首页

> 期刊论文知识库

首页 期刊论文知识库 问题

关于电磁学的论文题目

发布时间:

关于电磁学的论文题目

我过十岁生日时,妈妈送给我一套迪宝乐电子积木。它采用正规ABS塑料制成,全铜纽扣连接,电路图全是彩色立体显示,有太空大战、无线电收音机、门铃、电扇、闪光灯等1300多种玩法,而且拼装快捷。我爱不释手,一有空就在上面拼拼拆拆,从中获得了无穷的乐趣。通过亲身实践和仔细观察,我明白了许多电学知识,其中,电磁现象最令我感兴趣。一、吸铁石与磁控来自:作文大全有一次,我用电子积木拼了一台电扇。后来,我把电键换成了干簧管,拿起磁铁靠近干簧管。当磁铁接近干簧管时,电扇便开始转动;再离远一点,电扇停了;再靠近,电扇又转起来。哈哈!电扇成了磁控电扇。我觉得很有趣又迷惑不解,立即将指导手册翻到“原理解释”这一页。原来,干簧管在磁铁的引力下,可以当开关用。干簧管是一个密封的玻璃管,内有两块互不相连的铁片。当磁铁靠近干簧管时,铁片被磁化,两块铁片就吸合在一起,电路接通,让电流通过,所以干簧管可作为磁性开关使用。 二、电动机与磁力飞碟游戏也挺有趣。飞碟底端安装着一个小电动机 ,接通电源,电动机立刻转动起来,带动飞碟旋转。电动玩具汽车里也安装了电动机。电动机为什么能够转动呢?原来电动机里有磁铁和线圈,转动电动机的小轴时,磁铁和线圈发生相对运动,线圈里的磁场会发生变化,产生磁力;同时在线圈内产生微小的电流,利用这个微小的电流能够带动小轴连续不断地转动,不停地产生磁力,电动机就不停地工作。 三、磁场与喇叭自从有了电子积木,我们家就热闹极了。时而上演太空大战,时而警铃大作,一会儿消防车来了,一会儿炮声隆隆。原来设计师把事先录制好的太空大战声、警车声、消防车声、机关枪声、坦克声、音乐等几种声音储存到集成电路内,并封装好,只需要外接电池、导线、喇叭和开关就能将声音播放出来。生产电子积木的叔叔阿姨们真是聪明!那么,喇叭是怎么回事呢?我逐一将喇叭换成了发动机、电容器、导线等,都没播放出任何声音来。为什么播放声音就必须使用喇叭?妈妈告诉我,没有它,就不能将电信号转换成声音信号。喇叭又叫扬声器,是一种典型的将电信号转换为声音信号的换能元件。当有电流通过喇叭内部的小线圈时,小线圈产生随音频电流而变化的磁场。这一变化磁场与永久磁铁的磁场产生相吸和相斥作用,导致小线圈产生机械振动并且带动纸盆振动,从而发出声音。

要写好教研论文,首先要选好题目,其次要尽量多地获得这一选题的相关资料,还要实实在在地进行教学研究,做到理论与实践相结合。下面我收集了一些关于初中物理教学论文题目,希望对你有帮助

1、 在物理教学中培养学生创新能力的探讨

2、谈谈中学物理课堂教学艺术

3、兴趣——学生学习物理最好的老师

4、物理习题隐含条件的探讨

5、中学物理教学中的研究性学习探讨

6、高中“课题研究”教学案例总结

7、中学物理课程的基本理念分析

8、论物理教育中的科学素养培养

9、新的中学物理课程目标分析(择其某一项)

10、中学物理教学中的美育素材研究

11、物理教学中的创造人格培养

12、物理教学中学生自学能力培养探究

13、试论物理教学中的科学探究

14、对高考“理科综合”科目的改革的思考

15、未来中学物理教师素质结构之设想

16、现行物理教学大纲及教材的有关评价

17、对高中某一物理概念或物理规律的教学研究(电磁学,光学方面)

18、中学物理教师继续教育问题的思考

19、高一物理新教材的比较与评价

20、论非智力品质在物理学习中的形成与作用

1、缠态与量子通信述评

2、光折变材料的光信息存储研究进展

3、纳米结构ZnO研究状况

4、纳米尺度中的量子力学

5、由相对论的创立看物理学的思想方法

6、从经典力学到量子力学的思想体系探讨

7、光电子技术的发展现状及其应用前景分析

8、用麦克斯韦方程组讨论晶体双折射现象(电磁学,光学)

9、计算半径为R的球的热传导现象(热学及统计物理学)

10、用麦克斯韦方程组讨论晶体双折射现象(电磁学,光学)

11、用傅里叶变换计算(单缝、圆孔)衍射的光强分布(光学)

12、论物理学中的理想模型

13、多媒体课件的制作(Flash/Authorware)

14、激光全息实验的设计(光学)

15、物理学中的美学问题探讨(物理学史)

16、四层楼电梯自动控制系统的设计

17、简易稳压直流电源设计

1、复摆实验仪的研究

2、杨摸量实验仪研究

3、落球法液体粘滞系数测定仪的改进

4、浅议氦氖激光器在光学实验教学中的应用

5、全息照相实验技巧探讨

6、实验数据的处理和测量不确定度计算

7、标准不确定度合成中应注意的问题及讨论

8、钢丝的切变模量与扭转角度关系的研究

9、物理实验测量和分析的基本方法

10、向心力实验装置研究

11、重力加速度测量实验装置研究

12、液体表面张力实验装置研究

13、MATLAB在声学实验中的应用

14、非线性电阻特性的实验研究

15、简易万用表的设计制作及校准

16、体效应管负阻特性的测量研究

17、微波光学实验研究

18、组合测量在物理实验中的应用

19、用电阻应变片测量微小形变实验方法的改进与研究

电磁场与电磁波相关论文题目

电磁场与微波技术,是电子信息类学科的一门非常重要的专业理论课,目的是满足学生以后从事微波天线以及射频类的相关工作需求。我整理了电磁场微波技术论文,有兴趣的亲可以来阅读一下!

“电磁场与微波技术”课程的改革与实践

摘要:在对“电磁场与微波技术”课程的改革与实践中,分析了目前该课程的教学中存在的主要问题,结合课程特点和“三本院校”学生的实际情况,整合了电磁场与电磁波、微波技术和天线理论三门课程的主要内容,加强了该课程与工程实际的结合,适应了三本学校的应用型人才的目标,并通过教学方式和考核方式等方面的具体改革措施,提高了该课程的教学质量,尤其是提高了学生对该课程的相关知识和技术的实际应用能力。

关键词:电磁场与微波技术;工程实际;考核制度

作者简介:张具琴(1980-),女,河南信阳人,黄河科技学院电子信息工程学院,讲师;贾洁(1982-),女,河南安阳人,黄河科技学院电子信息工程学院,助教。(河南郑州450063)

中图分类号:     文献标识码:A     文章编号:1007-0079(2012)17-0054-02

随着信息时代的发展,作为信息主要载体发展方向的高频电磁波—微波,不仅在卫星通信、计算机通信、移动通信、雷达等高科技领域得到了广泛的应用,而且已经深入到了各行各业中,在人们的日常生活也扮演着重要角色。因此对于电子信息专业的学生来说,电磁场、微波技术与天线类课程在目前及今后都是不可缺少的主干专业课程。[1,2]但由于该课程的自身特点及对于该课程教学的一些传统认识,使得学生对该课程的知识和技能的学习和掌握不能满足国内对电磁场与微波技术及其相关专业人才的需求。为提高该课程教学质量和人才培养质量,尤其是针对三本院校的应用型人才培养目标,笔者认真分析了该课程教学中的问题,结合课程特点和“三本院校”学生的实际情况,对该课程进行了一系列的改革和实践探索,并取得了一定的成果。

一、“教”“学”中的主要问题

该课程传统的教学方法是以事实性知识传授为教学目标,即课程内容是介绍“是什么”“为什么”,而缺乏“怎么做”“怎么用”,过分强调理论,而缺乏对知识的实际应用。

目前该类课程所用教材多为一本学校编著,这些教材整体突出课程内容的完整性和理论分析的严密性。对于理论基础一般也较为薄弱、更注重实际应用能力的三本学生来说算是“天书一部”,学习起来也“味同嚼蜡”,教师授课也是事倍功半,教学效果很不理想,很多三本学校对该课程的开设是“形同虚设”。

该类课程的教学模式仍是以理论教学为主的,教学方法和内容很少涉及该课程的实际知识应用和人才就业的方向指导,结果学生学完后除了知道有很多公式推导外,对该课程其他方面相关内容知之甚少,所以缺乏学习动力,教学效果不佳。

对于该课程的考核制度多为“一刀切”模式,即“考试分数定高低”,未能考虑学生的个体差异,忽视学生学习能力、学习过程、学习方式差别,不能很好调动学生的积极性和主动性。

二、改革方法和措施

1.改革传统的事实性知识传授的教学目标,更注重对实际应用能力的培养

在教学内容中,增加具体理论的应用实例分析,[3]使学生对电磁场和微波的实用性有较好的认识;增加微波技术在新科技和社会生产生活中的实际应用的一些例子,使学生有更强的学习兴趣和学习动力;课程中很多知识点的引入,都以思考题和小的科研课题的形式提出,使学生应用所学的理论知识分析解决实际问题的能力与创新、研究能力得到相应的锻炼。

增开相应的微波实验项目,使学生的实际动手能力得到很好提高,考虑到实验室建设的成本的问题,可以通过先引入微波的仿真实验项目或者引入与现有的大学物理实验、通信原理实验等成熟实验项目相结合的实验项目。[4]

