这样的思维特点与学生过去所受的思维训练有很大关系:有些教师在教学过程中过分强调程式化和模式化,教学中给学生归纳了各种类型,并要求学生按部就班地解题,不许越雷池一步,或要求学生解答大量重复性练习题,减少了学生自己思考和探索的机会,导致学生只会模仿、套用模式解题。灌输式的教学使学生的思维缺乏应变能力。心理学家认为,培养学生的数学思维品质是发展数学能力的突破口。思维品质包括思维的深刻性、敏捷性、灵活性、批判性和创造性,它们反映了思维不同方面的特征,在教学过程中应该有不同的培养手段。
数学思维方式教学重点
培养数学思维方式的重点是养成良好的思维习惯。我们可将数学思维方式训练的课堂教学基本模式概括为:提出问题——展示新课——思维扩展——思维训练——思维测评。在这一模式中,教师是问题暴露、思维点拨、启迪和诱导者,学生是思维的主体,是知识的探索、发现和获取者。
(1)提出问题,创设情境问题“是数学的心脏”,是思维的起点。有问题才会有思考,思维是从问题开始的。巧妙恰当地提出问题,创设良好的思维情境,能够迅速集中学生注意力,激发学生的兴趣和求知欲。这是上好数学思维训练课的首要环节。
(2)研究问题,展示新课的理性认识过程是由表象的具体到思维的抽象,再由思维的抽象上升到思维的具体的过程。研究数学问题的过程首先是由具体到抽象的过程,在此环节中,将数学问题转化加工为例题形式,使被抽象出来的数学问题再回到实践中去验证,这一阶段是学生的思维定向阶段,是运用思维探索规律学会抽象的过程。
(3)解决问题,思维扩展这一环节是知识的形成阶段,属抽象思维的高级阶段。数学教学过程实质上是由一连串的转化过程所构成的。学生接受新知识要借助于旧知识,而旧知识的思维形式往往会成为新知识思维形式的障碍(如思维定势),因此,教师首先要抓好教学过程中数学思想方法的渗透,在数学知识的质变(往往是重点)过程中,帮助学生实现思维活动的转折,排除思维活动的障碍(往往是难点),渡过思维操作的“关卡”,以实现思维发展。
(4)发展问题,思维训练教学中,注意结合学生的心理特点和认识水平从不同角度、不同层次、不同侧面有目的、有针对性地不断设计组编一些探索型、开放型、判断改错型、归纳与综合型等题目,为学生提供多种类型的思维训练素材,这是发展学生的思维能力所不可缺少的。这要求教师注重挖掘课本典型题例的潜在功能,充分发挥它的导向、典型、发展和教育作用,反复渗透与运用数学思维方法,把数学知识溶入活的思维训练中去,并在不断的“问题获解”过程中深化、发展学生的思维。
(5)总结问题,思维测评是对学生思维品质的检测与评定形式。测评方法可小型多样,因课堂内容及学生实际情况而定,如选编一些口答、抢答、限定时间解答等题型对学生进行思维品质单项测评或多项综合测评。学生可先自我评价,体验成功的乐趣。
4结语
现代数学论认为,数学教学是数学思维活动的教学。思维活动的强弱,决定一个人的思维品质。在数学课堂教学中,探求问题的思考、推理论证的过程等一系列数学活动都以逻辑思维为主线。这是数学教学中实施思维训练的理论依据之一。
数学教学的核心就是促进学生思维的发展。教学中,教师要千方百计地通过学生学习数学知识,全面揭示数学思维过程,启迪和发展学生思维,将知识发生、发展过程与学生学习知识的心理活动统一起来。课堂教学中充分有效地进行思维训练,是数学教学的核心,它不仅符合素质教育的要求,也符合知识的形成与发展以及人的认知过程,体现了数学教育的实质性价值。
参考文献
[1](美)R.科朗H.罗宾.数学是什么[M].北京:科学出版社,1985.
[2](美)G•波利亚.怎样解题[M].上海:上海科技教育出版社,2007.
[3]朱智贤,林崇德.思维发展心理[M].北京:北京师范大学出版社,1990.
[4]郭思乐,喻伟.数学思维教育论[M].上海:上海教育出版社,1997.
[5]席振伟.数学的思维方式[M].南京:江苏教育出版社,1995.
点击下页还有更多>>>有关数学思维的教育论文
浅谈小学数学中学生数学思维能力的培养研究论文
在平平淡淡的日常中,大家都跟论文打过交道吧,通过论文写作可以培养我们的科学研究能力。那要怎么写好论文呢?下面是我收集整理的浅谈小学数学中学生数学思维能力的培养研究论文,仅供参考,大家一起来看看吧。
摘要:
小学时期学生的思维正处于重要的过渡阶段,对外界的认知能力日渐增强,思维模式也在逐步完善。加强学生数学思维能力的培养,有助于学生养成良好的学习习惯,为以后的学习打下稳固的根基。下文主要就如何培养小学数学中学生数学思维能力进行探讨,提出激发学生兴趣的方法,以达到提高数学思维能力的教学目标。
关键词:
小学教学;数学思维能力;培养
引言:
所谓的数学思维能力可以分成观察力、想象力和逻辑力,掌握这三种能力对学习其他学科而言就是打下了良好的基础,而且数学思维的逻辑性同样适用于生活中的方方面面。小学生的数学思维不仅受先天因素的影响,同时也会因外界环境的影响发生改变。要做好学生的数学思维培养工作,就要选择正确的培养方法。
一、数学思维能力
1.数学思维的含义
数学思维是指思考问题和解决问题的思维活动模式。数学思维有助于学生在面对数学问题时,将数字形象化,加深理解,从而形成一定的数学逻辑推理思维。而数学思维能力是指将数学逻辑思维和丰富的想象空间相结合的同时可以灵活运用,以达到在实际生活中,同样能对一切问题进行归纳与推理的目的。
2.数学思维的作用
在实际教学中,学生的学习能力良莠不齐。有的学生先天理解能力较强,能够较快接收新知识的同时还能做到学以致用;而有的学生理解能力就稍微逊色,理解问题较为困难,学习进度缓慢,因此很容易丧失对学习的兴趣。培养学生的数学思维能力就能很好的帮助学生解决这一学习烦恼,学生形成了数学思维模式后就能在自己的理解下掌握学习方法、加快学习进度,提高对问题的判断力的同时激发求知的上进心。
二、加强对小学数学中学生数学思维能力培养的具体方法
1.灵活运用教学方法
教师要先了解学生对于数学科目的学习心理,以此为基础,选择学生最能接受的教学方法。小学时期,学生对学习的兴趣最为浓厚,教师在教学过程中不能一味的只注重讲解书面知识,学生若是在被动的机械记忆模式下学习,就不会养成良好的数学思维模式,要学会用数形结合的方法生动讲解,通过借助形的某些属性来阐明数的精确性。例如:在学习图形体积计算时,老师不能只在黑板上画出立体图形标注长、宽、高,黑板是一个典型的二维物体,画出的立体图形趋于抽象化,对于小学生还未成型的思维模式而言,看不到的另外三个面就变的难以理解,因此,教师可举例说明,我们上课的教室本身就是一个标准的立体长方形,哪边是长宽高的位置就变得一目了然,这种把抽象化的概念转化成实物化的事物的教学方法,更易于学生对数学深入理解,在提高学习效果的同时也提高了学生学习的兴趣,从而培养学生的数学思维能力。
2.循序渐进的诱导
数学是一门逻辑性较强的科目,对于刚刚接触此科目的小学生来说养成逻辑性的思维非常重要。数学问题与答案之间有很强的关联性,要想解答问题就要先分析清楚问题中已知条件的因果关系,在此分析过程中,逻辑性的存在就显得十分重要,分清主次因果才能理解其中包含的数量关系。培养学生的`逻辑性是非常漫长的过程,教师无法直接教授逻辑能力,只能在教学中慢慢诱导。先为学生讲解最简单的知识,在学生能够灵活运用后再逐渐提高知识难度,不求快,要求稳;由此激发出学生对数学知识的渴求心理,提高了学生的学习兴趣后教师再加以梳理,循循善诱,故而,学生的数学逻辑思维能力也逐渐提升。
3.制定明确的新课标
制定好每堂课的新课标是一种极为科学的教学方案,教师要按照新课标的要求预先备好课,确保要讲解的知识内容在新课标范围之内,促使学生的数学思维培养程度与新课标中要求的教学模式一致,严禁出现一味追求进度却不注重质量的教学现象发生。在进行教学前,要了解学生的基本学习情况,做到“因材施教”,以防在讲解新知识的时候学生发生掉队,从而失去对学习的兴趣。
4.当堂设问锻炼思维
小学生是一个不可控的群体,由于其思维的不完善性,自控能力相对较差。有些学生在上课时间很容易被外界影响,也就发生了我们常说的“溜号”现象,等到学生的注意力转移回课堂时却发现讲解的内容发生断点,内容理解不上去;为减少此类问题的发生,当堂设问不失为是一个好方法。
小学生群体的自控性虽有欠缺,但其强烈的上进心却不容忽视。教师可在本堂新知识讲解完毕后,提出几个在新知识范围内的问题,当作课堂提问,回答正确的学生可以得到一些奖励,此方法不但能在活跃课堂气氛的同时吸引学生的注意力,还能加深学生对新知识的印象并提高学生自主思考问题的数学思维能力。
5.培养学生实践能力
学生实践能力的培养是数学思维能力培养的基础。值得注意的是,课后知识的巩固同样不可或缺,在学习过程中,难免会有部分学生出现学得快、忘得也快的问题。布置适量的课后习题会在学生接收新知识的同时加深对知识的印象,锻炼举一反三的能力,更深层次的分析数学问题与答案间的内在联系,掌握做题方法;在巩固过程中,学生会形成自己的学习思路,教师要在与学生沟通的过程中顺通学生的思路,加以正确的引导,逐步培养学生的数学思维能力。
三、结束语
综上所述,学生数学思维能力的培养不是一项短期工作,需要教育者们长时间的坚持耐心诱导。重视培养小学生的数学思维能力的同时也要与实际相结合,不能只注重表面知识,要在教授学生新知识的同时帮助学生梳通思路,启发学习;并根据学生自身先天因素差别,从多角度尝试用不同的教育方式进行培养。总而言之,帮助学生养成数学思维能力,不仅可以增强学生的求知欲、激发学习兴趣,也对日后学生的学习大有裨益、终身受用。
参考文献
[1]王耀忠.浅析小学数学课堂教学中学生思维能力培养的策略[J].新课程导学,2014(26):44-44.
[2]李振伟.浅析小学数学教学中学生逻辑思维的培养[J].数学学习与研究,2016(8):67-67.
