只要有一个不同意,基本上录用的期望就很小了,除非这个人的意见编辑也不同意,那么编辑应该会另外找一个审稿人,一般不会直接忽略。.我学长推荐的北京译顶科技挺不错的,你可以联系看看,那边做润色做的挺好统一了解
毕业论文 一,我国数控系统的发展史 1.我国从1958年起,由一批科研院所,高等学校和少数机床厂起步进行数控系统的研制和开发。由于受到当时国产电子元器件水平低,部门经济等的制约,未能取得较大的发展。 2.在改革开放后,我国数控技术才逐步取得实质性的发展。经过“六五"(81----85年)的引进国外技术,“七五”(86------90年)的消化吸收和“八五”(91~一-95年)国家组织的科技攻关,才使得我国的数控技术有了质的飞跃,当时通过国家攻关验收和鉴定的产品包括北京珠峰公司的中华I型,华中数控公司的华中I型和沈阳高档数控国家工程研究中心的蓝天I型,以及其他通过“国家机床质量监督测试中心”测试合格的国产数控系统如南京四开公司的产品。 3.我国数控机床制造业在80年代曾有过高速发展的阶段,许多机床厂从传统产品实现向数控化产品的转型。但总的来说,技术水平不高,质量不佳,所以在90年代初期面临国家经济由计划性经济向市场经济转移调整,经历了几年最困难的萧条时期,那时生产能力降到50%,库存超过4个月。从1 9 9 5年“九五”以后国家从扩大内需启动机床市场,加强限制进口数控设备的审批,投资重点支持关键数控系统、设备、技术攻关,对数控设备生产起到了很大的促进作用,尤其是在1 9 9 9年以后,国家向国防工业及关键民用工业部门投入大量技改资金,使数控设备制造市场一派繁荣。 三,数控车的工艺与工装削 阅读:133 数控车床加工的工艺与普通车床的加工工艺类似,但由于数控车床是一次装夹,连续自动加工完成所有车削工序,因而应注意以下几个方面。 1. 合理选择切削用量 对于高效率的金属切削加工来说,被加工材料、切削工具、切削条件是三大要素。这些决定着加工时间、刀具寿命和加工质量。经济有效的加工方式必然是合理的选择了切削条件。 切削条件的三要素:切削速度、进给量和切深直接引起刀具的损伤。伴随着切削速度的提高,刀尖温度会上升,会产生机械的、化学的、热的磨损。切削速度提高20%,刀具寿命会减少1/2。 进给条件与刀具后面磨损关系在极小的范围内产生。但进给量大,切削温度上升,后面磨损大。它比切削速度对刀具的影响小。切深对刀具的影响虽然没有切削速度和进给量大,但在微小切深切削时,被切削材料产生硬化层,同样会影响刀具的寿命。 用户要根据被加工的材料、硬度、切削状态、材料种类、进给量、切深等选择使用的切削速度。 最适合的加工条件的选定是在这些因素的基础上选定的。有规则的、稳定的磨损达到寿命才是理想的条件。 然而,在实际作业中,刀具寿命的选择与刀具磨损、被加工尺寸变化、表面质量、切削噪声、加工热量等有关。在确定加工条件时,需要根据实际情况进行研究。对于不锈钢和耐热合金等难加工材料来说,可以采用冷却剂或选用刚性好的刀刃。 2. 合理选择刀具 1) 粗车时,要选强度高、耐用度好的刀具,以便满足粗车时大背吃刀量、大进给量的要求。 2) 精车时,要选精度高、耐用度好的刀具,以保证加工精度的要求。 3) 为减少换刀时间和方便对刀,应尽量采用机夹刀和机夹刀片。 3. 合理选择夹具 1) 尽量选用通用夹具装夹工件,避免采用专用夹具; 2) 零件定位基准重合,以减少定位误差。 4. 确定加工路线 加工路线是指数控机床加工过程中,刀具相对零件的运动轨迹和方向。 1) 应能保证加工精度和表面粗糙要求; 2) 应尽量缩短加工路线,减少刀具空行程时间。 5. 加工路线与加工余量的联系 目前,在数控车床还未达到普及使用的条件下,一般应把毛坯上过多的余量,特别是含有锻、铸硬皮层的余量安排在普通车床上加工。如必须用数控车床加工时,则需注意程序的灵活安排。 6. 夹具安装要点 目前液压卡盘和液压夹紧油缸的连接是靠拉杆实现的,如图1。液压卡盘夹紧要点如下:首先用搬手卸下液压油缸上的螺帽,卸下拉管,并从主轴后端抽出,再用搬手卸下卡盘固定螺钉,即可卸下卡盘。 四,进行有效合理的车削加工 阅读:102 有效节省加工时间 Index公司的G200车削中心集成化加工单元具有模块化、大功率双主轴、四轴联动的功能,从而使加工时间进一步缩短。与其他借助于工作轴进行装夹的概念相反,该产品运用集成智能加工单元可以使工件自动装夹到位并进行加工。换言之,自动装夹时,不会影响另一主轴的加工,这一特点可以缩短大约10%的加工时间。 此外,四轴加工非常迅速,可以同时有两把刀具进行加工。当机床是成对投入使用的时候,效率的提高更为明显。也就是说,常规车削和硬车可以并行设置两台机床。 常规车削和硬车之间的不同点仅仅在于刀架和集中恒温冷却液系统。但与常规加工不同的是:常规加工可用两个刀架和一个尾架进行加工;而硬车时只能使用一个刀架。在两种类型的机床上都可进行干式硬加工,只是工艺方案的制造者需要精心设计平衡的节拍时间,而Index机床提供的模块结构使其具有更强的灵活性。 以高精度提高生产率 随着生产效率的不断提高,用户对于精度也提出了很高的要求。采用G200车削中心进行加工时,冷启动后最多需要加工4个工件,就可以达到±6mm的公差。加工过程中,精度通常保持在2mm。所以Index公司提供给客户的是高精度、高效率的完整方案,而提供这种高精度的方案,需要精心选择主轴、轴承等功能部件。 G200车削中心在德国宝马Landshut公司汽车制造厂的应用中取得了良好的效果。该厂不仅生产发动机,而且还生产由轻金属铸造而成的零部件、车内塑料装饰件和转向轴。质量监督人员认为,其加工精度非常精确:连续公差带为±15mm,轴承座公差为±。 此外,加工的万向节使用了Index公司全自动智能加工单元。首批的两台车削中心用来进行工件打号之前的预加工,加工后进行在线测量,然后通过传送带送出进行滚齿、清洗和淬火处理。最后一道工序中,采用了第二个Index加工系统。由两台G200车削中心对转向节的轴承座进行硬车。在机床内完成在线测量,然后送至卸料单元。集成的加工单元完全融合到车间的布局之中,符合人类工程学要求,占地面积大大减少,并且只需两名员工看管制造单元即可。 五,数控车削加工中妙用G00及保证尺寸精度的技巧 数控车削加工技术已广泛应用于机械制造行业,如何高效、合理、按质按量完成工件的加工,每个从事该行业的工程技术人员或多或少都有自己的经验。笔者从事数控教学、培训及加工工作多年,积累了一定的经验与技巧,现以广州数控设备厂生产的GSK980T系列机床为例,介绍几例数控车削加工技巧。 一、程序首句妙用G00的技巧 目前我们所接触到的教科书及数控车削方面的技术书籍,程序首句均为建立工件坐标系,即以G50 Xα Zβ作为程序首句。根据该指令,可设定一个坐标系,使刀具的某一点在此坐标系中的坐标值为(Xα Zβ)(本文工件坐标系原点均设定在工件右端面)。采用这种方法编写程序,对刀后,必须将刀移动到G50设定的既定位置方能进行加工,找准该位置的过程如下。 1. 对刀后,装夹好工件毛坯; 2. 主轴正转,手轮基准刀平工件右端面A; 3. Z轴不动,沿X轴释放刀具至C点,输入G50 Z0,电脑记忆该点; 4. 程序录入方式,输入G01 W-8 F50,将工件车削出一台阶; 5. X轴不动,沿Z轴释放刀具至C点,停车测量车削出的工件台阶直径γ,输入G50 Xγ,电脑记忆该点; 6. 程序录入方式下,输入G00 Xα Zβ,刀具运行至编程指定的程序原点,再输入G50 Xα Zβ,电脑记忆该程序原点。 上述步骤中,步骤6即刀具定位在XαZβ处至关重要,否则,工件坐标系就会被修改,无法正常加工工件。有过加工经验的人都知道,上述将刀具定位到XαZβ处的过程繁琐,一旦出现意外,X或Z轴无伺服,跟踪出错,断电等情况发生,系统只能重启,重启后系统失去对G50设定的工件坐标值的记忆,“复位、回零运行”不再起作用,需重新将刀具运行至XαZβ位置并重设G50。如果是批量生产,加工完一件后,回G50起点继续加工下一件,在操作过程中稍有失误,就可能修改工件坐标系。鉴于上述程序首句使用G50建立工件坐标系的种种弊端,笔者想办法将工件坐标系固定在机床上,将程序首句G50 XαZβ改为G00 Xα Zβ后,问题迎刃而解。其操作过程只需采用上述找G50过程的前五步,即完成步骤1、2、3、4、5后,将刀具运行至安全位置,调出程序,按自动运行即可。即使发生断电等意外情况,重启系统后,在编辑方式下将光标移至能安全加工又不影响工件加工进程的程序段,按自动运行方式继续加工即可。上述程序首句用 G00代替G50的实质是将工件坐标系固定在机床上,不再囿于G50 Xα Zβ程序原点的限制,不改变工件坐标系,操作简单,可靠性强,收到了意想不到的效果。中国金属加工在线 二、控制尺寸精度的技巧 1. 修改刀补值保证尺寸精度 由于第一次对刀误差或者其他原因造成工件误差超出工件公差,不能满足加工要求时,可通过修改刀补使工件达到要求尺寸,保证径向尺寸方法如下: a. 绝对坐标输入法 根据“大减小,小加大”的原则,在刀补001~004处修改。如用2号切断刀切槽时工件尺寸大了,而002处刀补显示是,则可输入,减少2号刀补。 b. 相对坐标法 如上例,002刀补处输入,亦可收到同样的效果。 同理,对于轴向尺寸的控制亦如此类推。如用1号外圆刀加工某处轴段,尺寸长了,可在001刀补处输入。 2. 半精加工消除丝杆间隙影响保证尺寸精度 对于大部分数控车床来说,使用较长时间后,由于丝杆间隙的影响,加工出的工件尺寸经常出现不稳定的现象。这时,我们可在粗加工之后,进行一次半精加工消除丝杆间隙的影响。如用1号刀G71粗加工外圆之后,可在001刀补处输入,调用G70精车一次,停车测量后,再在001刀补处输入,再次调用G70精车一次。经过此番半精车,消除了丝杆间隙的影响,保证了尺寸精度的稳定。 3. 程序编制保证尺寸精度 a. 绝对编程保证尺寸精度 编程有绝对编程和相对编程。相对编程是指在加工轮廓曲线上,各线段的终点位置以该线段起点为坐标原点而确定的坐标系。也就是说,相对编程的坐标原点经常在变换,连续位移时必然产生累积误差,绝对编程是在加工的全过程中,均有相对统一的基准点,即坐标原点,故累积误差较相对编程小。数控车削工件时,工件径向尺寸的精度一般比轴向尺寸精度高,故在编写程序时,径向尺寸最好采用绝对编程,考虑到加工及编写程序的方便,轴向尺寸常采用相对编程,但对于重要的轴向尺寸,最好采用绝对编程。 b. 数值换算保证尺寸精度 很多情况下,图样上的尺寸基准与编程所需的尺寸基准不一致,故应先将图样上的基准尺寸换算为编程坐标系中的尺寸。如图2b中,除尺寸外,其余均属直接按图2a标注尺寸经换算后而得到的编程尺寸。其中, φ、φ16mm及三个尺寸为分别取两极限尺寸平均值后得到的编程尺寸。 4. 修改程序和刀补控制尺寸 数控加工中,我们经常碰到这样一种现象:程序自动运行后,停车测量,发现工件尺寸达不到要求,尺寸变化无规律。如用1号外圆刀加工图3所示工件,经粗加工和半精加工后停车测量,各轴段径向尺寸如下:φ、φ及φ。对此,笔者采用修改程序和刀补的方法进行补救,方法如下: a. 修改程序 原程序中的X30不变,X23改为,X16改为,这样一来,各轴段均有超出名义尺寸的统一公差; b. 改刀补 在1号刀刀补001处输入。 经过上述程序和刀补双管齐下的修改后,再调用精车程序,工件尺寸一般都能得到有效的保证。 数控车削加工是基于数控程序的自动化加工方式,实际加工中,操作者只有具备较强的程序指令运用能力和丰富的实践技能,方能编制出高质量的加工程序,加工出高质量的工件。 六,数控机床故障排除方法及其注意事项 由于经常参加维修任务,有些维修经验,现结合有关理论方面的阐述,在以下列出,希望抛砖引玉。 一、故障排除方法 (1)初始化复位法:一般情况下,由于瞬时故障引起的系统报警,可用硬件复位或开关系统电源依次来清除故障,若系统工作存贮区由于掉电,拔插线路板或电池欠压造成混乱,则必须对系统进行初始化清除,清除前应注意作好数据拷贝记录,若初始化后故障仍无法排除,则进行硬件诊断。 (2)参数更改,程序更正法:系统参数是确定系统功能的依据,参数设定错误就可能造成系统的故障或某功能无效。有时由于用户程序错误亦可造成故障停机,对此可以采用系统的块搜索功能进行检查,改正所有错误,以确保其正常运行。 (3)调节,最佳化调整法:调节是一种最简单易行的办法。通过对电位计的调节,修正系统故障。如某厂维修中,其系统显示器画面混乱,经调节后正常。如在某厂,其主轴在启动和制动时发生皮带打滑,原因是其主轴负载转矩大,而驱动装置的斜升时间设定过小,经调节后正常。 最佳化调整是系统地对伺服驱动系统与被拖动的机械系统实现最佳匹配的综合调节方法,其办法很简单,用一台多线记录仪或具有存贮功能的双踪示波器,分别观察指令和速度反馈或电流反馈的响应关系。