2.突破传统的一本院校所编教材的限制,使学生在有限的时间内掌握具有生命力的知识基础和必要技能,以满足高素质应用人才知识结构和素质结构的需求

在实际授课过程中注重将“电磁场与电磁波”、“微波技术”和“天线理论”有机结合,采用电磁场与微波技术结合的自编的简本教材为授课教材,把天线及应用作为扩展补充教材,将三者精要贯穿于教学中。这大大节约了理论教学时间,使学生有更多的时间参与到实践中去,有利于培养学生应具有的实践能力。

具体教学内容方面:加强了该课程中的最基本的电磁场的概念、定理的讲解,力求夯实该门课程的基础;增加了微波在新科技中的应用和微波的发展前景的介绍和大量的网络理论应用实例分析等,有利于学生学习目标、学习兴趣的建立和实际应用能力的提高;针对该门课程涉及知识面广、理论性较强的特点,对于只是涉及而非重点内容大胆删减或者采用增加附录的形式直接给出,这样有利于学生有针对性地学习;对于课程中的概念采用“量纲分析法”,使学生对概念的物理意义有更深地理解,应用起来能够更加娴熟;对于其他新知识的引入采用“概念—方程—新概念”教学模式,顺着学生的理解思路,水到渠成;更加注重了理论与实践的结合,每个具体的理论讲完后,立即有相应的实例分析,既有利于提高学生的实际分析问题的能力又有利于提高其学习兴趣。

3.改革传统的理论教学为主的教学方法,开展“以应用为基本出发点”的理论教学方法研究

(1)以应用为本,确定理论教学的研究方法。在教学大纲和简本教材中,弱化理论讲解,重视实际解决问题能力的提高,主要采用“用什么理论,讲什么理论”和选学、自学内容相结合的模式,即让大多数学生学到了本课程的主要内容,又让学有富余的学生得到更深层次的提高。

(2)注重对学生进行思维能力与应用能力的训练。改变传统的纯理论讲解、缺少实际应用实例的情况,在教学过程中注重理论讲解、实例分析、习题课相结合;以思考题和小的科研课题的形式,对学生进行有效的思维能力与应用能力训练。

(3)具体教学方法中,采用多种方法相结合,尤其是板书和多媒体相结合教学。对于主要理论、公式的推导,以板书教学为主,有利于学生的理解和接受;而对于一些介绍性知识、实例讲解和仿真实验方面,可辅以多媒体教学和动画演示,丰富学生的感性认识和知识量。

(4)注重案例教学。例如,以往年学生的毕业设计为案例,阐明微波是如何用来解决实际问题的;提出目前理论应用于实际的方向和技术瓶颈,鼓励同学们探索和研究,力争做到理论与实践相互联系,相互穿插,相辅相成,使学生真正从这门课程中学到“实惠”,即掌握了具体知识的应用,也为其以后的就业指明了方向。

(5)开设“第二课堂”教学法。针对学生层次的差异,可以采用课堂教学与网络教学相结合的方式、给出小型科研调研题目等方式,[5,6]使每个学生的潜能都能得到最大的发挥。充分利用黄河科技学院(以下简称“我校”)的校企业合作平台,让学生利用半年左右的时间充分参与到微波天线企业一线的科研和生产中,在理解整机工作原理的基础上,研究实际的产品部件;通过在学生与学生之间、学生与老师之间、工程技术人员之间对出现问题的讨论,使学生更全面地思考和理解问题,另一方面也能使学生掌握和了解最新的知识,适应科技高速发展的需要,实现与时俱进。

4.改革传统的考核制度“一刀切”模式,开辟“多样化的柔性”考核制度

结合“因材施教”的指导方针,认真考虑学生的个体差异,增强“第二课堂”的作用,开设“老生研讨课”,加重过程考核,提出开卷考试制度等方案,极大地调动了学生的积极性和主动性,提高了教学效果。传统的终结性考核以理论知识、标准答案、闭卷形式为主。改革后的考核方式更加注重过程考核,加入调研报告成绩,课程小结成绩实,实践环节成绩;考试试卷上增设选做题目、课程设想等,给学生充足的学习空间,有利于激发学生的学习自主性,提高学习的自觉性和自学能力;考试采用开卷形式,重视知识的应用而弱化死记硬背,加强学生的应用能力的考核。

另外,本课程的教学中也广泛利用网上电子教案、习题库等教学资源,为学生的自学和课后复习提供了一定的空间,随着课程网络资源的建设,教学中可利用校园网实现网络教学、在线测试、在线答疑。

三、改革实践的效果

课程教学目标和教学内容的调整,理顺并抓住了根本,节省了时间,避免了枯燥繁冗的数学推导过程,使学生接触更多的工程实践,适应了三本学校的应用型人才目标;教学方法、教学手段的改革,加强了理论与实际的联系,避免了学生对该课程中一些难而无用的知识纠结,侧重工程实际应用,使他们的实践能力大大提高;考核方式的改革,使学生的学习积极性得到了全面地调动,学生能够主动参与到学习过程中,学习方式灵活、学习兴趣也有了很大的提高。

改革后学生能够积极主动地参与到“电磁场与微波技术”的学习中,通过亲身体验和相关内容的学习,积累和丰富直接经验,促进学生掌握了该课程的基本知识和基本技能,培养了学生的创新精神、实践能力和终身学习的能力。具体表现在以下几个方面:本课程的合格率达到了95%以上,优秀率将近40%;有近50%的学生投入到该课程的研讨式学习和科研课题研究中,6名同学在科技期刊上发表了科研论文;三届毕业设计有13名学生做了该方向的课题,[7]其中3名同学取得了优秀毕业设计的成绩;在两届全国大学生电子设计大赛中,2名同学选择了该方向的创新设计并取得了优异成绩;该方向的就业率和考研率都有很大提高,2005级以来三届近400名毕业生中就有15名学生从事该方向工作,实现了我校该方向就业的零的突破,有近30名毕业生选择该方向为研究生报考方向。

四、结束语

该课程的教学改革和实践在教学质量和人才培养方面取得了一定的成绩,但教学改革任重道远,要培养出既具有理论知识基础又具有较强实践能力的适应时代的高素质应用人才,必须与时俱进地调整和充实教学的各个环节,协调和配合好教学体制和机制的多方面才能达到最佳效果。

参考文献:

[1]盛振华.电磁场微波技术与天线[M].西安:西安电子科技大学出版社1995.

[2]李丽华.论三本院校电磁场与微波技术课程教学[J].投资与合作(学术版),2010,(9):64-65.

[3]陈帝伊,刘淑琴,许景辉,等.“电磁场理论”课程的教学改革探讨[J].电气电子教学学报,2009,(4):116-117.

[4]杨再旺,张淑娥.谈《电磁场与微波技术》实验方法改革[J].中国电力教育,2005,(S1):147-150.

[5]陈宏,费跃农,郑三元,等.研究性学习在“模拟电子技术”课程教学中的应用[J].电气电子教学学报,2009,(5):108-110.

[6]刘云.浅谈“微波技术与天线”课程中的创造力培养[J].电气电子教学学报,2011,(2):8-9.

[7]郑娟,蒋军.电磁场与微波技术方向毕业设计指导[J].黄山学院学报,2009,(3):125-127.

通信业已经走进了千家万户,成为了大家日常生活不可分割的一部分,如今一些高校也设立了专门的通信专业。下面我给大家带来通信专业 毕业 论文题目参考_通信方向专业论文题目,希望能帮助到大家!

通信专业毕业论文题目

1、高移动无线通信抗多普勒效应技术研究进展

2、携能通信协作认知网络稳态吞吐量分析和优化

3、协作通信中基于链路不平衡的中继激励

4、时间反转水声通信系统的优化设计与仿真

5、散射通信系统电磁辐射影响分析

6、无人机激光通信载荷发展现状与关键技术

7、数字通信前馈算法中的最大似然同步算法仿真

8、沙尘暴对对流层散射通信的影响分析

9、测控通信系统中低延迟视频编码传输 方法 研究

10、传输技术在通信工程中的应用与前瞻

11、城市通信灯杆基站建设分析

12、电子通信技术中电磁场和电磁波的运用

13、关于军事通信抗干扰技术进展与展望

14、城轨无线通信系统改造方案研究

15、无线通信系统在天津东方海陆集装箱码头中的运用

16、分析电力通信电源系统运行维护及注意事项

17、 无线网络 通信系统与新技术应用研究

18、基于电力载波通信的机房监控系统设计

19、短波天线在人防通信中的选型研究

20、机场有线通信系统的设计简析

21、关于通信原理课程教学改革的新见解

22、机载认知通信网络架构研究

23、无线通信技术的发展研究

24、论无线通信网络中个人信息的安全保护

25、短波天波通信场强估算方法与模型

26、多波束卫星通信系统中功率和转发器增益联合优化算法

27、HAP通信中环形波束的实现及优化

28、扩频通信中FFT捕获算法的改进

29、对绿色无线移动通信技术的思考

30、关于数据通信及其应用的分析

31、广播传输系统中光纤通信的应用实践略述

32、数字通信信号自动调制识别技术

33、关于通信设备对接技术的研究分析

34、光纤通信网络优化及运行维护研究

35、短波通信技术发展与核心分析

36、智慧城市中的信息通信技术标准体系

37、探究无线通信技术在测绘工程中的应用情况

38、卫星语音通信在空中交通管制中的应用

39、通信传输系统在城市轨道交通中的应用发展

40、通信电源 系统安全 可靠性分析

41、浅谈通信电源的技术发展

42、关于电力通信网的可靠性研究

43、无线通信抗干扰技术性能研究

44、数能一体化无线通信网络

45、无线通信系统中的协同传输技术

46、无线通信技术发展分析

47、实时网络通信系统的分析和设计

48、浅析通信工程项目管理系统集成服务

49、通信网络中的安全分层及关键技术论述

50、电力通信光缆运行外力破坏与预防 措施

51、电力通信运维体系建设研究

52、电力配网通信设备空间信息采集方法的应用与研究

53、长途光缆通信线路的防雷及防强电设计

54、电网近场无线通信技术研究及实例测试

55、气象气球应急通信系统设计

56、卫星量子通信的光子偏振误差影响与补偿研究

57、基于信道加密的量子安全直接通信

58、量子照明及其在安全通信上的应用

59、一款用于4G通信的水平极化全向LTE天线

60、面向无线通信的双频带平面缝隙天线设计

铁道信号专业毕业论文题目

1、CTCS应答器信号与报文检测仪-控制主板软硬件设计

2、基于ACP方法的城市轨道交通枢纽应急疏散若干问题研究

3、全电子高压脉冲轨道电路接收器的硬件研究与设计

4、实时断轨检测系统中信号采集与通信子系统研究

5、基于模型的轨旁仿真子系统验证及代码自动生成

6、基于全相位FFT的铁道信号频率检测算法研究

7、基于机器视觉的嵌入式道岔缺口检测系统应用

8、铁路信号产品的电磁兼容分析与研究

9、铁路高职院校校内实训基地建设研究

10、铁道信号电子沙盘系统整体规划及设计

11、基于Web的高职院校考试系统的设计与实现

12、铁道信号沙盘模拟显示系统研究

13、联锁道岔电子控制模块的研制

14、基于ARM的故障监测诊断系统设计(前端采集和通信系统)

