首页

> 期刊论文知识库

首页 期刊论文知识库 问题

环氧树脂文献论文

发布时间:

环氧树脂论文

材料学是研究材料组成、结构、工艺、性质和使用效能之间的相互关系的学科,为材料设计、制造、工艺优化和合理使用提供科学依据。下文是我为大家蒐集整理的的内容,欢迎大家阅读参考!

浅析奈米二氧化矽改性环氧树脂复合材料的效能

随着资讯产业的飞速发展, 人类社会正稳步朝着高度资讯化的方向发展,资讯处理与资讯通讯正构成高度资讯化科学技术领域发展中的两大技术支柱.以高速计算机、示波器、IC测试仪器为主体的资讯处理技术追求资讯处理的高速化、容量的增大化和体积的小型化;以手机、卫星通讯及蓝芽技术等为代表的资讯通讯技术追求多通道数、高效能化和多功能化,使得使用频率不断提高,进入高频甚至超高频领域.在高频电路中,由于基板介电常数越低,讯号传播得越快;基板的介电常数越小,损耗因数越小,讯号传播的衰减越小,因此,要实现高速传输、低能量损耗与小的传输延时,则对基板材料提出了更高的要求,即要求基板材料为低ε、低tanδ.

此外,高的耐热性,低的吸水性和高的尺寸稳定性也是高频电路对基板材料的基本要求.传统的基板材料***FR4***所用的基体树脂主要为环氧树脂,因其成本低、工艺成熟而在印刷电路板中大量使用;但作为高频电路基板材料,却暴露出介电效能低劣、耐热性不佳、热膨胀率偏高、耐溼性差等缺陷.因此开发适合高频电路基板材料用的树脂体系是印刷电路板行业目前研究的一个重要方向,而对EP进行改性并借助EP较为成熟的生产和加工工艺研究、开发和制备新型的树脂体系,是制备高效能电路基板的一条非常经济有效的途径[3-5] .

研究表明,无机奈米粒子弥散分布的树脂基体材料,由于奈米粒子具有的表面特性和晶体结构使基体材料显示出一系列优异的效能,其中奈米SiO2 改性树脂基体具有很多优异的效能[8-10],但奈米SiO2表面存在大量的羟基使其表现为亲水性、易团聚,贮存稳定性差等缺点.因此奈米颗粒在树脂中的均匀分散是制备高效能奈米颗粒弥散分布有机树脂的一个重要环节.

本文采用矽烷偶联剂KH570改性奈米SiO2粉体,通过共混法制备了高效能SiO2EP树脂复合材料,并对其微观结构、热稳定性和介电效能进行研究.

1、实验部分

原料

奈米SiO2质量分数≥,粒径15 nm,杭州万景新材料有限公司;苯***.***、二甲苯***.***、无水乙醇、H2O2 ***30 %,.***,γ2***甲基丙烯酰氧***丙基三甲氧基矽烷***. KH570***、环氧树脂***E44,6101******湖南三雄化工厂***、固化剂聚酰亚胺***低分子650******湖南三雄化工厂***.

改性环氧树脂复合材料的制备

参考文献[11],采用 γ2***甲基丙烯酰氧***丙基三甲氧基矽烷***KH570***对奈米SiO2进行表面改性处理得到亲油性奈米SiO2粉体.

SiO2改性环氧树脂复合材料的制备工艺如下***以2% SiO2EP为例***:取2 g亲油性SiO2粉体,超声分散于80 mL二甲苯中,然后加入49 g环氧树脂,搅拌均匀后再加入49 g的聚酰胺固化剂,超声分散搅拌均匀,最后将混合体系倾入铝制模具中,放置于烘箱中先于120 ℃预固化2 h,再升温至150 ℃固化3 h,最后于180 ℃固化1 h得最终试样. 为对比不同试样的效能,采用相同工艺制备了未新增奈米SiO2的EP.不同组成的试样编号如表1所示.

效能测试

采用傅立叶变换红外光谱***FTIR,Avatar360,Nicolet***研究改性奈米SiO2前后,不同试样中化学键的变化,判断可能发生的反应.操作条件:采用KBr压片法制样,测量的波长范围为***4 000~400*** cm-1.

采用扫描电子显微镜***SEM,JSM6700F,Jeol***表征微观形貌,观察奈米颗粒在复合材料中的分散情况.

用STA449C综合热分析仪研究试样的热稳定性.操作条件:样品质量为25~35 mg,Ar流量为50 mL?min-1,升温速率为10 ℃?min-1,温度变化范围为***0~800*** ℃.

介电常数是指介质在外加电场时会产生感应电荷而削弱电场,在相同的原电场中某一介质中的电容率与真空中的电容率的比值. 介电损耗是电介质在交变电场中,由于消耗部分电能而使电介质本身发热的现象.SiO2改性环氧树脂复合材料的介电常数和介电损耗采用美国安捷伦公司生产的Agilent 4991A高频阻抗分析仪测试,测试频率为1 M~1 G,测试夹具为美国安捷伦公司生产的Agilent16453A介电效能测试夹具.