通过调节速度调节器的比例系数和积分时间,来使伺服系统达到即有较高的动态响应特性,而又不振荡的最佳工作状态。在现场没有示波器或记录仪的情况下,根据经验,即调节使电机起振,然后向反向慢慢调节,直到消除震荡即可。 (4)备件替换法:用好的备件替换诊断出坏的线路板,并做相应的初始化启动,使机床迅速投入正常运转,然后将坏板修理或返修,这是目前最常用的排故办法。 (5)改善电源质量法:目前一般采用稳压电源,来改善电源波动。对于高频干扰可以采用电容滤波法,通过这些预防性措施来减少电源板的故障。 (6)维修信息跟踪法:一些大的制造公司根据实际工作中由于设计缺陷造成的偶然故障,不断修改和完善系统软件或硬件。这些修改以维修信息的形式不断提供给维修人员。以此做为故障排除的依据,可正确彻底地排除故障。 二、维修中应注意的事项 (1)从整机上取出某块线路板时,应注意记录其相对应的位置,连接的电缆号,对于固定安装的线路板,还应按前后取下相应的压接部件及螺钉作记录。拆卸下的压件及螺钉应放在专门的盒内,以免丢失,装配后,盒内的东西应全部用上,否则装配不完整。 (2)电烙铁应放在顺手的前方,远离维修线路板。烙铁头应作适当的修整,以适应集成电路的焊接,并避免焊接时碰伤别的元器件。 (3)测量线路间的阻值时,应断电源,测阻值时应红黑表笔互换测量两次,以阻值大的为参考值。 (4)线路板上大多刷有阻焊膜,因此测量时应找到相应的焊点作为测试点,不要铲除焊膜,有的板子全部刷有绝缘层,则只有在焊点处用刀片刮开绝缘层。 (5)不应随意切断印刷线路。有的维修人员具有一定的家电维修经验,习惯断线检查,但数控设备上的线路板大多是双面金属孔板或多层孔化板,印刷线路细而密,一旦切断不易焊接,且切线时易切断相邻的线,再则有的点,在切断某一根线时,并不能使其和线路脱离,需要同时切断几根线才行。 (6)不应随意拆换元器件。有的维修人员在没有确定故障元件的情况下只是凭感觉那一个元件坏了,就立即拆换,这样误判率较高,拆下的元件人为损坏率也较高。 (7)拆卸元件时应使用吸锡器及吸锡绳,切忌硬取。同一焊盘不应长时间加热及重复拆卸,以免损坏焊盘。 (8)更换新的器件,其引脚应作适当的处理,焊接中不应使用酸性焊油。 (9)记录线路上的开关,跳线位置,不应随意改变。进行两极以上的对照检查时,或互换元器件时注意标记各板上的元件,以免错乱,致使好板亦不能工作。 (10)查清线路板的电源配置及种类,根据检查的需要,可分别供电或全部供电。应注意高压,有的线路板直接接入高压,或板内有高压发生器,需适当绝缘,操作时应特别注意。 最后,我觉得:维修不可墨守陈规,生搬理论的东西,一定要结合当时当地的实际情况,开阔思路,逐步分析,逐个排除,直至找到真正的故障原因。 综上所述,数控技术的发展是与现代计算机技术、电子技术发展同步的,同时也是根据生产发展的需要而发展的。现在数控技术已经成熟,发展将更深更广更快。未来的CNC系统将会使机械更好用,更便宜。 参考资料:参考资料:1.张耀宗.机械加工实用手册编写组.机械工业出版社,1997
基于单片机的仪表车床简易数控系统的实现第2章 数控系统的设计要求概述该数控系统是为了适应国内众多的普通机床改造而设计的主要考虑四个方面:①经济性既然是用于普通机床的数控化改造,因此,必须充分考虑系统的成本,这是保证达到系统设计目的的关键。这里的成本包括整个系统的成本,包括数控系统、伺服驱动系统及机械传动系统等,其核心在于数控系统的方案选择。②方便性数控系统的方便性,又叫“宜人性”,主要反映在系统的编辑部分。编辑(编程)部分是人和系统直接打交道的部分,即所谓的“人机界面”。人机界而应当对用户友好,也就是说编辑(编程)部分应当尽量给用户提供力便、快捷舒适的操作使用环境。系统需从以下几个途径来体现:●汉化按键,方便各种层次的操作者使用。●输入、检索、修改尽量一体化。即输入时可以检索、修改,检索时可以修改、输入,并且自动显示程序段号。●快速检索,即能对程序进行上下翻页显示。③实用性经济则数控系统的设计不应追求功能的大而全,应以实用为原则。一般的机械加工只要能具有以下功能即可满足需要:●直线、圆弧插补。插补速度要充分考虑被机床本身的内在素质,如刚性、抗震性、耐磨性等,不宜过高。●速度衔接技术,即速度升/降速控制。速度衔接技术可以保证系统在加工过程中实现2段程序间的速度平滑连接,从而避免造成加工刀痕或平台,保证精度。●动态坐标显示。●加工程序的掉电保护能力。●电动刀架控制。采用电动刀架,用软件进行控制,可以提高生产效率。●细分技术。细分技术是当今经济型数控系统的一项重要技术。它可以有效解决步近电机的低频振荡问题,同时使机床脉冲当量细化,提高控制精度;另外,还可以提高低速加工时的出刀。④可靠性由于数控系统工作环境十分恶劣,必须有足够的可靠性才能保证系统稳定运行。数控系统的性能指标按照广述设计要求及设想,数控系统的性能指标可归纳为:●X,Z两轴联动,开环控制方式。●ISO国际数控标准格式代码编程。●快速定位。●具有直线、圆弧插补能力。●能与上价机串行通信、具有简单的联网能力。●最大编程尺寸,z轴脉冲当量,x轴脉冲当量,最大进给速度为(5m/min)。●预留螺纹加工功能的接口。●具有连动、点动2种手动加工方式,以及自动连续加工方式。第3章 总体方案的确定系统总体方案本系统在研制过程中,紧紧围绕可靠性、方便性、低成本等设计要求。确定总体方案如下:基于单片机的系统结构按照上述设计思想,本系统采用基于单片机的系统结构。这种方案结构简单,成本低。考虑到扩展性,主系统采用89S58单片机。AT89S51是一个低功耗,高性能CMOS 8位单片机,片内含4k Bytes ISP(In-system programmable)的可反复擦写1000次的Flash只读程序存储器,器件采用ATMEL公司的高密度、非易失性存储技术制造,兼容标准MCS-51指令系统及80C51引脚结构,芯片内集成了通用8位中央处理器和ISP Flash存储单元,功能强大的微型计算机的AT89S51可为许多嵌入式控制应用系统提供高性价比的解决方案。1.一个个8位的CPU2、26个特殊功能寄存器(Special Function Register)3、一个片内振荡器及时钟电路4、全静态工作:0Hz-24KHz5、32条可编程I/O线6、2个16位可编程定时计数器7、5个中断优先级2层中断嵌套中断8、2个全双工串行通信口9、电源控制模式:低功耗的闲置和掉电模式10、8031 CPU与MCS-51 兼容11、4个8位并行(Parallel)I/O口12、三级程序存储器保密锁定13、128B 内部RAM14、内部硬件看门狗电路15、4k Bytes Flash片内程序存储器(寿命:1000写/擦循环)16、一个SPI串行接口,用于芯片的在系统编程17、可寻址64KB的外部ROM和外部RAM的控制电路这些我们称为单片机的资源(Souce),单片机的应用就是怎么充分合理地利用这些资源,来解决实际中的问题人机界面(1)采用液晶显示界面作为一个简易型数控系统,采用了12232汉字图形点阵液晶显示模块,带背光字符型液晶模块作为主显示界面,不采用数码管显示。这样做的目的有3个:●液晶显示方式具有显示容量大、可以显示所有字符及自定义字符的能力。至于不能显示图形以实现加工曲线动态显示的缺陷,可以通过上仪机模拟仿真加工来弥补。●液晶显示模块自身具有控制器,可以减轻主CPU的负担。●使系统具有菜单驱动的基本素质。采用菜单驱功方式实现编辑模块的全屏幕编辑功能,达到友好的人机界面要求。●可显示汉字和图形。(2)采用双功能按键设计,简化键盘系统设计中充分考虑功能的需要、操作方便的需要及系统复杂性的要求三者之间的关系确定系统的大多数按键为双功能键,使得整个系统界面简洁。采用开环控制方式系统设计的目的决定了系统只能采用开环控制方式。在开环型位置控制系统中,只能采用步进电机作为伺服执行单元。这是由步进电机车身的特性决定的。关于步进电机的特性等详细内容参见本章后续有关章节。开环控制系统的数控机床结构简单,成本较低,仅适用于加工精度要求不很高的中小型数控机床,特别是简易经济型数控机床。这类系统比较简单,价格最便宜,可以用于小型车床、铣床、钻床和线切割机床。如下图是常见的两坐标简易数控系统的组成框图。系统软件固化在单片机的存储器中,加工程序可通过键盘或磁带机输入,经系统软件进行编辑处理后输出一个系列脉冲,再经光电隔离,功率放大后大驱动两台步进电机,分别控制机床两个方向的运动,完成位置、轨迹和速度的控制。根据需要,微机还可通过继电器电路,实现对诸如主轴起停、变速、各种辅助电机起停、刀架转位、工件爽紧松开等动作的自动控制,使整个加工过程自动进行。图3-1开环步进电机与单片机连接电路单片机控制步进电机拖动的开环系统具有价廉,技术成熟等优点,因而使用较多。但这种系统还存在拖动力矩偏小,过载能力差、速度偏低,精度不够高及其价格随力矩增加成指数卜升等缺点。为此,选用时要注意在适当的范围内发挥其优势。一般主要适用于拖动力矩小于15Nm的小型机床,如C616,C618,C620,C6140等普通车床。对于转矩要求大、功能要求多的机床(如铣床、镗床、钻床及镗铣床)和高精度机床(如坐标镗床)就难于使用,需要开发与其适应的其他经济型数控系统。功能精简,提高可靠性设计具备简易型数控系统必需的基本功能●直线、圆弧插补能力。●端面、台阶的循环加工。●点动、连动、自动3种运行方式。●申行通信能力。系统功能模块及其分析系统功能模块与总体框架(1)系统操作界面按照上述图3-2 系统的人机界面图复位——系统在死机、工作出错等情况下的总清键,使系统回复设计的原始状态。运行——自动运行用户的零件加工程序,包括程序的语法检查、数据处理、编译、插补运算及步进电机控制等。暂停一—自动加工的暂停,是一个乒乓键,按一次,加工暂停,再按一次,继续加工。换刀一—用于手工换刀,每按一次.电动刀架转一个工位,本系统中为90度。手动——与“←、↑、→、↓”配合,以实现动作台的连动;在编辑程序时为光标移动键。数字1—9均为双功能键、用于程序输入、用“上下档”键进行切换。G—一准备功能键,用于ISO加工程序输入。M——辅助功能键,用于冷却泵的启/停、程序的结束等程序段的输入。插入—一用于程序编辑过程中“插入修改”方式的切换。也是乒乓键,用块光标或下划线光标指示。删除——在插入方式下,删除当前的字符;在修改方式下,删除当前光标位置字符。上页一—程序上翻到上一程序段。相当PC机的PageUp键。下页——程序下翻到下一程序段。与上页键一样是一个屏幕编辑键。相当PC机的PageDown键。回车——确认键。Esc——相当于PC机的Esc键。(2)系统功能模块与总体框架系统从总体上分为人机界面模块、伺服执行模块、电动刀架拧制模块、串行通信模块及基于AT89S51单片机的主控模块等5大模块,参见图3-2。各模块的功能分别是:图3-3 系统模块与总体框架①人机界面模块该模块主要完成人机的对话与交流,物理上表现为显示器与键盘,核心功能是加工程序的编辑。由于采用全程菜单驱动形式.使该模块具有较好的友善性。②伺服执行模块该模块主要由脉冲分配器、伺服驱动及步进电机等组成,是一个执行单元,按照主机的指令完成工作台与刀具的相对运动,实现车削加工。其速度特性、矩频特性等直接影响加工的精度和速度。③电动刀架控制模块采用2继电器方式的4方电动刀架.用软件完成刀架的换刀动作,即刀架电机的正转拾刀→换刀→反转锁紧,是经济型数控系统必不可少的部分,可以提高加工效率,大大减少在加工过程中因手工换刀带来的误差。④串行通信模块该模块的功能是完成与上位机的串行通信,采用三线制方式,使系统具有基本的组网能力。⑤主控模块主要包括零片微处理器(也括监控程序)、加工程序存储单元及与其他模块的接口电路要完成程序编辑、加工程序处理、软件插补达贸、电动刀架饺制及行程限位保护等。系统软件框架如图3-4展示了系统软件框图。系统上电后,执行初始化程序、键盘扫描程序。如有“计数显示”、“计数清零”、“点动”等功能键按下,执行其各自的工作子程序后返回初始化程序,并显示其相应的提示符。顺序控制程序也设计成子程序模块,它的主要功能是读入各行程开关及压力继电器的信号状态组合,经分析判断,输出一系列控制信号,完成对工件的自动加工。如按下“点动”键,则显示点动提示符,执行顺序控制程序,即返回初始化程序,如按下“连动”功能键,则首先置连动工作标记(此时,除“返回”键外,其余各键均用软件屏蔽),然后开中断,等待,刀具检测信号,收到中断请求信号后,执行中断服务程序。在中断服务控制中,先后执行顺序控制子程序,键盘扫描及显示子程序,并记录和显示数据。完成一次顺序控制或有“返回”键按下,则返回主程序。回到主程序后,仍判断是否有“返回”键按下,如有,则返回初始化程序。否则,重新等待中断。采用模块化设计:①点动,连动,换刀该模块主要实现工作台在x,z两轴上正、反2个方向的点动、连动操作,以及手动控制换刀等,用于方便对刀、工作原点设置等。