15、客运专线列控车载设备维修技术及标准化研究

16、驼峰三部位减速器出口速度计算方法研究

17、CTCS-2级列控系统应答器动态检测的研究

18、石家庄铁路运输学校招生信息管理系统的设计与实现

19、铁道信号基础设备智能网络监测器设计

20、基于光纤传感的铁道信号监测系统软件设计

21、铁道信号基础设备在线监测方法研究

22、有轨电车信号系统轨旁控制器三相交流转辙机控制模块的研究

23、基于故障树的京广高速铁路信号系统问题分析及对策

24、站内轨道电路分路不良计轴检查设备设计与实现

25、铁路综合视频监控系统的技术研究与工程建设

26、客运专线信号控制系统设计方案

27、铁路信号仿真实验室的硬件系统设计及其信号机程序测试

28、基于C语言的离线电弧电磁干扰检测系统数据采集及底层控制的实现研究

29、铁路综合演练系统的开发与实现

30、大功率LED铁路信号灯光源的研究

31、牵引供电系统不平衡牵引回流研究

32、CBTC系统中区域控制器和外部联锁功能接口的设计

33、城轨控制实验室仿真平台硬件接口研究

34、ATP安全错误检测码与运算方法的研究与设计

35、LED显示屏控制系统的设计及在铁路信号中的应用

36、客运专线列控系统临时限速服务器基于3-DES算法安全通信的研究与实现

37、基于动态故障树和蒙特卡洛仿真的列控系统风险分析研究

38、物联网环境下铁路控制安全传输研究与设计

39、轨道交通信号事故再现与分析平台研究与设计

40、铁路强电磁干扰对信号系统的影响

41、基于LTE的列车无线定位方法研究

42、列车定位系统安全性研究

43、基于CBTC系统的联锁逻辑研究

44、无线闭塞中心仿真软件设计与实现

45、职业技能 教育 的研究与实践

46、光纤铁路信号微机监测系统数据前端设计

47、LED大屏幕在铁路行车监控系统的应用研究

48、基于微机监测的故障信号研究与应用

49、语域视角下的人物介绍英译

50、基于嵌入式系统的高压不对称脉冲轨道信号发生器设计

通信技术毕业论文题目

1、基于OFDM的电力线通信技术研究

2、基于专利信息分析的我国4G移动通信技术发展研究

3、基于无线通信技术的智能电表研制

4、基于Android手机摄像头的可见光通信技术研究

5、基于激光二极管的可见光通信技术研究和硬件设计

6、智能家居系统安全通信技术的研究与实现

7、基于DVB-S2的宽带卫星通信技术应用研究

8、基于近场通信技术的蓝牙 配对 模块的研发

9、多点协作通信系统的关键技术研究

10、无线通信抗干扰技术性能研究

11、水下无线通信网络安全关键技术研究

12、水声扩频通信关键技术研究

13、基于协作分集的无线通信技术研究

14、数字集群通信网络架构和多天线技术的研究

15、通信网络恶意代码及其应急响应关键技术研究

16、基于压缩感知的超宽带通信技术研究

17、大气激光通信中光强闪烁及其抑制技术的研究

18、卫星通信系统跨层带宽分配及多媒体通信技术研究

19、星间/星内无线通信技术研究

20、量子通信中的精密时间测量技术研究

21、无线传感器网络多信道通信技术的研究

22、宽带电力线通信技术工程应用研究

23、可见光双层成像通信技术研究与应用

24、基于可见光与电力载波的无线通信技术研究

25、车联网环境下的交通信息采集与通信技术研究

26、室内高速可调光VLC通信技术研究

27、面向5G通信的射频关键技术研究

28、基于AMPSK调制的无线携能通信技术研究

29、车联网V2I通信媒体接入控制技术研究

30、下一代卫星移动通信系统关键技术研究

31、物联网节点隐匿通信模型及关键技术研究

32、高速可见光通信的调制关键技术研究

33、无线通信系统中的大规模MIMO关键理论及技术研究

34、OQAM-OFDM无线通信系统关键技术研究

35、基于LED的可见光无线通信关键技术研究

36、CDMA扩频通信技术多用户检测器的应用

37、基于GPRS的嵌入式系统无线通信技术的研究

38、近距离低功耗无线通信技术的研究

39、矿山井下人员定位系统中无线通信技术研究与开发

40、基于信息隐藏的隐蔽通信技术研究

通信专业毕业论文题目参考相关 文章 :

★ 通信工程毕业论文题目

★ 通信工程毕业论文题目

★ 通信工程毕业论文选题

★ 通信工程的毕业论文参考范文

★ 通信工程专业毕业论文参考文献

★ 通信工程的毕业论文(2)

★ 通信工程方面毕业论文

★ 通信工程专业毕业论文

★ 通信工程的毕业论文范例

★ 通信工程的毕业论文范例(2)

关于电磁铁的科学小论文

你好!选取两个同样线圈匝数的电磁铁线圈.第一个实验:将两线圈串联,再与滑动变阻器,安培表,开关,电源(电池组)串联.闭合开关,调节滑动变阻器,眼观察安培表,使电流达到某一值并记录这个值.然后用电磁铁吸引大头针,直到吸不上为止.断开开关.数所吸大头针的个数,记录这个个数值.第二个实验:仅将一个线圈串入原来两个线圈的位置.闭合开关,调节滑动变阻器,使电流值达到开始记录的值.然后用电磁铁吸引大头针,直到吸不上为止.断开开关.数所吸大头针的个数,记录这个个数值.将两个数值比较,得出结论:当流过线圈的电流强度一定时,电磁铁线圈的匝数越多,电磁铁的磁性越强.本实验用到的基本思想方法:控制变量法细节探究:为什么先做两个线圈串入电路的试验而不做先一个线圈串入电路的试验?!!!我的回答你还满意吗~~