【摘要】:目前,培养学生的数学思维能力是小学数学教学中的一项基本任务。思维具有广泛的内容,关注小学数学教学中应该如何培养学生的数学思维就成了一个焦点问题。为了贯彻《小学数学教学大纲》的要求,在教学中有计划地培养学生的数学思维能力,教师可以从认识培养学生的数学思维的重要性,以及找出培养数学思维的解决办法等方面着手。本文对如何培养学生的数学思维这一问题进行探讨。
【关键词】:小学数学教学数学思维培养重要性
一、小学教学中数学的意义
人们通常认为数学只是简单的加减乘除,是一门理科性质的学科,仅重视了表面的数字运算,却忽略了数学与其他学科知识间的逻辑联系。在数学学习中,我们不难发现,要对数学学习内容理解、掌握,必须要有很好的观察能力、想象能力、推理能力。而掌握了这些能力,可以为培养其他学科所需的科学素质及逻辑思维能力打下良好的基础。所有的学科不是独立存在,而是相互联系的。以下是我对学习数学重要性的几点看法。
1.培养逻辑思维能力。 逻辑思维指对事物观察、概括、推理,然后采用逻辑方法,正确表达自己意见的能力。逻辑思维能力不仅在数学学习中体现出来,也是学习其他学科所必备的。
2.开发非智力因素。 非智力因素指兴趣、情感等与智力无关的心理因素。兴趣体现在激发学生解决问题的求知欲,从而产生较高的学习动机。这在其他学科中也需要,只有具备良好的动机,加上浓厚的兴趣,才可能对一门学科有兴趣,这就成为学好学科知识的首要条件。
3.培养科学文化素质。 无论学习什么学科,都不能以自己的妄想来断定结果。没有事实为依据的知识,只能误导学生。因此要用科学的观点来学习新的知识。
二、培养学生的数学思维的重要性
学生的数学能力受到先天素质、家庭教育、外界因素等的影响。有的学生学习能力强,依据自己的理解及老师的讲解,能很快地掌握知识,他们不仅能很快地解决问题,而且会有自己的独特的理解,能凭借原有的知识去掌握新的知识。有的学生只能通过死记硬背来记住知识,没有自己的理解,学习起来也就相对费劲,他们的思维无条理,混乱,面对没见过的题目,无从下手。对于这种情况,在教学中只有注重培养数学思维才能解决根本问题。因此,认识培养数学思维的重要性是必需的。
1.数学思维能力与知识、技能紧密结合。
教学过程不是简单地传授知识,还是全面培养学生各种素质的过程。学习知识的过程,就是运用各种思维解决问题的过程,在学习中不注意培养数学思维,就无法较好地理解所学的知识,有可能养成死记硬背的'习惯。
2.判断能力体现了数学思维能力。
学习的根本任务是让学生学会对身边的事情进行真假判断,对教材上的内容、老师的讲解质疑。学生要用自己的数学思维提出自己的观点,发表有个性的见解。
3.数学思维能力体现了学生的综合素质。
总结能力即灵活地运用所学知识概括自己观点的能力,它要求学生首先具有推理思维能力和发散思维能力。另外,总结能力是综合素质的表现,所以数学思维能力也体现了学生的综合素质。
三、培养学生的数学思维的几点建议
小学数学课程新标准的基本要求是培养学生的数学思维能力。数学思维能力包括丰富的空间想象能力,较强的归纳推理能力,善于发现、观察问题。在小学数学教学中,应把培养学生的数学思维能力贯穿在教学各环节中。我们可以通过以下几方面来培养学生的数学思维。
1.从具体到抽象认识来培养数学思维。 在学习数学基础知识时,应重视概念定理的学习,由于此方面的知识比较抽象,小学生不易理解,学习起来也较吃力。在教学过程中,教师应从具体实物着手,再逐步脱离具体实物,转入抽象定理,培养学生的抽象思维能力。这样才能加深学生对概念的理解,以便更好地运用相关定理。
2.在教学关键点上培养数学思维。 在学习新知识或复习时,都应结合具体的内容来教学。对每节的知识点,教师设置相关的问题让学生思考,间接引导学生对每节的知识进行回忆、分析、理解、推论,以做出正确的回答。最后,还要对每章的内容做总结。这种落实到教学关键点上的特殊的思维培养方法是值得研究的。
3.联系生活实际培养数学思维 。理论来源于生活实际,教师应利用自己的生活经验,多讲些生活与数学联系紧密的例子,让数学理论知识从课本走进生活,使得理论知识更具体生动。引导学生运用数学理论知识,解决生活中相关问题,从而培养学生的数学思维,使学生的数学思维能力在学习中增强,从而实现教学的根本目标。
小学数学教学的目的不仅在于让学生掌握知识,而且在于学习方法,培养数学思维能力,以及良好的品质,促进学生全面发展。良好的数学思维能力,不仅在学习数学时有很大的作用,而且是小学生良好综合素质的体现。因此,培养学生的数学思维能力尤为重要。
参考文献:
[1]韦志初.发挥例题习题功效培养数学思维品质[J]
[2]胡廷欣,童其林.充分利用习题特点培养学生思维品质[J]
[3]胡水荣.合理使用教具,培养学生数学思维品质[J]
【摘要】:目前,培养学生的数学思维能力是小学数学教学中的一项基本任务。思维具有广泛的内容,关注小学数学教学中应该如何培养学生的数学思维就成了一个焦点问题。为了贯彻《小学数学教学大纲》的要求,在教学中有计划地培养学生的数学思维能力,教师可以从认识培养学生的数学思维的重要性,以及找出培养数学思维的解决办法等方面着手。本文对如何培养学生的数学思维这一问题进行探讨。
【关键词】:小学数学教学数学思维培养重要性
一、小学教学中数学的意义
人们通常认为数学只是简单的加减乘除,是一门理科性质的学科,仅重视了表面的数字运算,却忽略了数学与其他学科知识间的逻辑联系。在数学学习中,我们不难发现,要对数学学习内容理解、掌握,必须要有很好的观察能力、想象能力、推理能力。而掌握了这些能力,可以为培养其他学科所需的科学素质及逻辑思维能力打下良好的基础。所有的学科不是独立存在,而是相互联系的。以下是我对学习数学重要性的几点看法。
1.培养逻辑思维能力。 逻辑思维指对事物观察、概括、推理,然后采用逻辑方法,正确表达自己意见的能力。逻辑思维能力不仅在数学学习中体现出来,也是学习其他学科所必备的。
2.开发非智力因素。 非智力因素指兴趣、情感等与智力无关的心理因素。兴趣体现在激发学生解决问题的求知欲,从而产生较高的学习动机。这在其他学科中也需要,只有具备良好的动机,加上浓厚的兴趣,才可能对一门学科有兴趣,这就成为学好学科知识的首要条件。
3.培养科学文化素质。 无论学习什么学科,都不能以自己的妄想来断定结果。没有事实为依据的知识,只能误导学生。因此要用科学的观点来学习新的知识。
二、培养学生的数学思维的重要性
学生的数学能力受到先天素质、家庭教育、外界因素等的影响。有的学生学习能力强,依据自己的理解及老师的讲解,能很快地掌握知识,他们不仅能很快地解决问题,而且会有自己的独特的理解,能凭借原有的知识去掌握新的知识。有的学生只能通过死记硬背来记住知识,没有自己的理解,学习起来也就相对费劲,他们的思维无条理,混乱,面对没见过的题目,无从下手。对于这种情况,在教学中只有注重培养数学思维才能解决根本问题。因此,认识培养数学思维的重要性是必需的。
1.数学思维能力与知识、技能紧密结合。
教学过程不是简单地传授知识,还是全面培养学生各种素质的过程。学习知识的过程,就是运用各种思维解决问题的过程,在学习中不注意培养数学思维,就无法较好地理解所学的知识,有可能养成死记硬背的'习惯。
2.判断能力体现了数学思维能力。
学习的根本任务是让学生学会对身边的事情进行真假判断,对教材上的内容、老师的讲解质疑。学生要用自己的数学思维提出自己的观点,发表有个性的见解。
3.数学思维能力体现了学生的综合素质。
总结能力即灵活地运用所学知识概括自己观点的能力,它要求学生首先具有推理思维能力和发散思维能力。另外,总结能力是综合素质的表现,所以数学思维能力也体现了学生的综合素质。
三、培养学生的数学思维的几点建议
小学数学课程新标准的基本要求是培养学生的数学思维能力。数学思维能力包括丰富的空间想象能力,较强的归纳推理能力,善于发现、观察问题。在小学数学教学中,应把培养学生的数学思维能力贯穿在教学各环节中。我们可以通过以下几方面来培养学生的数学思维。
1.从具体到抽象认识来培养数学思维。 在学习数学基础知识时,应重视概念定理的学习,由于此方面的知识比较抽象,小学生不易理解,学习起来也较吃力。在教学过程中,教师应从具体实物着手,再逐步脱离具体实物,转入抽象定理,培养学生的抽象思维能力。这样才能加深学生对概念的理解,以便更好地运用相关定理。
2.在教学关键点上培养数学思维。 在学习新知识或复习时,都应结合具体的内容来教学。对每节的知识点,教师设置相关的问题让学生思考,间接引导学生对每节的知识进行回忆、分析、理解、推论,以做出正确的回答。最后,还要对每章的内容做总结。这种落实到教学关键点上的特殊的思维培养方法是值得研究的。
3.联系生活实际培养数学思维 。理论来源于生活实际,教师应利用自己的生活经验,多讲些生活与数学联系紧密的例子,让数学理论知识从课本走进生活,使得理论知识更具体生动。引导学生运用数学理论知识,解决生活中相关问题,从而培养学生的数学思维,使学生的数学思维能力在学习中增强,从而实现教学的根本目标。
小学数学教学的目的不仅在于让学生掌握知识,而且在于学习方法,培养数学思维能力,以及良好的品质,促进学生全面发展。良好的数学思维能力,不仅在学习数学时有很大的作用,而且是小学生良好综合素质的体现。因此,培养学生的数学思维能力尤为重要。
参考文献:
[1]韦志初.发挥例题习题功效培养数学思维品质[J]
[2]胡廷欣,童其林.充分利用习题特点培养学生思维品质[J]
[3]胡水荣.合理使用教具,培养学生数学思维品质[J]