2、结果与讨论

分析

图1为3种试样的红外图谱.对改性奈米SiO2而言,位于1 103 cm-1左右的一个宽强峰及812 cm-1附近的一个尖峰属于Si-O-Si键的对称振动峰***νSi-O-Si*** .波数为1 395 cm- 1 的吸收峰属于νSiO-H的伸缩振动峰;波数为1 637 cm-1 处的吸收峰属于νC = C 的伸缩振动峰,波数为1 606 cm-1 处的吸收峰归属于νC-C的收缩振动峰,这两种化学键均来自于矽烷偶联剂KH570,从这几个吸收峰来看,矽烷偶联剂已经成功地连线在SiO2表面[11-12].同时由于改性奈米SiO2中仍存在Si-OH键振动峰,表明偶联剂在奈米SiO2表面的反应进行得并不完全,偶联剂用量对SiO2改性效果的影响有待进一步研究.

由于聚酰亚胺固化EP材料的官能团较多,本文重点分析新增改性SiO2后,相应官能团的变化.对比新增改性奈米SiO2前后EP的红外吸收,可知奈米SiO2在1 395 cm- 1处的峰消失,同时EP材料中出现于1 628 cm-1处的δCO-H和1 405 cm-1处的δN-H的强度降低甚至消失,表明矽烷偶联剂和改性奈米SiO2与EP树脂材料发生了化学反应,导致δCO-H和δN-H吸收峰强度降低或者消失.

波数/cm-1

奈米SiO2新增量对EP热稳定效能的影响

图2为不同样品在Ar气氛下的热重***TG***曲线和微分热重***DTG***曲线.从图2***a***所示TG曲线可以看出,不同组成的试样在Ar气氛中的热失重过程相似,在300~500 ℃,在相同的温度下,随SiO2含量的增加,失重率显著升高;而当失重率相同时,随SiO2含量的增加,复合树脂对应的温度升高,表明其热稳定性增加.表2给出了不同试样一定失重率对应的温度.

从图2***b***所示DTG曲线可以看出,0#试样有两个峰值,这表明EP基体的分解可大致分为两个步骤,这两个失重峰对应的分别是环氧树脂基体的热分解和裂解残碳的氧化[13-14].随着新增量的增加,第一个峰值逐渐变平缓直到最后消失,而失重速率最大时对应的峰值温度***见表2***则逐渐升高,这也表明随新增量的增加,偶联剂的官能团和改性奈米SiO2表面残留的Si-OH与基体树脂的官能团发生了化学反应,从而提高了树脂基体的“牢固度”[15].新增量越多,“牢固度”增加的程度越大,从而导致基体材料的热稳定性逐渐提高.

由于环氧树脂及其固化剂含有较多的氧,因此尽管在惰性气氛中进行热分解研究,但其裂解后的残炭量几乎完全消失,残余质量与新增在其中的SiO2量相一致[14].

奈米SiO2新增量对EP微观形貌的影响

图3为新增不同奈米SiO2颗粒的SiO2/EP复合材料的微观形貌图谱.从图3***a***中可以看出,未新增SiO2的试样断面较为粗糙;从图3***b***~***e***可以看出,随SiO2新增量的增加,其在EP中的分布由分散均匀,团聚少***图3***b*** 和3***c******,逐步改为团聚明显,分散均匀性差***图3***d*** 和3***e******.当新增量为4%时,奈米SiO2均匀地分散在EP基体中,粒径约为30 nm,对比原始SiO2尺寸,奈米颗粒还存在微弱的团聚现象.随新增量的增加,奈米SiO2团聚现象明显增加,当新增量增加到16%时,奈米颗粒出现严重的团聚现象,这将影响其介电效能.这种团聚一方面是由于奈米颗粒有很高的比表面积,同时由于偶联剂与奈米SiO2颗粒表面Si-OH反应得并不完全,导致奈米颗粒表面仍存在Si-OH,这些官能团彼此之间可以发生缩合反应导致颗粒团聚.

奈米SiO2新增量对EP基体介电效能的影响

奈米SiO2新增量对EP介电常数的影响

图4为不同试样的介电常数与测试频率的关系曲线图.从图4可以看出,5组试样的介电常数均随着频率的升高呈下降趋势.同时随着奈米SiO2新增量的增加,试样的介电常数呈先降低后升高的趋势.当新增量为4%时,试样的介电常数具有最低值.

log***f/Hz***

析认为,当奈米SiO2的新增量小于4%时,奈米SiO2新增到树脂基体后,形成了“ 核壳过渡层”结构,以“核”作为交联点使得复合材料的交联度提高,其极性基团取向活动变得困难, 因而复合材料的介电常数下降.而当奈米SiO2的新增量大于4%时,奈米SiO2本身介电效能较高的影响超过了其对树脂基体极性基团的“束缚”作用而产生了介电效能降低效应,这就导致复合材料介电常数的增加.