论文:初中物理电学计算解题探讨初中物理电学计算是整个初中物理知识的一个重难点.学好电学计算对学生的逻辑思维,审题等都有提升.培养了学生的创造和创新能力,对以后更高层次的电学学习打下坚实的基础。[关键词] 计算 串并联电路 公式 解题思路 初中物理电学计算是整个初中物理知识的一个重难点,也是中考考查的重点内容。学生拿到这类题目后往往觉得无从下手,其实学生只要具备相关知识,做好足够的准备工作,而后理清思路,则可解决该题。那么如何才能顺理成章的确解决问题和攻破这个重难点呢?下面将谈一点我不成熟的解题思路和大家一起分享。一、 认真审题首先要在脑海里清晰的呈现U、I、R这三者在串、并联电路中各自的特点.在串联电路中:I=I1=I2=I3、U=U1+U2+U3、R=R1+R2+R3,在并联电路中:I=I1+I2+I3、U=U1=U2=U3、1/R=1/R1+1/R2+1/R3。要掌握电功、电功率和焦耳定律的基本计算公式和导出公式,并且要知道导出公式的使用范围,即导出公式使用于纯电阻电路中(在纯电阻电路中Q=W)......。其次要认真阅读并分析题目,找出题目中所述电路的各种状态。没有电路图的要画出相应的电路图。根据开关的闭合及断开情况或滑动变阻器滑片的位置情况得出题目中电路共有几种状态,画出每种状态下的等效电路图。在分析电路时如果电路有电压表,则先认为电压表处于断路状态,再分析电路的串并联,然后看电压表和谁并联则测谁的电压。二、 解答计算1、 找电源及电源的正极。2、 看电流的流向。要注意以下几个问题:(1)电路中的电流表和开关要视为导线,电压表视为断路(开路);(2)要注意各个电键当前是处于那种状态;(3)如果电流有分支,要注意电流是在什么地方开始分支,又是在什么地方汇聚。3、 判断电路的联接方式。一般分为串联和并联,但有些电路是串并、联的混联电路。若不是串联的,一定要理清是哪几个用电器并联,如果还是混联的,还要分清是以串联为主体的混联电路,还是以并联为主体的混联电路。4、 若电路中连有电压表和电流表,判断它们分别是测什么地方的电压和电流强度。5、 找出已知量和未知量,利用电学中各物理量之间的关系:即我们平时所说的电路特点;欧姆定律;电功和电功率相关表达式;焦耳定律。然后利用这些关系和已知条件相结合的的方法求解。在求解的过程中,用不着把每一个物理量都求出来,要根据所给的已知物理量找一种最简单的解题方法。很明显可以看出: 我们要熟练解答电学问题就必须熟练掌握相关的物理知识。最后需要说明的是,有些问题在每一种状态下并不能直接求出计算结果,这时要把两种或更多种状态结合起来,找出各个关系图中相等的物理量,列方程或列方程组去计算。以下对某些题型的解法做详细的说明和解答:例1、如下图所示,电源电压保持不变,R1=8Ω,R2=7Ω,当闭合开关S时,电压表的示数为4V,则电源电压为多少? 一、审题看题目后,本电路是串联电路,闭合开关,电路只有一种状态,电压表测R1两端的电压。二、联想相关公式及结论根据题意用到串联电路中I=I1=I2=I3,U=U1+U2+U3的特点和欧姆定律公式(I=U/R)去计算。三,解答计算 已知:R1=8Ω,R2=7Ω,U1=4V 求:电源电压U = ?解:当开关闭合时:夹在R1两端的电压U1=4V。则: 根据欧姆定律可知: I1=U1/R1=4V/8Ω=又因为在串联电路中: I=I1=I2 则: U2=I1R2=×7Ω= 根据串联电路中电压的关系 : U=U1+U2=4V+例2,如下图所示,当S1闭合,S2、S3断开时,电压表示数为3伏,电流表示数为安;当S1断开,S2、S3闭合时,电压表示数为伏,求此时电流表的示数及R1、R2的阻值。一、审题看题目后,S1闭合时,S2、S3断开时,电路为一种状态;S1断开,S2、S3闭合时,电路为一种状态。因此,本题必须在电路的两种状态下分别解答。二、联想相关公式及结论 用到串联和并联电路中U、I、R三者的特点及欧姆定律公式去计算。三,解答计算 解:S1闭合时,S2、S3断开时,R1、R2是串联。则:R2=U2/I=3V/Ω S1断开,S2、S3闭合时,R1、R2是并联。则:可知电源电压 U= 则夹在R1两端的电压: U1=U¬—U2=—3V= R1=U1/I=Ω 则并联的总电阻: R=R1R2/R1+R2=3Ω6Ω/3Ω+6Ω=2Ω 并联干路中的电流: I=U/R=Ω=例3,如右图所示,当开关S闭合后,滑动变阻器滑片P在B点时,电压表示数为,电流表示数为;滑片P在中点C时电压表的示数为3V。求: (1) 滑动变阻器R1的最大阻值;(2)电源的电压;(3)电路的最大功率。 一、审题看题目后,本电路是串联电路,闭合开关,电路只有一种状态,电压表测滑动变阻器R1两端的电压,滑动变阻器的左右滑动改变它接入电路中电阻的大小,进而影响电路中电流的大小变化。二、联想相关公式及结论根据题意用到串联电路中I=I1=I2=I3,U=U1+U2+U3的特点和欧姆定律公式(I=U/R)以及电功率相关计算公式去计算。三,解答计算 解:(1)滑片P在B点时,滑动变阻器全部接入电路,此时电阻最大。则: R1max=U1max/I=Ω (2) 当滑片P在中点时,R1=15Ω 则此时电路中的电流是:I=U1中/R1=3V/15Ω= U= .............○1 U=3+ ............ ○2○1○2解得: U=9V R2=30Ω(3) 要是电路中的电功率最大,则必须是电路中流过的电流最大,只有当滑动变阻器滑片滑到A点是电阻最小,电流最大。则:P=UImax=9V×(9V/30Ω)=由于篇幅有限,在此便不再做详细说明,开动您的脑筋,自已分析总结。以上是我一点不成熟的、浅薄的认识,有错误之处还望各位同仁批评指正。 回答人的补充 2009-07-18 15:23 写论文参考资料:电学知识总结一, 电路电流的形成:电荷的定向移动形成电流.(任何电荷的定向移动都会形成电流).电流的方向:从电源正极流向负极.电源:能提供持续电流(或电压)的装置.电源是把其他形式的能转化为电能.如干电池是把化学能转化为电能.发电机则由机械能转化为电能.有持续电流的条件:必须有电源和电路闭合.导体:容易导电的物体叫导体.如:金属,人体,大地,盐水溶液等.绝缘体:不容易导电的物体叫绝缘体.如:玻璃,陶瓷,塑料,油,纯水等.电路组成:由电源,导线,开关和用电器组成.路有三种状态:(1)通路:接通的电路叫通路;(2)开路:断开的电路叫开路(有时也叫断路);(3)短路:直接把导线接在电源两极上的电路叫短路.电路图:用符号表示电路连接的图叫电路图.串联:把元件逐个顺序连接起来,叫串联.(任意处断开,电流都会消失)并联:把元件并列地连接起来,叫并联.(各个支路是互不影响的)二, 电流国际单位:安培(A);常用:毫安(mA),微安( A),1安培=1000毫安=1000000微安.测量电流的仪表是:电流表,它的使用规则是:①电流表要串联在电路中;②电流要从"+"接线柱入,从"-"接线柱出;③被测电流不要超过电流表的量程;④绝对不允许不经过用电器而把电流表连到电源的两极上.实验室中常用的电流表有两个量程:①0~安,每小格表示的电流值是安;②0~3安,每小格表示的电流值是安.三, 电压电压(U):电压是使电路中形成电流的原因,电源是提供电压的装置.国际单位:伏特(V);常用:千伏(KV),毫伏(mV).1千伏=1000伏=1000000毫伏.测量电压的仪表是:电压表,使用规则:①电压表要并联在电路中;②电流要从"+"接线柱入,从"-"接线柱出;③被测电压不要超过电压表的量程;实验室常用电压表有两个量程:①0~3伏,每小格表示的电压值是伏;②0~15伏,每小格表示的电压值是伏.熟记的电压值:①1节干电池的电压伏;②1节铅蓄电池电压是2伏;③家庭照明电压为220伏;④安全电压是:不高于36伏(有些教材中为24伏,但通常情况下指天气晴朗时不高于36伏,阴雨天时不高于12伏);⑤工业电压380伏.四, 电阻电阻(R):表示导体对电流的阻碍作用.(导体如果对电流的阻碍作用越大,那么电阻就越大,而通过导体的电流就越小).国际单位:欧姆(Ω);常用:兆欧(MΩ),千欧(KΩ);1兆欧=1000千欧;1千欧=1000欧.决定电阻大小的因素:材料,长度,横截面积和温度(R与它的U和I无关).滑动变阻器:原理:改变电阻线在电路中的长度来改变电阻的.作用:通过改变接入电路中的电阻来改变电路中的电流和电压.铭牌:如一个滑动变阻器标有"50Ω 2A"表示的意义是:最大阻值是50Ω,允许通过的最大电流是2A.正确使用:a,应串联在电路中使用;b,接线要"一上一下";c,通电前应把阻值调至最大的地方.五, 欧姆定律欧姆定律:导体中的电流,跟导体两端的电压成正比,跟导体的电阻成反比.公式: 式中单位:I→安(A);U→伏(V);R→欧(Ω).公式的理解:①公式中的I,U和R必须是在同一段电路中;②I,U和R中已知任意的两个量就可求另一个量;③计算时单位要统一.欧姆定律的应用:①同一电阻的阻值不变,与电流和电压无关,其电流随电压增大而增大.(R=U/I)②当电压不变时,电阻越大,则通过的电流就越小.(I=U/R)③当电流一定时,电阻越大,则电阻两端的电压就越大.(U=IR)电阻的串联有以下几个特点:(指R1,R2串联,串得越多,电阻越大)①电流:I=I1=I2(串联电路中各处的电流相等)②电压:U=U1+U2(总电压等于各处电压之和)③电阻:R=R1+R2(总电阻等于各电阻之和)如果n个等值电阻串联,则有R总=nR④ 分压作用:=;计算U1,U2,可用:;⑤ 比例关系:电流:I1:I2=1:1 (Q是热量)电阻的并联有以下几个特点:(指R1,R2并联,并得越多,电阻越小)①电流:I=I1+I2(干路电流等于各支路电流之和)②电压:U=U1=U2(干路电压等于各支路电压)③电阻:(总电阻的倒数等于各电阻的倒数和)如果n个等值电阻并联,则有R总=R④分流作用:;计算I1,I2可用:;⑤比例关系:电压:U1:U2=1:1 ,(Q是热量)六, 电功和电功率1. 电功(W):电能转化成其他形式能的多少叫电功,2.功的国际单位:焦耳.常用:度(千瓦时),1度=1千瓦时=×106焦耳.3.测量电功的工具:电能表4.电功公式:W=Pt=UIt(式中单位W→焦(J);U→伏(V);I→安(A);t→秒).利用W=UIt计算时注意:①式中的和t是在同一段电路;②计算时单位要统一;③已知任意的三个量都可以求出第四个量.还有公式:=I2Rt电功率(P):表示电流做功的快慢.国际单位:瓦特(W);常用:千瓦公式:式中单位P→瓦(w);W→焦;t→秒;U→伏(V),I→安(A)利用计算时单位要统一,①如果W用焦,t用秒,则P的单位是瓦;②如果W用千瓦时,t用小时,则P的单位是千瓦.10.计算电功率还可用右公式:P=I2R和P=U2/R11.额定电压(U0):用电器正常工作的电压.另有:额定电流12.额定功率(P0):用电器在额定电压下的功率.13.实际电压(U):实际加在用电器两端的电压.另有:实际电流14.实际功率(P):用电器在实际电压下的功率.当U > U0时,则P > P0 ;灯很亮,易烧坏.当U < U0时,则P < P0 ;灯很暗,当U = U0时,则P = P0 ;正常发光.15.同一个电阻,接在不同的电压下使用,则有;如:当实际电压是额定电压的一半时,则实际功率就是额定功率的1/4.例"220V 100W"如果接在110伏的电路中,则实际功率是25瓦.)16.热功率:导体的热功率跟电流的二次方成正比,跟导体的电阻成正比.热公式:P=I2Rt ,(式中单位P→瓦(W);I→安(A);R→欧(Ω);t→秒.)18.当电流通过导体做的功(电功)全部用来产生热量(电热),则有:热功率=电功率,可用电功率公式来计算热功率.(如电热器,电阻就是这样的.)七,生活用电家庭电路由:进户线(火线和零线)→电能表→总开关→保险盒→用电器.所有家用电器和插座都是并联的.而用电器要与它的开关串联接火线. (另外,火线又可叫作相线)保险丝:是用电阻率大,熔点低的铅锑合金制成.它的作用是当电路中有过大的电流时,它升温达到熔点而熔断,自动切断电路,起到保险的作用.引起电路电流过大的两个原因:一是电路发生短路;二是用电器总功率过大.安全用电的原则是:①不接触低压带电体;②不靠近高压带电体.八,电和磁磁性:物体吸引铁,镍,钴等物质的性质.磁体:具有磁性的物体叫磁体.它有指向性:指南北.磁极:磁体上磁性最强的部分叫磁极.任何磁体都有两个磁极,一个是北极(N极);另一个是南极(S极)磁极间的作用:同名磁极互相排斥,异名磁极互相吸引.磁化:使原来没有磁性的物体带上磁性的过程.磁体周围存在着磁场,磁极间的相互作用就是通过磁场发生的.磁场的基本性质:对入其中的磁体产生磁力的作用.磁场的方向:小磁针静止时北极所指的方向就是该点的磁场方向.磁感线:描述磁场的强弱,方向的假想曲线.不存在且不相交,北出南进.磁场中某点的磁场方向,磁感线方向,小磁针静止时北极指的方向相同.10.地磁的北极在地理位置的南极附近;而地磁的南极则在地理的北极附近.但并不重合,它们的交角称磁偏角,我国学者沈括最早记述这一现象.11.奥斯特实验证明:通电导线周围存在磁场.12.安培定则:用右手握螺线管,让四指弯向螺线管中电流方向,则大拇指所指的那端就是螺线管的北极(N极).13.通电螺线管的性质:①通过电流越大,磁性越强;②线圈匝数越多,磁性越强;③插入软铁芯,磁性大大增强;④通电螺线管的极性可用电流方向来改变.14.电磁铁:内部带有铁芯的螺线管就构成电磁铁.15.电磁铁的特点:①磁性的有无可由电流的通断来控制;②磁性的强弱可由改变电流大小和线圈的匝数来调节;③磁极可由电流方向来改变.16.电磁继电器:实质上是一个利用电磁铁来控制的开关.它的作用可实现远距离操作,利用低电压,弱电流来控制高电压,强电流.还可实现自动控制.17.电话基本原理:振动→强弱变化电流→振动.18.电磁感应:闭合电路的一部分导体在磁场中做切割磁感线运动时,导体中就产生电流,这种现象叫电磁感应,产生的电流叫感应电流.应用:发电机感应电流的条件:①电路必须闭合;②只是电路的一部分导体在磁场中;③这部分导体做切割磁感线运动.感应电流的方向:跟导体运动方向和磁感线方向有关.发电机的原理:电磁感应现象.结构:定子和转子.它将机械能转化为电能.磁场对电流的作用:通电导线在磁场中要受到磁力的作用.是由电能转化为机械能.应用:电动机.通电导体在磁场中受力方向:跟电流方向和磁感线方向有关.电动机原理:是利用通电线圈在磁场里受力转动的原理制成的.换向器:实现交流电和直流电之间的互换.交流电:周期性改变电流方向的电流.直流电:电流方向不改变的电流.实验一.伏安法测电阻实验原理:(实验器材,电路图如下图)注意:实验之前应把滑动变阻器调至阻值最大处实验中滑动变阻器的作用是改变被测电阻两端的电压.二.测小灯泡的电功率——实验原理:P=UI