1、从实际需求出发:比如说家人去买菜用哪种方式比较快捷到达目的地,又运用哪些方法可以省钱。这些实际的生活非常能够让孩子思考,孩子也容易理解,往往数学思维在不知不觉中形成了 。2、从问题的突破口出发:比如说方程类的解答,孩子遇到某个题目觉得很繁琐,利用方程就会很简单,当孩子遇到某些难题难以解决的时候,总会需要找到突破口,比如逆向思维、对比思维等,这些突破口的过程,本身就是一场数学思维。3、从实际的案例出发:有很多实际的典型案例,这些案例在课本上都有,利用这些案例,看看书本上是怎么分析的,哪怕孩子不能独立去完成,背会本身也有好处,可惜很多人只会说束手无策,导致越来越恶化。4、结合逻辑思维来做训练。事实上数学思维本身就是一种逻辑思维,并且两者相辅相成。家长可以帮助孩子选择一些书籍,亦或是相关的逻辑训练工具,并且总结逻辑给孩子带来的好处等等, 用这些来指导数学思考方式。5、鼓励孩子多提问:不要抑制孩子在学习过程的提问,这种提问和好奇是孩子学习的动力,将知识点与孩子年龄段能接受的方法告诉孩子才是最重要的,需要多加以引导。
【摘要】:目前,培养学生的数学思维能力是小学数学教学中的一项基本任务。思维具有广泛的内容,关注小学数学教学中应该如何培养学生的数学思维就成了一个焦点问题。为了贯彻《小学数学教学大纲》的要求,在教学中有计划地培养学生的数学思维能力,教师可以从认识培养学生的数学思维的重要性,以及找出培养数学思维的解决办法等方面着手。本文对如何培养学生的数学思维这一问题进行探讨。
【关键词】:小学数学教学数学思维培养重要性
一、小学教学中数学的意义
人们通常认为数学只是简单的加减乘除,是一门理科性质的学科,仅重视了表面的数字运算,却忽略了数学与其他学科知识间的逻辑联系。在数学学习中,我们不难发现,要对数学学习内容理解、掌握,必须要有很好的观察能力、想象能力、推理能力。而掌握了这些能力,可以为培养其他学科所需的科学素质及逻辑思维能力打下良好的基础。所有的学科不是独立存在,而是相互联系的。以下是我对学习数学重要性的几点看法。
1.培养逻辑思维能力。 逻辑思维指对事物观察、概括、推理,然后采用逻辑方法,正确表达自己意见的能力。逻辑思维能力不仅在数学学习中体现出来,也是学习其他学科所必备的。
2.开发非智力因素。 非智力因素指兴趣、情感等与智力无关的心理因素。兴趣体现在激发学生解决问题的求知欲,从而产生较高的学习动机。这在其他学科中也需要,只有具备良好的动机,加上浓厚的兴趣,才可能对一门学科有兴趣,这就成为学好学科知识的首要条件。
3.培养科学文化素质。 无论学习什么学科,都不能以自己的妄想来断定结果。没有事实为依据的知识,只能误导学生。因此要用科学的观点来学习新的知识。
二、培养学生的数学思维的重要性
学生的数学能力受到先天素质、家庭教育、外界因素等的影响。有的学生学习能力强,依据自己的理解及老师的讲解,能很快地掌握知识,他们不仅能很快地解决问题,而且会有自己的独特的理解,能凭借原有的知识去掌握新的知识。有的学生只能通过死记硬背来记住知识,没有自己的理解,学习起来也就相对费劲,他们的思维无条理,混乱,面对没见过的题目,无从下手。对于这种情况,在教学中只有注重培养数学思维才能解决根本问题。因此,认识培养数学思维的重要性是必需的。
1.数学思维能力与知识、技能紧密结合。
教学过程不是简单地传授知识,还是全面培养学生各种素质的过程。学习知识的过程,就是运用各种思维解决问题的过程,在学习中不注意培养数学思维,就无法较好地理解所学的知识,有可能养成死记硬背的'习惯。
2.判断能力体现了数学思维能力。
学习的根本任务是让学生学会对身边的事情进行真假判断,对教材上的内容、老师的讲解质疑。学生要用自己的数学思维提出自己的观点,发表有个性的见解。
3.数学思维能力体现了学生的综合素质。
总结能力即灵活地运用所学知识概括自己观点的能力,它要求学生首先具有推理思维能力和发散思维能力。另外,总结能力是综合素质的表现,所以数学思维能力也体现了学生的综合素质。
三、培养学生的数学思维的几点建议
小学数学课程新标准的基本要求是培养学生的数学思维能力。数学思维能力包括丰富的空间想象能力,较强的归纳推理能力,善于发现、观察问题。在小学数学教学中,应把培养学生的数学思维能力贯穿在教学各环节中。我们可以通过以下几方面来培养学生的数学思维。
1.从具体到抽象认识来培养数学思维。 在学习数学基础知识时,应重视概念定理的学习,由于此方面的知识比较抽象,小学生不易理解,学习起来也较吃力。在教学过程中,教师应从具体实物着手,再逐步脱离具体实物,转入抽象定理,培养学生的抽象思维能力。这样才能加深学生对概念的理解,以便更好地运用相关定理。
2.在教学关键点上培养数学思维。 在学习新知识或复习时,都应结合具体的内容来教学。对每节的知识点,教师设置相关的问题让学生思考,间接引导学生对每节的知识进行回忆、分析、理解、推论,以做出正确的回答。最后,还要对每章的内容做总结。这种落实到教学关键点上的特殊的思维培养方法是值得研究的。
3.联系生活实际培养数学思维 。理论来源于生活实际,教师应利用自己的生活经验,多讲些生活与数学联系紧密的例子,让数学理论知识从课本走进生活,使得理论知识更具体生动。引导学生运用数学理论知识,解决生活中相关问题,从而培养学生的数学思维,使学生的数学思维能力在学习中增强,从而实现教学的根本目标。
小学数学教学的目的不仅在于让学生掌握知识,而且在于学习方法,培养数学思维能力,以及良好的品质,促进学生全面发展。良好的数学思维能力,不仅在学习数学时有很大的作用,而且是小学生良好综合素质的体现。因此,培养学生的数学思维能力尤为重要。
参考文献:
[1]韦志初.发挥例题习题功效培养数学思维品质[J]
[2]胡廷欣,童其林.充分利用习题特点培养学生思维品质[J]
[3]胡水荣.合理使用教具,培养学生数学思维品质[J]
数学论文培养大学生数学思维的能力论文摘要:数学不应该被看成单纯的工具,它对思维训练也有着十分重要的意义。大学生应该培养数学的形象、抽象、直觉与函数思维。培养大学生数学思维,需要优化大学生思维方式,培养逻辑思维能力与直觉思维能力。关键词:数学;大学生;思维能力一、数学思维的概念及结构分析数学思维作为思维的一种特殊形式,是人脑运用数学符号与数学语言对数学对象间接概括的反映过程。具体地说,数学思维是以数学概念为细胞,通过数学判断和数学推理的形式揭示数学对象的本质和内在联系的认识过程。数学思维既从属于一般的人类思维,受到一般思维规律的制约,又具有不同于一般思维的特点,数学思维是一种高级形态的思维,属于现代抽象思维的范畴。数学思维的功能性结构是一个三维的立体结构,三条坐标轴分别是思维内容、思维方法和个体发展水平,这三部分的相互作用就构成了数学思维能力。数学思维能力是各种数学能力的核心,内容是思维主体面临的思维对象,包括数学概念、法则、命题以及各种数学理论问题与实践问题等。数学思维方法是数学方法的核心,是数学思维活动的步骤和格式,是对思维内容进行加工的方式和程序。个体发展水平则是指主体的思维品质和非智力品质,其中思维品质包括深刻性、广阔性和灵活性等,非智力品质包括动机、情感和意志等,它们在思维活动中发挥着重要的作用。二、培养什么样的数学思维能力(一)形象思维。形象思维即具体思维,它包括非操作性的形式(观察、感知等)和操作性形式(对事物或其模型直接进行操作等)。大学生在感观、操作等方面较以前都有了很大的提高,能力有了一定的增强,记忆方式由机械性记忆逐步向理解性记忆转变,他们渴望进行自主学习。(二)抽象思维。抽象思维是与抽象化活动密切联系的思维活动,是高等数学的核心和基础,抽象思维充分体现了高等数学学科的高度严密性和严谨性,也是学生需要着重培养的一种数学思维。这里的抽象化有双重性,即在抽取其本质属性的同时剥离其余的非本质属性。(三)直觉思维。直觉思维是认识的特殊方法,它是对数学对象、结构以及规律关系的敏锐想象和迅速判断的思维方式,其特点是直接解决问题或得出真理。(四)函数思维。函数思维是指从数学对象、性质之间的相互关系中认识事物的一种思维。函数是高等数学中一个重点的研究对象,我们解决现实生活中的许多问题都涉及函数关系的确定和解决。三、如何培养大学生的数学思维能力要培养大学生具备较好的数学思维是一个长期艰巨的过程。基本策略是:重思想的形成、促观念的培养。要特别注意做到以下几点:(一)优化思维方式。如果学生在学习过程中,对所学知识的理解不够深刻、准确,或者其新旧知识不能建立联系,就会造成认识上的不足和理解上的偏差,在解决具体问题时,出现思维不够严密或者不够灵活的现象。因此,应该引导学生优化思维方式,培养思维的严密性和灵活性。1、修正思维的误差,培养思维的严密性部分学生在解决数学问题时,不注意挖掘所研究问题中的隐含条件,产生了思维误差,影响了问题的正确解决。所以,要教会学生充分挖掘隐含条件,及时调控思维过程,修正思维误差,培养思维的严密性。2、转换思维角度,培养思维的灵活性。学生在解题时习惯于从已知出发推演结论,形成单向思维,给解题带来一定的思维障碍。对逆向思维的培养要贯穿于整个学习过程中。3、培养和发展学生的数学探索能力,进而激发学生的创新思维。数学的探索及创新能力是数学思维中最具创造性和挑战性的要素,也是数学思想的核心,数学几千年的发展史就是人们不断探索和创新的历史。(二)培养逻辑思维能力。逻辑思维能力是思维能力的重要组成部分,逻辑思维的主要形式是概念、判断和推理,它是证明结论的主要工具。在抽象定义、推导公式、证明定理、运用知识解决问题时,都在运用逻辑思维。1、培养理解概念、应用概念解决问题的能力。理解能力是学习数学的基础,学生在学习过程中,如果对一些数学概念或数学原理的发生、发展过程没有深刻地理解,就不能把握问题的本质。因此,要深刻理解概念、法则、公式、定理的实质,应用概念去解决问题。2、培养推理判断的能力。推理判断能力是逻辑思维能力的重要组成部分,培养推理判断能力要在学生深刻理解概念的基础上,学生应该掌握必要的推理和判断方法,如归纳法、演绎法、类比法、穷举法、特例法、反证法等,并通过一定的训练加以巩固,从而提高推理判断的能力。提高学生的推理能力要注意推理过程的学习(包括逻辑推理和直觉推理),一开始就要养成推理过程,步步有根据步步都严密的习惯。3、培养学生的抽象概括能力。要善于将数学材料中反映的数与形的关系从具体的材料中抽象出来,概括为特定的一般关系和结构,做好抽象概括的示范工作,要特别注意重视分析和综合的学习;另外,在解题中要注意发掘隐藏在各种特殊细节后面的普遍性,找出其内在本质,善于抓住主要的、基本的和一般的东西;要鼓励学生平时对于一些问题进行经常性的概括和总结,培养学生概括的习惯。