奈米SiO2新增量对EP介电损耗的影响

图5为5种试样的介电损耗随频率的变化曲线.从图5可以看出,试样的介电损耗均随测试频率的增加先升高后降低;随着奈米SiO2加入量的增多呈现先降低后升高的趋势.同一测试频率下,当奈米SiO2的新增量为4%时,材料的介电损耗最低;当奈米SiO2的新增量为6%时,材料的介电损耗开始增加;当奈米SiO2的新增量为16%时,材料的介电损耗接近纯EP试样的介电损耗.

分析认为,复合材料的介电损耗取决于环氧树脂极性基团的松弛损耗和极性杂质电导损耗的共同作用.加入奈米SiO2后,一方面改性奈米SiO2表面的官能团可以与聚酰亚胺固化EP中的官能团反应,束缚了树脂基体中极性基团的运动,从而降低了松弛损耗;另一方面,改性后的奈米颗粒表面不可避免地存在一些极性基团,这些基团同时增加了电导损耗,复合材料的介电损耗正是这二者共同作用的结果.当奈米SiO2的新增量小于6%时,试样的松弛损耗的降低效果高于电导损耗的增加效果,所以试样的介电损耗均比纯EP的小.而当奈米SiO2的新增量为16%时,奈米SiO2出现明显的团聚现象,这就导致松弛损耗的效果迅速降低,从而导致试样总体的介电损耗接近纯EP试样.

3、结论

利用矽烷偶联剂对奈米SiO2进行表面改性,通过共混法制备了不同奈米SiO2含量的SiO2/EP奈米复合材料,研究了SiO2的新增对复合材料微观结构、耐热性和介电效能的影响.结论如下:

1 *** 当奈米SiO2含量在0~16%时,随着奈米SiO2含量的增加,SiO2/EP奈米复合材料的热稳定性逐渐升高.

2*** SiO2/EP奈米复合材料的介电效能随着测试频率的升高呈下降趋势.同一测试频率下,随着奈米SiO2新增量的增加,试样的介电常数呈先降低后升高趋势.

3***当奈米SiO2含量为4%时,复合材料的综合性能最优.其耐热性较好,介电效能最优***频率为1 GHz时,介电常数为,介电损耗为 53***.