②自动该模块主要实现加工程序的处理(包括程序语法检查、程序编译、数据处理等)、插补运算步进电机的控制及自动换刀控制等。③参数设置该模块主要实现刀具补偿参数设置、间隙补偿参数设置等自动加工参数的设置。④编辑模块该模块主要实现零件加工程序的键盘编辑、输入。⑤通信模块该模块主要实现与上位机或其他智能设备的串行通信,可用于加工程序的传送等。图3-4 系统软件原理框图第4章 硬件系统设计主模块设计主模块中关键器件及其选型(1)单片机本系统采用PHILIPS公司的8位单片机AT89S51为控制核心。AT89S51是一个低功耗,高性能CMOS 8位单片机,片内含4k Bytes ISP(In-system programmable)的可反复擦写1000次的Flash只读程序存储器,器件采用ATMEL公司的高密度、非易失性存储技术制造,兼容标准MCS-51指令系统及80C51引脚结构,芯片内集成了通用8位中央处理器和ISP Flash存储单元,全静态工作,RAM可扩展到64K字节,5个中断优先级,2层中断嵌套中断,32个外部双向输入/输出(I/O)口,2个16位可编程定时计数器。外接一片2764EPROM,作为监控程序的程序存储器和存放常用零件的加工程序。再选用一片6264RAM用于存放需要随机修改的零件程序、工作参数。采用译码法对扩展芯片进行寻址,采用74LS138译码器完成此功能。8279作为系统的输入输出口扩展,分别接键盘的输入、输出显示,8255接步进电机的环形分配器,分别并行控制X轴和Z轴的步进电机。另外,还要考虑机床与单片机之间的光电隔离,功率放大电路等.图4-1单片机系统原理框图(2)数据存储器的选用系统采用单片机作为控制核心,最高速度为33MHz,我们用到。速度高对外部电路特别是外部数据,程序存储器扩展电路要求很高。必须满足在CPU读数据或程序指令时,外部数据或程序指令已准备好了。所以必须进行芯片的时序校验。为了使系统工作可靠我们也进行存储器的校验。首先,对存储器作一介绍。单片机存储器分为内部存储器和外部存储器,内部存储器又分为内部数据存储器和程序存储器,同样,外部存储器也分为程序和数据存储器。本系统采用AT89S51为核心单元,其本身带有128B的RAM和4KB的Flash内部程序存储器。对于数据存储器,内外两部分是独立编址的,用不同指令来访问不同的数据存储器,即,MOV访问片内,MOVC访问片外,外部可扩展到64K,由于在外部数据存储器和I/0是统一编址的,应给I/0留一定的空间,且本系统要求留有一定的扩展空间,所以本系统扩展采用的芯片是6264。Y62256是HUNDAI公司的一种高速低功耗32K的CMOS的静态RAM,采用现代公司的高速CMOS工艺技术。HY62265具有数据保持模式,以确保在最低供电电压下2V数据有效。使用CMOS技术,电源电压在之间,数据保持电流几乎没有影响。HY62256适合使用在低压和电池供电工作环境。M28256用于扩展程序存储器,是一种采用ST微电子公司拥有知识产权的多极性硅技术制造的。在3V或}V供电条件下具有快谏低功耗工作模式。电路已被设计成可提供与微控制器柔性接口特征。可使用软件或硬件进行数据循环测试或位功能锁定。可以使用标准的JEDEG运算法则进行软件数据保护。电路扩展如图4-2所示。图4-2 存储器扩展(3)总线驱动、数据、地址锁存及译码电路由于单片机的数据线和低位地址线共用必须加地址锁存器进行低位地址锁存。使用74LS373作为地址锁存器,当应用系统规模过大,扩展所接芯片过多,超过总线的驱动能力时,系统将不能可靠工作,此时应加用总线驱动器来减少读数据的持续时间。整个系统可扩展的外部数据总共为64K,由于单片机外部数据存贮器和工/0是统一编址的,我们将低32K作为外部扩展的数据存储器,高译码电路采用两片74LS138,用了32K作为I/0使用或留给以后扩展用。由于外设使可编程器件,所以在使用138作译码时需要产生两种译码地址:一种是地址连续,一种是段地址连续。其中Ll,L5可作为系统再次扩展时用。译码地址输出在图4-3中已给出,Y0-Y7作为单地址芯片片选信号,Y8-Y15可作为可编程芯片片选信号,如8254可编程计数器。译码电路如图4-3.图4-3译码电路主模块电原理图设计本系统选用AT89S51CPU作为数控系统的中央处理机。主程序框图如图4-4。外接一片2764EPROM,作为监控程序的程序存储器和存放常用零件的加工程序。再选用一片6264RAM用于存放需要随机修改的零件程序、工作参数。采用译码法对扩展芯片进行寻址,采用74LS138译码器完成此功能。8279作为系统的输入输出口扩展,分别接键盘的输入、输出显示,8255接步进电机的环形分配器,分别并行控制X轴和Z轴的步进电机。另外,还要考虑机床与单片机之间的光电隔离,功率放大电路等。8255A可编程并行I/O口扩展芯片可以直接与MCS系列单片机系统总线连接,它具有三个8位的并行I/O口,具有三种工作方式,通过编程能够方便地采用无条件传送、查询传送或中断传送方式完成CPU与外围设备之间的信息交换。CPU对8279的控制是先读回8279的状态字,查看PIFORAM中有无字符 ,若有将根据字符个数读出所有字符,并进行相应处理;若无,则直接返回。CPU对8279的监视采用查询方式,对8279分配的数据口地址为8000H,状态口地址为8001H,CPU每隔10ms定时中断查询一次,所有显示采用查询段码表的方式实现,简化了程序设计过程,提高了程序质量。图4-4主程序框图输入/输出模块设计 I/O模块电原理图设计8279作为系统的输入输出口扩展,分别接键盘的输入、输出显示。8279是可编程接口芯片,通过编程使其实现相应的功能,编程的过程实际上就是CPU向8279发送控制指令的过程。在软件设计中,显示方式采用了8个字符显示,左入方式,编码扫描键盘,双键锁定。I/O模块电原理图如图4-5所示。图4-5 I/O模块电原理图图4-6 8279工作程序框图步进电机控制接口X,Z两轴采用3相6拍步进电机,并口8255向控制端口写控制字,PUSLE来实现对步进电机的控制。8255接步进电机的环形分配器,通过3片4N25光电隔离,分别形成X、Z所需的3相控制信号,送往步进电机驱动电源,分别并行控制X轴和Z轴的步进电机。芯片YB013实现硬件环分任务,;达林顿光隔离管4N25实现计算机弱点部分和步进电机强电部分的隔离,既起功率放大作用,又充当无触点开关,实现对计算机的保护。单片机控制步进电机连接如图4-7所示。图4-7 单片机控制步进电机刀具控制接口(1)电动刀架及其工作原理电动刀架的机械部分类似于蜗轮机构,实现刀具的抬升、旋转(交换刀具位置)及下降锁紧,这里着重讨论实现上述动作所必须的硬件条件和电路原理。在图4-8中,继电器KA1,KA2实现电动刀架的动作切换控制,主要完成刀架电机的正、反转切换。在刀架旋转过程中,每个工位上的霍尔元件会依次切换为有效状态,系统根据T1,T2,T3及T4状态的变化,可以推断出目前的刀号,并判断是否为当前所选用刀具,一旦符合,则电机反向旋转,锁紧刀具。电动刀架各时序的切换反间隔是系统控制的关键,反向锁紧所用时间取决于电动刀架生产厂家的推荐指标,过长会引起电机发热甚至烧毁。为保证电动刀架安全运行,在电动刀架交流380V进线处加装快速熔断器和热继电器。图4-8电动刀架的电原理图(2)电动刀架与单片机的接口电动刀架与系统的硬件接口主要是控制电机正、反转信号J1,J2及刀号反馈信号TI,T2,T3和T4。上述信号均光电隔离后与单片机系统接口。电动刀架软件控制流程如图4-9所示,采用查询方式。图4-9电动刀架控制流程程序为:#include <>#include <>#define N1 XBYTE[ ]typedef unsigned char ucharvoid adc0809(uchar idata *x);void delay();void main(){static uchar idata ad[4];adc0809(ad);}void adc0809(uchar idata *x){uchar i,*ad_adr;uchar motor=1;ad_adr=&N1;for(i=0;i<4;i++){If(*ad_adr=i){delay1( );KA1=1;delay2( );return();}else KA1=0}}void delay1(motor==0){uchar j;for(j=0;j<20000;j++){;}}void delay2(void){uchar j;for(j=0;j<150000;j++){;}}急停、暂停、行程限位接口电路限位开关为常开状态;因此,X十,X一,Z十,Z一正常输人为低电平状态。因此如果行程开关被压合,向INT0发出中断信号,系统进行复位,步进电机的脉冲消失,也就无法继续前行,起到保护机床的目的。本系统采用三输入端与非门74HC10的输出端作为一个共用的中断信号接至单片机的INT0,用于实时处理紧急停车、暂停、限位报警功能。电路如图4-8所示:串行通信电路本系统由两部分构成,上位机系统和下位机系统,由于上位机主要完成管理显示等工作,下位机完成控制功能,所以上位机和下位机的数据传输实时性要求不高,我们采用串口通信。使用RS232标准,MAX232进行电频的转换。串口RS232标准,它是美国电子工业协会(Electronic Industry Association)的推荐标准。本系统采用9针连接器,其定义见表4-1。本系统采用三线制TXD,RXD,GND连接,以使电路简单。表4-1 连接器定义表串口通讯电路主要由MAX 232电平转换电路构成。MAX232是MAXIM公司产品,一种电平转换芯片。可以将TTL转换成RS232,或RS232转换成TTL。满足单片机和普通计算机的通讯电平转换要求。电路如图4-10所示。图4-10 通信接口电路人机界面模块设计单片机应用系统中常用显示方式及其比较在单片机应用系统中,目前比较常用的显示介质有数码管(LED)、液晶显示(LCD)及CRT等,在家用电器中用的比较多的是真空荧光屏(VFD)。现就各自特点简述如下:(1)数码管数码管是一种主动发光器件。所谓主动发光.是指环境越暗越清晰。分为7段数码管和“米”字数码管2种。前者用于显示ARCⅡ码,显示信息量小;后者除了可显示ARCⅡ字符外,还可显示一些自定义的比较复杂的字符。数码管按驱动电流分,又可分为普通亮度、高亮、超高亮等。数码管由于其廉价而且扩展方便等特性,—直是单片机系统中用得最多、最广的一种显示器件。国内有不少型号的数控系统、尤其是早期的数控系统,广泛采用数码管作为显示界面。(2)液晶显示液晶显示器是一种被动发光器件。所谓被动发光,是指环境越亮越清晰,黑暗环境下必须加入背光才能清晰显示。分为字段型液晶显示器、字符型液晶显示器及图形点阵液晶显示器。字段型只能显示ASCII字符,字符型可以显示ASCII字符,显示效果比字段型好,而且可以显示少量的自定义字符;图形点阵液晶显示器是目前在单片机系统中比较流行的新型显示器件,可以显示所有字符及图形,由于其可以显示汉字的特性,被广泛用于国内智能设备中,国内的数控系统也开始广泛采用。(3)CRTCRT显示器分为单色和彩色2种,在数控系统中,尤其是高档数控系统中应用日益广泛。其特点是成本低、显示容量大;可以显示所合字符、图形及汉字;采用视频专用接口电路MC6847等与单片机接口,比较复杂,因而在—般的应用中比较少见。(4)真空荧光屏真空荧光屏简称VFD(vacuunm fluorescent display module),是一种新型的显示器件。它由3个基本电极——阴极(灯丝)、阳极及栅做封装在一个真空的玻璃容器内构成。阴极是涂敷了金属氧化物的钨丝;栅极是极细的金属网;阳极为段或点阵型的导电电极,它上面的荧光物质可显示相应的字符或符号。栅极和阳极之间加有正电压,从阴极发射出来的电子被这个正电压加速,碰擅到阳极表面的荧光物质产生辐射,发出波长为505nm左右的谈绿色荧光。通过按制栅极和阳极之间的电压,就可以显示各种字符。VFD由于其以下特点而被广泛应用于家用电器、商场POS机以及新型的仪器仪表中。①亮度高,并且不存在视角问题,②工作温度范围宽、寿命长;②外围电路简单,只需十5v电源就可以工作,提供准8位数据总线接口;④功耗低。但这种显示器目前用在数控系统上还比较少。点阵液晶显示模块(1)字符型液晶显示模块本数控系统采用字符点阵液晶显示模块DM12232。该模块具有以下特点:●能显示122列32行●电源(内置升压电路,无需负压)●与微处理器接8位或4位并行/ 3位串行●多种软件功能:自定义字符、画面移动、光标显示、睡眠模式等功能●配置LED背光}