浅谈小学数学中学生数学思维能力的培养研究论文
在平平淡淡的日常中,大家都跟论文打过交道吧,通过论文写作可以培养我们的科学研究能力。那要怎么写好论文呢?下面是我收集整理的浅谈小学数学中学生数学思维能力的培养研究论文,仅供参考,大家一起来看看吧。
摘要:
小学时期学生的思维正处于重要的过渡阶段,对外界的认知能力日渐增强,思维模式也在逐步完善。加强学生数学思维能力的培养,有助于学生养成良好的学习习惯,为以后的学习打下稳固的根基。下文主要就如何培养小学数学中学生数学思维能力进行探讨,提出激发学生兴趣的方法,以达到提高数学思维能力的教学目标。
关键词:
小学教学;数学思维能力;培养
引言:
所谓的数学思维能力可以分成观察力、想象力和逻辑力,掌握这三种能力对学习其他学科而言就是打下了良好的基础,而且数学思维的逻辑性同样适用于生活中的方方面面。小学生的数学思维不仅受先天因素的影响,同时也会因外界环境的影响发生改变。要做好学生的数学思维培养工作,就要选择正确的培养方法。
一、数学思维能力
1.数学思维的含义
数学思维是指思考问题和解决问题的思维活动模式。数学思维有助于学生在面对数学问题时,将数字形象化,加深理解,从而形成一定的数学逻辑推理思维。而数学思维能力是指将数学逻辑思维和丰富的想象空间相结合的同时可以灵活运用,以达到在实际生活中,同样能对一切问题进行归纳与推理的目的。
2.数学思维的作用
在实际教学中,学生的学习能力良莠不齐。有的学生先天理解能力较强,能够较快接收新知识的同时还能做到学以致用;而有的学生理解能力就稍微逊色,理解问题较为困难,学习进度缓慢,因此很容易丧失对学习的兴趣。培养学生的数学思维能力就能很好的帮助学生解决这一学习烦恼,学生形成了数学思维模式后就能在自己的理解下掌握学习方法、加快学习进度,提高对问题的判断力的同时激发求知的上进心。
二、加强对小学数学中学生数学思维能力培养的具体方法
1.灵活运用教学方法
教师要先了解学生对于数学科目的学习心理,以此为基础,选择学生最能接受的教学方法。小学时期,学生对学习的兴趣最为浓厚,教师在教学过程中不能一味的只注重讲解书面知识,学生若是在被动的机械记忆模式下学习,就不会养成良好的数学思维模式,要学会用数形结合的方法生动讲解,通过借助形的某些属性来阐明数的精确性。例如:在学习图形体积计算时,老师不能只在黑板上画出立体图形标注长、宽、高,黑板是一个典型的二维物体,画出的立体图形趋于抽象化,对于小学生还未成型的思维模式而言,看不到的另外三个面就变的难以理解,因此,教师可举例说明,我们上课的教室本身就是一个标准的立体长方形,哪边是长宽高的位置就变得一目了然,这种把抽象化的概念转化成实物化的事物的教学方法,更易于学生对数学深入理解,在提高学习效果的同时也提高了学生学习的兴趣,从而培养学生的数学思维能力。
2.循序渐进的诱导
数学是一门逻辑性较强的科目,对于刚刚接触此科目的小学生来说养成逻辑性的思维非常重要。数学问题与答案之间有很强的关联性,要想解答问题就要先分析清楚问题中已知条件的因果关系,在此分析过程中,逻辑性的存在就显得十分重要,分清主次因果才能理解其中包含的数量关系。培养学生的`逻辑性是非常漫长的过程,教师无法直接教授逻辑能力,只能在教学中慢慢诱导。先为学生讲解最简单的知识,在学生能够灵活运用后再逐渐提高知识难度,不求快,要求稳;由此激发出学生对数学知识的渴求心理,提高了学生的学习兴趣后教师再加以梳理,循循善诱,故而,学生的数学逻辑思维能力也逐渐提升。
3.制定明确的新课标
制定好每堂课的新课标是一种极为科学的教学方案,教师要按照新课标的要求预先备好课,确保要讲解的知识内容在新课标范围之内,促使学生的数学思维培养程度与新课标中要求的教学模式一致,严禁出现一味追求进度却不注重质量的教学现象发生。在进行教学前,要了解学生的基本学习情况,做到“因材施教”,以防在讲解新知识的时候学生发生掉队,从而失去对学习的兴趣。
4.当堂设问锻炼思维
小学生是一个不可控的群体,由于其思维的不完善性,自控能力相对较差。有些学生在上课时间很容易被外界影响,也就发生了我们常说的“溜号”现象,等到学生的注意力转移回课堂时却发现讲解的内容发生断点,内容理解不上去;为减少此类问题的发生,当堂设问不失为是一个好方法。
小学生群体的自控性虽有欠缺,但其强烈的上进心却不容忽视。教师可在本堂新知识讲解完毕后,提出几个在新知识范围内的问题,当作课堂提问,回答正确的学生可以得到一些奖励,此方法不但能在活跃课堂气氛的同时吸引学生的注意力,还能加深学生对新知识的印象并提高学生自主思考问题的数学思维能力。
5.培养学生实践能力
学生实践能力的培养是数学思维能力培养的基础。值得注意的是,课后知识的巩固同样不可或缺,在学习过程中,难免会有部分学生出现学得快、忘得也快的问题。布置适量的课后习题会在学生接收新知识的同时加深对知识的印象,锻炼举一反三的能力,更深层次的分析数学问题与答案间的内在联系,掌握做题方法;在巩固过程中,学生会形成自己的学习思路,教师要在与学生沟通的过程中顺通学生的思路,加以正确的引导,逐步培养学生的数学思维能力。
三、结束语
综上所述,学生数学思维能力的培养不是一项短期工作,需要教育者们长时间的坚持耐心诱导。重视培养小学生的数学思维能力的同时也要与实际相结合,不能只注重表面知识,要在教授学生新知识的同时帮助学生梳通思路,启发学习;并根据学生自身先天因素差别,从多角度尝试用不同的教育方式进行培养。总而言之,帮助学生养成数学思维能力,不仅可以增强学生的求知欲、激发学习兴趣,也对日后学生的学习大有裨益、终身受用。
参考文献
[1]王耀忠.浅析小学数学课堂教学中学生思维能力培养的策略[J].新课程导学,2014(26):44-44.
[2]李振伟.浅析小学数学教学中学生逻辑思维的培养[J].数学学习与研究,2016(8):67-67.
数学思维方法是对数学内容的思维运动形式的认识。学习数学思维,就是学习数学思维运动形式。培养数学思维方式的重点是养成良好的思维习惯。下面是我给大家推荐的有关数学思维的教育论文,希望大家喜欢!
《对数学思维与教育的分析》
摘要:首先探讨了一般意义上的数学思维和广义数学思维的内涵,将数学思维划分为掌握数学体系和运用数学思维的方式两部分,并详细分析了两部分的内涵以及教学中常见的问题,最后针对每一部分提出了系统化的合理建议。
关键词:数学思维;数学结构;创造能力;教育
1数学思维的组成简单介绍
广义的数学思维主应该有两方面组成:
关于数学体系的了解,暨数学思维的内容
这是关于数学本质和内容的认识,简单的说就是数学“是什么”。对于数学总体结构的理解是数学思维的基础,也是一切技巧的基础。这里说的不单单是对数学概念和定理的记忆和简单运用,而是对数学原理的深刻理解。
数学思维的方式
数学的思维方式,就是我们解决数学问题的思考的习惯和能力。也就是“怎么做”。解绝问题的方式有很多种,最基本的就是运用前人总结出来的解决问题的方式。然而很多时候,已有的方法是不能完全奏效的。这时候我们就需要运用我们的智慧去分析数学问题的条件,结论和特点。从而对题目进行分解转化,最终解决这个问题。在这个过程中体现出来的思维技巧和思维习惯就是数学思维方式,这也是我们所说的狭义上的“数学思维”。
2数学体系的内涵、问题、教学重点
数学体系的内涵和特点
(1)了解的必要性。
这里所说的“了解数学体系”是指对数学相关内容的整体把握,这是学习数学的基本要求也是运用数学知识的基础。
数学同所有的科学一样,是随着人类的文明的发展一步步发展而来的,本身就有着清晰的发展脉络:由简单的数字运算发展到代数运算,由最初的自然数到复数,由初等的数学方法到分析,数学在不断拓展研究的范围,丰富研究的手段。这要求我们在学习和教学的过程中不能将数学的每一部分分割开来,要尊重数学的整体性,尊重数学本身的传承关系。
和其他学科相比,数学更接近纯理论性的学科:数学的每一个分支往往是从几个基本的假设或者公理出发,通过归纳、推理、演绎、建立起自身的理论体系。数学这门学科十分强调逻辑性和严密性,结构十分的清晰严密。要想使这样的一个系统称为自己手中有力的武器,必须对系统本身有整体上的了解。
(2)了解的要求。
如果学生能够很好的回答以下四个问题,就可以说是达到了教学的目标。
①包含了什么?
学生必须了解自己所学数学的最大范围,也就是自己所掌握的所有数学工具的范围。
②每部分的结构是什么?
数学由几个相对独立的部分组成,每一部分都有自身的特点,相对独立而又自成体系。每一个体系之内的知识是有前后相继的关系的,由简单到复杂,由小的方面扩展到更大的方面,引入新的方法和思想。学生应该熟练的掌握每一部分知识的结构。
③各部分之间的关系是什么?
数学的各个部分自成体系,但又是相互紧密联系的。要真正的了解数学就要十分重视数学各个分支之间的关系,不能将数学割裂成几个孤立的部分
④数学发展的历史是什么?
