首页

> 期刊论文知识库

首页 期刊论文知识库 问题

曲线积分论文题目

发布时间:

曲线积分论文题目

这个题目的话是可以求解的,根据高等数学的曲线积分来进行求解的个人觉得还是比较简单的,因为都是通过公式的,一步一步套进去的

在xoy面上的积分域对称性,一是关于y轴对称,一是关于x轴对称,还有关于y = x的轮换对称取L:x² + y² = 2,积分域符合以上三个对称性质,之后就看被积函数的奇偶性 ∮L (2x + 1)(y⁷ + 1) ds= ∮L [2x(y⁷ + 1) + (y⁷ + 1)] ds2x(y⁷ + 1)对于x是奇函数,关于y轴旋转对称,所以∮L 2x(y⁷ + 1) ds = 0y⁷对于y是奇函数,关于x轴旋转对称,所以∮L y⁷ ds = 0 ∮L [2x(y⁷ + 1) + (y⁷ + 1)] ds= ∮L ds= L的长度= 2 * π * √2= 2√2π

这里P=[f(x)-1]y, Q=f(x).

由于曲线积分与路径无关,故DP/Dy=DQ/Dx, 有f'(x)=f(x)-1,即

# f'(x) -f(x)+1=0.

微分方程#的通解是

f(x)=e^[∫1dx] {∫e^[∫(-1)dx] ·(-1)dx+C}

=e^x {-∫e^(-x)dx+C}

=e^x {e^(-x)+C},

即f(x)=1+Ce^x.

将f(0)=2代入,求得C=1.

故f(x)=1+e^x.

因此,答案选B.

注:①手机里没有表示偏导的符号,故用英文字母D代替了;②微分方程#的通解是根据一阶线性微分方程的通解公式给出的,这个通解公式教材里有。

求解过程与结果如下所示,满意望采纳!

曲线积分论文答辩

1、选题尽量与日常工作结合起来一是便于收集数据,二是通过论文写作,对考生今后工作也有帮助,一举两得。反之,选一个与工作毫不相干的题目,从头开始,只能落得个事倍功半的结果。2、选择感兴趣的题目做论文是原创性的工作,因此,考生对某个方面感兴趣,会促使自己积极主动地探讨这方面的问题,强烈的成就动机将是做一篇优秀论文的基础。3、学术类文献综述类题目尽量不要选对所有参加自学考试的考生来讲,做学术论文是一件极具挑战性的工作,绝不是想象中那样轻松。自考过程中,考生可以通过强化复习通过考试,但做研究是完全不同的过程。只有在考生花费精力查阅大量文献后,才能知道可以做什么课题,还需要考生自己去收集数据,分析数据,撰写报告。综述性论文需要查阅大量的参考文献,从选题到提交论文,一般仅有3个月时间,真正码字可能就一两个星期的时间,在这么短的时间内要查阅到写综述的参考文献,难度相当大。时间短难度大,很少考生能将这些类型的论文写得好和有一定深度。不过,如果你实力很强,那也是可以的。当然,每次没能通过论文答辩的考生,绝大部分都是选择了这些雷区类型题目,希望大家吸取教训。

教育专业毕业论文题目只是需要题目吗?论文呢?

一、八岁的高斯发现了数学定理

德国著名大科学家高斯(1777~1855)出生在一个贫穷的家庭。高斯在还不会讲话就自己学计算,在三岁时有一天晚上他看着父亲在算工钱时,还纠正父亲计算的错误。

长大后他成为当代最杰出的天文学家、数学家。他在物理的电磁学方面有一些贡献,现在电磁学的一个单位就是用他的名字命名。数学家们则称呼他为“数学王子”。

他八岁时进入乡村小学读书。教数学的老师是一个从城里来的人,觉得在一个穷乡僻壤教几个小猢狲读书,真是大材小用。而他又有些偏见:穷人的孩子天生都是笨蛋,教这些蠢笨的孩子念书不必认真,如果有机会还应该处罚他们,使自己在这枯燥的生活里添一些乐趣。

这一天正是数学教师情绪低落的一天。同学们看到老师那抑郁的脸孔,心里畏缩起来,知道老师又会在今天捉这些学生处罚了。

“你们今天替我算从1加2加3一直到100的和。谁算不出来就罚他不能回家吃午饭。”老师讲了这句话后就一言不发的拿起一本小说坐在椅子上看去了。

教室里的小朋友们拿起石板开始计算:“1加2等于3,3加3等于6,6加4等于10……”一些小朋友加到一个数后就擦掉石板上的结果,再加下去,数越来越大,很不好算。有些孩子的小脸孔涨红了,有些手心、额上渗出了汗来。

还不到半个小时,小高斯拿起了他的石板走上前去。“老师,答案是不是这样?”

老师头也不抬,挥着那肥厚的手,说:“去,回去再算!错了。”他想不可能这么快就会有答案了。  可是高斯却站着不动,把石板伸向老师面前:“老师!我想这个答案是对的。”

数学老师本来想怒吼起来,可是一看石板上整整齐齐写了这样的数:5050,他惊奇起来,因为他自己曾经算过,得到的数也是5050,这个8岁的小鬼怎么这样快就得到了这个数值呢?