多功能智能化温度测量仪设计 论文编号:JD599 包括外文翻译,论文字数:26446,页数:59 多功能智能化温度测量仪设计 摘要:温度是一个基本的物理量,它是工业生产过程中最普遍、最重要的工艺参数随着工业的不断发展,对温度测量的要求来越高,而且测量范围也越来越广,因此对温度检测技术的要求也越来越高。本文介绍的多功能智能化温度测量仪是以8051单片机系统和温度检测元件一AD590相结合的温度测量系统。本仪器的数学模型合理,测量方法容易实现。实际仪器采用抗干扰、低零漂、低温漂的电子元件,性能稳定。该测量仪总体特点是使用简便、实用、测量稳定可靠、使用对象广,并且实现了智能化。本文主要介绍了温度的自动测量,包括温度传感器、单片机接口及其应用软件的设计,大体分为以下几大部分:介绍了国内外温度检测技术和温度检测的发展现状,并且分析了温度检测技术的未来发展方向;根据实际使用要求设计了相应的单片机硬件系统,该系统能够实现数据采集、数据处理、温度值的在线显示以及时钟电路的时间显示;简略介绍了该仪表的软件部分;对该温度仪表的未来发展进行了展望。 关键词: 温度测量;智能化;单片机 Designe on Multifunctional Intellectual Temperature Measure Instrument Abstract: Temperature,as a basic physical quantity,is one of the most universal and important technical parameters. Along with the development of industry,the requirement of measurement of temperature is higher. Further more,the scope of measurement of temperature is wider, so, the technology of measurement must be improved. The multifunctional intellectual temperature measure instrument introduced by the paper is the system of 8051 single-chip microcomputer and conventional measureing component一AD590. The mathematic model is appropriate,and measurement method is easy to be excuted. The electronic components used are anti一jamming,less zero-drift and less temperature-drift. The instrument is convenient and applicabale,it is steady,reliable and so fit to use. At the same time, it has larger scope of measurement and it can be used in many kinds of object measured. It has intellectualized the process[4].The thesis introduces automatical measurement of temperature,including temperature sensor,I/ O of single-chip microcomputer and application software,it can be divided into some parts:It introduces the development of temperature measurement and the development direction of temperature measurement in the future;According to the practical demands, I design corresponding hardware system;The system can realize data acquisition,showing of temperature discuss the future of the instrument. Keywords: Temperature Measurement;Intelligentiztion;Single-chip Microcomputer 目录 摘要I Abstract II 第1章 绪 论 1 单片机的历史及应用 1 国内外温度检测技术的动向与趋势 4 第2章 多功能温度测量仪表的原理 5 系统总体设计方案 5 设计主要内容和要求 5 各模块的方案设计说明 7 第3章 系统的硬件设计 13 系统总体电路框图 13 信号输入部分总体设计 13 信号输入部分设计 13 单片机及其扩展I/O的设计 18 键盘和显示的设计 19 模拟信号输出部分设计 20 时钟电路的硬件设计 20 第4章 多功能温度测量仪的软件设计 27 系统软件总体设计 27 主程序设计 27 数据采集及处理子程序设计 27 键盘/显示程序设计 28 电子时钟应用程序设计 29 结束语 37 参考文献 38 致谢39 附录40 以上回答来自:
毕业设计大全
数控机床诊断维修方法经验浅述X 摘 要:本文就近几年来在对进口数控设备的维护中,逐渐学习并掌握了CNC 系统的一些故障规 律和快速诊断方法进行了整理。意在使其更好地为数控设备的使用与维修服务提供借鉴。 关键词:数控机床;诊断维修;方法 随着发达国家先进技术和装备的不断引进,使 我们设备维护人员的维修难度越来越大,这是不可 否认的事实。但怎样尽快适应和掌握它,是我们应 该认真探讨并急需解决的课题,下面就自己多年的 维修经验谈一点个人体会。 笔者近年引进的日立精机VA 一65 和HC 一 800 两台加工中心,不但具有交流伺服拖动、四轴联 动功能,而且还配有磁栅全闭环位置反馈及自动测 量、自动切削监视系统,其CNC 是当时国际上最先 进的FANUC 一11M 系统。运行11 年来,虽然随 着使用年限的增长,一些元器件的老化、故障期的到 来,特别是加工任务的增多,设备每天24h 不停机的 运转,出现了几乎每周都有故障报警的现象。但为 保证任务的按期完成,我们在没有经过国内外培训 且图纸资料不全的条件下,在无数次的维修测试中, 认真分析故障规律,不断积累有关数据,逐渐掌握维 修要领,尽量在最短的时间内查出故障点,用最快的 速度修复调整完成。以下从几方面论述快速诊断和 维修数控设备的方法: 1 先观察问询再动手处置 首先看报警信息,因为现在大多数CNC 系统都 有较完善的自诊断功能,通过提示信息可以马上知 道故障区域,缩小检测范围。像一次HC 一800 卧 式加工中心在运行中出现5010 # spindle drive unit alarm 报警。我们根据提示信息马上按顺序检查了 主轴电机及其执行元件、主轴控制板,查明过流断路 点后恢复正常,仅用20min 完成。但从我们的经验 中也有受报警信息误导的例子,因此说可依据它但 不能依赖它。 故障发生后如无报警信息,则需要进一步用感 官来了解设备状态,最重要的就是向操作人员问询 故障发生的前因后果。同样是该设备,有一次其 APC 系统在防护罩没有打开情况下B 轴突然旋转 起来刮坏护罩,这一现象以前从未出现过。经我们 现场仔细询问操作过程,清楚了故障经过:原来操作 人员先输入了M60 指令,使_bPm_�APC 系统程序运行(更 换旋转工作台) ,当执行元件失控中途停机后,又进 行了手动状态下的单步指令操作。当时M60 并没 有删除,使其执行元件恢复正常后继续了原程序动 作。经认真了解并仔细分析后,我们立刻清除所有 原设定的指令,检测并更换了失控元件,避免了更大 故障的发生。根据报警信息和故障前的设备状态, 来判断故障区域,争取维修时间。 2 遵循由外到里,由浅入深的检修原则 笔者对加工中心多年的维修经历来看,大多数 故障根源都是来自于外部元器件,因其受外界因素 影响较大,象机械碰撞磨损、冷却液腐蚀、积尘过多、 润滑不良等,使这些年久失修的元器件处于不完好、 不可靠状态,成为设备故障的最大隐患。像各轴经 常出现的超程报警、零点复归误差、位置信号不反馈 等,都是一些磁性或机械式开关失灵造成。还有的 故障也是出现在电磁阀、电机和经常伸缩的电缆上。 像HC 一800 的一次B 轴旋转不到位或有时根本不 旋转故障,报警提示为: feed axis fault (APC com2 mand) ,看起来与命令有关。但我们根据故障现象 还是果断地检查B 轴各行程限位,果然有一撞块与 开关接触不好,经调整后正常。这就避免无目标地 消耗很大精力去查整个CNC 系统,先把重点放在外 部环节上。 这实际上是一种经验上的诊断,如果我们手里 有原理接线图,那就应该正规地按图纸去相应对照, 顺序查找并针对性的去测试电位和波形,还能从中 悟出一些理论上的东西。正是因为没有这个条件, 所以我们在维修中就是遵循从外部到内部、从人为 到系统、由浅入深的原则去进行,这就大大缩短了设 备的停修时间。 3 充分利用PC 图查找故障点 根据报警信息调出与其相关的PC 图进行分析 核对,也是一种诊断的方便途径。一次VA 一65 自 动换刀机械手到位后不执行抓刀指令,我们马上调 出PC 图从各指令开关信号到各进、退、松、紧动作 信号逐一进行对应校验,最后查出机械手旋转到信 号没有发出,原因是由于一磁性接近开关松动移后 不起作用,使下一步抓刀动作无法进行,调整后恢复 正常。 由PC 图查故障点看来比较方便直观,但如果 不了解其内部动作原理和工作程序,那可以说也是 大海捞针,无从下手。特别是无电气原理图就更难 以判断,每个输出动作多达几十个开关条件才能满 足,确实要下很大工夫才能逐步认识并掌握。我们 就是靠平时维修时的日积月累,在不断的了解和运 用它。 4 疑难故障的检测分析和快捷处理 此两台加工中心的一些元器件年久老化,使其参数随温度 或电流的变化而极不稳定,造成故障后能自动恢复 即时好时坏现象,这是我们最为之挠头的故障。因 为搞维修的都知道,元件坏了容易检测,而不正常的 通断情况则很难判断是元件坏了还是线路接触不良 造成,因为无法进行正常的信号检测。如B 轴工作 台换位;刀库进刀口自动打开;B 轴台板夹紧、松开 失灵等故障,其执行元件均是固态继电器接受指令 信号接通后带动电磁阀动作。当检测时可能未见异 常,启动后又可能一切正常,待连续动作几次后又停 机报警。我们根据故障现象及反复周期判定应该是 执行元件性能下降造成,因图纸不详、标识不清,只 能将关联的一组执行元件在正常和异常的情况下分 别进行检测,经反复测试后,最后从30 多只继电元 件中分别查出并更换了其性能下降的元件。 一次HC 一800 B 轴原点复归失控,指令发出 后旋转不停,没有报警信息。经现场了解分析,首先 认定应该是B 轴零点检测系统故障,而该系统是由 一只磁性接近开关发出到位信号后控制执行元件减 速停车。我们马上对这一信号进行线路测试,结果 无信号发出,人为设定一个到位信号则准确复归停 车,确认检测开关到设定信号点这一段有故障。但 如果想直接检测接近开关则必须将B 轴和与其关 联的调轴解体,因为此开关装在B 轴工作台体内。 这样的大结构拆修以前从未干过,测算一下工作量 需半个月时间,而且还要特别精心地对十多根控制 电缆和几十根油管拆除和恢复,这就很难保证拆装 后各部分的精度,但要想解决问题还必须露出这一 开关进行检测和维修。能否用一个简便的方法既能 节省拆装工作量又能拿出这一检测开关,经反复论 证后终于想出一个只拆B 轴端盖和调轴磁尺支架 拿出此开关的方法。虽然电气维修人员拆装、检测 难度很大,但保证了台面不大解体,把后患影响减小 到了最低限度。经实际测试开关、处理断路点原位 安装后恢复了B 轴复归功能,又对拆装后影响到的 调轴位置误差和B 轴定位故障进行了补偿和调整, 一切正常后仅用三天时间即交付使用,保证了试制 加工任务的完成。 5 结语 总之,在处理故障过程中怎样尽快打开思路、进 入状态,缩小检测范围,直触故障根源是维修技术人 员水平高低的关键所在。看似简单的道理却饱含着 方方面面,也是维修人员多年辛勤劳动的结晶。我 们就是在这种高频率故障的压力下,克服了重重困 难,尽力在短时间内解决问题,减少设备停歇台时, 为车型试制做出了我们应有的贡献。 [参考文献] [1 ] 李亚芹,龙泽明,韩阳阳. 数控机床爬行问题的 分析与研究[J ] . 组合机床与自动化加工技术, 2006 , (10) :76~78. [2 ] 卓迪仕. 数控技术及应用[M] . 北京:国防工出 版社,1997.