数学的历史是数学思想发展的真实体现,了解数学发展的历史能够让学生更好的认识数学思维的本质。
存在的问题
部分学生对于数学整体结构的了解主要存在以下两种问题:
孤立。部分学生在学习数学的过程中,割裂知识点之间的关系,忽略知识点之间的前后发展继承的关系,不注重数学各个分支之间的交叉运用,孤立的记忆每个知识点,对数学没有总体观。由此产生的后果:知识点极容易遗忘,知识结构混乱。学习新的数学知识较为困难,方法使用僵化不灵活。
肤浅。部分学生在学习数学的过程中,对一些数学概念或数学原理的发生、发展过程没有深刻的理解,仅仅停留在表面的概括水平上,不能脱离具体表象而形成抽象的概念,自然也无法摆脱局部事实的片面性而把握事物的本质。由此而产生的后果:学生在分析和解决数学问题时,往往只顺着事物的发展过程去思考问题,注重由因到果的思维习惯,不注重变换思维的方式,缺乏多方面解决问题的能力。
数学体系教学重点
(1)教学过程要认真“描点”,作好“连线”的准备。描点,即强化知识点,具体到每课时、每章节、每单元。在强化知识点的内容、重点、难点的同时,要有意识地把该内容向前后延伸,强调该内容是哪些知识的延续和,同时又是以后的哪些知识的准备和基础。
(2)在知识的复习和应用时要尽力“连线”,使“点”成为“线”的元素。在最初的教学中,学生学习到的知识点是零散的、不连惯的。为了减轻学生的记忆负担,教学时要力求把知识归类、连线,使知识类别化、系统化,让学生了解一个知识点就可以掌握与之相关的内容。
(3)教学中要引导学生把“线”结成“网”,以达到“以点带面”的记忆效果。数学知识的主线有若干条,副线也有若干条,所有的线横纵交错。每个知识点在前后向同类主线无限延伸的同时,也在向副线延伸或辐射,甚至在向其他科目、其他领域延伸,使众多的知识点、知识线,密密麻麻地形成一张无边无际的大网。
3数学思维方式的内涵、问题、教学重点
数学思维方式的意义和内涵
思维训练是教学思维论在教学实践中的具体体现。数学思维论是思维科学的一个重要分支,它是构成数学课程论、学习论的灵魂。数学教材是以逻辑思维为主线,贯穿各个知识点。教学中培养学生能力的基础是发展学生思维,发展思维不可能脱离教学内容独立进行。因此,我们可以有理由认为,在数学教学中实施思维训练是教学思维论在教学实践中的体现。
数学思维方式包含两个方面:
(1)对于数学基本技巧的掌握比如换元,数形结合,极限法,拆分结合等等。很多新问题可以通过基本技巧的转化或者组合来解答。这些基本的技巧是前人在长期实践中对数学思维方式的经验的总结和归纳,他们不但是解决很多数学问题的有力工具,同时也很好的反应了数学的基本思维原理。
(2)运用数学思维的习惯。在生活中每当我们遇到新的问题,我们都需要运用我们的智慧去分析问题,然后去选择一个最好的方法解决问题。这就是在运用我们的思维能力。良好的思维习惯能够帮助我们更快更好的解决问题。对于数学问题也不例外。解决数学问题时我们需要养成分析问题、转化问题、将未知转化为已知等良好数学思维习惯。同时能够熟练运用方程、数形结合、分类讨论等思想解决问题。这是数学教学的重要目标之一,也体现了数学对于思维的锻炼。关于数学思维习惯,G•波利亚在他的经典作品《怎样解题》中有很好的阐释。
存在的问题
分析中学生的数学思维品质,部分学生存在着一些明显的缺陷,具体表现为以下几点。
僵化。指学生思维不够灵活,缺乏联想,只停留在课上的内容和解题思路,只会模仿、套用模式解题,一旦题型有变化,就无从下手,不能做到“举一反三”。
迟钝。指学生在解决数学问题时,一方面不大注意挖掘所研究问题中的隐含条件,抓不住问题中的确定条件,影响问题的解决。
消极。指学生习惯于依赖教师的思路,往往在已做过的题型中找思路,并且很难放弃一些陈旧的解题经验,思维僵化,不能根据新问题的特点作出灵活的反应。
造成这样的思维特点与学生过去所受的思维训练有很大关系:有些教师在教学过程中过分强调程式化和模式化,教学中给学生归纳了各种类型,并要求学生按部就班地解题,不许越雷池一步,或要求学生解答大量重复性练习题,减少了学生自己思考和探索的机会,导致学生只会模仿、套用模式解题。灌输式的教学使学生的思维缺乏应变能力。心理学家认为,培养学生的数学思维品质是发展数学能力的突破口。思维品质包括思维的深刻性、敏捷性、灵活性、批判性和创造性,它们反映了思维不同方面的特征,在教学过程中应该有不同的培养手段。
数学思维方式教学重点
培养数学思维方式的重点是养成良好的思维习惯。我们可将数学思维方式训练的课堂教学基本模式概括为:提出问题——展示新课——思维扩展——思维训练——思维测评。在这一模式中,教师是问题暴露、思维点拨、启迪和诱导者,学生是思维的主体,是知识的探索、发现和获取者。
(1)提出问题,创设情境问题“是数学的心脏”,是思维的起点。有问题才会有思考,思维是从问题开始的。巧妙恰当地提出问题,创设良好的思维情境,能够迅速集中学生注意力,激发学生的兴趣和求知欲。这是上好数学思维训练课的首要环节。
(2)研究问题,展示新课的理性认识过程是由表象的具体到思维的抽象,再由思维的抽象上升到思维的具体的过程。研究数学问题的过程首先是由具体到抽象的过程,在此环节中,将数学问题转化加工为例题形式,使被抽象出来的数学问题再回到实践中去验证,这一阶段是学生的思维定向阶段,是运用思维探索规律学会抽象的过程。
(3)解决问题,思维扩展这一环节是知识的形成阶段,属抽象思维的高级阶段。数学教学过程实质上是由一连串的转化过程所构成的。学生接受新知识要借助于旧知识,而旧知识的思维形式往往会成为新知识思维形式的障碍(如思维定势),因此,教师首先要抓好教学过程中数学思想方法的渗透,在数学知识的质变(往往是重点)过程中,帮助学生实现思维活动的转折,排除思维活动的障碍(往往是难点),渡过思维操作的“关卡”,以实现思维发展。
(4)发展问题,思维训练教学中,注意结合学生的心理特点和认识水平从不同角度、不同层次、不同侧面有目的、有针对性地不断设计组编一些探索型、开放型、判断改错型、归纳与综合型等题目,为学生提供多种类型的思维训练素材,这是发展学生的思维能力所不可缺少的。这要求教师注重挖掘课本典型题例的潜在功能,充分发挥它的导向、典型、发展和教育作用,反复渗透与运用数学思维方法,把数学知识溶入活的思维训练中去,并在不断的“问题获解”过程中深化、发展学生的思维。
(5)总结问题,思维测评是对学生思维品质的检测与评定形式。测评方法可小型多样,因课堂内容及学生实际情况而定,如选编一些口答、抢答、限定时间解答等题型对学生进行思维品质单项测评或多项综合测评。学生可先自我评价,体验成功的乐趣。
4结语
现代数学论认为,数学教学是数学思维活动的教学。思维活动的强弱,决定一个人的思维品质。在数学课堂教学中,探求问题的思考、推理论证的过程等一系列数学活动都以逻辑思维为主线。这是数学教学中实施思维训练的理论依据之一。
数学教学的核心就是促进学生思维的发展。教学中,教师要千方百计地通过学生学习数学知识,全面揭示数学思维过程,启迪和发展学生思维,将知识发生、发展过程与学生学习知识的心理活动统一起来。课堂教学中充分有效地进行思维训练,是数学教学的核心,它不仅符合素质教育的要求,也符合知识的形成与发展以及人的认知过程,体现了数学教育的实质性价值。
参考文献
[1](美)R.科朗H.罗宾.数学是什么[M].北京:科学出版社,1985.
[2](美)G•波利亚.怎样解题[M].上海:上海科技教育出版社,2007.
[3]朱智贤,林崇德.思维发展心理[M].北京:北京师范大学出版社,1990.
[4]郭思乐,喻伟.数学思维教育论[M].上海:上海教育出版社,1997.
[5]席振伟.数学的思维方式[M].南京:江苏教育出版社,1995.
点击下页还有更多>>>有关数学思维的教育论文
无论是在学习还是在工作中,大家都不可避免地会接触到论文吧,论文是讨论某种问题或研究某种问题的文章。还是对论文一筹莫展吗?以下是我收集整理的数学小论文作文,仅供参考,希望能够帮助到大家。
前言
在数学里有着许多解不开的秘密,在数学里也有着让人眼花缭乱的事情!
问题
为什么说数学起源于结绳记数和土地丈量?
为什么世界各国都把数学列为中小学的必修课?
研究资料
为什么说数学起源于结绳记数和土地丈量?
这种对于土地的测量,最终产生了几何学。实际上,几何学本来就是“土地测量”的意思。
数学就是从“结绳记数”和“土地测量”开始的。距今两千多年前,在欧洲东南部生活的古希腊人,继承和发展了这些数学知识,并将数学发展成为一门科学。古希腊文明毁灭后,阿拉伯人将他们的文化保存下来并加以发展,后来又传回欧洲,数学重新得到繁荣,并最终导致了近代数学的创立。
为什么世界各国都把数学列为中小学的必修课?
数学和语文、外语在中小学课程中并称为三大主课,世界各国都是一样,从小学一年级到高中三年级的每个年级都有数学课。为什么在世界各国,数学都被列为中小学的必修课呢?
首先,和语文、英语一样,数学也是语言。数学是科学的语言,它由数字、符号、公式、图像、概念、命题和论证等构成,简练地表达了世界万物间的数量关系和空间中的位置关系。不懂数学,就无法理解科学。其次,数学能够发展人的理性思维。其三,数学的用途广泛,在个人、国家和社会的各种活动中都发挥着重要的作用。所以,我们应该从小学数学。这就是数学!
启发
原来,数学在世界上有着那么重要的关系,假如没有了数学,人们就不会记数,譬如:做了多少件衣服,买(卖)东西买(卖)了多少钱,等等。以后我一定要学好数学,长大为人们做出伟大的贡献!
妈妈说,外公家养的两只母狗“格格”和“花花”最近一前一后生了两只小狗,于是我缠着妈妈带我去看。
星期天,我们来到了外公家,看到了这2只小狗,它们都非常有特点。一只长得胖嘟嘟的,象个小肉球,灰色的皮毛在太阳光的照耀下闪闪发光;另一只则长得比较“秀气”,浑身雪白,象穿了一件洁白的外衣,依偎在“狗”妈妈的怀里,好可爱哦!根据出生的时间和颜色,外公分别给它们取名为老大灰灰,老二白白。一到“狗屋”旁,我就被调皮可爱的小狗们吸引住了,全然不觉外公已经来到我的身边。外公说:“媛媛,你快要上四年级了,今天外公考你个问题,看你能否答出来?”“没问题!”我自信地回答。外公指着小狗说:“这2只小狗出生的日期非常有趣,老大和老二出生在相邻月份的1号,这两个1号分别是星期三和星期四,你知道是哪两个月的1号吗?”咋一听,这个问题挺难的,但不服输的我还是积极动起脑来,我不由联系起三年级时学过的年月日知识:由相邻两个月的1号是星期几,如果只差一天,说明第一个月的天数除以7余1天,哪个月的天数是这样的呢?哦,有了,29除以7余1天,一年中只有二月份有可能出现29天,由此可以断定老大、老二分别出生在二月、三月的1号。
我把想法告诉了外公,外公高兴地夸我真聪明,那2只可爱的小狗好象也为我猜出了它们的生日而欢快地跳来跳去呢!