高斯解释他发现的一个方法,这个方法就是古时希腊人和中国人用来计算级数1+2+3+…+n的方法。高斯的发现使老师觉得羞愧,觉得自己以前目空一切和轻视穷人家的孩子的观点是不对的。他以后也认真教起书来,并且还常从城里买些数学书自己进修并借给高斯看。在他的鼓励下,高斯以后便在数学上作了一些重要的研究了。

二、为了中华民族的富强 -------苏步青的故事

苏步青1902年9月出生在浙江省平阳县的一个山村里。虽然家境清贫,可他父母省吃俭用,拼死拼活也要供他上学。他在读初中时,对数学并不感兴趣,觉得数学太简单,一学就懂。可量,后来的一堂数学课影响了他一生的道路。

那是苏步青上初三时,他就读浙江省六十中来了一位刚从东京留学归来的教数学课的杨老师。第一堂课杨老师没有讲数学,而是讲故事。他说:“当今世界,弱肉强食,世界列强依仗船坚炮利,都想蚕食瓜分中国。中华亡国灭种的危险迫在眉睫,振兴科学,发展实业,救亡图存,在此一举。„天下兴亡,匹夫有责‟,在座的每一位同学都有责任。”他旁征博引,讲述了数学在现代科学技术发展中的巨大作用。这堂课的最后一句话是:“为了救亡图存,必须振兴科学。数学是科学的开路先锋,为了发展科学,必须学好数学。”苏步青一生不知听过多少堂课,但这一堂课使他终身难忘。

杨老师的课深深地打动了他,给他的思想注入了新的兴奋剂。读书,不仅为了摆脱个人困境,而是要拯救中国广大的苦难民众;读书,不仅是为了个人找出路,而是为中华民族求新生。当天晚上,苏步青辗转反侧,彻夜难眠。在杨老师的影响下,苏步青的兴趣从文学转向了数学,并从此立下了“读书不忘救国,救国不忘读书”的座右铭。一迷上数学,不管是酷暑隆冬,霜晨雪夜,苏步青只知道读书、思考、解题、演算,4年中演算了上万道数学习题。现在温州一中(即当时省立十中)还珍藏着苏步青一本几何练习薄,用毛笔书写,工工整整。中学毕业时,苏步青门门功课都在90分以上。

17岁时,苏步青赴日留学,并以第一名的成绩考取东京高等工业学校,在那里他如饥似渴地学习着。为国争光的信念驱使苏步青较早地进入了数学的研究领域,在完成学业的同时,写了30多篇论文,在微分几何方面取得令人瞩目的成果,并于1931年获得理学博士学位。获得博士之前,苏步青已在日本帝国大学数学系当讲师,正当日本一个大学准备聘他去任待遇优厚的副教授时,苏步青却决定回国,回到抚育他成长的祖任教。回到浙大任教授的苏步青,生活十分艰苦。面对困境,苏步青的回答是“吃苦算得了什么,我甘心情愿,因为我选择了一条正确的道路,这是一条爱国的光明之路啊!”  这就是老一辈数学家那颗爱国的赤子之心。

三、从小立志 科学救国------ 熊庆来的故事

熊庆来(1893-1969)是云南弥勒县人,中国现代数学的先驱,为中国数学事业的发展做出了杰出贡献。  熊庆来的父亲熊国栋,精通儒学,但更喜欢新学,思想很开明,对熊庆来的影响很大。少年时的熊庆来从他父亲那里常听到有关孙中山民主革命的事情,这在幼年熊庆来的心田播下了爱国的种子。

1907年,熊庆来考入昆明的云南方言学堂,不久又升入云南高等学堂。当时满清王朝已日薄西山,各地的反清斗争风起云涌,抗捐、抗税、罢课、罢市、兵变遍及全国,清政府陷入于风雨飘摇之中。熊庆来由于参加了“收回矿山开采权”的抗法反清的示威游行而遭到学校的记过处分。现实的生活与斗争命命名熊庆来认识到:要使国家富强,必须掌握科学,科学能强国富民。

1913年,熊庆来赴欧留学。1914年,第一次世界大战爆发,他从比利时经荷兰、英国,辗转到了法国巴黎。8年间先后获得高等数学、力学及天文学等多科证书,并获得理学硕士学位。1921年,28岁的熊庆来学成归国,一心想学以致用,救民于水火。1949年6月,国民党反动政府趁熊庆来去巴黎参加国际会议的机会,解散了熊庆来苦心经营12年的云南大学。年近花甲的熊庆来怀着“壮志难酬,报国无门”的心情,决定滞留在法国继续从事函数论的研究。

“……祖国欢迎你,人民欢迎你!欢迎你回来参加社会主义建设的伟大事业……”1957年4月,周总理给熊庆来写信,动员他回国。同年6月,熊庆来在完成了函数论专著稿后,毅然启程,回到了祖国的怀抱。他表示,愿在社会主义的光芒中鞠躬尽瘁于祖国的学术建设事业。在回国后的7年中,他在国内外学术杂志上发表了近20篇具有世界水平的数学论文。还培养了杨乐、张广厚等一批数学人才,为祖国赢得了荣誉,表现了这位七旬老人热爱祖国的赤子之心。