毕业论文 盖冒垫片模具设计说明书 20毕业设计 发动机支承限位件的模具设计与制造 21毕业设计论文 塑料模具设计(注射器盖) 22毕业设计 喷墨打印机部件模具设计 23毕业论文 手柄限位杆盒冲压件设计 24毕业设计 冰箱调温按钮塑模设计说明书 25毕业论文 瓶盖拉深模的设计 26毕业论文 箱体锁扣注射模具设计(内含两份) 27毕业论文 密封垫片冲裁模设计 28毕业论文 塑料闸瓦钢背弯曲模设计 29毕业论文 22型车门垫板冲裁模设计与制造 30毕业设计 HFJ6351D型汽车工具箱盖单型腔注塑模设计 31毕业设计论文封闭板成形模及冲压工艺 32毕业设计 “远舰”轿车双摆臂悬架的设计及产品建模 33毕业设计说明书 电池板铝边框冲孔模的设计 34毕业设计 油封骨架冲压模具设计 35水管联接压盖模具设计毕业设计 36毕业设计 外缘翻边圆孔板的塑料模设计 37宁波工程学院机械工程系毕业设计 塑料模 38塑模具设计 39XX轻工职业技术学院毕业设计 管座及其加工模具的设计 40机械工程系模具专业2006届毕业设计说明书:横排地漏封水筒注塑模 机械,机电类毕业设计1毕业设计 可伸缩带式输送机结构设计 2毕业设计 AWC机架现场扩孔机设计3毕业论文复合化肥混合比例装置及PLC控制系统设计 4机械设计课程设计 带式输送机说明书和总装图4毕业设计 冲压废料自动输送装置 5专用机床PLC控制系统的设计 6课程设计 带式输送机传动装置 7毕业论文 桥式起重机副起升机构设计 8毕业论文 两齿辊破碎机设计 9 63CY14-1B轴向柱塞泵改进设计(共32页,19000字) 10毕业设计 连杆孔研磨装置设计 11毕业设计 旁承上平面与下心盘上平面垂直距离检测装置的设计 12.. 机械设计课程设计 带式运输机传动装置设计 13皮带式输送机传动装置的一级圆柱齿轮减速器 14毕业设计(论文) 立轴式破碎机设计 15毕业设计(论文) C6136型经济型数控改造(横向) 16高空作业车工作臂结构设计及有限元分析 17 2007届毕业生毕业设计 机用虎钳设计 18毕业设计无轴承电机的结构设计 19毕业设计 平面关节型机械手设计 20毕业设计 三自由度圆柱坐标型工业机器人 21毕业设计XKA5032A/C数控立式升降台铣床自动换刀设计 22毕业设计 四通管接头的设计 23课程设计:带式运输机上的传动及减速装置 24毕业设计(论文) 行星减速器设计三维造型虚拟设计分析 25毕业设计论文 关节型机器人腕部结构设计 26本科生毕业设计全套资料 Z32K型摇臂钻床变速箱的改进设计/ 27毕业设计 EQY-112-90 汽车变速箱后面孔系钻削组合机床设计 28毕业设计 D180柴油机12孔攻丝机床及夹具设计 29毕业设计 C616型普通车床改造为经济型数控车床 30毕业设计(论文)说明书 中单链型刮板输送机设计 液压类毕业设计1毕业设计 ZFS1600/12/26型液压支架掩护梁设计2毕业设计 液压拉力器 3毕业设计 液压台虎钳设计 4毕业设计论文 双活塞液压浆体泵液力缸设计 5毕业设计 GKZ高空作业车液压和电气控制系统设计 数控加工类毕业设计1课程设计 设计低速级斜齿轮零件的机械加工工艺规程 2毕业设计 普通车床经济型数控改造 3毕业论文 钩尾框夹具设计(镗φ92孔的两道工序的专用夹具) ...4 机械制造工艺学课程设计 设计“拨叉”零件的机械加工工艺规程及工艺装备(年产量5000件)5课程设计 四工位专用机床传动机构设计 6课程设计说明书 设计“推动架”零件的机械加工工艺及工艺设备 7机械制造技术基础课程设计 制定CA6140车床法兰盘的加工工艺,设计钻4×φ9mm孔的钻床夹具 8械制造技术基础课程设计 设计“CA6140车床拨叉”零件的机械加工工艺及工艺设备 9毕业设计 轴类零件设计 10毕业设计 壳体零件机械加工工艺规程制订及第工序工艺装备设计 11毕业设计 单拐曲轴零件机械加工规程设计说明书 12机械制造课程设计 机床传动齿轮的工艺规程设计(大批量) 13课程设计 轴零件的机械加工工艺规程制定 14毕业论文 开放式CNC(Computer Numerical Control)系统设计15毕业设计 单拐曲轴工艺流程 16毕业设计 壳体机械加工工艺规程 17毕业设计 连杆机械加工工艺规程 18毕业设计(论文) 子程序在冲孔模生产中的运用——编制数控加工(1#-6#)标模点孔的程序 19毕业设计 XKA5032A/C数控立式升降台铣床自动换刀装置的设计 20机械制造技术基础课程设计 设计“减速器传动轴”零件的机械加工工艺规程(年产量为5000件) 21课程设计 杠杆的加工 22毕业设计 多回转电动执行机构箱体加工工艺规程及工艺装备设计 23毕业论文 数控铣高级工零件工艺设计及程序编制 24毕业论文 数控铣高级工心型零件工艺设计及程序编制25毕业设计 连杆的加工工艺及其断面铣夹具设计 26机械制造工艺学课程设计说明书:设计“CA6140车床拨叉”零件的机械加工工艺及工艺设备 杂合XKA5032AC数控立式升降台铣床自动换刀装置设计机用虎钳课程设计.rar行星齿轮减速器减速器的虚拟设计(王少华).rar物流液压升降台的设计自动加料机控制系统.rar全向轮机构及其控制设计.rar齿轮齿条转向器.rar出租车计价系统.rar :CA6140普通车床的数控技术改造(C616) 普通车床改造为经济型数控车床C620普通车床进行数控改造C6163型车床的经济型数控改造设计 2OO:348414338
摘 要激光切割的适用对象主要是难切割材料,如高强度、高韧性材料以及精密细小和形状复杂的零件,因而数控激光切割在我国制造业中正发挥出巨大的优越性。本文设计了一台单片机控制的数控激光切割机床,主要完成了:机床整体结构设计,Z轴、XY轴的结构设计计算、滚珠丝杠、直线滚动导轨的选择及其强度分析;以步进电机为进给驱动的驱动系统及其传动机构的分析设计计算;以89C51为主控芯片的数控系统硬件电路设计、系统初始化设计及系统软件方案设计和步进电机的控制程序设计。关键词 CNC,激光切割机床,结构,设计目 录摘 要 ⅠABSTRACT Ⅱ1 绪论 课题背景 现实意义 设计任务 总体设计方案分析 22 机械部分XY工作台及Z轴的基本结构设计 XY工作台的设计 主要设计参数及依据 XY工作台部件进给系统受力分析 初步确定XY工作台尺寸及估算重量 Z轴随动系统设计 53 滚珠丝杠传动系统的设计计算 强度计算 滚珠丝杠副的传动效率 64 直线滚动导轨的选型 85 步进电机及其传动机构的确定 步进电机的选用 脉冲当量和步距角 步进电机上起动力矩的近似计算 确定步进电机最高工作频率 齿轮传动机构的确定 传动比的确定 齿轮结构主要参数的确定 步进电机惯性负载的计算 116 传动系统刚度的讨论 根据工作台不出现爬行的条件来确定传动系统的刚度 根据微量进给的灵敏度来确定传动系统刚度 137 消隙方法与预紧 消隙方法 偏心轴套调整法 锥度齿轮调整法 双片齿轮错齿调整法 预紧 178 数控系统设计 确定机床控制系统方案 主要芯片配置 主要芯片选择 主要管脚功能 EPROM的选用 RAM的选用 89C51存储器及I/O的扩展 8155工作方式查询 状态查询 8155定时功能 芯片地址分配 键盘设计 键盘定义及功能 键盘程序设计 显示器设计 显示器显示方式的选用 显示器接口 8155扩展I/O端口的初始化 插补原理 光电隔离电路 越界报警电路 总体程序控制 流程图 总程序 329 步进电机接口电路及驱动 34结 论 38参考文献 39致 谢 40
摘要随着当今工业设备对精密程度的要求越来越高,加工设备的机械加工设备的加工的精密程度也要求越来越高。而在中国的机械加工设备的车床中普通车床占了很大比例。这已经越来越制约着当今工业的发展。而数控机床由于价格昂贵,且需要较高技术的加工工人。所以对机床进行自动化改造很是必要。本篇论文是在对普通卧式车床CA6140的基础上对其进行机电一体化改造。作者在搜索、查阅研究大量有关资料的基础上,对机床自动化改造技术进行了深入的研究和分析,并描述了机床控制系统的设计。整个改造过程主要对车床纵、横向进给系统进行改造,丝杠选用摩擦损失小,效率高,精度高,寿命长的滚珠丝杠,电机选用步进电机,电动机与滚珠丝杠用齿轮减速;刀架改造成能自动换刀的回转刀架,由脉冲发生器来加工所需要的螺纹;整个控制系统以JKW-15T型号的单片机为中心,通过编程对机床的驱动设备进行控制以达到所需要的加工程度。关键词:机床改造;自动化机床;控制系统目录第一章绪论机电一体化的发展机电一体化技术机电一体化发展概述机电一体化改造的必要性机床改造的意义机床改造的市场机电改造的内容本文的选题及主要研究内容本文的选题主要研究内容车床总体改造方案设计基本思路设计要求10第二章车床改造的机械部分设计进给系统机械结构改造设计进给伺服系统机械部分的计算与选型确定系统的脉冲当量切削力计算滚珠丝杠的设计计算与选用滚珠丝杠简介纵向滚珠丝杠的设计与计算横向滚珠丝杠的设计与计算滚珠丝杠的安装与使用电机与滚珠丝杠连接用减速齿轮的设计与校核齿轮传动纵向减速齿轮的设计与校核横向减速齿轮的设计与校核进给系统的步进电动机的计算与选择步进电动机纵向电机的计算与选择横向电机的计算与选择电动刀架选择与介绍55第3章主轴脉冲发生器介绍与选型光电编码器原理主轴脉冲发生器的安装主轴脉冲发生器的选择60第四章控制装置的选用的简介功能分配程序设计67第五章结论78参考文献79英文原文81中文译文90致谢97看看这个可以吗,需要的话联系用户名扣扣,很完整的一套