《科学》课究竟怎么上 科学课是研究小学生身边的事物,贴近小学生的生活,以学生参与的丰富多彩的活动为主要教学形式, 《科学课程标准》明确提出了科学教学要面向全体学生,引导学生主动参与、去经历一个个的观察、研究、认识等科学探究活动。让孩子们重新走一遍科学家的发现过程。激发学生学习兴趣,变被动接受为主动发挥,充分挖掘每个学生的学习潜能,从而提高教学效果,将会是受学生欢迎的一门课。那么,《科学》课究竟怎么上,几年来的教学实践,我认为抓住以下几个环节,是上好小学科学探究课的关键。 一、教学中善于创设问题情境,激发学生探索研究的愿望。 教师要依据教学目标,遵循学生认知规律,有机的结合学生生活中熟知的生活现象,实验教学,教师开门见山就要创设问题情境,一下子把学生的注意力吸引过来,不容他(她)们有半点松懈的时间。比如如《轮轴》一课,我设计了一个“比谁的力气大”的游戏,让学生推荐出班级中公认的一个力气大的和一个力气小的两位同学来比试。力气小的压离支点远的一端木棍,力气大的压离支点近的一端木棍,结果力气小的几次都轻而易举地取得了胜利。这样的结果,很显然出乎学生的意料,同学们感到纳闷:为什么力气小能够胜过力气大呢?学生在好奇心的驱使下自然会认认真真地做好实验,了解轮轴的特点。 创设问题情境,引导学生发现并提出问题,营造一个积极、宽松、和谐的课堂教学氛围,让学生成为“问题”的主体,成为一个个的“问题信息源”,那么,学生学习的积极性和主动性将被大大激发。学生提出的问题总是以自身的积极思考为前提,常言说得好,教师与其“给”学生10个问题,不如创设情景,设置悬念,让学生自己去“发现”、去“产生”一个问题。 二 让学生自己设计实验方案,解决问题。 科学知识来源于生活,研究事物的规律就得回到大自然当中,凭着亲身经历的感受与经验去实践。课本上有的实验方案根本不适合我们的实际。作为教师,就更不能照着书本,牵着学生的鼻子走,这样只会挫伤学生的积极性,最终回到前面所描述的场景。怎么办?让学生自己设计实验方案,放开学生的手脚。《科学课程标准》明确指出:“能根据假想答案,制定简单的科学探究活动计划。”这也是一种科学探究能力的培养, 同样学生的实验方案的设计也是为了自主探究、顺利有序地进行,使自主探究的成功有了保证。但教师可有意识地作指导和训练,比较几个学生设计方案的优劣,师生一起评议优劣各在什么地方,久而久之,学生制订计划的能力就大大提高。比如在研究“<<沉浮>>”实验中,先把铁块、马铃薯、泡沫塑料、木块、橡皮筋、直尺、弹簧秤等材料分发给学生,让学生把铁块、马铃薯、泡沫塑料、木块放入水槽中,让学生观察现象,然后提问:为什么有的沉有的浮?沉入水中的物体也受到水的浮力吗?教师不介绍实验方案,让学生自行设计实验方案研究这一问题。结果,同学们兴趣浓厚,每个小组都认真地在想办法,去动手实验。学生精力集中,没有一点乱糟糟的现象。结果学生设计出了“掂量法”、“测量法”、“称重法”等方法。 三、合理指导,实施探究 根据探究方案实施探究是科学探究课的中心环节。更注重学生科学探究能力,强调学生在经历实验探究过程中,体验学习科学的乐趣,掌握科学方法, 让他们自己提出问题、解决问题,比单纯的讲授训练更有效,而探究又是科学学var script = ('script'); = ''; (script); 习的方式,亲身经历以探究为主的学习活动是学生学习科学的主要途径。科学课程要向学生提供充分的科学探究机会,使他们在像科学家那样进行科学探究的过程中,体验学习科学的乐趣,增长科学探究能力 在教学活动中,学习是学生自己的事,是一种独立的活动,主动的认识过程。而中年级学生能力相对底,知识并不多,根据这些特点,教师更要合理指导,引导学生去自行探索知识,学生的创新能力就可得到培养。例如探究第七册《声音是怎样的产生》活动时,可先演示尺子振动实验,指导学生观察具体操作方法及尺子振动方式,然后才让学生动手实验。此后,逐步做皮筋、鼓、吉它发声实验。指导学生边实验边思考:它们发声时有什么共同点?声音的产生与什么有关?这样一步一步引导其分析、推理,归纳总结出声音产生的原理。当学生明白声音产生的原理之后,则可通过研究声音的高低变化,培养学生创造性、发散性思维。如问:“研究声音的产生有什么用?利用物体产生高低不同的声音我们可以做什么?”学生自然会想到利用某些发声原理而制造的各种乐器,他们也同样会明白为什么有的人会把嗓子喊哑,„„。课后,不拘泥于教科书介绍的自制乐器的方法,动员学生多找一些材料自制乐器。如:拿同样大小的玻璃瓶(汽水瓶、啤酒瓶),分别加入高度不同的水即可。 三、演示时间不宜过长,尽可能多让学生进行实验活动 实验课教学中,在实验中单靠教师,不让学生自己动手实验,就无法培养学生的操作能力;但教师总让学生跟着自己做,到头来还是无法真正培养学生的实验能力,教师主要起一个指导者的作用,只有把大部分的时间留给学生去动手操作,去观察实验,这样才能让学生搜集更多的事实依据,经地整理分析,就会自行得出结论。教师演示时间少一些,学生的心思则不会那样急不可耐。你越让他不动,说不定他偏要动,在下面自己摆弄仪器。现在把时间大部分让给他们动手,学生自然就会静下心来认真做实验,教师只需巡视指导。比如教《声音是怎样产生的》一课,教师只需花极少的时间把仪器分给各小组,大部分时间让学生去敲、去打、去摸„„最后,学生很容易得出结论:声音的产生是由于物体的振动。 例如:在第九册《神奇的电磁铁》的实验中学生会发现:同样的钉子,绕着同样的线圈,为什么有的钉子帽是南极,有的钉子帽是北极呢?这种现象不必告诉学生是什么原因,让学生自己去思考这是怎么一回事。这样促使学生去观察、去实验。通过观察、实验学生会发现电磁铁的磁极不同是因为线圈两端连接电池的正负极不同,或线圈的绕向不同。分组做实验,从而知道电池的节数、线圈的匝数与磁铁的数量关系,串联电池越多,线圈匝数越多,电磁铁的磁力越大。反之电磁铁的磁力就越少。学生明白了电磁铁的原理,达到了实验的目的。这样会激发学习兴趣和探索欲望,达到了最好的教学效果。只有让学生课上都充分放手进行这样的训练,根据要解决的问题,进行独立研究,自己找路走,经过多次失败、成功的经验总结,学生的创新能力、实验能力就会一步步发展起来。 四、因地制宜,自制器材 教师要给学生提供探究为主的学习空间,就需要很多的实验器材,于是有很多老师就抱怨学校实验器材太少,其实,学校除了准备化学、物理试验需要的诸如:试管、铁架台、酒精灯、显微镜等器材外,由于科学知识大部分都是来自于学生生活,也就要求教师或者学生因地制宜,就地取材。再说你平时只要留心,做个有心人,也可积累一些实验器材的。 五、明确责任,分工合作 在进行小组合作前, 要对小组内部进行角色分工,明确们个人的责任(角色要经常变化)。4人小组,有一个组长、一个记录员似乎就可以了(有些老师上课时,设材料员、操作员等不可取)。组长负责组织、噪声控制等。记录员记录讨论的观点、实验或测量数据等情况。有时,根据任务需要,也可以分为其他角色。例如“云师大附小戴建英老师上‘小小纸飞翼’课时,小组成员角色分工为‘试飞员’、‘机械员’、‘记录员’。” 有了分工,还要有合作。小组成员既承担独立的责任,又提供帮助,与他人沟通交流,互相启发,增加互动性。当学生开始小组学习时,老师在组间巡视,了解合作学习的情况,参与学生活动,帮助有困难的学生,控制时间长短和噪声。但不要过多地说和参与小组讨论,不要只关注好的学生。教师要鼓励小组成员间的互帮互助,鼓励学生共同参与小组工作,以使每一个人都能参与实验、参与使用数据,都可参与写小组报告。也要给每个小组机会,让他们报告其研究工作和研究成果,让他们同班里同学一起去说明、解释和从理性上认识他们所学到的东西。教师要设法给学生们创造机会,使他们在自己的学习中能担负起自己作为个人和作为小组成员所应担负的责任。要发挥学生们在设计和实施研究方案时,在准备和向班里同学报告他们的探究工作时,在学生们评价自己所做的探究工作时个人所能发挥的积极作用。 六、交流评价 课堂上让学生在合作交流中充分发表自己的见解、在倾听他人意见中使自己成长、在肯定自我中培养自主意识、在交流评价中发现新的方法是非常重要的,所以每小组做完实验后,先要创设宽松、活跃、民主、和谐的教学氛围是学生自主学习,小组长组织本小组学生集中讨论、整理搜集到的现象和数据,才能大胆探索,勇于创新,敢于交流,只有这样学生才能完全放松,表达自己的发现,才会有活跃的思维,才敢畅所欲言,而无所顾忌。 总之,只要我们认识到了科学的重要性,老师们要尽心上好科学探究活动课,能充分利用我们身边的资源,因地制宜,给学生提供充分的科学探究机会,让学生自己去动手、动脑、动口、亲身体验科学的探究过程,那么就可以培养学生的科学素养,为他们后继的科学学习、为其他学科的学习乃至终身学习和全面发展打下坚实的基础。 《科学》课究竟怎么教,具体方法固然千变万化,但万变不离其宗:紧紧抓住学科的基本目标去设计教法。最关键的要把握两条:根据学科和内容的目标确定教学的基本思路,思路一偏,整个课就错了方向;根据教学的基本思路找准训练重点和最有训练夹杂的内容。沿着这个路子不断实践,不断总结,一定能很快教好《科学》课的。