>>>下页带来更多的

1.余志伟,萍乐坳陷西部中石碳世黄龙期沉积相分析,岩相古地理研究及编图通讯,86(1).2.余志伟,江西萍乐坳陷西部中石碳统黄龙组白云岩成因探讨,沉积学报(核心期刊),88(3).3.余志伟等,TR-B/PE薄膜试验研究,大连科技情报,90(1).4.余志伟等,研磨碳酸钙填料在文化印刷用纸中的应用,江西造纸,90(2).5.余志伟等,新型电工电子级填料的特征及应用,电子化工材料信息,90(12).6.余志伟等,TR材料的工艺特性及应用效果,热固性树脂,91(2).7.余志伟,粉石英在微孔硅酸钙保温材料中的应用研究,华东地质学院学报,97(3).8.余志伟等,硅微粉增韧环氧树脂的研究,华东地质学院学报,98(1).9.廖巨浪 余志伟,粉石英在蓄电池胶壳中的应用”,华东地质学院学报,98(2).10.余志伟等,“增韧硅微粉研制”,非金属矿(核心期刊),98(4).11.余志伟等,“硅微粉染色研究”,非金属矿(核心期刊),98(6).12.余志伟,“粉石英分级技术研究”,非金属矿(核心期刊),99(1).13.余志伟,“粉石英表面改性研究”,无机盐工业(核心期刊),99(1).14.余志伟等,一种新型工业矿物原料-粉石英,中国非金属矿工业导刊,99(1).15.余志伟,包膜硅微粉增韧环氧树脂机理的研究,热固性树脂,99(1).16.余志伟,碳氧同位素在白云岩成因研究中的应用,矿物岩石地球化学通讯(核心期刊),99(1).17.余志伟等,电工专用填料开发研究,华东地质学院学报,99(2).18.余志伟等,利用粉石英尾砂开发电工填料的研究,中国非金属矿工业导刊,99(3).19.余志伟等,粉石英改性及效果研究”,非金属矿(核心期刊),99(4).20.余志伟等,石英表面改性及应用效果,化工冶金(核心期刊),99(10).21.邓慧宇 余志伟等,粉石英尾砂超细粉碎研究,中国粉体技术,2000(2).22.余志伟,改性粉石英在PE薄膜中的应用,非金属矿(核心期刊),2000(4).23.余志伟,江西滑石矿成矿条件及成因分析,中国非金属矿工业导刊,2001(1).24.余志伟,粉石英填料在硬质橡胶制品中的应用,非金属矿(核心期刊),2001(2).25.余志伟等,矿物填料改性工艺研究,化工矿物与加工(核心期刊),2001(4).26.余志伟,改性填料提高复合材料抗冲击性能研究,西安工程学院学报(核心期刊),2001(3).27.余志伟等,纳米稀土转光材料研究,稀有金属材料与工程(核心期刊),2001(11)(SCI检索).29.余志伟,粉石英在环氧树脂封装材中的应用,非金属矿(核心期刊),2002(2).30.余志伟等,西部粉石英矿开发利用研究,中国非金属矿工业导刊,2002(3).31.余志伟等,江西省非金属矿产资源及开发,中国粉体技术(核心期刊),2002(3).32.邓慧宇 余志伟等,金溪膨润土钠化改型研究”,非金属矿(核心期刊),2002(2).33.余志伟等,镁质粘土抗菌材料研究,非金属矿(核心期刊),2003(2).34.余志伟等,膨润土纳米抗均材料研制,矿物岩石(核心期刊),2003(4) (EI检索).35.余志伟等,Reseach on rare earth encapsulated luminescent material,journal of rare earths(核心期刊),December 2004(EI检索).36.漆小鹏 余志伟,溶胶—凝胶法制备稀土无机发光材料及其发光性能的研究”,中国稀土学报(核心期刊),2003(2).37.余志伟等,明矾石合成4A分子筛研究,云南大学学报(核心期刊),2004(4A).38.余志伟等,天然粉石英矿加工技术研究,云南大学学报(核心期刊),2004(4A).39.周春为 余志伟,宜黄晶质石墨碱法提纯研究,中国非金属矿工业导刊,2004(增刊).40.葛金龙 余志伟,环氧树脂/纳米粘土复合材料制备与性能研究,中国非金属矿工业导刊,2004(增刊)42.余志伟等,纳米粘土增韧环氧树脂的研究,塑料科技(核心期刊),2005(4).43.漆小鹏 余志伟,纳米级稀土-微米级无机填料复合转光材料的研究,稀土(核心期刊),2005(1).44.余志伟等,纳米粘土/EP复合材料性能研究,中国非金属矿工业导刊,2005(4).45.余志伟等,纳米粘土提高环氧树脂绝缘材料力学性能研究,绝缘材料,2005(3)46.张延峰 余志伟,镁质粘土新型抗菌材料,中国非金属矿工业导刊,2005(5).47.余志伟,纳米粘土增强材料研究,精细化工(核心期刊),2007(9)48.余志伟,云阳微结晶石英岩矿成因探讨,地质科技情报(核心期刊),2007(9)49.余志伟等,宜黄细晶质石墨酸法提纯实验研究,东华理工大学学报,7007()50.邢丽华,余志伟(通讯作者),石墨伴生钒矿中钒的焙烧浸取及分析研究,非金属矿(核心期刊),2007(6)51.海霞,余志伟(通讯作者),石英表面覆钛研究,非金属矿(核心期刊),2008,31(4)52.余志伟,玉山蒙脱土结构改性几应用研究,非金属矿(核心期刊), 2008,31(4)53.余志伟,邢丽华,石墨尾矿提钒及综合利用研究,金属矿山(核心期刊),2008,386期(8)54.余志伟,海霞,赵安,Mg-土吸附剂的吸附性能,精细化工(核心期刊), 2008,(12)

环氧树脂文献论文

[1]曾清华,王栋知,王淀佐.聚合物-粘土矿物纳米复合材料.化工进展,1998,17(2):13~16.

[2]王立新,张楷亮,任丽,等.聚合物/层状硅酸盐纳米复合材料的研究进展.复合材料学报,2001,18(3):5~9.

[3] Giannalis E layered silicate Mater,1996,8(1):29~35.

[4] Alexandre M,Dubois silicate nanocomposites:Preparation,properties and uses of a new class of Sci Eng,2000,Report,28(1~2):1~63.

[5]徐卫兵.聚合物/蒙脱土插层纳米复合材料的研究.中国科学技术大学,博士论文,2001.

[6]张琴.熔体插层聚丙烯纳米复合材料:形成过程、剥离机理、形态与性能.四川大学,博士论文,2002.

[7]袁昌来,董发勤.粘土/有机纳米复合粉体材料.中国非金属矿工业导刊,2003,(4):14~17.

[8]吕建坤.环氧树脂及高性能热塑性树脂与粘土插层复合的研究.浙江大学,博士论文,2001.

[9]须藤俊男,著.严寿鹤,刘万,贾克实,译.粘土矿物学.北京:地质出版社,1981.

[10] OlejnikSL,,1968,72(1):241~249.