1969年,一代宗师、著名数学家熊庆来先生与世长辞。临终之前他还表示为人民鞠躬尽瘁,死而后已。

四、数学奇才、计算机之父——冯·诺依曼

约翰·冯·诺依曼 ( John Von Nouma,1903-1957),美藉匈牙利人,1903年12月28日生于匈牙利的布达佩斯,父亲是一个银行家,家境富裕,十分注意对 孩子的教育.冯·诺依曼从小聪颖过人,兴趣广泛,读书过目不忘.据说他6岁时就能用古 希腊语同父亲闲谈,一生掌握了七种语言.最擅德语,可在他用德语思考种种设想时,又能以阅读的速度译成英语.他对读过的书籍和论文.能很快一句不差地将内容复述出来,而且若干年之后,仍可如此.1911年一1921年,冯·诺依曼在布达佩斯的卢瑟伦中学读书期间,就崭露头角而深受老师的器重.在费克特老师的个别指导下并合作发表了第一篇数学论文,此时冯·诺依曼还不到18岁.1921年一1923年在苏黎世大学学习.很快又在1926年以优异的成绩获得了布达佩斯大学数学博士学位,此时冯·诺依曼年仅22岁.1927年一1929年冯·诺依曼相继在柏林大学和汉堡大学担任数学讲师。1930年接受了普林斯顿大学客座教授的职位,西渡美国.1931年成为该校终身教授.1933年转到该校的高级研究所,成为最初六位教授之一,并在那里工作了一生. 冯·诺依曼是普林斯顿大学、宾夕法尼亚大学、哈佛大学、伊斯坦堡大学、马里兰大学、哥伦比亚大学和慕尼黑高等技术学院等校的荣誉博士.他是美国国家科学院、秘鲁国立自然科学院和意大利国立林且学院等院的院土. 1954年他任美国原子能委员会委员;1951年至1953年任美国数学会主席.

1954年夏,冯·诺依曼被使现患有癌症,1957年2月8日,在华盛顿去世,终年54岁.

五、数学奇才——伽罗华

1832年5月30日晨,在巴黎的葛拉塞尔湖附近躺着一个昏迷的年轻人,过路的农民从枪伤判断他是决斗后受了重伤,就把这个不知名的青年抬到医院。第二天早晨十点钟,他就离开了人世。数学史上最年轻、最有创造性的头脑停止了思考。人们说,他的死使数学发展推迟了好几十年。这个青年就是死时不满21岁的伽罗华。

伽罗华生于离巴黎不远的一个小城镇,父亲是学校校长,还当过多年市长。家庭的影响使伽罗华一向勇往直前,无所畏惧。1823年,12岁的伽罗华离开双亲到巴黎求学,他不满足呆板的课堂灌输,自己去找最难的数学原著研究,一些老师也给他很大帮助。老师们对他的评价是“只宜在数学的尖端领域里工作”。  1828年,17岁的伽罗华开始研究方程论,创造了“置换群”的概念和方法,解决了几百年来使人头痛的方程来解决问题。伽罗华最重要的成就,是提出了“群”的概念,用群论改变了整个数学的面貌。1829年5月,伽罗华把他的成果写成论文,递交法国科学院,但伴随着这篇杰作而来的是一连串的打击和不幸。先是父亲因不堪忍受教士诽谤而自杀,接着因他的答辩既简捷又深奥令考官们不满而未能进入著名的巴黎综合技术学校。至于他的论文,先是被认为新概念太多又过于简略而要求重写;第二份推导详尽的稿子又因审稿人病逝而下落不明;1831年1月提交的第三份论文又因评阅人不能全部看懂而被否定。

青年伽罗华一方面追求数学的真知,另一方面又献身于追求社会正义的事业。在1831年法国的“七月革命”中,作为高等师范学校新生,伽罗华率领群众走上街头,抗议国王的专制统治,不幸被捕。在狱中,他染上了霍乱。即使在这样的恶劣条件下,伽罗华仍然继续搞他的数学研究,并且写成了论文,准备出狱后发表。出狱不久,因为卷入一场无聊的“爱情”纠葛而决斗身亡。

伽罗华去世后16年,他留存下来的60页手稿才得以发表,科学界才传遍了他的名字。

六、“数学之神”——阿基米德

阿基米德公元前287年出生在意大利半岛南端西西里岛的叙拉古。父亲是位数学家兼天文学家。阿基米德从小有良好的家庭教养,11岁就被送到当时希腊文化中心的亚历山大城去学习。在这座号称"智慧之都"的名城里,阿基米德博阅群书,汲取了许多的知识,并且做了欧几里得学生埃拉托塞和卡农的门生,钻研《几何原本》。

后来阿基米德成为兼数学家与力学家的伟大学者,并且享有"力学之父"的美称。其原因在于他通过大量实验发现了杠杆原理,又用几何演泽方法推出许多杠杆命题,给出严格的证明。其中就有著名的"阿基米德原理",他在数学上也有着极为光辉灿烂的成就。尽管阿基米德流传至今的著作共只有十来部,但多数是几何著作,这对于推动数学的发展,起着决定性的作用。

《砂粒计算》,是专讲计算方法和计算理论的一本著作。阿基米德要计算充满宇宙大球体内的砂粒数量,他运用了很奇特的想象,建立了新的量级计数法,确定了新单位,提出了表示任何大数量的模式,这与对数运算是密切相关的。

《圆的度量》,利用圆的外切与内接96边形,求得圆周率π为: <π< ,这是数学史上最早的,明确指出误差限度的π值。他还证明了圆面积等于以圆周长为底、半径为高的正三角形的面积;使用的是穷举法。  《球与圆柱》,熟练地运用穷竭法证明了球的表面积等于球大圆面积的四倍;球的体积是一个圆锥体积的四倍,这个圆锥的底等于球的大圆,高等于球的半径。阿基米德还指出,如果等边圆柱中有一个内切球,则圆柱的全面积和它的体积,分别为球表面积和体积的 。在这部著作中,他还提出了著名的"阿基米德公理"。  《抛物线求积法》,研究了曲线图形求积的问题,并用穷竭法建立了这样的结论:"任何由直线和直角圆锥体的截面所包围的弓形(即抛物线),其面积都是其同底同高的三角形面积的三分之四。"他还用力学权重方法再次验证这个结论,使数学与力学成功地结合起来。