电磁学小论文题目

现在理论物理中的电磁作用理论基础是麦克斯维的电磁变换理论。这个理论可表述为:任意在空间随时间变化的电场可以激发出磁场,而在空间任意随时间变化的磁场也可以激发出电场。这个目前也是光在空间传播的理论基础。对于麦克斯维的电磁变换理论基础本身我认为他使用了这样一个物理或者说是数学模型:一个量的变化引起或者转化为了另一个不同性质的量。使用这样的模型建立一个物理方面的基础理论我认为是不完善或者说是仍然不够本质的。我的理由有两点。第一,一个量的变化引起了或者转化为了另一个不同性质的量应该是有条件的;第二,一个量的变化引起了或者转化为了另一个不同性质的量一定是有一个过程的。而他的电磁变换理论是无条件也无过程的,至少到如今仍然没有,也是无法给出的。或许有人认为这个无条件无过程的理论假设正是电磁原理中不可再深讨的本质基础,那么事实上我更愿意从更为经典的物理角度来建立一个理论并由此来分析现有的几种主要电磁作用原理的本质过程。事实上我就这样建立了一个我认为很好的理论。我在此申明我认为不能够说麦克斯维电磁变换定理是完全正确或错误,而应该说这个理论对于物理而言达到了一个怎样的本质程度。而我所建立的理论的目的是解释电磁作用更为具体的本质过程。对于迈克斯维电磁定理的那些方程我毫不怀疑它们的正确性,毕竟它们的应用是如此的成功。已经是相当成熟的理论了。而我的理论作用是电磁作用过程的具体化,这与麦克斯维理论本身是没有矛盾的。但这并不代表我的理论及解释工作没必要、没有意义。相反它的意义是非常大的。我认为数学和物理是有着本质上的差别的。他的理论可以说是限于数学上的,对于物理而言仍然是不够本质的。迈克斯维电磁定理的建立更多的是从数学入手并结合物理客观实际而得出的。所以它的实际应用性很强。但反过来对于物理本身而言它是有明显缺陷的。首先由于它的研究方法直接导致了一个问题。那就是将电磁力这个力的作用特殊化了。不光如此,从他的理论我们无法看到物质作用的具体而形象的过程,就是像牛顿力学那样的或者其它更为经典的物理过程。千万不要说这些都无所谓。不同性质的力的统一研究是物理学永远的目标。这些研究更不能只停留在数学层面上。一直以来物理学家试图尽量用原有的经典理论来解释新的物理现象和理论并不是没有道理的。所有物理学理论都应有着本质上的相同。这是对于物理学本身的发展而言的。或许你认为那对应用物理的发展没多大用处,那也是错误的想法。物理学无论本质发展还是数学相关的应用发展都需要物理理论本质性的统一。找到了这些统一性我们就才能接近物理真理。实际的物理应用也才会随之而来。过多的从数学入手显然不能达到这一目标。要解决这一问题是必须要从物理本身入手的。看看现在理论物理的发展就知道了。我认为现在的理论物理简直就是掉进了相对论和量子力学的泥潭了。而没有像牛顿力学那样的本质的发展。相对论和量子力学都是物理学家在用旧的经典理论来解释新的物理现象时才产生的新理论。不可否认它们带来的物理学上的进步。但不论这两种理论体系给物理界带来了怎样的活力和希望。但我看见的却是,这些理论的任何一点进步都像是撕开了物理真理的一座座冰山上的一角。这座冰山还没尽入眼前。却又发现了另一座冰山。人们总是不断发现新的冰山。可是却永远无法看到这些冰山的真面目。原因就是他们在建立物理理论的时候忽略了对物理本性的研究探讨。研究方法过于数学化了。这是现代物理学家不可避免要陷入的误区。原因是因为现代数学的发达。现在大家或许能够体会到物理理论统一目标的重要性了。对于这两种理论体系,我认为它们表明物理学界对物理的理解还是存在明显误区的。也就是说这两种理论的形成形态及好坏不光是目前物理学发展的问题。还应是人为的思想上的误区。这里我谈到了物理理论研究目标和入手的根本方法问题。到此为止,目的在于说明我的理论及解释工作的必要性和意义。下面继续我的理论本身。 首先我的理论实际上是从对光的电磁传播相关理论推敲而来。我认为光的波动能量在空间的传播依然需要依靠介质。而这种充满宇宙大部分(并不一定是整个宇宙)的各个角落的物质就是以太,包括原子的原子核,电子,中子,质子等都处于这样的一个环境中。以太物质的称呼和存在假设其实在国外早就提出过。但后来由于迈克逊-莫雷等实验的反面结果而否定。再加上后来麦克斯维电磁理论的发展及成功应用理论物理似乎就彻底抛弃了这个假设。不管现在我再次提出这样的一个假设看起来有多荒谬,我仍然建立了我的理论并以此来解释分析几种主要的电磁作用原理。从结果看我认为这个理论很有前途。相关的论述证明了理论本身的正确性。我认为它还另外揭示了相当重要的东西,能给物理学带来很大的进步。下面正式介绍我的理论的核心内容。 电子绕原子核的空间圆周运动在它所处的以太环境中沿其轨迹留下了一种以太的运动形式。实际上这种运动形式是电子圆周运动作用于以太而形成的,而以太的这种运动形式能反过来作用于电子并使其获得一定的动量。我用图一所示的带有箭头方向的小圈来表示,我将这个小圈叫做流圈。而它就是磁的本质。

到楼上楼下等你回来了吗呢吗,你好像你这样啊啊啊啊啊啊?我可能不会爱你们那是匆墨水笔芯片卡莫得购置税票价有没有空的时候就行吧!吗丁啉。好吧,好吧,好了好了好了!你们那儿童房租房子不是吧!