一天,数学老师提出了一个问题:1+2+3+4+5+6……一直加到100的得数是多少?那么,一直加到1000和10000呢?用简便方法计算。
算式:1+2+3+4+5+6+7……+100=5050 5050×10=50500 50500×10=505000
答:1一直加到100的得数是5050,一直加到1000和10000各是50500和505000.
简便算法:或许有些同学会觉得这个算是太长,需要计算器!no,那就错了。只要仔细看看就可以发现1和99可以凑成100,2和98可以凑成100,3和97也可以凑成100,4和96,5和95,6和94 ,7和93,8和92,9和91,10和90,11和89……一直这样凑成100,结果可以得到能凑成50个100,就是5000,但是还剩下一个50单独一个数字,就可以拿5000 + 50 =5050,得出1一直加到100的得数。但有人会问了,1一直加到1000和10000为什么不着要算呢?因为100和1000的进率是10倍,1000和10000的进率也是10倍,所以可以拿1一直加到100的得数5050乘10倍等于50500,再拿50500乘10倍等于5050000。行对应的,1一直加到100000、1000000、10000000......以此类推,都可以这样算,当然,你也可以更深的理解这道题的规律哦!
在圣诞节来临之际,许多商场都采取了各种各样的促销手段。什么满“12减6、5”全场五折起“”满500减50“,看的我眼花缭乱。
我跟着妈妈在新世纪商场里穿梭,琳琅满目的商品搭建了一座百转千回的迷宫。逛了好长时间,妈妈才看中了一双鞋子,标价996,妈妈觉得这双鞋非常精致,很是中意,而且正值商场搞活动,这款鞋”满12减4“,比平时买便宜多了。妈妈让我帮她算一下,一双鞋打折下来多少钱?我想:996÷12=83,83x4=332,996——332=664。”妈妈,这款鞋打折下来可以便宜332元,只需664元。“”664啊?还是有点小贵啊!宝贝,你再陪妈妈转转。“说着,妈妈拉着我的手离开了新世纪。
接着,我和妈妈来到了泰富百货商场,这里人头攒动,比起新世纪商场来,可是有过之而无不及。妈妈拉着我的手在人流中正艰难地前行。”妈妈,这儿有专柜,打6。5折,一次性消费满500就可以减50,要不,你再进去看看。“”嗯,这儿也有这款鞋。宝贝,你在帮妈妈算算,这儿需要多少钱?便宜的话,我就在这买了。“996x6。5≈647,647 >500,这样的话,还可以减去50,647——50=597,妈妈这鞋只要597元,比刚才新世纪的便宜多了,你就在这买吧。”“嗯,就听你的。”
回家的路上,我在想原来“打折”也有学问,生活可处处都有数学啊!
大千世界,数学无处不在。真的,只要你留心观察,善于动脑,你就觉得自己好像置身于数学的海洋。是的,数学无处不在,这个假期,我就深深地感到了这一点。
我的肚子莫名其妙地奏起了狂响曲,“好饿啊――”我呻吟道。“来,吃个苹果吧!”还是妈妈好,“但是……”“但是什么?吃个苹果,哪有什么但是啊?”我笑问道,伸手向一个又大又红的苹果抓去。谁知,妈妈一把抓住苹果,夺了过去,神秘兮兮的。我一脸茫然,妈妈这是卖哪门子的药啊?我不耐烦了“妈,别闹了,还让不让人吃啦?”妈妈还是微笑着,洗起苹果来“吃,谁说不让你吃啦,我这不是洗了吗?”“哦!”我还是一脸疑惑。“但是,我还是有一个要求。”终于说出来了,我就知道不对劲了吗。“什么要求啊?”我有点生气了,不就是吃一个苹果嘛,怎么有那么多要求啊。“你不是学过体积了吗?”“是啊,怎么了?”这根吃苹果有关吗?我心想。“那你能不能把数学知识,带到生活中去,算算这个苹果的体积呢?”妈妈又笑了笑,好像小瞧我似的,我的心里升起了一股力量,恩,我一定要做给你看!一定!
于是,我赶忙把这个令人馋涎欲滴的红苹果,拿在手里,琢磨起怎样算体积来。苹果既不是长方体,也不是正方体,更不是圆柱体,怎么算它的体积呢?我摆来摆去,没有头绪了,此时的肚子还在咕咕作响,我可不能不遵守承诺,就吃了呀,我可不能让妈妈瞧不起我呀,加油,一定还有什么好方法。于是我又鼓起勇气,忍住饥饿,继续埋头考虑起来。
今天,我们全家去超市购物。
我们来到超市,看着琳琅满目的商品,我的眼睛都花了。突然,我看见货架上摆着我最爱吃的奥利奥小饼干。其中,一种是用塑料袋子装的,一种是用小纸桶装的。我看了看,发现每袋只要1。8元,而小桶装的一桶却要元。于是,我毫不犹豫,随手拿了两袋元的那种,放进了购物车。我推着小车,边走边美滋滋地想着:这两袋小饼干才元,而那一桶就元,这种袋装奥利奥小饼干实在太便宜了!
这时,妈妈走了过来。我迫不及待地把刚才的事告诉了她。妈妈一听,笑了,她提醒我说:“萌萌,你再算一算,看看到底是哪种便宜?”我不解地问:“袋装的只要元,桶装的要元,买一桶的价格可以买两袋还多呢,难道不是袋装的便宜吗?”妈妈耐心地说:“便宜不便宜可不能光看价钱,还要看重量的呀!你们不是学过小数吗?应该会算的!你算算吧!”于是我看了看两种饼干的重量,喃喃自语了起来:“袋装的,净重20克,用元除以20,那一克就是元。桶装的,净含量55克,用元除以55,那一克就是多元。”“我知道了!我知道了!”我兴奋得大叫起来,急忙对妈妈说:“应该是桶装的便宜!”接着我把算的过程讲给了妈妈听,妈妈听了直夸我聪明,我心里比吃了蜜还甜。
在一个遥远的森林里,有许许多多友善而又可爱的小动物幸福快乐的生活着。可是因为一个入侵者,打破了这个宁静。那是一只大灰狼,它掠夺这小动物们的食物,于是,小动物们决定在夜里离开这个地方,去到河对岸,开始新的生活。
但是在渡河时,他们遇到了一个大麻烦。因为他们有八只动物,可是只有小狗会划船,但是岸上只有一只船,而且这只船只能载三只动物。小动物们都不知如何是好,这时,小动物中的智多星——小猩猩,想到了方法。已知小狗的划船速度为每分钟10千米,这条河宽36千米,为了最快速地让所有动物都安全抵达对岸,先让小狗把猫妹妹和狐狸奶奶载到对岸,再回来,可因为在过去时,受到了大灰狼的帮凶——鳄鱼,的影响,速度降到每分钟6千米,而又因为船上的重量减轻了,所以速度提升原来速度的百分之二十。于是这一个来回就耗费了9分钟。这八只动物已有两只上了岸,还有一只负责划船,所以说仅剩下五只动物。五除以二等于二余一,那么1+2=3(次),小狗需要划三次来回,加一次去。那么,三成九加六等于三十三分钟。他们仅需要三十三分钟,而大灰狼追到这里需要四十分钟,小动物们可以安全到达对岸。
听完了小猩猩分析,小动物们顿时燃起了希望,他们按照小猩猩说的方法去做,果不其然,他们都安全地渡过了河。看着大灰狼在河对岸急的抓狂,小动物们既对自己能够顺利渡河而庆幸,也对小猩猩的智慧和冷静发出由衷的赞叹。所以说,学好数学是一件多么重要的事呀,这个看似十分死板的学科,说不定可以在关键时刻可以就自己,或别人一命。
大千世界,数学无处不在。真的,只要你留心观察,善于动脑,你就觉得自己好像置身于数学的海洋。是的,数学无处不在,这个假期,我就深深地感到了这一点。
我的肚子莫名其妙地奏起了狂响曲,“好饿啊――”我呻吟道。“来,吃个苹果吧!”还是妈妈好,“但是……”“但是什么?吃个苹果,哪有什么但是啊?”我笑问道,伸手向一个又大又红的苹果抓去。谁知,妈妈一把抓住苹果,夺了过去,神秘兮兮的。我一脸茫然,妈妈这是卖哪门子的药啊?我不耐烦了“妈,别闹了,还让不让人吃啦?”妈妈还是微笑着,洗起苹果来“吃,谁说不让你吃啦,我这不是洗了吗?”“哦!”我还是一脸疑惑。“但是,我还是有一个要求。”终于说出来了,我就知道不对劲了吗。“什么要求啊?”我有点生气了,不就是吃一个苹果嘛,怎么有那么多要求啊。“你不是学过体积了吗?”“是啊,怎么了?”这根吃苹果有关吗?我心想。“那你能不能把数学知识,带到生活中去,算算这个苹果的体积呢?”妈妈又笑了笑,好像小瞧我似的,我的心里升起了一股力量,恩,我一定要做给你看!一定!
于是,我赶忙把这个令人馋涎欲滴的红苹果,拿在手里,琢磨起怎样算体积来。苹果既不是长方体,也不是正方体,更不是圆柱体,怎么算它的体积呢?我摆来摆去,没有头绪了,此时的肚子还在咕咕作响,我可不能不遵守承诺,就吃了呀,我可不能让妈妈瞧不起我呀,加油,一定还有什么好方法。于是我又鼓起勇气,忍住饥饿,继续埋头考虑起来。
关于速度一向学习成绩不好的我,在无意中发现了一道题,并且给做出来了,下面我给大家分享一下吧!在20xx年春运期间,我国南方出现大范围冰雪灾害,导致某地电路断电。该地供电局组织电工进行抢修供电局距离抢修工地15千米。抢修车装载着所需材料先从供电局出发,15分钟后电工乘吉昔车从同一地点出发,结果他们同时到达抢修工地,已知吉普车速度是抢修车速度的1。5倍,求这两种车的速度。
解:1。设抢修车的速度为x千米/时,则吉普车的速度为1。5x千米/时.由题意走相同路程15千米,吉普车比抢修车快15分钟(即0。25小时)得方程15/X-15/1。5X=0。25解得X=20千米/小时,则1。5X=30千米/小时
答:抢修车的的速度为20千米/时,吉普车的速度为30千米/时.
2。因为走的路程(S=15KM)一样,人用的时间是X。材料用的时间是X+15,即(15÷X)÷(15÷(X+15))=1。5,一元一次方程,得X=30分钟,即0。5小时,那么吉普车的速度就是30KM/H,抢修车20KM/H
答:抢修车的的速度为20千米/时,吉普车的速度为30千米/时.