摘要:介绍了普通车床的数控改造条件,同时介绍了对CA6140车床的主传动系统和进给传动系统进行了数控化改造 的过程。改造后的数控车床的加工能力、自动化水平和加工精度明显提高。同时介绍了该车床机电联动调试的经验。 关键词:普通车床;数控改造 中图分类号: TG659 文献标识码: B 文章编号: 1001-3881 (2006) 4-208-2 企业要在激烈的市场竞争中获得生存、得到发展,它必须在最短的时间内以优异的质量、低廉的成本,制造出合乎市场需要的、性能合适的产品,而产品质量的优劣,制造周期的快慢,生产成本的高低,又往往受工厂现有加工设备的直接影响。目前,采用先进的数控机床,已成为我国制造技术发展的总趋势。购买新的数控机床是提高数控化率的主要途径,而改造旧机床、配备数控系统把普通机床改装成数控机床也是提高机床数控化率的一条有效途径。我校为适应现代化生产和教学,对CA6140车床进行了数控化改造。 1 机床数控化改造的条件 1·1 机床基础件有足够的刚性 数控机床属于高精度机床,工件移动或刀具移动的位置精度要求很高,必须在0·001~0·01mm之间,高的定位精度和运动精度要求原有机床基础件具有很高的静刚度和动刚度。本次用于改造的CA6140车床自购进后一直保养良好,机床基础件刚性满足要求。 1·2 机床数控改装的总费用合适,经济性好 机床数控改装分两部分进行:一是维修机械部分。更换或修理磨损零件,调试大型基础零件,增加新的功能装置,提高机床的精度和性能,另一方面是舍弃原有的一部分进给系统,用新的数控系统和相应的装置来替代。改造总费用由机械维修和增加的数控系统两部分组成。若机床的数控改造的总费用仅为同类型车床价格的50% ~60%时,该机床数控改造在经济上适宜。经过考查,若购买同样配置的车床约需10万元,而我校机床数控改造的总费用为5·1万元,仅占51%,因此该机床数控改造在经济上是合适的。 2 系统配置及主要技术规格 该系统由SIEMENS 802S系统、接口电路、驱动线路及步进电机等组成,另外还配有自动转塔刀架、主轴变频调速器及主轴编码器等,系统属开环控制系统。其主要技术性能和参数如下: (1)系统控制部分。采用SIEMENS 802S系统,键盘和显示部分装在面板上。 (2)系统软件具有若干指令。其中加工指令有 直线、斜线、螺纹、锥螺纹和圆弧等5条指令。可实现车削外圆、端面、台阶、割槽、锥度、倒角、螺纹、顺圆弧和逆圆弧等操作。控制指令有结束循环、暂停、延时、延时换刀、编码换刀、通讯等,与加工指令配合,可加工出各种较复杂的零件。 (3)系统环境工作条件。温度-10~+40℃;湿度为40% ~80%。 (4)输入电网电压。交流(220±22)V;频率为50Hz;电流为1·5A。 (5)步进电机。BYG550C-2型电机两台,驱动电压为110V;相电流为2·5A;步距角为0·36°/步;静力距为12N·m。 3 主传动的数控化改造 机床主传动的作用是把电机的转速和转矩通过一定途径传给主轴,使工件以不同的速度运动,主传动性能的好坏,直接影响零件的加工质量和生产效率。考虑到改造的经济性,可乘用机床原有的普通三相异步交流电动机拖动。考虑到加工过程中当电网电压和切削力矩发生变化时,电机的转速也会随之波动,直接影响加工零件的表面粗糙度。因此为提高加工精度,实现主轴自动无级变速,在主轴上增加了交流异步电动机变频调速系统,从而不需进行机械换档。针对机床要求具有螺蚊切削功能,在主轴部位安装主轴脉冲发生器,如图1所示。为保证脉冲发生器与主轴等速旋转,即主轴转一周,主轴脉冲发生器也 图1 主轴脉冲发生器安装示意图转一周,主轴脉冲发生器的安装方式很重要。改装时,主轴传动必须经过原有CA6140车床主轴箱中58/58和33/33两级齿轮(实现1∶1)传递到原有CA6140车床的挂轮轴X,拆除挂轮留出空间,安装脉冲发生器,并用法兰盘固定。 4 进给传动的数控化改造 进给传动的作用是接受数控系统的指令,驱动刀具作精确定位或按规定的轨迹作相对运动,加工出符合要求的零件,对进给传动的要求是高精度、高速度。改造中我们采用步进电机驱动系统实现开环控 图2 进给传动系统制,这样结构简单,安装调试和维修都非常方便。 4·1 进给传动链 图2为普通车床改造后的进给传动链,刀具纵向(Z轴)移动由步进电机,经接口箱内一对减速齿轮,转动纵向移动的丝杆而实现。刀具的径向(X轴)移动由步进电机,经接口箱内一对减速齿轮,转动横向移动丝杆而实现,该传动链与原机床的传动链相比,摆脱了结构复杂的进给箱和拖板箱。 4·2 接口箱内减速齿轮的齿数比 该车床要求的控制精度为: Z向0·005mm, X向为0·0025mm,即当执行一个脉冲指令时,工件的长度和直径均变化0·005mm。BYG550C-2型步进电机的步距角为0·36°,每周步距数为360/0·36=1000(步/周), X向丝杠螺距为4mm,脉冲当量为0·0025mm,Z向丝杠螺距为6mm,脉冲当量0·005mm。按公式 主动轮齿数 从动轮齿数=步/周×脉冲当量丝杠螺距则X向:Z主/Z从=1000×2·5/4000=5/8Z向:Z主/Z从=1000×5/6000=5/6 4·2 接口箱内减速齿轮的齿数比 该车床要求的控制精度为: Z向0·005mm, X向为0·0025mm,即当执行一个脉冲指令时,工件的长度和直径均变化0·005mm。BYG550C-2型步进电机的步距角为0·36°,每周步距数为360/0·36=1000(步/周), X向丝杠螺距为4mm,脉冲当量为0·0025mm,Z向丝杠螺距为6mm,脉冲当量0·005mm。按公式 主动轮齿数 从动轮齿数=步/周×脉冲当量丝杠螺距则X向:Z主/Z从=1000×2·5/4000=5/8Z向:Z主/Z从=1000×5/6000=5/6 4·3 传动滚珠丝杠副 数控机床要求进给部分移动元件灵敏度高、精度高、反应快、无爬行,采用滚珠丝杠副可以满足上述要求。在结构中,用普通滚珠丝杠副实现将旋转运动变换为直线运动。滚珠丝杠螺母副安装时需预紧,通过预紧可消除滚珠丝杠螺母副的轴向间隙,提高传动刚度。预紧的方法是采用双螺母齿差调隙式结构(图3)。通过改变两个螺母的轴向相对位置,使每个螺母中滚珠分别接触丝杠滚道的左右两侧来实现的。 图3 双螺母齿差调隙式结构 一般需要几次调整才能保证机床在最大轴向载荷下,既消除间隙,又能灵活运转。 4·4 刀架 根据需要,拆除原方刀架,安装620型四方刀架(图4)。该刀架由120W的三相交流异步电机正转驱动,使刀架正转选刀,到预定刀位时,电机则反转,使刀架夹紧。换刀方式有手控和机控两种。机控时当零件在加工过程中需要换刀时,数控系统发出预先编制好的换刀控制指令,控制器接到换刀指令时,立即驱动刀架回转。手控时,按动面板上的按钮,刀架能转一个刀位(90°),也可连续按动按钮,直至任一刀位。 5 机电联动调试 5·1 机械调试 丝杠上,侧母线和横、纵导轨的平行度误差控制在0·01mm/全长之内;转动丝杠,丝杠轴向窜动在0·01mm之内;丝杠螺母同轴度误差控制在0·01mm之内。 5·2 机电联动调试 (1)单坐标点动,主要调试其有无动作,运动方向是否符合要求,机械传动是否正常,有无不正常响声等。 1·上刀体 2·活动销 3·反靠盘 4·定轴 5·蜗轮 6·下刀体 7·螺杆 8·离合器盘 9·霍尔元件 10·磁钢 图4 四方刀架结构图 (2)点动合格后,做连续运动。反复多次,若出现故障或异常,排除后方可继续进行。 (3)先试Z坐标方向,后试X坐标方向,这是因为Z坐标方向调试方便。 (4)测量两坐标重复定位精度。在Z向坐标做连续移动时,若发现与丝杠相联的齿 额定转速: 2000r/min 额定输出功率: 2kW 编码器:绝对位置检测方式,分辨率1000000p/r 轴端形式:锥轴伺服放大器采用与电机配套的SJV2系列20型,其驱动能力为2kW。对于2kW电机,也可采用SJV2系列的10型放大器,但此时的输出扭矩要比20型减少1/3,不利于大功率切削。I/O设备选用型号为HR341的基本I/O单元,主要用于机床操作面板及与机床间的输入输出控制。另外附加一个远程I/ODX110,主要用于教学功能的“故障模拟设置”的输入输出。伺服及I/O单元连接原理图如图2所示。 图2 电气连接原理图 2·2·2 主轴控制 主轴电机采用交流变频控制电机,由变频器进行控制,转速范围60~6000r/min。模拟量由基本I/O单元的A0端口输出0~10V的直流电压,变频器根据输入的电压变化而输出相应的转速。由于模拟主轴电机没有编码器,因此在发出转速命令后,系统无法检测到主轴的是否运行。为解决这一问题,我们利用变频器上的功能端子,将其通过参数设置成“到达指令频率闭合”状态,并通过PLC检测此信号,从而实现对电机的运转进行监控。 2·3 教学功能的附加 本机改造后除保证加工功能和精度外,还要满足一定的教学功能。所谓的教学功能主要是针对学习数 控系统调试及维修人员而设立的附加功能。该功能通过参数设置及调整PLC程序人为地设置故障,让学生通过故障现象先判断故障种类,再分析故障产生的原因,直至排除故障。通过这种实训,学生可全面学习工业现场可能出现的故障现象,掌握故障排除方法,提高学生解决现场问题的综合能力。 3 结束语 我国现有机床中,近几年急需技术改造的约占25%,这将蕴藏着无限商机。机床改造主要是采用数控和计算机控制技术,我国数控机床发展和机床数控化改造应紧跟世界潮流,发展多轴联动数控系统,开发高速、高精度、高效加工中心等关键技术,向智能化方向发展
数控机床诊断维修方法经验浅述X 摘 要:本文就近几年来在对进口数控设备的维护中,逐渐学习并掌握了CNC 系统的一些故障规 律和快速诊断方法进行了整理。意在使其更好地为数控设备的使用与维修服务提供借鉴。 关键词:数控机床;诊断维修;方法 随着发达国家先进技术和装备的不断引进,使 我们设备维护人员的维修难度越来越大,这是不可 否认的事实。但怎样尽快适应和掌握它,是我们应 该认真探讨并急需解决的课题,下面就自己多年的 维修经验谈一点个人体会。 笔者近年引进的日立精机VA 一65 和HC 一 800 两台加工中心,不但具有交流伺服拖动、四轴联 动功能,而且还配有磁栅全闭环位置反馈及自动测 量、自动切削监视系统,其CNC 是当时国际上最先 进的FANUC 一11M 系统。运行11 年来,虽然随 着使用年限的增长,一些元器件的老化、故障期的到 来,特别是加工任务的增多,设备每天24h 不停机的 运转,出现了几乎每周都有故障报警的现象。但为 保证任务的按期完成,我们在没有经过国内外培训 且图纸资料不全的条件下,在无数次的维修测试中, 认真分析故障规律,不断积累有关数据,逐渐掌握维 修要领,尽量在最短的时间内查出故障点,用最快的 速度修复调整完成。以下从几方面论述快速诊断和 维修数控设备的方法: 1 先观察问询再动手处置 首先看报警信息,因为现在大多数CNC 系统都 有较完善的自诊断功能,通过提示信息可以马上知 道故障区域,缩小检测范围。像一次HC 一800 卧 式加工中心在运行中出现5010 # spindle drive unit alarm 报警。我们根据提示信息马上按顺序检查了 主轴电机及其执行元件、主轴控制板,查明过流断路 点后恢复正常,仅用20min 完成。但从我们的经验 中也有受报警信息误导的例子,因此说可依据它但 不能依赖它。 