《论螺线》,是阿基米德对数学的出色贡献。他明确了螺线的定义,以及对螺线的面积的计算方法。在同一著作中,阿基米德还导出几何级数和算术级数求和的几何方法。

《平面的平衡》,是关于力学的最早的科学论著,讲的是确定平面图形和立体图形的重心问题。  《浮体》,是流体静力学的第一部专著,阿基米德把数学推理成功地运用于分析浮体的平衡上,并用数学公式表示浮体平衡的规律。

《论锥型体与球型体》,讲的是确定由抛物线和双曲线其轴旋转而成的锥型体体积,以及椭圆绕其长轴和短轴旋转而成的球型体的体积。

丹麦数学史家海伯格,于1906年发现了阿基米德给厄拉托塞的信及阿基米德其它一些著作的传抄本。通过研究发现,这些信件和传抄本中,蕴含着微积分的思想,他所缺的是没有极限概念,但其思想实质却伸展到17世纪趋于成熟的无穷小分析领域里去,预告了微积分的诞生。

正因为他的杰出贡献,美国的.贝尔在《数学人物》上是这样评价阿基米德的:任何一张开列有史以来三个最伟大的数学家的名单之中,必定会包括阿基米德,而另外两们通常是牛顿和高斯。不过以他们的宏伟业绩和所处的时代背景来比较,或拿他们影响当代和后世的深邃久远来比较,还应首推阿基米德。

七、数学家的故事——祖冲之

祖冲之(公元429-500年)是我国南北朝时期,河北省涞源县人.他从小就阅读了许多天文、数学方面的书籍,勤奋好学,刻苦实践,终于使他成为我国古代杰出的数学家、天文学家.

祖冲之在数学上的杰出成就,是关于圆周率的计算.秦汉以前,人们以"径一周三"做为圆周率,这就是"古率".后来发现古率误差太大,圆周率应是"圆径一而周三有余",不过究竟余多少,意见不一.直到三国时期,刘徽提出了计算圆周率的科学方法--"割圆术",用圆内接正多边形的周长来逼近圆周长.刘徽计算到圆内接96边形, 求得π=,并指出,内接正多边形的边数越多,所求得的π值越精确.祖冲之在前人成就的基础上,经过刻苦钻研,反复演算,求出π在与之间.并得出了π分数形式的近似值,取为约率 ,取为密率,其中取六位小数是,它是分子分母在1000以内最接近π值的分数.祖冲之究竟用什么方法得出这一结果,现在无从考查.若设想他按刘徽的"割圆术"方法去求的话,就要计算到圆内接16,384边形,这需要化费多少时间和付出多么巨大的劳动啊!由此可见他在治学上的顽强毅力和聪敏才智是令人钦佩的.祖冲之计算得出的密率, 外国数学家获得同样结果,已是一千多年以后的事了.为了纪念祖冲之的杰出贡献,有些外国数学史家建议把π=叫做"祖率".

祖冲之博览当时的名家经典,坚持实事求是,他从亲自测量计算的大量资料中对比分析,发现过去历法的严重误差,并勇于改进,在他三十三岁时编制成功了《大明历》,开辟了历法史的新纪元.

祖冲之还与他的儿子祖暅(也是我国著名的数学家)一起,用巧妙的方法解决了球体体积的计算.他们当时采用的一条原理是:"幂势既同,则积不容异."意即,位于两平行平面之间的两个立体,被任一平行于这两平面的平面所截,如果两个截面的面积恒相等,则这两个立体的体积相等.这一原理,在西文被称为卡瓦列利原理, 但这是在祖氏以后一千多年才由卡氏发现的.为了纪念祖氏父子发现这一原理的重大贡献,大家也称这原理为"祖暅原理".