3。设吉普车用的时间为x小时。
根据题意得:x+15=1。5x
大千世界,无奇不有,在我们数学王国里也有许多有趣的事情。
比如,在我爸爸给我买的一本数学拓展题中,有一题思考题是这样说的:”一辆客车从东城开向西城,每小时行45千米,行了2。5小时后停下,这时刚好离东西两城的中点18千米,东西两城相距多少千米?“ 这时,我就在数学草稿纸上这样写: 45×2。5=112。5(千米),112。5+18=130。5(千米),130。5×2=261(千米),答:东西两城相距261千米。
但我又看了看,发现有点不对劲。原来,我忽略了一个重要的东西,就是:这时刚好离东西两城的中点18千米,其中的”离“,这到底是没到中点呢?还是过了中点呢?如果是还没到中点,离中点还差18千米的话,就是我刚刚这么写。但如果是到了中点多了18千米,那就应该这么写:45×2。5=112。5(千米),112。5——18=94。5(千米),94。5×2=189(千米)。
那到底是怎么写呢?我便向爸爸求助,我跟爸爸讲了这件事后,又给爸爸看了看式子,结果,爸爸却说:”嗯……你写的这两个式子都对。都可以写。“
在日常学习中,往往有许多数学题目的答案是多个的,容易在练习或考试中被忽略,这就需要我们认真审题,根据生活经验,仔细推敲,全面正确理解题意。否则就容易忽略了另外的答案。
星期天,全家人在一起讨论清明节回老家扫墓的事。谈着谈着,我心里忽然冒出了一个疑问:这里离老家有多远呢?”我问妈妈,妈妈笑了,说:你说呢?你上了这么多年学,一定会有办法知道的,对吧?”
我想了想,灵光一闪,对了,可以用我们最近学的比例尺的知识来算。我立即拿来地图,找到了泰州市,却怎么也找不到老家所在地顾高镇。怎么办呢?我冥思苦想,突然灵机一动:我可以先找到离老家顾高镇最近的乡镇黄桥镇,量出地图上泰州到黄桥的距离,再减去一些,就是地图上泰州到老家的大约的距离了!说干就干,我立即量出地图上泰州到黄桥的距离,它是0。6cm。因为老家比黄桥离泰州更近些,我便把减去了,变成了。因为这份地图的.比例尺是1:6000000,我便用0。5×6000000=3000000cm,3000000cm=30km。
我立即向妈妈报出了我的答案:大约30千米,本以为会得到妈妈的表扬,可谁知妈妈却疑惑地说:好像没这么近吧?”听了妈妈的话,我也疑惑不解:怎么会这样?”我又来到地图前,重新量起来。量着量着,我突然发现了其中的奥秘:我量的是地图上两点间的直线距离,而实际的道路不是直线的,是绕来绕去的,所以实际路程一定比依据地图计算出来的远。
我把我的发现告诉了妈妈,妈妈也恍然大悟:对!就是这样!你真聪明!”
今天,数学老师在课上给同学们发了一张卷子,卷子上所有的算式都只有两个共同的特点,那就是都是乘法,第二点,也就是最重要的一点:其中的一个乘数都是由9组成的。然后,老师平淡的说了一句同学们习以为常的话:“请同学们把这张卷子写完。”说完这句话后,老师清了清嗓子,接着说:“大家要在五分钟内完成哟!”她话音刚落,全班所有的同学们都惊讶的张大了嘴巴,仿佛能装下十个鸡蛋,因为我们要在五分钟内完成三十道乘法计算是不可能的,就算是被我们公认的“计算高手”也倒抽了一口凉气。但事不宜迟,时间毕竟不等人,大家必须争分多秒,所以都拿起笔来进行计算。
五分钟后,这三十道令人望而生畏的乘法计算全班所有的同学竟没有一个同学做完。这时老师开口了:“大家先找找所有算式的规律。”大家都不知道老师葫芦里到底卖的什么药,但是都积极的开始找规律。几分钟后,同学们都只发现了一个规律——一个乘数的是由九组成的。但老师却若有所思的望着我们。“难道还有别的规律吗?”我疑惑的想。就在这时,老师又说:“其实,我们可以以9999×5846=58454154这道题为例,大家可以发现积中的5845其实就是5846减去1得到的,那么我们就可以得出积前面的几位是由不是9组成的乘数减去一而得到的。”我看了看,发现果真如此。“而后面的数是由9组成的那个数减去另一个乘数减一的差而得到的。最后再把两次得到的数放在一起就得到了最终的积。但是这种方法只能在一个乘数比9组成的乘数小时才行的通。”
今天,我们又学到了一个妙招——吠陀数学中的关于九的乘法算式。
今天,我们全家去超市购物。
我们来到超市,看着琳琅满目的商品,我的眼睛都花了。突然,我看见货架上摆着我最爱吃的奥利奥小饼干。其中,一种是用塑料袋子装的,一种是用小纸桶装的。我看了看,发现每袋只要1。8元,而小桶装的一桶却要4。5元。于是,我毫不犹豫,随手拿了两袋1。8元的那种,放进了购物车。我推着小车,边走边美滋滋地想着:这两袋小饼干才3。6元,而那一桶就4。5元,这种袋装奥利奥小饼干实在太便宜了!
这时,妈妈走了过来。我迫不及待地把刚才的事告诉了她。妈妈一听,笑了,她提醒我说:“萌萌,你再算一算,看看到底是哪种便宜?”我不解地问:“袋装的只要1。8元,桶装的要4。5元,买一桶的价格可以买两袋还多呢,难道不是袋装的便宜吗?”妈妈耐心地说:“便宜不便宜可不能光看价钱,还要看重量的呀!你们不是学过小数吗?应该会算的!你算算吧!”于是我看了看两种饼干的重量,喃喃自语了起来:“袋装的,净重20克,用1。8元除以20,那一克就是0。09元。桶装的,净含量55克,用4。5元除以55,那一克就是0。08多元。”“我知道了!我知道了!”我兴奋得大叫起来,急忙对妈妈说:“应该是桶装的便宜!”接着我把算的过程讲给了妈妈听,妈妈听了直夸我聪明,我心里比吃了蜜还甜。
我的数学成绩一向很好,素有“数学小神童”之称,我也常常引以为豪。
这天,我要去看电影,爸爸不同意,两人争执很久,最后爸爸说:?好,如果解决了我的问题,我就同意你去看电影!我想:为了看电影,花费点脑细胞,值!何况我的成绩很好,随爸爸什么问题,我解决的可能性还是很大的。于是,我信心十足地说:请出题!
题目是这样的,一辆货车去山里运矿石,晴天每天可运20次,雨天每天可运12次,它一共运了112次,平均每天运14次。这几天中有几天晴天,几天雨天?
我思索片刻,根据平均每天运14次,运了112次,可以列式112÷14=8(天),算出运了8天,假如这8天全是晴天,就能运20×8=160(次),比原来112次多运了160-112=48(次),晴天多一天,就多运20-12=8(次),一共多运了48次,就有48÷8=6(天)雨天被当成了晴天,实际晴天就有8-6=2(天)。我又验证了一下:20×2+12×6=112(次)。
于是,我把思路讲给爸爸听,爸爸听了直点头。
我得意地说:?假如全是雨天我也会做:[112-12×(112÷4)]÷(20-12)=2(天),这是晴天天数,雨天用112÷4-2=6(天)?。
爸爸看到我的思路如此清晰,脸上挂满了笑容,我见此情景撒腿就向电影院跑去。
在学校里,学了如何算体积的,急忙想算一下周围用品的体积。突然,我的目光集中在我的未开封清风面巾纸上,有了,就只算单张面巾纸的体积。
既然算单张的,就要先算整包的。我拿出尺子,分别量出了长,宽,高。
长:7。4厘米 体积为:7·4×5。6×2。5=103。6立方厘米
宽:5,6厘米 但是,我突然想到,面巾纸是可以压的扁一点的,这不
高:2。5厘米 就减少了体积吗?我思考了几分钟,想到既然是测量未开封的的,就应该是未压扁的。想到这,我又看到了我的数据。可能是量的是压得。最后仔仔细细量重新变动数据。
长:7。5厘米 体积为:7·5×5。5×2。5=立方厘米
宽:5,5厘米 眼看就要成功了,可我猛地发现,包装塑料纸也是有体
高:2。5厘米 积的,可是又有什么办法。思考许久,忽然,我想到了一个很原始的办法。我抽出里面的面巾纸,把塑料包装纸对折4着,这成了一个小正方体。
长:2。1厘米 体积为:2。1×1。8×0。3=1。134立方厘米
宽:1,8厘米 虽然可能有误,但是我也想不出其他办法了。
高:0。3厘米
最后算式:(103,125—1。134)÷10(一包面巾纸里有10张)=10。1991立方厘米
经过这次,我终于享受到写数学小论文的快乐。
一、从具体的感性认识入手,积极促进学生的思维 在数学基础知识教学中,应加强形成概念、法则、定律等过程的教学,这也是对学生进行初步的逻辑思维能力培养的重要手段。然而,这方面的教学比较抽象,加之学生年龄小,生活经验缺乏,抽象思维能力较差,学习时比较吃力。学生学习抽象的知识,是在多次感性认识的基础上产生飞跃,感知认识是学生理解知识的基础,直观是数学抽象思维的途径和信息来源。我在教学时,注意由直观到抽象,逐步培养学生的抽象思维的能力。在教学“角”这部分知识时,为了使学生获得关于角的正确概念,我首先引导学生观察实物和模型:如三角板、五角星和张开的剪刀、扇子形成的角等,从这些实物中抽象出角。接着再通过实物演示,将两根细木条的一端钉在一起,旋转其中的一根,直观地说明由一条射线绕着它的端点旋转可以得到大小不同的角,并让学生用准备好的学具亲自动手演示,用运动的观点来阐明角的概念,并为引出平角、周角等概念做了准备。 二、从新旧知识的联系入手,积极发展学生思维 数学知识具有严密的逻辑系统。就学生的学习过程来说,某些旧知识是新知识的基础,新知识又是旧知识的引伸和发展,学生的认识活动也总是以已有的旧知识和经验为前提。我每教一点新知识都尽可能复习有关的旧知识,充分利用已有的知识来搭桥铺路,引导学生运用知识迁移规律,在获取新知识的过程中发展思维。如在教加减法各部分的关系时,我先复习了加法中各部分的名称,然后引导学生从35+25=60中得出:60-25=35;60-35=25。通过比较,可以看出后两算式的得数实际上分别是前一个算式中的加数,通过观察、比较,让学生自己总结出求加数的公式:一个加数=和-另一个加数。这样引导学生通过温故知新,将新知识纳入原来的知识系统中,丰富了知识,开阔了视野,思维也得到了发展。 三、精心设计问题,引导学生思维 小学生的独立性较差,他们不善于组织自己的思维活动,往往是看到什么就想到什么。培养学生逻辑思维能力,主要是在教学过程中通过教师示范、引导、指导,潜移默化地使学生获得一些思维的方法。教师在教学过程中精心设计问题,提出一些富有启发性的问题,激发思维,最大限度地调动学生的积极性和主动性。学生的思维能力只有在思维的活跃状态中,才能得到有效的发展。在教学过程中,教师应根据教材重点和学生的实际提出深浅适度,具有思考性的问题,这样就将每位学生的思维活动都激活起来,通过正确的思维方法,掌握新学习的知识。 四、进行说理训练,推动学生思维 语言是思维的工具,是思维的外壳,加强数学课堂的语言训练,特别是口头说理训练,是发展学生思维的好办法。在学习“小数和复名数”这一章节时,由于小数与复名数相互改写,需要综合运用的知识较多,这些又恰恰是学生容易出错的地方。怎样突破难点,使学生掌握好这一部分知识呢?我在课堂教学中注重加强说理训练。在学生学完例题后,启发总结出小数与复名数相互改写的方法,再让学生根据方法讲出做题的过程。通过这样反复的说理训练,收到了较好的效果,既加深了学生对知识的理解,又推动了思维能力的发展。