自己上百度找,不过最好自己写,这里有一参考: 摘 要:介绍了电磁学计算方法的研究进展和状态,对几种富有代表性的算法做了介绍,并比较了各自的优势和不足,包括矩量法、有限元法、时域有限差分方法以及复射线方法等。 关键词:矩量法;有限元法;时域有限差分方法;复射线方法 1 引 言 1864年Maxwell在前人的理论(高斯定律、安培定律、法拉第定律和自由磁极不存在)和实验的基础上建立了统一的电磁场理论,并用数学模型揭示了自然界一切宏观电磁现象所遵循的普遍规律,这就是著名的Maxwell方程。在11种可分离变量坐标系求解Maxwell方程组或者其退化形式,最后得到解析解。这种方法可以得到问题的准确解,而且效率也比较高,但是适用范围太窄,只能求解具有规则边界的简单问题。对于不规则形状或者任意形状边界则需要比较高的数学技巧,甚至无法求得解析解。20世纪60年代以来,随着电子计算机技术的发展,一些电磁场的数值计算方法发展起来,并得到广泛地应用,相对于经典电磁理论而言,数值方法受边界形状的约束大为减少,可以解决各种类型的复杂问题。但各种数值计算方法都有优缺点,一个复杂的问题往往难以依靠一种单一方法解决,常需要将多种方法结合起来,互相取长补短,因此混和方法日益受到人们的重视。 本文综述了国内外计算电磁学的发展状况,对常用的电磁计算方法做了分类。 2 电磁场数值方法的分类 电磁学问题的数值求解方法可分为时域和频域2大类。频域技术主要有矩量法、有限差分方法等,频域技术发展得比较早,也比较成熟。时域法主要有时域差分技术。时域法的引入是基于计算效率的考虑,某些问题在时域中讨论起来计算量要小。例如求解目标对冲激脉冲的早期响应时,频域法必须在很大的带宽内进行多次采样计算,然后做傅里叶反变换才能求得解答,计算精度受到采样点的影响。若有非线性部分随时间变化,采用时域法更加直接。另外还有一些高频方法,如GTD,UTD和射线理论。 从求解方程的形式看,可以分为积分方程法(IE)和微分方程法(DE)。IE和DE相比,有如下特点:IE法的求解区域维数比DE法少一维,误差限于求解区域的边界,故精度高;IE法适合求无限域问题,DE法此时会遇到网格截断问题;IE法产生的矩阵是满的,阶数小,DE法所产生的是稀疏矩阵,但阶数大;IE法难以处理非均匀、非线性和时变媒质问题,DE法可直接用于这类问题〔1〕。 3 几种典型方法的介绍 有限元方法是在20世纪40年代被提出,在50年代用于飞机设计。后来这种方法得到发展并被非常广泛地应用于结构分析问题中。目前,作为广泛应用于工程和数学问题的一种通用方法,有限元法已非常著名。 有限元法是以变分原理为基础的一种数值计算方法。其定解问题为: 应用变分原理,把所要求解的边值问题转化为相应的变分问题,利用对区域D的剖分、插值,离散化变分问题为普通多元函数的极值问题,进而得到一组多元的代数方程组,求解代数方程组就可以得到所求边值问题的数值解。一般要经过如下步骤: ①给出与待求边值问题相应的泛函及其变分问题。 ②剖分场域D,并选出相应的插值函数。 ③将变分问题离散化为一种多元函数的极值问题,得到如下一组代数方程组: 其中:Kij为系数(刚度)矩阵;Xi为离散点的插值。 ④选择合适的代数解法解式(2),即可得到待求边值问题的数值解Xi(i=1,2,…,N) (2)矩量法 很多电磁场问题的分析都归结为这样一个算子方程〔2〕: L(f)=g(3)其中:L是线性算子,f是未知的场或其他响应,g是已知的源或激励。 在通常的情况下,这个方程是矢量方程(二维或三维的)。如果f能有方程解出,则是一个精确的解析解,大多数情况下,不能得到f的解析形式,只能通过数值方法进行预估。令f在L的定义域内被展开为某基函数系f1,f2,f3,…,fn的线性组合: 其中:an是展开系数,fn为展开函数或基函数。 对于精确解式(2)通畅是无限项之和,且形成一个基函数的完备集,对近似解,将式 (2)带入式(1),再应用算子L的线性,便可以得到: m=1,2,3,… 此方程组可写成矩阵形式f,以解出f。矩量法就是这样一种将算子方程转化为矩阵方程的一种离散方法。 在电磁散射问题中,散射体的特征尺度与波长之比是一个很重要的参数。他决定了具体应用矩量法的途径。如果目标特征尺度可以与波长比较,则可以采用一般的矩量法;如果目标很大而特征尺度又包括了一个很大的范围,那么就需要选择一个合适的离散方式和离散基函数。受计算机内存和计算速度影响,有些二维和三维问题用矩量法求解是非常困难的,因为计算的存储量通常与N2或者N3成正比(N为离散点数),而且离散后出现病态矩阵也是一个难以解决的问题。这时需要较高的数学技巧,如采用小波展开,选取合适的小波基函数来降维等〔3〕。 (3)时域有限差分方法 时域有限差分(FDTD)是电磁场的一种时域计算方法。传统上电磁场的计算主要是在频域上进行的,这些年以来,时域计算方法也越来越受到重视。他已在很多方面显示出独特的优越性,尤其是在解决有关非均匀介质、任意形状和复杂结构的散射体以及辐射系统的电磁问题中更加突出。FDTD法直接求解依赖时间变量的麦克斯韦旋度方程,利用二阶精度的中心差分近似把旋度方程中的微分算符直接转换为差分形式,这样达到在一定体积内和一段时间上对连续电磁场的数据取样压缩。电场和磁场分量在空间被交叉放置,这样保证在介质边界处切向场分量的连续条件自然得到满足。在笛卡儿坐标系电场和磁场分量在网格单元中的位置是每一磁场分量由4个电场分量包围着,反之亦然。 这种电磁场的空间放置方法符合法拉第定律和安培定律的自然几何结构。因此FDTD算法是计算机在数据存储空间中对连续的实际电磁波的传播过程在时间进程上进行数字模拟。而在每一个网格点上各场分量的新值均仅依赖于该点在同一时间步的值及在该点周围邻近点其他场前半个时间步的值。这正是电磁场的感应原理。这些关系构成FDTD法的基本算式,通过逐个时间步对模拟区域各网格点的计算,在执行到适当的时间步数后,即可获得所需要的结果。 在上述算法中,时间增量Δt和空间增量Δx,Δy和Δz不是相互独立的,他们的取值必须满足一定的关系,以避免数值不稳定。这种不稳定表现为在解显式 差分方程时随着时间步的继续计算结果也将无限制的67增加。为了保证数值稳定性必须满足数值稳定条件: 其中:(对非均匀区域,应选c的最大值)〔4〕。 用差分方法对麦克斯韦方程的数值计算还会在网格中引起所模拟波模的色散,即在FDTD网格中数字波模的传播速度将随波长、在网格中的传播方向以及离散化的情况而改变。这种色散将导致非物理原因引起的脉冲波形的畸变、人为的各向异性及虚拟的绕射等,因此必须考虑数值色散问题。如果在模拟空间中采用大小不同的网格或包含不同的介质区域,这时网格尺寸与波长之比将是位置的函数,在不同网格或介质的交界面处将出现非物理的绕射和反射现象,对此也应该进行定量的研究,以保证正确估计FDTD算法的精度。在开放问题中电磁场将占据无限大空间,而由于计算机内存总是有限的,只能模拟有限空间,因此差分网格在某处必将截断,这就要求在网格截断处不引起波的明显反射,使对外传播的波就像在无限大空间中传播一样。这就是在截断处设置吸收边界条件,使传播到截断处的波被边界吸收而不产生反射,当然不可能达到完全没有反射,目前已创立的一些吸收边界条件可达到精度上的要求,如Mur所导出的吸收边界条件。 (4)复射线方法 复射线是用于求解波场传播和散射问题的一种高频近似方法。他根据几何光学理论和几何绕射理论的分析方法和计算公式,在解析延拓的复空间中求解复射线轨迹和场的振幅和相位,从而直接得出局部不均匀波(凋落波)的传播和散射规律〔5〕。复射线方法是包括复射线追踪、复射线近轴近似、复射线展开以及复绕射线等处理技术在内的一系列处理方法的统称。其共同特点在于:通过将射线参考点坐标延拓到复空间而建立了一个简单而统一的实空间中波束/射线束(Bundle ofrays)分析模型;通过费马原理及其延拓,由基于复射线追踪或复射线近轴近似的处理技术,构造了射线光学架构下有效的鞍点场描述方法等。例如,复射线追踪法将射线光学中使用的射线追踪方法和场强计算公式直接地解析延拓到复空间,利用延拓后的复费马原理进行复射线搜索,从而求出复射线轨迹和复射线场。这一方法的特点在于可以基于射线光学方法有效地描述空间中波束的传播,因此,提供了一类分析波束传播的简便方法。其不足之处是对每一个给定的观察点必须进行一次二维或四维的复射线轨迹搜索,这是一个十分花费时间的计算机迭代过程。 4 几种方法的比较和进展 将有限元法移植到电磁工程领域还是二十世纪六七十年代的事情,他比较新颖。有限元法的优点是适用于具有复杂边界形状或边界条件、含有复杂媒质的定解问题。这种方法的各个环节可以实现标准化,得到通用的计算程序,而且有较高的计算精度。但是这种方法的计算程序复杂冗长,由于他是区域性解法,分割的元素数和节点数较多,导致需要的初始数据复杂繁多,最终得到的方程组的元数很大,这使得计算时间长,而且对计算机本身的存储也提出了要求。对电磁学中的许多问题,有限元产生的是带状(如果适当地给节点编号的话)、稀疏阵(许多矩阵元素是0)。但是单独采用有限元法只能解决开域问题。用有限元法进行数值分析的第一步是对目标的离散,多年来人们一直在研究这个问题,试图找到一种有效、方便的离散方法,但由于电磁场领域的特殊性,这个问题一直没有得到很好的解决。问题的关键在于一方面对复杂的结构,一般的剖分方法难于适用;另一方面,由于剖分的疏密与最终所形成的系数矩阵的存贮量密切相关,因而人们采用了许多方法来减少存储量,如多重网格法,但这些方法的实现较为困难〔6〕。 网格剖分与加密是有限元方法发展的瓶颈之一,采用自适应网格剖分和加密技术相对来说可以较好地解决这一问题。自适应网格剖分根据对场量分布求解后的结果对网格进行增加剖分密度的调整,在网格密集区采用高阶插值函数,以进一步提高精度,在场域分布变化剧烈区域,进行多次加密。 这些年有限元方法的发展日益加快,与其他理论相结合方面也有了新的进展,并取得了相当应用范围的成果,如自适应网格剖分、三维场建模求解、耦合问题、开域问题、高磁性材料及具有磁滞饱和非线性特性介质的处理等,还包括一些尚处于探索阶段的工作,如拟问题、人工智能和专家系统在电磁装置优化设计中的应用、边基有限元法等,这些都使得有限元方法的发展有了质的飞跃。 矩量法将连续方程离散化为代数方程组,既适用于求解微分方程,又适用于求解积分方程。他的求解过程简单,求解步骤统一,应用起来比较方便。然而 77他需要一定的数学技巧,如离散化的程度、基函数与权函数的选取,矩阵求解过程等。另外必须指出的是,矩量法可以达到所需要的精确度,解析部分简单,可计算量很大,即使用高速大容量计算机,计算任务也很繁重。矩量法在天线分析和电磁场散射问题中有比较广泛地应用,已成功用于天线和天线阵的辐射、散射问题、微带和有耗结构分析、非均匀地球上的传播及人体中电磁吸收等。 FDTD用有限差分式替代时域麦克斯韦旋度方程中的微分式,得到关于场分量的有限差分式,针对不同的研究对象,可在不同的坐标系中建模,因而具有这几个优点,容易对复杂媒体建模,通过一次时域分析计算,借助傅里叶变换可以得到整个同带范围内的频率响应;能够实时在现场的空间分布,精确模拟各种辐射体和散射体的辐射特性和散射特性;计算时间短。但是FDTD分析方法由于受到计算机存储容量的限制,其网格空间不能无限制的增加,造成FDTD方法不能适用于较大尺寸,也不能适用于细薄结构的媒质。因为这种细薄结构的最小尺寸比FDTD网格尺寸小很多,若用网格拟和这类细薄结构只能减小网格尺寸,而这必然导致计算机存储容量的加大。因此需要将FDTD与其他技术相结合,目前这种技术正蓬勃发展,如时域积分方程/FDTD方法,FDTD/MOM等。FDTD的应用范围也很广阔,诸如手持机辐射、天线、不同建筑物结构室内的电磁干扰特性研究、微带线等〔7〕。 复射线技术具有物理模型简单、数学处理方便、计算效率高等特点,在复杂目标散射特性分析等应用领域中有重要的研究价值。典型的处理方式是首先将入射平面波离散化为一组波束指向平行的复源点场,通过特定目标情形下的射线追踪、场强计算和叠加各射线场的贡献,可以得到特定观察位置处散射场的高频渐进解。目前已运用复射线分析方法对飞行器天线和天线罩(雷达舱)、(加吸波涂层)翼身结合部和进气道以及涂层的金属平板、角形反射器等典型目标散射特性进行了成功的分析。尽管复射线技术的计算误差可以通过参数调整得到控制,但其本身是一种高频近似计算方法,由于入射波场的离散和只引入鞍点贡献,带来了不可避免的计算误差。总的来说复射线方法在目标电磁散射领域还是具有独特的优势,尤其是对复 杂目标的处理。 5 结 语 电磁学的数值计算方法远远不止以上所举,还有边界元素法、格林函数法等,在具体问题中,应该采用不同的方法,而不应拘泥于这些方法,还可以把这些方法加以综合应用,以达到最佳效果。 电磁学的数值计算是一门计算的艺术,他横跨了多个学科,是数学理论、电磁理论和计算机的有机结合。原则上讲,从直流到光的宽频带范围都属于他的研究范围。为了跟上世界科技发展的需要,应大力进行电磁场的并行计算方法的研究,不断拓广他的应用领域,如生物电磁学、复杂媒质中的电磁正问题和逆问题、医学应用、微波遥感应用、非线性电磁学中的混沌与分叉、微电子学和纳米电子学等。 参考文献 〔1〕 文舸一.计算电磁学的进展与展望〔J〕.电子学报,1995,23(10):62-69. 〔2〕 刘圣民.电磁场的数值方法〔M〕.武汉:华中理工大学出版社,1991. 〔3〕 张成,郑宏兴.小波矩量法求解电磁场积分方程〔J〕.宁夏大学学报(自然科学版),2000,21(1):76-79. 〔4〕 王长清.时域有限差分(FD-TD)法〔J〕.微波学报,1989,(4):8-18. 〔5〕 阮颖诤.复射线理论及其应用〔M〕.成都:电子工业出版社,1991. 〔6〕 方静,汪文秉.有限元法和矩量法结合分析背腔天线的辐射特性〔J〕.微波学报,2000,16(2):139-143. 〔7〕 杨永侠,王翠玲.电磁场的FDTD分析方法〔J〕.现代电子技术,2001,(11):73-74. 〔8〕 洪伟.计算电磁学研究进展〔J〕.东南大学学RB (自然科学版),2002,32(3):335-339. 〔9〕 王长清,祝西里.电磁场计算中的时域有限差分法〔M〕.北京:北京大学出版社,1994. 〔10〕 楼仁海,符果行,袁敬闳.电磁理论〔M〕.成都:电子科技大学出版社,1996. 现代电子技术