数学奇才、计算机之父——冯·诺依曼

曲线积分的应用论文参考文献

我也急。明天交,还没有逼出来。

简析高等数学中的数学结构与数学理解【摘要】文章从分析高等数学的内容结构出发,代写论文 对数学结构与数学理解所起的作用,作了简单的剖析。【关键词】高等数学;数学结构;数学理解对数学来说,结构无处不在,结构是由许多节点和联线绘成的稳定系统。代写毕业论文 数学中最基本的就是概念结构,它们之间的联系组成了知识网络的结构,剖析高等数学的知识结构,有助于加深对高等数学的理解。由于理解是学习数学的关键,学生可以通过对数学知识、技能、概念与原理的理解和掌握来发展他们的数学能力。从认知结构,特别是结构的建构观点来看,学习一个数学概念、原理、法则,如果在心理上能够组织起适当的、有效的认知结构,并使其成为个人内部知识网络的一部分,那么这才是理解。而其中所需要做的具体工作,就是需要寻找并建立恰当的新、旧知识之间的联系,使概念的心理表象建构得比较准确,与其它概念表象的联系比较合理,比较丰富和紧密。在学习一个新概念之前,头脑里一定要具备与之相关的储备知识,它们是支撑新概念形成的依托,并且这些有关概念的结构,是能够被调动起来的,使之与新概念建立联系,否则就不会产生理解。所以要使新旧知识能够互相发生作用,建立联系,有必要建立一个相应的数学结构,以加强对基础知识的理解。布鲁纳的认知结构学习论认为,知识结构的学习有助于对知识的理解和记忆,也有助于知识的迁移。在微积分的学习中,通过对其结构的剖析,使学习者头脑中的数学结构处于不断形成和发展之中,并将其发展的结构与已形成的结构统一起来,以达到对数学知识的真正理解。1高等数学内容的结构特点高等数学以极限思想为灵魂,以微积分为核心,包括级数在内,它们都是从量的方面研究事物运动变化的数学方法,本质上是几种不同性质的极限问题。连续性质是自变量增量趋于零时,函数对应增量的极限;导数是自变量增量趋于零时,函数的增量(偏增量)与自变量增量之比(差商)的极限;一元或多元积分都是和式的极限,而无穷级数则是密切联系序列极限的另一种极限。微分是从微观上揭示函数的有关局部性质,积分则从宏观上揭示函数的有关整体性质,它们之间通过微积分基本定理联系起来;广义积分把无穷级数与积分的内部沟通起来;而微分方程又从方程的角度把函数、微分、积分有机地联系起来,展示了它们之间的内在的依赖转化关系。2如何利用结构加强理解2.1注重整体结构理解当代著名的认知心理学家皮亚杰认为“知识是主体与环境或思维与客体相互交换而导致的知觉建构,代写硕士论文 知识不是客体的副本,也不是有主体决定的先验意识。”虽然现今的教材基本上按一定框架编写,但其中相关的知识点要在学生的头脑中形成一个网络,并达到真正理解,还需要一个很长的过程,在这个过程中需要师生的共同努力。在教学中教师应将数学逻辑结构与心理结构统一起来,把学生看成是学习活动的主体,引导学生根据自己头脑中已有的知识结构和经验主动建构新的知识结构。心理学家J.R安德森认为:通过多种方式应用我们从自己的经验中得到知识,认知才能进行。理解知识的前提是理解它如何在头脑中表征的,这个过程主要表现为学生对概念的理解和掌握,在此基础上再加以运用,达到更深意义上的掌握。由于高等数学具有清晰的数学结构,因而其相关知识学习中也充满了知识的同化过程。在高等数学知识结构中,微积分建立在极限的基础之上。因此在高等数学中,新知识获得要依赖于认知结构中原有的适当观念,同时新旧知识还必须要有相互作用,即新旧意义的同化,才能形成高度分化的认知结构。如微分是差商的极限,积分为微分的逆运算,而定积分则为和的极限,只有将这些新旧概念在头脑中不断同化作用,才能形成新的高级知识结构网络,才能加强对相应数学知识的真正理解。这个过程实际上是一个内部认知过程,它要求学习者要有积极主动的精神,即有意义学习倾向;同时还要在学习者的认知结构中找到适当的同化点。学生的认知结构是从所接受的知识结构转化而来的,因此教学是一个动态的过程。2.2注重结构中的概念理解数学结构是有许多个结构所组成的,而个别的概念一定要融人其它概念,合成的概念结构才有用。数学中的概念往往不是孤立的,它们之间存在着一定的联系,理清概念之间的联系,既有助于数学结构的建立,有助于新的概念地自然引入,从而有助于对数学知识的理解与掌握。在微积分这部分内容中,多元函数的极限、连续、偏导数、全微分、方向导数这组概念之间的联系,与一元函数中的极限、连续、偏导数、微分概念之间的联系,这两者之间既有相同之处,又有不同之处,而且每个相对的概念之间又存在一定的联系与区别,多元函数中许多微分概念是在一元函数基础上的推广与发展,它们是密不可分。积分学中的定积分、重积分、二类曲线积分、二类曲面积分之间也存在着类似的关系。通过联想,可以从二维空间进入到三维空间,直至到更多维的空间,从有形进入无形,从现实世界进入虚拟世界,这样步步渗入,步步构建,不断引入新概念,不断更新组建数学结构,使学生头脑中的数学结构不断更新,不断完善,从而达到对知识的真正理解与掌握。2.3在教学中利用数学结构加强学生的数学理解教师对数学结构的理解对学生建立起自身的数学结构起着不可缺少的作用,代写医学论文 只有理解数学结构,才能领会到数学逻辑结构所隐含的精神思想,才能建立自己的数学结构,才能理解数学。首先,在数学中利用高等数学结构的纵向与横向联系,有意识地帮助学生建立自己的知识结构,如在利用求曲边梯形的面积来引入定积分的概念时,其基本思维方法是:分割、近似代替,求和、取极限,最后得出定积分的概念。而这一方法同样可解决求曲顶柱体的体积、空间物体的质量、曲线段的质量等问题,区别仅在于取极限时趋向于零的元素不同而已。在具体每一章的讲解中,要着重介绍此章知识的数学结构中的内在联系及其本章的关键与核心的处理方法,使学生能够抓住本质,真正做到变被动学习为主动学习,主动建构自己本章的数学结构,并能用框图展现出知识间的内在联系,只有这样才能提高学生学习高等数学的兴趣和积极性,增加对高等数学知识的理解,提高高等数学学习的质量。帮助学生建立自己的数学结构,也有利于培养学生的思维能力、归纳能力、分析问题、解决问题的能力,还能促进其自学,调动和增强学生学习高等数学的信心和自觉程度。[参考文献][1]邵瑞珍,皮连生.教育心理学[M].上海:上海教育出版社,1988.[2]李士琦.PME:数学教育心理[M].北京:高等教育出版社.[3]毛京中,高等数学概念教学的一些思考[J].数学教育学报,2003,12(2).[4]陈琼,翁凯庆.试论数学学习中的理解学习[J].数学教育学报,2003,12(1)[5]张定强.剖析高等数学结构,提高学生数学素质[J].数学教育学报,1996,5(1)[6]刘继合.简析高等数学结构与化归[J].聊城师范学院学报(自然科学版),1999,12(3).