故障发生后如无报警信息,则需要进一步用感 官来了解设备状态,最重要的就是向操作人员问询 故障发生的前因后果。同样是该设备,有一次其 APC 系统在防护罩没有打开情况下B 轴突然旋转 起来刮坏护罩,这一现象以前从未出现过。经我们 现场仔细询问操作过程,清楚了故障经过:原来操作 人员先输入了M60 指令,使_bPm_�APC 系统程序运行(更 换旋转工作台) ,当执行元件失控中途停机后,又进 行了手动状态下的单步指令操作。当时M60 并没 有删除,使其执行元件恢复正常后继续了原程序动 作。经认真了解并仔细分析后,我们立刻清除所有 原设定的指令,检测并更换了失控元件,避免了更大 故障的发生。根据报警信息和故障前的设备状态, 来判断故障区域,争取维修时间。 2 遵循由外到里,由浅入深的检修原则 笔者对加工中心多年的维修经历来看,大多数 故障根源都是来自于外部元器件,因其受外界因素 影响较大,象机械碰撞磨损、冷却液腐蚀、积尘过多、 润滑不良等,使这些年久失修的元器件处于不完好、 不可靠状态,成为设备故障的最大隐患。像各轴经 常出现的超程报警、零点复归误差、位置信号不反馈 等,都是一些磁性或机械式开关失灵造成。还有的 故障也是出现在电磁阀、电机和经常伸缩的电缆上。 像HC 一800 的一次B 轴旋转不到位或有时根本不 旋转故障,报警提示为: feed axis fault (APC com2 mand) ,看起来与命令有关。但我们根据故障现象 还是果断地检查B 轴各行程限位,果然有一撞块与 开关接触不好,经调整后正常。这就避免无目标地 消耗很大精力去查整个CNC 系统,先把重点放在外 部环节上。 这实际上是一种经验上的诊断,如果我们手里 有原理接线图,那就应该正规地按图纸去相应对照, 顺序查找并针对性的去测试电位和波形,还能从中 悟出一些理论上的东西。正是因为没有这个条件, 所以我们在维修中就是遵循从外部到内部、从人为 到系统、由浅入深的原则去进行,这就大大缩短了设 备的停修时间。 3 充分利用PC 图查找故障点 根据报警信息调出与其相关的PC 图进行分析 核对,也是一种诊断的方便途径。一次VA 一65 自 动换刀机械手到位后不执行抓刀指令,我们马上调 出PC 图从各指令开关信号到各进、退、松、紧动作 信号逐一进行对应校验,最后查出机械手旋转到信 号没有发出,原因是由于一磁性接近开关松动移后 不起作用,使下一步抓刀动作无法进行,调整后恢复 正常。 由PC 图查故障点看来比较方便直观,但如果 不了解其内部动作原理和工作程序,那可以说也是 大海捞针,无从下手。特别是无电气原理图就更难 以判断,每个输出动作多达几十个开关条件才能满 足,确实要下很大工夫才能逐步认识并掌握。我们 就是靠平时维修时的日积月累,在不断的了解和运 用它。 4 疑难故障的检测分析和快捷处理 此两台加工中心的一些元器件年久老化,使其参数随温度 或电流的变化而极不稳定,造成故障后能自动恢复 即时好时坏现象,这是我们最为之挠头的故障。因 为搞维修的都知道,元件坏了容易检测,而不正常的 通断情况则很难判断是元件坏了还是线路接触不良 造成,因为无法进行正常的信号检测。如B 轴工作 台换位;刀库进刀口自动打开;B 轴台板夹紧、松开 失灵等故障,其执行元件均是固态继电器接受指令 信号接通后带动电磁阀动作。当检测时可能未见异 常,启动后又可能一切正常,待连续动作几次后又停 机报警。我们根据故障现象及反复周期判定应该是 执行元件性能下降造成,因图纸不详、标识不清,只 能将关联的一组执行元件在正常和异常的情况下分 别进行检测,经反复测试后,最后从30 多只继电元 件中分别查出并更换了其性能下降的元件。 一次HC 一800 B 轴原点复归失控,指令发出 后旋转不停,没有报警信息。经现场了解分析,首先 认定应该是B 轴零点检测系统故障,而该系统是由 一只磁性接近开关发出到位信号后控制执行元件减 速停车。我们马上对这一信号进行线路测试,结果 无信号发出,人为设定一个到位信号则准确复归停 车,确认检测开关到设定信号点这一段有故障。但 如果想直接检测接近开关则必须将B 轴和与其关 联的调轴解体,因为此开关装在B 轴工作台体内。 这样的大结构拆修以前从未干过,测算一下工作量 需半个月时间,而且还要特别精心地对十多根控制 电缆和几十根油管拆除和恢复,这就很难保证拆装 后各部分的精度,但要想解决问题还必须露出这一 开关进行检测和维修。能否用一个简便的方法既能 节省拆装工作量又能拿出这一检测开关,经反复论 证后终于想出一个只拆B 轴端盖和调轴磁尺支架 拿出此开关的方法。虽然电气维修人员拆装、检测 难度很大,但保证了台面不大解体,把后患影响减小 到了最低限度。经实际测试开关、处理断路点原位 安装后恢复了B 轴复归功能,又对拆装后影响到的 调轴位置误差和B 轴定位故障进行了补偿和调整, 一切正常后仅用三天时间即交付使用,保证了试制 加工任务的完成。 5 结语 总之,在处理故障过程中怎样尽快打开思路、进 入状态,缩小检测范围,直触故障根源是维修技术人 员水平高低的关键所在。看似简单的道理却饱含着 方方面面,也是维修人员多年辛勤劳动的结晶。我 们就是在这种高频率故障的压力下,克服了重重困 难,尽力在短时间内解决问题,减少设备停歇台时, 为车型试制做出了我们应有的贡献。 [参考文献] [1 ] 李亚芹,龙泽明,韩阳阳. 数控机床爬行问题的 分析与研究[J ] . 组合机床与自动化加工技术, 2006 , (10) :76~78. [2 ] 卓迪仕. 数控技术及应用[M] . 北京:国防工出 版社,1997.
数控机床诊断维修方法经验浅述X 摘 要:本文就近几年来在对进口数控设备的维护中,逐渐学习并掌握了CNC 系统的一些故障规 律和快速诊断方法进行了整理。意在使其更好地为数控设备的使用与维修服务提供借鉴。 关键词:数控机床;诊断维修;方法 随着发达国家先进技术和装备的不断引进,使 我们设备维护人员的维修难度越来越大,这是不可 否认的事实。但怎样尽快适应和掌握它,是我们应 该认真探讨并急需解决的课题,下面就自己多年的 维修经验谈一点个人体会。 笔者近年引进的日立精机VA 一65 和HC 一 800 两台加工中心,不但具有交流伺服拖动、四轴联 动功能,而且还配有磁栅全闭环位置反馈及自动测 量、自动切削监视系统,其CNC 是当时国际上最先 进的FANUC 一11M 系统。运行11 年来,虽然随 着使用年限的增长,一些元器件的老化、故障期的到 来,特别是加工任务的增多,设备每天24h 不停机的 运转,出现了几乎每周都有故障报警的现象。但为 保证任务的按期完成,我们在没有经过国内外培训 且图纸资料不全的条件下,在无数次的维修测试中, 认真分析故障规律,不断积累有关数据,逐渐掌握维 修要领,尽量在最短的时间内查出故障点,用最快的 速度修复调整完成。以下从几方面论述快速诊断和 维修数控设备的方法: 1 先观察问询再动手处置 首先看报警信息,因为现在大多数CNC 系统都 有较完善的自诊断功能,通过提示信息可以马上知 道故障区域,缩小检测范围。像一次HC 一800 卧 式加工中心在运行中出现5010 # spindle drive unit alarm 报警。我们根据提示信息马上按顺序检查了 主轴电机及其执行元件、主轴控制板,查明过流断路 点后恢复正常,仅用20min 完成。但从我们的经验 中也有受报警信息误导的例子,因此说可依据它但 不能依赖它。 故障发生后如无报警信息,则需要进一步用感 官来了解设备状态,最重要的就是向操作人员问询 故障发生的前因后果。同样是该设备,有一次其 APC 系统在防护罩没有打开情况下B 轴突然旋转 起来刮坏护罩,这一现象以前从未出现过。经我们 现场仔细询问操作过程,清楚了故障经过:原来操作 人员先输入了M60 指令,使_bPm_�APC 系统程序运行(更 换旋转工作台) ,当执行元件失控中途停机后,又进 行了手动状态下的单步指令操作。当时M60 并没 有删除,使其执行元件恢复正常后继续了原程序动 作。经认真了解并仔细分析后,我们立刻清除所有 原设定的指令,检测并更换了失控元件,避免了更大 故障的发生。根据报警信息和故障前的设备状态, 来判断故障区域,争取维修时间。 2 遵循由外到里,由浅入深的检修原则 笔者对加工中心多年的维修经历来看,大多数 故障根源都是来自于外部元器件,因其受外界因素 影响较大,象机械碰撞磨损、冷却液腐蚀、积尘过多、 润滑不良等,使这些年久失修的元器件处于不完好、 不可靠状态,成为设备故障的最大隐患。像各轴经 常出现的超程报警、零点复归误差、位置信号不反馈 等,都是一些磁性或机械式开关失灵造成。还有的 故障也是出现在电磁阀、电机和经常伸缩的电缆上。 像HC 一800 的一次B 轴旋转不到位或有时根本不 旋转故障,报警提示为: feed axis fault (APC com2 mand) ,看起来与命令有关。但我们根据故障现象 还是果断地检查B 轴各行程限位,果然有一撞块与 开关接触不好,经调整后正常。这就避免无目标地 消耗很大精力去查整个CNC 系统,先把重点放在外 部环节上。 这实际上是一种经验上的诊断,如果我们手里 有原理接线图,那就应该正规地按图纸去相应对照, 顺序查找并针对性的去测试电位和波形,还能从中 悟出一些理论上的东西。正是因为没有这个条件, 所以我们在维修中就是遵循从外部到内部、从人为 到系统、由浅入深的原则去进行,这就大大缩短了设 备的停修时间。 3 充分利用PC 图查找故障点 根据报警信息调出与其相关的PC 图进行分析 核对,也是一种诊断的方便途径。一次VA 一65 自 动换刀机械手到位后不执行抓刀指令,我们马上调 出PC 图从各指令开关信号到各进、退、松、紧动作 信号逐一进行对应校验,最后查出机械手旋转到信 号没有发出,原因是由于一磁性接近开关松动移后 不起作用,使下一步抓刀动作无法进行,调整后恢复 正常。 由PC 图查故障点看来比较方便直观,但如果 不了解其内部动作原理和工作程序,那可以说也是 大海捞针,无从下手。特别是无电气原理图就更难 以判断,每个输出动作多达几十个开关条件才能满 足,确实要下很大工夫才能逐步认识并掌握。我们 就是靠平时维修时的日积月累,在不断的了解和运 用它。 4 疑难故障的检测分析和快捷处理 此两台加工中心的一些元器件年久老化,使其参数随温度 或电流的变化而极不稳定,造成故障后能自动恢复 即时好时坏现象,这是我们最为之挠头的故障。