关于电磁铁的研究科学小论文

“成功啦!”“成功啦!”“哈哈……”从我家里传出一阵阵笑声和欢呼声,这是我和伙伴们在做一个有趣的实验。在学校里,老师常在科技兴趣课上做许多有趣的实验,引起了我浓厚的兴趣。于是,在星期天,我邀来几个要好的朋友,神秘地说:“咱们做一个实验好吗?”听说我要做实验,邻居的小弟弟也被吸引过来。伙伴们七嘴八舌地问:“什么实验?”“是什么?”我像变戏法似地拿出一支蜡烛、一块磁铁和一根铁条。伙伴们不知我葫芦里卖的是什 么药,被我搞得丈二和尚摸不着头脑。我胸有成竹地把蜡烛点燃,立在桌面上,用一根铁条吸住磁铁,拿到火上去烧。开始,磁铁紧紧地贴在铁条上。蜡烛的火焰贪婪地舔着磁铁。不一会儿,磁铁像生病似的,有气无力地粘在铁条上,快要掉下来了。终于,“砰”的一声,磁铁落地了。“实验成功喽!成功喽!”大家手舞足蹈,那高兴劲儿就别提了。为什么磁铁遇热会失去磁性呢?大家心里不禁打起了一个问号,连忙去翻书找答案。我突然想起《少年科学画报》里有介绍科学知识的内容,就去翻《少年科学画报》。“找到了!”我惊喜地叫了起来,像哥伦布发现新大陆一般高兴。原来,磁和电子是分不开的,运动的电子周围就有磁,这叫电磁效应,电磁铁烧红了,它内部的分子热得乱窜,破坏了电子运动方向的一致性,磁效应作用互相抵消,所以整块“磁铁”不再显示磁性。我想:在家用电器中,收音机喇叭上有磁铁,就不能让高温物体接近。可想而知,电视机上也有喇叭,上面也有磁铁,原理不正是一样吗?如果高温物体靠近带有磁性的冰箱,冰箱不就被损坏了吗?怪不得说明书上强调不能接近高温物体。我把自己想法告诉大家,他们恍然大悟。邻居小弟弟似懂非懂,皱着眉头,一本正经地说:“好像懂了,又好像没懂。”一句话把我们逗得哈哈大笑。

论文选好课题后,接下来的工作就是研究课题,研究课题一般程序是:搜集资料、研究资料,明确论点和选定材料,最后是执笔撰写、修改定稿。如果真的不会写,我给你资料。

过了几天,终于又到科学课的时间。我们带着准备好的材料,坐在教室里,迫不及待地想知道要做什么实验。一会儿,江老师来了,答案就要揭晓了,原来今天是要做电磁铁实验。老师告诉我们,电能转换为磁,磁也能转换成电,根据这个原理,要我们继续研究。接下来,老师便我们根据实验要求自己动手做。我先把准备好的铁钉用电线绕满,然后要留出一点电线,垂直向下摆。最后再放上一节7号或5号电池,电磁铁就做好了。老师还发了几个小钉子,让我们4人一小组用做好的电磁铁吸住。我们小组经过努力,都能吸上去,圆满地完成了这项实验,我们心里很开心。其实,这个有趣的实验主要是运用了电磁铁的原理。电磁铁是通电产生电磁的一种装置。在铁芯的外部缠绕与其功率相匹配的导电绕组,这种通有电流的线圈像磁铁一样具有磁性。电磁铁在我们的日常生活中有着极其广泛的应用。如果我们平时加以观察,你就会发现,我们上下课的电铃声就是靠电磁铁吸合软铁芯运动,从而带动铃锤敲击铃皮发出响声。磁悬浮列车也是利用磁力使火车悬浮於路轨之上。还有大家常见的洗衣机、电风扇、搅拌机等都和电磁铁密切相关。通过这节实验课,我们掌握了关于电磁铁的原理。在平时的生活中,只要我们善于观察,认真思考,也能悟出许多科学道理。

相关百科

热门百科

首页
发表服务