[11] Theng B K G,Churchman G J,Whitton J S,Claridge G G of Intercalation Methods for differentiating halloysite from and Clay Minerals,1984,32(4):249~258.

[12] of Solid State13Cand29Si nuclear Magnetic Resonance spectra of Kaolinite and Clay Minerals,1985,33(3):173~180.

[13] Sugahara Y,Satokawa S,Kuroda K,Kato for the Formation of Interlayer Polyacrylonitrile in and Clay Minerals,1988,36(4):343~348.

[14] Sidheswaran P,Bhat A N,Ganguli of Salts of Fatty Acids into and Clay Minerals,1990,38(1):29~32.

[15] Sugahara Y,Satokawa S,Kuroda K,Kato of a kaolinite-polyacrylamide intercalation and Clay Minerals,1990,38(2):137~143.

[16] Tunney J J,Detellier and characterization of two distinctet hylene glycol derivatives of and Clay Minerals,1994,42(5):552~560.

[17] Tunney J J,Detellier nanocomposite (ethyleneglycol)-kaolinite ,8:927~935.

[18] Frost R L,Tran T H,Kristof spectroscopy of the lattice region of kaolinite and its Spectroscopy,1997,13:175~186.

[19] Frost R L,Kristof of halloysite:a Raman Spectroscopic and Clay Minerals,1997,45(4):551~563.

[20] Frost R L,Tran T H,Kristof structure of a intercalated ordered kaolinite-a Raman microscopy Minerals,1997,32:587~596.

[21] Komori Y,Sugahara kaolinite-NMF-methanol intercalation compound as a versatile intermediate for further intercalation reaction of ,1998,13(4):930~934.

[22] Komori Y,Sugahara Y,Kuroda transformation of a kaolinite-poly(acrylamide)intercalation ,1999,9:3081~3085.

[23] Gardolinski J E,Zamora P P,Wypych and Characterization of akaolinite-1-methyl-2-pyrrolidone Intercalation of Colloid and Interface Science,1999,211:137~141.

[24] Itagaki T,Komori Y,Sugahara Y,Kuroda of a kaolinite-poly(β-alanine)intercalation ,2001,11:3291~3295.

[25] Komori Y,Sugahara intercalation of poly(vinylpyrrolidone)into kaolinite by arefined guest displacement ,1999,11:3~6.

[26] Komori Y,Sugahara Y,Kuroda of alkylamines and water into kaolinite with methanol kaolinite as an Clay Science,1999,15:241~252.

[27] Takenawa R,Komori Y,Hayashi S,Kawamata J,Kuroda of nitroanilines into kaolinite and second harmonic ,2001,13:3741~3746.

[28] Matsumura A,Komori Y,Itagaki T,Sugahara Y,Kuroda of a kaolinite-nylon 6 intercalation ,2001,74:1153~1158.

[29] Szilvia Papp,Anna Szucs,Imre synthesis of monodisperse Pd nanoparticles in layered State Ionics,2001,141~142:169~176.

[30] Patakfalvi R,Oszko A,Dekany and characterization of silver nanoparticle/kaolinite and Surfaces A:,2003,220:45~54.

[31]卢寿慈.粉体加工技术.北京:中国轻工业出版社,1999.

[32]杨雅秀,张乃娴,苏昭冰,等.中国粘土矿物.北京:地质出版社,1994.

[33] Hayashi Study of Dynamics and Evolution of Guest Molecules in Kaolinite/Dimethyl and Clay Minerals,1997,45(5):724~732.

[34] Hayashi Study of Dynamics of dimethyl Sulfoxide Molecules in Kaolinite/Dimethyl Sulfoxide Intercalation ,1995,99:7120~7129.

[35] Hayashi S,Ueda T,Hayamizu K,et study of kaolinite.Ⅰ.29Si,27Al, Phys Chem,1992,96:10992~10928.

[36] Xie X L,Hayashi study of kaolinite in tercalation compound with formamide and its derivatives.Ⅰ.Structure and orientation of guest Phys Chem B,1999,103:5949~5955.

[37] Tunney J J,Detellier nanocomposite (ethyleneglycol)~kaolinite ,1998,8:927~935.

[38] Komori Y,Sugahara kaolinite-NMF-methanol intercalation compound as a versatile intermediate for further intercalation reaction of ,1998,13(4):930~934.

[39] Komori Y,Sugahara Y,Kuroda transformation of a kaolinite-poly(acrylamide)intercalation ,1999,9:3081~3085.

[40] Kelleher B P,Sutton D,O'Dwyer T Effect of Kaolinite Intercalation on the Structural Arrangements of NMethylformamide and of Colloid and Interface Science,2002,255:219~224.

[41]Frost R L,Kristof J,Horrath E,et Interface Sci,1999,412:380.

[42]王林江,吴大清,袁鹏,等.高岭石/甲酰胺插层的1H魔角旋转核磁共振谱.科学通报,2001,46(22):1910~1913.