1. -两类曲线积分的探讨 学生姓名: 学号:数学与信息科学学院 数学与应用数学专业指导老师: 职称: 摘要:本文给出了第一型曲线积分和第二型曲线2. s of the first type and the second type, the nature of the two line integrals are discussed .It focus on the calculation3. als of the second type; property;calculation;connection.前言积分贯穿于整个大学数学的课程中,而这两类曲线积分是将以前定义在直线段上函数的积分延伸到了

微积分的创立解析几何是代数与几何相结合的产物,它将变量引进了数学,使运动与变化的定量表述成为可能,从而为微积分的创立搭起了舞台。微积分的思想萌芽,特别是积分学,部分可以追溯到古代。我们已经知道,面积和体积的计算自古以来一直是数学家们感兴趣的课题,在古希腊、中国和印度数学家们的著述中,不乏用无限小过程计算特殊形状的面积、体积和曲线长的例子。在古代,刘徽撰写的《九章算术 商功》中提到: 斜解立方,得两壍堵。斜解壍堵,其一为阳马,一为鳖臑。阳马居二,鳖臑居一,不易之率也。合两鳖臑三而一,验之以棊,其形露矣。 他在用无限分割的方法解决锥体体积时,提出了关于多面体体积计算的刘徽原理。祖冲之父子总结了魏晋时期著名数学家刘徽的有关工作,提出 幂势既同则积不容异 ,即等高的两立体,若其任意高处的水平截面积相等,则这两立体体积相等,这就是著名的祖暅公理 或刘祖原理 。祖暅应用这个原理,解决了刘徽尚未解决的球体积公式。卡瓦列利运用祖暅原理求得了许多平面图形的面积和立体图形的体积,是现行中学立体几何教材求几何体积的基本雏形。在现代, 年伽利略《关于两门新科学的对话》中,他建立了自由落体定律、动量定律等,为动力学奠定了基础;他认识到弹道的抛物线性质,并断言炮弹的最大射程应在发射角为 时达到,等待。伽利略本人竭力倡导自然科学的数学化,他的著作激起了人们对他所确立的动力学概念与定律作精确的数学表述的巨大热情。德国天文学家、数学家开普勒在 年发表《测量酒桶的新立体几何》论述了圆锥曲线围绕其所在平面上某直线旋转而成的立体体积的积分法。他的方法要旨是用无数个同维无限小元素之和来确定曲变形的面积及旋转体的体积。解析几何的创始人笛卡儿和费马,都是将坐标方法引进微分学问题研究的前锋。笛卡儿在《几何学》中提出了求切线的所谓 圆法 ,本质上是一种代数方法。就在同一年,费马在一份手稿中提出了求极大值与极小值的代数方法。 年 月,牛顿著作了《流数简论》是历史上第一篇系统的微积分文献。但是《流数简论》在许多方面是不成熟的,牛顿经过研究后加以改正,最后牛顿微积分学说最早的公开表述出现在 年出现的力学著作《自然哲学的数学原理》。@刘红平.

第二型曲面积分毕业论文

如果连续或分段连续曲面关于如xoy面对称,且上半曲面和下半曲面的取向如果一致即上下曲面上关于xoy对称的两点处的法向量和z轴正向的夹角同为锐角或同为钝角,那么这时第二类曲面的对称性和第一类一致:被积函数为z的奇函数,则积分值为零。

为z的偶函数,则积分值为二倍的被积函数关于上半曲面的积分值。如果上半曲面和下半曲面的取向相反,则对称性和第一类相反即上面我说的那个球面的情况。

扩展资料:

转化为二重积分,必须注意两个问题:

(1)将曲面S向相应的坐标平面投影,求得二重积分的积分区域。

(2)根据曲面的侧(即法向量的方向)确定二重积分的符号。

根据积分表达式,确定投影平面,如要计算P(x,y,z)dydz,必须将S向yz平面投影,求

得二重积分的积分区域Dyz,此时P(x,y,z)dydz=±P(x(y,z),y,z)dydz,其中曲面S:x=x(y,z),(y,z)∈Dyz,二重积分的符号取决于法向量与x正向的夹角,为锐角时取正号,钝角时取负号,简记为前正、后负。

参考资料来源:百度百科-第二型曲面积分

单位时间内流向曲面指定侧的流体的质量(密度为1,速度与时间无关v=v(x,y,z))。

第二类曲面积分,就是∫∫∑ Pdydz+Qdzdx+Rdxdy 可以看做磁场(P ,Q ,R)穿过曲面∑的通量。

第二类曲面积分。

如果曲面的外法向和对应坐标轴的正向一致,则第二类曲面积分转为重积分时取正号,否则负号。

具体到图中问题,由积分微元dxdy可知需要考察的是与z轴正向的关系(同理,∫∫dydz则考虑与x轴正向的关系),题中指明曲面是下侧,其法向如图中向下箭头所示,显然与z的正方向相反,于是结果取负号。

扩展资料:

第一型曲面积分物理意义来源于对给定密度函数的空间曲面,计算该曲面的质量。第二型曲面积分物理意义来源对于给定的空间曲面和流体的流速,计算单位时间流经曲面的总流量。

当动线作不规则运动时,形成的曲面称为不规则曲面。形成曲面的母线可以是直线,也可以是曲线。

同一个曲面可能由几种不同的运动形式形成。如圆柱面,即可以看做是直线绕着与之平行的轴线做旋转运动而成,也可以看做是一个圆沿轴向平移而形成的。

参考资料来源:百度百科--曲面积分

积极分子结业论文题目

入党积极分子结业论文 怀着无比激动的心情,我有幸参加了党校第二十六期"党的基本知识培训班"!经过这次在党课的学习,各位老师对党的精辟解析,独到的见解和大量的旁征博引,让我在无比叹服的同时深受鼓舞和教育。使我对党组织有了更深刻的了解,使我更加热爱我们伟大的中国共产党!坚定了我加入中国共产党的决心,坚定了我为共产主义奋斗终生的信念,感觉自己的思想收到了升华。 因为父母都是党员,他们的言行一直深深的影响着我,小时候,感觉当党员很光荣和骄傲,现在在我脑海里的,更多的却是作为党员的责任!我深深地懂得共产党员意味着为共产主义事业奋斗终生,全心全意为人民服务!我入党只是为了更直接地接受党的领导,全身心透入社会主义现代化建设的大潮中!要使我们的党,我们的国家永远立于不败之地,需要增添更多的德才兼备的新鲜血液!作为年轻一代,我们更要肩负起时代赋予我们的历史使命! 党校开课第一讲的内容便是讲党的性质和宗旨,了解党的性质和宗旨是申请入党的必修课,是端正入党动机的前提条件,是立志为共产主义事业奋斗终身的必须前提,努力做合格共产党员就从这里开始。 党的性质反映了党的特征,党性是一个立场问题,党性并不等于阶级性。革命导师列宁就指出:"严格的党性是高度发展的阶级斗争的随行者和结果。""党性要求在对事要做任何估计时,都必须直率而公开地站到一定社会集团的立场上。"这就要求共产党员的立场,旗帜要鲜明,要坚信共产主义。 党的十二大以来党章把党的性质概括为:"中国共产党是中国工人阶级的锋队,是中国各族人民利益的忠实代表,是中国社会主义事业的领导核心。"党的工人阶级先锋队的性质,是党的本质和生命,是马克思主义建党学说的核心,它关系到党的指导思想,宗旨的确立和贯彻,关系到党的纲领,路线的制定和坚持,关系到党的建设方向,党除了工人阶级和最广大人民群众的利益,没有自己特殊的利益,党的宗旨是全心全意为人民服务,党要坚持不断的加强党风和廉政建设,做到忠实地代表人民的利益,中国共产党的核心领导地位是在长期的革命和建设中形成的,在社会主义现代化建设时期,党的领导仍然是取得胜利的根本保证。 十六大的精神始终贯彻着这次党课的学习。展望新世纪的宏伟目标,我们党要永葆生机和活力,必须始终做到"三个代表"。江同志关于"三个代表 的重要思想,是对党的性质、宗旨和根本任务的新概括,是对马克思主义建党学说的新发展,是对新形势下加强党的建设提出的新要求。 我们大学生要坚持党的根本宗旨,全心全意为人民服务。当前来说,我认为我们应该认真学习、深刻领会"三个代表"的重要思想,用"三个代表"知道自己的思想和行动,努力把我们党建设成为有中国特色的社会主义的坚强领导核心,为实现跨世纪的宏伟目标做出应有的贡献,更好的为人民服务!只要我们党始终成为中国先进社会生产力的发展要求、中国先进文化的前进方向、中国最广大人民群众的根本利益的忠实代表,我们党就能永远立于不败之地,永远得到全国各族人民的衷心拥护,并带领人民不断前进。" 而且我们要努力学习科学文化知识,掌握为人民服务的本领,进入社会后能将自己的所学应用到工作中,创造一定的效益,从另一方面来讲,我们也应在学习,生活的过程中,尽自己所能去向需要帮助的同学伸出一支援助之手,做到想同学所想,急同学所急,同时也努力提高为人民服务的自觉性,加强党性修养和党性锻炼。 这次党课对帮助我们全面、准确、深入地理解十六大精神有非常重要的意义。帮助我们深入了解十六大精神精髓:"坚持解放思想、实事求是、与时俱进"。 党课有针对性的教育让我们沐浴在十六大的春风中,帮助我们看清了今后努力的方向,促使我们定下了终身为祖国科技事业奋斗的目标。可谓收益非浅! 但是我也认识到在为共产主义奋斗的道路上,决不可能是一帆坦途,也许将面临着可以预料和不可预料的种种困难。共产党员的先进性不是天生具备的,而是在不断地学习、不断地实践的过程中,通过不断地总结和提高自己的思想境界,才形成的。在这一过程中,认真、系统地学习,特别是学习政治理论起着极其重要的作用。共产党员只有通过努力学习文化,学习科学技术,才能具备建设社会主义的业务能力;只有通过学习政治理论,用马列主义、毛思想以及邓理论武装自己的头脑,才能具有正确的世界观、人生观、价值观,具备卓越的领导能力,防腐拒变的能力,才能在纷乱复杂的思潮中保持清醒,经历各种考验。战胜所有的困难! 首先我们要先切实抓好自己的本职的工作。然后通过实践来丰富自己,完善自己。关心时势政治,参加党组织生活学习党的重要精神和指示。 在新的世纪,继续推进现代化建设,完成祖国统一大业,维护世界和平与 促进共同发展,是我们党肩负的重大历史任务。面对国内外形势的深刻变化,我们党要紧跟世界进步的潮流,团结和带领全国各族人民抓住机遇、迎接挑战,胜利完成这三大历史任务。 共产主义事业是人类历史上最伟大,最光辉的事业,它无先例可参考。做为一个入党的积极分子,我决心以党员的要求严格要求自己,加紧学习,因为,要做到"三个代表"之中的"代表先进文化的前进方向",我们自己的科学文化知识就显得尤为重要,只有牢牢的掌握了科学文化知识,我们才可以继承和发扬中华民族的一切优秀传统,努力学习和吸收一切外国的优秀文化成果,真正起到代表的作用。我也深知更重要的是要有坚忍不拔的意志,坚定对马克思主义,建设有中国特色社会主义和我国改革开放现代化建设的信心,不断增强对党和政府的信任,在工作和学习中,牢固树立共产党员的政治意识,大局意识,责任意识,创新意识,积极从思想上争取入党,才能成为新时期的合格共产党员。 通过这次党课的学习,我更加坚定了自己为党,为人民,为社会主义建设事业,为共产主义事业奋斗终生的信念!进入新世纪新阶段,面对新形势新任务,十六大党章对党员提出了更高的要求,也为党员发挥自身的作用提供了更广阔的舞台。明年,我也将毕业,那时候我将全身心投入建设中国特色社会主义的伟大事业中去,我相信只要坚定自己的意志,紧密地凝聚到十六大精神上来,凝聚到"三个代表"重要思想的旗帜下,就能在党的领导下和我们的人民大众一起创造出无愧于时代的光辉业绩 。