因 为搞维修的都知道,元件坏了容易检测,而不正常的 通断情况则很难判断是元件坏了还是线路接触不良 造成,因为无法进行正常的信号检测。如B 轴工作 台换位;刀库进刀口自动打开;B 轴台板夹紧、松开 失灵等故障,其执行元件均是固态继电器接受指令 信号接通后带动电磁阀动作。当检测时可能未见异 常,启动后又可能一切正常,待连续动作几次后又停 机报警。我们根据故障现象及反复周期判定应该是 执行元件性能下降造成,因图纸不详、标识不清,只 能将关联的一组执行元件在正常和异常的情况下分 别进行检测,经反复测试后,最后从30 多只继电元 件中分别查出并更换了其性能下降的元件。 一次HC 一800 B 轴原点复归失控,指令发出 后旋转不停,没有报警信息。经现场了解分析,首先 认定应该是B 轴零点检测系统故障,而该系统是由 一只磁性接近开关发出到位信号后控制执行元件减 速停车。我们马上对这一信号进行线路测试,结果 无信号发出,人为设定一个到位信号则准确复归停 车,确认检测开关到设定信号点这一段有故障。但 如果想直接检测接近开关则必须将B 轴和与其关 联的调轴解体,因为此开关装在B 轴工作台体内。 这样的大结构拆修以前从未干过,测算一下工作量 需半个月时间,而且还要特别精心地对十多根控制 电缆和几十根油管拆除和恢复,这就很难保证拆装 后各部分的精度,但要想解决问题还必须露出这一 开关进行检测和维修。能否用一个简便的方法既能 节省拆装工作量又能拿出这一检测开关,经反复论 证后终于想出一个只拆B 轴端盖和调轴磁尺支架 拿出此开关的方法。虽然电气维修人员拆装、检测 难度很大,但保证了台面不大解体,把后患影响减小 到了最低限度。经实际测试开关、处理断路点原位 安装后恢复了B 轴复归功能,又对拆装后影响到的 调轴位置误差和B 轴定位故障进行了补偿和调整, 一切正常后仅用三天时间即交付使用,保证了试制 加工任务的完成。 5 结语 总之,在处理故障过程中怎样尽快打开思路、进 入状态,缩小检测范围,直触故障根源是维修技术人 员水平高低的关键所在。看似简单的道理却饱含着 方方面面,也是维修人员多年辛勤劳动的结晶。我 们就是在这种高频率故障的压力下,克服了重重困 难,尽力在短时间内解决问题,减少设备停歇台时, 为车型试制做出了我们应有的贡献。 [参考文献] [1 ] 李亚芹,龙泽明,韩阳阳. 数控机床爬行问题的 分析与研究[J ] . 组合机床与自动化加工技术, 2006 , (10) :76~78. [2 ] 卓迪仕. 数控技术及应用[M] . 北京:国防工出 版社,1997.
数控机床诊断维修方法经验浅述X 摘要:本文就近几年来在对进口数控设备的维护中,逐渐学习并掌握了CNC 系统的一些故障规 律和快速诊断方法进行了整理。意在使其更好地为数控设备的使用与维修服务提供借鉴。 关键词:数控机床;诊断维修;方法 随着发达国家先进技术和装备的不断引进,使 我们设备维护人员的维修难度越来越大,这是不可 否认的事实。但怎样尽快适应和掌握它,是我们应 该认真探讨并急需解决的课题,下面就自己多年的 维修经验谈一点个人体会。 笔者近年引进的日立精机VA 一65 和HC 一 800 两台加工中心,不但具有交流伺服拖动、四轴联 动功能,而且还配有磁栅全闭环位置反馈及自动测 量、自动切削监视系统,其CNC 是当时国际上最先 进的FANUC 一11M 系统。运行11 年来,虽然随 着使用年限的增长,一些元器件的老化、故障期的到 来,特别是加工任务的增多,设备每天24h 不停机的 运转,出现了几乎每周都有故障报警的现象。但为 保证任务的按期完成,我们在没有经过国内外培训 且图纸资料不全的条件下,在无数次的维修测试中, 认真分析故障规律,不断积累有关数据,逐渐掌握维 修要领,尽量在最短的时间内查出故障点,用最快的 速度修复调整完成。以下从几方面论述快速诊断和 维修数控设备的方法: 1 先观察问询再动手处置 首先看报警信息,因为现在大多数CNC 系统都 有较完善的自诊断功能,通过提示信息可以马上知 道故障区域,缩小检测范围。像一次HC 一800 卧 式加工中心在运行中出现5010 # spindle drive unit alarm 报警。我们根据提示信息马上按顺序检查了 主轴电机及其执行元件、主轴控制板,查明过流断路 点后恢复正常,仅用20min 完成。但从我们的经验 中也有受报警信息误导的例子,因此说可依据它但 不能依赖它。 故障发生后如无报警信息,则需要进一步用感 官来了解设备状态,最重要的就是向操作人员问询 故障发生的前因后果。同样是该设备,有一次其 APC 系统在防护罩没有打开情况下B 轴突然旋转 起来刮坏护罩,这一现象以前从未出现过。经我们 现场仔细询问操作过程,清楚了故障经过:原来操作 人员先输入了M60 指令,使_bPm_ APC 系统程序运行(更 换旋转工作台) ,当执行元件失控中途停机后,又进 行了手动状态下的单步指令操作。当时M60 并没 有删除,使其执行元件恢复正常后继续了原程序动 作。经认真了解并仔细分析后,我们立刻清除所有 原设定的指令,检测并更换了失控元件,避免了更大 故障的发生。根据报警信息和故障前的设备状态, 来判断故障区域,争取维修时间。 2 遵循由外到里,由浅入深的检修原则 笔者对加工中心多年的维修经历来看,大多数 故障根源都是来自于外部元器件,因其受外界因素 影响较大,象机械碰撞磨损、冷却液腐蚀、积尘过多、 润滑不良等,使这些年久失修的元器件处于不完好、 不可靠状态,成为设备故障的最大隐患。像各轴经 常出现的超程报警、零点复归误差、位置信号不反馈 等,都是一些磁性或机械式开关失灵造成。还有的 故障也是出现在电磁阀、电机和经常伸缩的电缆上。 像HC 一800 的一次B 轴旋转不到位或有时根本不 旋转故障,报警提示为: feed axis fault (APC com2 mand) ,看起来与命令有关。但我们根据故障现象 还是果断地检查B 轴各行程限位,果然有一撞块与 开关接触不好,经调整后正常。这就避免无目标地 消耗很大精力去查整个CNC 系统,先把重点放在外 部环节上。 这实际上是一种经验上的诊断,如果我们手里 有原理接线图,那就应该正规地按图纸去相应对照, 顺序查找并针对性的去测试电位和波形,还能从中 悟出一些理论上的东西。正是因为没有这个条件, 所以我们在维修中就是遵循从外部到内部、从人为 到系统、由浅入深的原则去进行,这就大大缩短了设 备的停修时间。 3 充分利用PC 图查找故障点 根据报警信息调出与其相关的PC 图进行分析 核对,也是一种诊断的方便途径。一次VA 一65 自 动换刀机械手到位后不执行抓刀指令,我们马上调 出PC 图从各指令开关信号到各进、退、松、紧动作 信号逐一进行对应校验,最后查出机械手旋转到信 号没有发出,原因是由于一磁性接近开关松动移后 不起作用,使下一步抓刀动作无法进行,调整后恢复 正常。 由PC 图查故障点看来比较方便直观,但如果 不了解其内部动作原理和工作程序,那可以说也是 大海捞针,无从下手。特别是无电气原理图就更难 以判断,每个输出动作多达几十个开关条件才能满 足,确实要下很大工夫才能逐步认识并掌握。我们 就是靠平时维修时的日积月累,在不断的了解和运 用它。 4 疑难故障的检测分析和快捷处理 此两台加工中心的一些元器件年久老化,使其参数随温度 或电流的变化而极不稳定,造成故障后能自动恢复 即时好时坏现象,这是我们最为之挠头的故障。因 为搞维修的都知道,元件坏了容易检测,而不正常的 通断情况则很难判断是元件坏了还是线路接触不良 造成,因为无法进行正常的信号检测。如B 轴工作 台换位;刀库进刀口自动打开;B 轴台板夹紧、松开 失灵等故障,其执行元件均是固态继电器接受指令 信号接通后带动电磁阀动作。当检测时可能未见异 常,启动后又可能一切正常,待连续动作几次后又停 机报警。我们根据故障现象及反复周期判定应该是 执行元件性能下降造成,因图纸不详、标识不清,只 能将关联的一组执行元件在正常和异常的情况下分 别进行检测,经反复测试后,最后从30 多只继电元 件中分别查出并更换了其性能下降的元件。 一次HC 一800 B 轴原点复归失控,指令发出 后旋转不停,没有报警信息。经现场了解分析,首先 认定应该是B 轴零点检测系统故障,而该系统是由 一只磁性接近开关发出到位信号后控制执行元件减 速停车。我们马上对这一信号进行线路测试,结果 无信号发出,人为设定一个到位信号则准确复归停 车,确认检测开关到设定信号点这一段有故障。但 如果想直接检测接近开关则必须将B 轴和与其关 联的调轴解体,因为此开关装在B 轴工作台体内。 这样的大结构拆修以前从未干过,测算一下工作量 需半个月时间,而且还要特别精心地对十多根控制 电缆和几十根油管拆除和恢复,这就很难保证拆装 后各部分的精度,但要想解决问题还必须露出这一 开关进行检测和维修。能否用一个简便的方法既能 节省拆装工作量又能拿出这一检测开关,经反复论 证后终于想出一个只拆B 轴端盖和调轴磁尺支架 拿出此开关的方法。虽然电气维修人员拆装、检测 难度很大,但保证了台面不大解体,把后患影响减小 到了最低限度。经实际测试开关、处理断路点原位 安装后恢复了B 轴复归功能,又对拆装后影响到的 调轴位置误差和B 轴定位故障进行了补偿和调整, 一切正常后仅用三天时间即交付使用,保证了试制 加工任务的完成。 5 结语 总之,在处理故障过程中怎样尽快打开思路、进 入状态,缩小检测范围,直触故障根源是维修技术人 员水平高低的关键所在。看似简单的道理却饱含着 方方面面,也是维修人员多年辛勤劳动的结晶。我 们就是在这种高频率故障的压力下,克服了重重困 难,尽力在短时间内解决问题,减少设备停歇台时, 为车型试制做出了我们应有的贡献。 [参考文献] [1 ] 李亚芹,龙泽明,韩阳阳. 数控机床爬行问题的 分析与研究[J ] . 组合机床与自动化加工技术, 2006 , (10) :76~78. [2 ] 卓迪仕. 数控技术及应用[M] . 北京:国防工出 版社,1997.
床用气弹簧支架放下来,将2只手把住床板的顶部,一定要用2只手,因为气弹簧劲头大,一只手力度不够容易将手腕弄伤;具体的操作步骤如下:
1、此时的气弹簧处于开启状态。
2、将2只手把住床板的顶部,一定要用2只手,因为气弹簧劲头大,一只手力度不够容易将手腕弄伤。
3、2只手把住床板的顶部之后,用力向下压。
4、直到把窗板完全放平为止。
5、将气弹簧上面的隐形拉手向右侧滑动。
6、将拉手隐藏起来,不影响使用。