[43] Tunney J J,Detellier modified of methoxy groups on the interlamellar aluminol surface of ,1996,6(10):1679~1685.

[44]赵顺平,夏华,张生辉.高岭石/有机插层复合材料的研究进展.材料科学与工程学报,2003,21(4):620~624.

[45]古映莹,廖仁春,吴幼纯,等.高岭石-MBT复合材料的制备及其对Pb2+的吸附性能.贵州化工,2001,26(3):23~25.

[46] FrostRL,VanDerGaastSJ,Zbik M,Kloro eJT,Paroz G kaolinite:a hihly ordered kaolinite that is difficult to intercalate-an XRD,SEM and Raman spectroscopic Clay Science,2002,20:177~187.

[47]王林江,吴大清.高岭石有机插层反应的影响因素.化工矿物与加工,2001,(5):29~32.

[48]李伟东,黄建国,许承晃.高岭土-二甲亚砜夹层复合物的形成机理.华侨大学学报(自然科学版),1994,15(1):48~52.

[49]李学强,夏华.高岭土-乙酸钾夹层复合物制备.非金属矿,2002,25(4):22~23.

[50] Tunney J J,Detellier and Characterization of two Distinct Ethylene Glycol Derivatives of and Clay Minerals,1994,42(5),552~560.

[51] Sato of Kaolinite-Amino acid intrecalates derived from hydrated and Clay Minerals,1999,47(6):793~802.

[52] Itagati A,Matsumura A,Kato M,et of material of science letters,2001,20:1483~1484.

[53]沈忠悦,袁明永,叶瑛,杨帅杰.高岭石的夹层化合物及其剥片作用.非金属矿,2000,23(6):12~13.

[54]刘岚,罗远芳,贾德民.聚合物/高岭石嵌入纳米复合材料研究进展.合成橡胶工业,2002,25(3):190~193.

[55] Lawrence G,Ginanelis polymer electrolyte nanocomposites:Melt intercalation of poly(ethyleneoxide)in micatype Mater,1995,7(2):154~156.

[56] LiuYJ,Schindler J L,DeGroot D C,et ,structure,and reactions of poly(ethyleneoxide)/V2O5intercalative Mater,1996,8(2):525~534.

[57] Murray H and new applications for kaolin,smectite,and palygorskite:A general Clay Sci,2000,17(5~6):207~221.

[58] Balbir Singh,Woodlands,Ian Donald Richard Mackinnon,Ellengrove,Both of Patent 6022821,2000.

[59] John Gerard Thompson,Page;Ian Donald Richard Mackinnon,Ellengrove;Sasha Koun,Cook;Neil Gabbitas,Kambah,all of Patent 5858081,1999.

既然你这么急,给你推荐一个人吧 他能帮你的,很快Q9281 06483

参考文献标注的正确格式如下:1、参考文献格式为:[序号]+著作作者+篇名或书名等+参考文献的类型+著作的“出版年”或期刊的“年,卷(期)”等+“:页码(或页码范围)”。2、引用别人的毕业论文的标注格式为(毕业论文类型为学位论文[D]):[序号]主要责任者.文献题名[D].出版地:出版单位.出版年:起止页码(可选)。3、举例如:[11]张筑生.微分半动力系统的不变集[D].北京:北京大学数学系数学研究所,1983:1-7。

环氧树脂研究论文

环氧树脂词典[计]epoxyresin; ethoxylineresin网络EP; EPOXY; EPOXYRESINS研究不同类型及不同含量的环氧树脂对水性聚氨酯的改性。Studyofdifferenttypesanddifferentcontentofwater-bornepolyurethaneresinmodified.本论文研究了光阻剂中分别增加环氧树脂和润湿剂对其性能的影响。Thispaperresearchestheinfluenceofresinandwettingagentforthepropertyofphotoresist.研究了固化剂和环氧树脂化学结构的改变对热固网络相行为和热力学性能的影响。Theeffectsofchemicalstructureofepoxyresinsonthethermal,mechanical,andphasebehaviorwerestudied.