穿岁月峰头,伴历史云烟,中国共产主义青年团走过了80年的风雨征程。五四运动至今,一代代优秀青年为民族复兴作出了卓越的贡献;循火红足迹,经坎坷征程,一代代优秀青年紧跟共产党,始终站在时代的峰顶浪尖!青春不停步,“永远跟党走”! “我们是五月的花海,用青春拥抱时代。我们是初升的太阳,用生命点燃未来。“五四”的火炬,唤起了民族的觉醒。壮丽的事业,激励着我们继往开来。光荣啊,中国共青团!母亲用共产主义为我们命名,我们开创新的世界。”当我们戴着光芒四射的团徽,站在火红的团旗下,高唱我们自己的团歌,心中怎能不为之激动,怎能不为之骄傲,怎能不为之自豪!“爱国,爱党,爱人民,爱家乡”这个坚定的信念在我们脑海中回荡! 朋友们,还记得五年前我们的家乡是什么样子吗?几条破旧的马路,几座零落的楼房,这就可以概括我们章丘的全貌了。再看看现在吧!十多条主干道纵横交错贯穿东西南北,从荷花公园到百脉泉广场,从眼明泉搭桥到明珠小区,到处洋溢着现代化的气息,透露着春的绿意,焕发着勃勃的生机!在这幅美丽的画卷上处处点缀着青年活跃的身影,是他们以高度的责任感和奉献精神,保障着道路的畅通,保护着优美的环境,维护着社会的安定团结¨¨¨,在各行各业中,在党的坚强领导下,共青团带领青年们在我们城市建设的宏伟蓝图上勾画出最为亮丽的色彩! 伴随着江总书记“三个代表”重要思想和“以德治国”方略的提出,党有号召,团有行动。为此,团市委提出“高举旗子,不变调子,喊响号子,建好班子,推动总体工作再上台子”的指导思路。在“三个代表”学习教育活动和“以德治市”的号召下,开展了“走白村、串千户、访民意、聚民心”及“三个代表”重要思想征文活动,使团的工作真正想青年之所想,急青年之所急,谋青年之所求,切实把广大青年吸引到团的旗帜下,团结在党的周围! 从伟大的共产主义战士雷锋到以服务祖国需要为乐的王杰,从自学成材的张海迪到科技创新的秦文贵,从11名“中国青年五四奖章”获得者到我们身边的每一位青年星火科技带头人,他们在人民利益的大厦上添砖加瓦,他们以崇高理想和坚定信念为新时期广大青年实践“三个代表”“以德治市”树起了标杆!正是他们在党的旗帜的指引下,和千百条各战线上的青年模范一起,演绎了一幕幕惊天地、泣鬼神的青春活剧,谱写了一曲曲壮丽雄浑的青春赞歌! 改革开放以来,适应党的工作中心的转移,共青团贯彻执行党的基本路线,紧紧围绕经济建设这一中心,团结带领广大青年向科学技术进军!我市更是提出了建“工业强市”的战略目标,我市共青团把青年创新创效作为工作的总抓手,积极推行“青年创新创效意见卡”,争创“青年文明号”和争作“青年岗位能手”,号召全市广大青工开发新产品,创造新工艺、推广新技术、转化新成果“四个一”活动和小发明、小革新、小改造、小设计、小建仪“五个小”活动为载体,广泛开展青年群体性科技创新活动。仅去年一年就取得青年创新创效成果28项,其中海泰电缆集团公司团委委员时延芹主持的平行线革新项目和市人民医院青年医生张华发明的腭裂修补技术填补省级空白,创造了良好的经济效益和社会效益,为我市工业强市战略的实施做出了巨大的贡献!在经济大潮中,我们共青团之所以取得如此的成就,始终保持着青春和活力,归根到底是因为我们始终坚持党的领导,在党的旗帜的指引下前进! 20世纪中国的历史,写下了中国共青团和中国青年的光荣,21世纪期待我们创造新的青春辉煌。青年昭示着未来,江总书记在庆祝中国共产党80周年大会上向青年一代发出号召“全国各族青年,代表着我们祖国和民族的未来,代表着我们事业兴旺发达的希望。社会主义现代化的宏伟事业需要你们去建设,中华民族的伟大复兴将在你们手中实现。”党在召唤,时代在召唤,只要我们以“崇高的理想、创新的意识、无畏的勇气”发挥青年的智慧、风采和力量,就能乘风破浪、与时俱进!青年朋友们,让我们团结一致,永远跟党走!回

相关百科

热门百科

首页
发表服务