思维导图是直观形象的整理思路的方法,最近我经常用到,从写论文到策划一个东西,再到读书学习笔记,非常实用。推荐使用xmind 这个思维导图工具,另外就是本文所提到的,手绘才是王道。经常有人给我留言或发邮件请教如何更有效使用思维导图来进行快速学习和通过考试。今天有时间来谈谈我的经验和感悟,欢迎大家发表各自的看法。今天先说使用如何使用思维导图来进行快速学习的心得,如果你不知道什么是思维导图,请阅读什么是思维导图?1、制作一张好的思维导图需要经常多次的修改。大家经常在书中或网上看到一些非常漂亮和制作精美的思维导图,但自己总也做不出来,不管是手绘的还是电脑做的,总是没有别人的好看,只是简单的连线。我平时制作一张思维导图总要是经过多次修改,如果是在PPT上使用或打印出来,一般还需要特意配上一些合适的图片。手绘思维导图时,也经常做好几次才能出做出来。思维导图在制作的时候,需要根据自己的想法进行调整,而这个调整要修改好几次,才能最终成形。2、手绘的思维导图记忆效果要比电脑制作的好。使用软件来做思维导图,虽然很方便但绝对不如手绘的思维导图印象深刻。如果觉得全部手绘麻烦,也可以先用软件做思维导图,做好之后自己在手绘一张。你会发现亲手画一张思维导图之后,会记忆的更加深刻。3、手绘思维导图时,最好使用多种颜色的荧光笔。思维导图最主要的一点就是每个分支使用不同的颜色,不单看起来好看,手绘时也会加深你的印象。有的时候会忘了内容,但可以使用颜色来回忆。使用多种颜色会让你的右脑印象更加深刻。4、我画的图很难看是否可以不画图。你就是画的就是再难看,只要你画了绝对会比你不画记忆的要牢固。画画可以锻炼你的右脑,并使用右脑来记忆。一个合适的图形会让你牢牢记住。你还可以花些时间学习一下简笔画或阅读一下《向艺术家一样思考》系列丛书,这些都会帮忙提高绘画技能。要记得绘画是天生的技能,只要花很少的时间就可以学到很多的东西。5、当你你制作的思维导图过大的,可以把主要部分分解成单独的思维导图。有很多的时候,制作的思维导图会非常大,看起来也很不方便。这个时间你可以这个思维导图的关键或主要部分分解成单独的思维导图。比如学生为某一学科的教科学制作时思维导图时就可以按重要性或章节分解成单独的思维导图。6、使用思维导图来简化书的内容,确定整体框架,领悟核心内容。把一本书制作成一个思维导图时,可以通过使用关键字和要点来确定这本书的主要思维。80%、90%书的内容都可以简化为一段话、一句话、一个短语或者一个字。下面是我阅读所得到的感悟。《道德经》说的就是一个“道”,《论语》是一个“德”,《智慧书》说是“智”字。7、当你想深入学习一种知识的,要海量的阅读本类别的经典书籍,并通过思维导图来总结你学到的知识和自己的感悟。总结一本书可以入门,总结10本书可以让你了解整体框架,100本书+2000小时实际经验可以让你达到中等水平。如果你能把这100本或1000本总结成一本书或1张图,并且能把这张图上的内容解释给一个10岁的孩子或完全不了解这种知识的人听明白,你已经是这一行的专家级人物了。阅读的书籍最好是本行业的行家推荐的书籍。千万要不要追求数量,要追求质量。8、万丈高楼平地起。你阅读专业书籍,可能一时做不出来思维导图。这个时候你需要制作一张专业术语的思维导图,把这些专业术语按类别和重要程度进行分类。当你把这张思维导图制作完成后,并能说清这一术语的含义,检验办法如上能让给一个10岁的孩子或完全不了解这种知识的人明白你说的意思。这时你再把这书本做成思维导图,你会发现很容易。如果还是不满意,参考第7点。9、使用思维导图来确认没有掌握的知识。使用软件把教科书的每一章都制作成单独的思维导图,利用软件的笔记功能把主要内容、课堂笔记和个人观点插入到节点的关键字上,把这些章节按类别和重要程序汇总或链接到一张图中去。全部制作完成之后,从最重要的章节开始,完全按记忆来手绘这一章的内容,越详细越好。全部完成之后,看看你自己到底掌握了多少知识。再把你自己手绘的思维导图跟软件制作的思维导图做下对比。没有完成的内容就是你没掌握或不会的内容,这部分需要更点复习。不断的重复这个过程,一直到你不需要任何帮助或提示就能全部完成所有的思维导图为止。10、使用思维导图来快速复习。做完的思维导图打印出来,帖在床边上放在办公室或其它你一天经常在的地方,早上起来、晚上睡觉前,工作中休息时都可以看一遍。复习的思维导图不要太大。而且主要分支最好在(7+-2)之内,最多不能超过9个,不要超过7层,一篇课文或一章最合适。一般来说看完一篇的思维导图只需要2-5分钟或者更短,复习完一本书也只需要20-30分钟,一天最少要复习二遍。还可以把思维导图转为图像,设为电脑桌面、屏幕保护和传到手机中。除了早晚还可以做车时、吃饭前、饭后、休息等一切可以利用的时间来不断的复习。同时重复第9点。11、使用思维导图来进行考试。在考试时,可以画一个最简单的思维导图,把考试的问题按掌握程度、问题分值和答题时间进行一下排列。原则上按答题时间最少、分值最多和掌握程度来完成考试问题。12、找一个同伴一起完成思维导图,会让你更有动力和效率。两个人一起制作思维导图速度会快上很多,而且可以分别阅读不同的书籍、参考书并把心得和两人的课堂笔记都整合到思维导图中,知识面和准确度会更高。复习和测试的时候可以连轮流考核监督,两个学习比一个人学习要有动力的多,而且花费的时间会更少。
《看完就用的思维导图》(刘艳)电子书网盘下载免费在线阅读
链接:
书名:看完就用的思维导图
作者:刘艳
豆瓣评分:
出版社:中信出版社
出版年份:2019-7
内容简介:
很多人对思维导图望而却步,认为这是一项费时费力且需要绘画基础的工具。市场上关于思维导图的书很多,笔记、记忆、写作、创意……不少人质疑,思维导图的作用是否被过分高估?
其实,思维导图核心的功能在于呈现思考的过程。不管是输入还是输出信息,思维导图的使用过程都可以分为三步:1.罗列信息;2.在信息之间寻找关联;3.用信息完成决策。
《看完就用的思维导图》从学习、生活和工作三个角度,重点阐述了思维导图的落地应用。书中包含来自企业员工、学生和作者本人的近150张手绘思维导图,为个人和组织提供了不同场景下的实用解决方案。
学习篇:高效笔记整理术/读书笔记/听记导图
生活篇:出行清单/账单统计/基金理财/日常创意
工作篇:制作简历/时间管理/目标管理/工作汇报/高效会议
作者简介:
刘艳
学而思网校大师课签约导师,果壳网“在行一点”签约思维导图专家导师,罗辑思维“得到”签约导图专家,著有畅销书《你一学就会的思维导图》。
思维导图发明人东尼·博赞推荐的“东尼·博赞授权主认证讲师” (Master TBLI),博赞思维导图授权认证资深讲师(Advanced TBLI in Mind Mapping)。
曾荣获第8 届世界思维导图锦标赛“全球总冠军”,并打破了世界思维导图锦标赛举办以来三项比赛的成绩纪录,成为亚洲首位获得此殊荣的人。在第9、10 届世界思维导图锦标赛中担任中国队总教练,也是世界思维导图理事会中国区的副裁判长。
刘艳长期致力于思维导图的教学和推广,受聘担任中国管理科学研究院素质教育研究所研究员,曾受邀在清华大学、长江商学院、强生集团、东南卫视、北汽集团、中国航天科工集团、惠普中国、央视国际等知名机构和企业讲授高端思维导图课程。
人的步调有快有慢,该紧的就是那么几步,高考、大学毕业、考研、择业、择偶。对于四年大学生活,毕业就是我们最该紧一紧步子的那步。如何走好毕业这一步,小毕来给你们来支招。
(一)选题方面。毕业论文选题是否得当会直接影响毕业论文的质量,常见的选题方面的问题有以下几种。1.选题过大。毕业论文的选题应选取有科学价值或实用价值有现实可能性、大小适中的题目。选题太大,难以把握问题的切人角度。此外,题目太大,难以深人细致地剖析问题,容易泛泛而论。2.选题过难。由于学生受时间、精力的限制,以及材料方面的局限,应注意选题的难度既不要过大,也不要超出自己所学的专业领域。虽然毕业论文的选题不能过大过难,但也不能太小、太简单,否则毕业论文的工作量不够,质量也不会很高。3.选题陈旧。选题不要太陈旧,如果查阅文献有太多类似的文章,缺乏新鲜感,最好换一个话题。切忌一切照搬别人的材料和结论,应该在前人的基础上,敢于提出前人没有提出或尚未完全解决的问题,最好多选一点与现实生活、当代经济与科学技术发展密切相关的课题,注重研究现实生活中出现的新问题。(二)观点方面。观点是文章的灵魂,确立一个明确的观点是毕业论文写作的关键,观点要力求正确,有新意,有理有据,这是写好毕业论文的基本前提。常见的观点方面的问题有以下几种。1.基本观点错误或有偏颇。基本观点是指统率全篇毕业论文的基本论点与总结论。如果基本观点错了,其他一切论点、论据都不能成立,整篇论文也就站不稳脚跟了。2.观点主观、片面。要避免毕业论文的观点走极端,妄下结论,也要防止观点只顾一头,缺少唯物辩证法所要求的全面性。例如,有一篇论文为了说明企业分配制度改革,提出用“三铁”打破工人的“铁饭碗”,这“三铁”是“铁心肠、铁手腕、铁面孔”,这就在批判“铁饭碗”时走了极端,把工人放在被改革的一面。又如,有的是捕风捉影,主观臆断,任意夸大或缩小,然后就匆忙地谈看法、下结论,这样的论文,缺乏准确性和真实性,所以也就缺乏科学性。