老兄这方法多了去了我是学工艺的研究生论文做的也是水溶性环氧树脂其实环氧树脂的生产本身不复杂但想出产品就难了关键在固化我这边有些资料你可以先看看不过怎么给你呢先举个例子吧合成环氧树脂;溴化环氧树脂的合成二步法,第一步以双酚A和环氧氯丙烷作原材,在催化剂作用下合成低分子量环氧树脂;第二步以一定比例的低分子量环氧树脂和四溴双酚A作原材,加入催化剂经加热反应、扩链制成溴化环氧树脂。这种传统的“单峰”型环氧树脂相对分子质量较单一,使用上有一定困难。目前趋向于使用“双峰”型的环氧树脂,即将相对分子质量高的和低的两种环氧树脂进行混合,其做法是在制成的高相对分子质量树脂中,趁热加入溶剂(丙酮或丁酮),溶解均匀后添加一定比例的低相对分子质量环氧树脂,配成所谓“双峰”型的环氧树脂。环氧树脂的生产1、主要单体和原料制造环氧树脂的单体和原料来自4个方面。(1)能导入环氧基的化合物,主要是环氧氯丙烷、甲基环氧氯丙烷、环氧丙醇。(2)能形成环氧基的化合物,主要是过氧化物、过氧化醋酸、过氧化氢。(3)含有两个或两个以上活泼氢的化合物或预聚物,包括多元醇、多元酚、多元羧酸、多元胺等。(4)含有两个或两个以上不饱和双键的化合物或预聚物,主要是丁二烯、丙烯醛,戊二烯、异戊二烯的预聚物和油脂。其中双酚A和环氧氯丙烷是环氧树脂最主要的单体。

索结构在桥梁工程中的应用及基本防腐处理措施 摘要:研究目的:索结构在桥梁工程中得到了日益广泛的应用,其主要应用桥型范围是悬索桥、斜拉桥、拱桥、系杆拱桥等,索的构造也相应分为缆索、拉索及吊索等多种类型,根据桥梁索结构所处的环境条件,相应对其提出了很高的防腐性能要求。研究结论:索结构由于其优异的材料性能特点,在桥梁等多种工程中得到广泛应用,为保证长期安全使用,对索结构的防腐应采取综合工程措施。目前对构成索结构的材料采取的基本防腐处理措施主要为热浸镀锌和环氧喷涂处理。关键词:桥梁工程;索结构应用;腐蚀特点;防腐措施;热浸镀锌;环氧喷涂随着我国桥梁建造水平的提高,在对桥梁与运输服务的综合效益、与周边环境相协调的景观要求、与结构使用寿命相一致的耐久性设计等方面都提出了更高的要求,悬索、斜拉等桥型结构的应用日趋普遍,对索结构的防腐处理提出了新的要求与课题。1索结构在桥梁等工程中的应用特点索结构在桥梁工程中得到了日益广泛的应用,根据索的应用部位、结构受力及变形特点,主要包括缆索、拉索及吊索等多种类型,索的材料主要由钢丝束、钢绞线、钢丝绳等柔性构件构成,同时部分有类似功能要求的构件也可采用圆钢等(如小跨度吊桥的吊杆等),索结构在桥梁工程中的主要应用桥型结构范围是悬索桥、斜拉桥、拱桥、系杆拱桥等,其中包括悬索桥的主缆索和吊索、斜拉桥的斜拉索、拱桥及系杆拱桥的吊索、水平拉索(明索)等,对于一些桥梁结构的特殊处理(包括施工过程中的临时受力需要)及旧桥加固等有时需采用体外索的处理形式,也属索结构在桥梁工程中的应用范围。另外,也有一些诸如预应力锚索等也在包括桥梁等很多工程中得到日益广泛的应用,特别在水电、高挡墙路基、桥梁以及其它各种加固工程等应用十分广泛,对保证工程安全、有效控制工程投资发挥了重要作用,尽管有些严格从结构特点上判断不属于索结构,但从防腐处理考虑则很多具有类似的技术要求。对不稳定的岩(土)体采用预应力锚索体系进行整体加固已成为目前基本选择和常规做法,工艺上也具备愈加成熟的特点,在道路工程设计施工中也常常面临高路基工程,从满足受力要求、节省工程量、节约占地需求、降低工程投资、改善外观效果等方面考虑,自立互锚(或半自立锚固)混凝土挡土墙也应用较多,山区地形条件更是如此,桥梁工程中也有较多应用工程实例,以切实保证结构安全及设计合理,如在万州长江二桥的锚碇结构设计中,根据工程地质条件,为保证结构安全及有效控制工程量,锚碇前端采用了预应力岩锚体系。目前,从桥梁跨度、桥型构造特点、结构美观、施工条件等各种因素综合考虑,索结构在桥梁工程中的应用前景十分广泛,包括永久工程及临时工程等,尤其是钢索的柔性结构特点对施工可以带来很大便利,而随着材料科学的不断发展,用于索结构的主要材料钢丝、钢绞线、钢丝绳等材料强度不断发展、规格系列越发齐全、防护水平显著提高,同时设计计算分析水平及施工操作水平也迅猛提高,以上各种条件变化为索结构在桥梁工程中日益广泛的应用创造了良好条件。根据腐蚀条件及长期使用经验,对包括桥梁用各类索结构的防腐处理引起工程界愈加高度的重视,成为衡量桥梁工程设计施工质量、保证结构耐久性关键控制因素之一,结合有关防腐处理研究部门及相关生产厂家的共同努力,其防腐处理的工艺及技术水平也有了很大提高,除对索结构的基本材料钢丝、钢绞线等本身外表面必须进行必要的防腐处理,通常采用热镀锌或环氧涂层防护等处理措施,还需对成型后的缆索或索股等采用其它防护处理措施,为切实保证其有效防护使用年限要求、提高整个工程的使用性能条件提供良好保证。对由平行钢丝或钢绞线构成的各种拉索、吊索等构造,其成型规格尺寸通常不是很大,一般外表面采用热挤PE进行防护,应在工厂进行专业化施工,同时PE材料也具备较好的现场修补条件,热挤PE有单层或双层构造,外层有多种色彩选择,可以满足防护及景观效果等多方面要求;悬索桥主缆在成桥后需对其采取综合防护处理,有较高技术要求;对于由钢丝绳构成的索结构通常可采用涂装或油脂防护;此外,对索结构的锚固与其它构造的衔接处理也高度重视,采取了一系列工艺改进措施。2桥梁索结构应用中存在的主要问题由于索结构基本为体外构造,暴露于大气环境之中,处于十分不利的腐蚀环境条件,因此,用于桥梁工程时必须充分考虑其很高的防腐性能要求,不仅包括索的自身防腐处理,对其与相关构造的衔接处理也需予以高度重视,且在很多情况下成防腐薄弱环节及影响结构安全的控制因素,必须采取有效措施切实保证其耐蚀性要求,为确保结构整体安全创造有利条件。在以往国内外桥梁工程设计施工中,尽管针对索的防护重要性有一定认识,通常也都采取了相应的防护处理措施,但由于受当时防护处理技术水平、认识水平及重视程度不够的制约影响,因而由于对索的防护处理不力、影响工程正常使用及需要进行返工处理的工程实例很多,而进行相应事故的处理投资费用很高,且费工费时,对正常交通一般也会造成很大影响,个别严重的还会造成工程报废,所造成的影响及损失更大,从结构特点及以往工程实例特点分析,其中斜拉桥出现的问题更多一些,由此造成了很大的直接及间接损失,拱桥的吊索也很容易发生类似问题。针对悬索桥结构而言,对其主缆的防护历来十分重视,通常除对材料本身进行必要的防护处理外,对成型后的缆索外表面通常还会采取一系列其它防护处理措施(结构封闭及涂装处理),使之缆索处于相对封闭状态,同时主缆的受力特点也决定了其受力条件较为均匀,应力幅度变化相对不大,两端连接锚头基本采用工艺成熟的热铸锚工艺,材料性能匹配较好,通常不会出现腐蚀局部薄弱环节,基于以上特点,悬索桥由于主缆防护处理不利出现重大工程事故的不多,因而就主缆防护存在一定的重视不够或认识不足之处,在较长一段时间就此方面的技术发展进步相对不大,但并不表明其缆索的的防护处理就不存在技术问题。由于大跨度悬索桥对主缆索进行了封闭处理,进行相应检查较为困难,有些问题不能及时发现和暴露出来,但近年来美国、日本等国家对以往修建的大跨度悬索桥主缆索进行的相关检查(拆除外表面涂装及缠丝后)中发现,其主缆钢丝的锈蚀现象较为严重和普遍,主要原因是虽然对钢丝自身及缆索外表面进行了相关的防护处理,但外表面防护处理仍难以完全避免外部水汽浸入,防护涂层的龟裂及索鞍、索夹等防水薄弱环节的存在是主要原因,而水汽一旦浸入则很难顺利排出,由此形成主缆内部湿度很大,严重恶化了其腐蚀环境,造成钢丝锈蚀,因而近年来除该改进缠丝材料构造及工艺、采取进一步的封闭措施外,还考虑采用必要的除湿设备,当然工程投资会有所增加,但考虑长期使用目的仍是必要的。我国进行现代意义的大跨度悬索桥建设时间不长,各桥梁工程对主缆也尚未进行相关检查,有些可能出现的问题也尚未暴露出来,但借鉴国外经验,对主缆防护采取各种加强措施仍是十分必要的。国内外桥梁工程由于对索的防护处理不利造成较大影响及损失的主要工程实例有:德国汉堡的Kohl-brand Estruary桥,由于斜拉索腐蚀严重,建成的第三年就更换了全部的斜拉索,耗资达6 000万美元,是原来斜拉索造价的4倍;委内瑞拉的Maracibo桥,建于1958~1960年间,受当时技术水平制约,其斜拉索没有进行镀锌处理,采用一般的涂漆防护,经过不断的风雨侵蚀,斜拉索锚头处的锚箱罩盖率先损坏,进而使得斜拉索与上锚箱的接口处发生锈蚀,且相当一部分锈蚀十分严重, 1979年发生个别斜拉索断裂,因此决定对全桥斜拉索进行更换,全部进行镀锌处理,并采用了含有铅质的酚醛树脂糊膏进行表面防护,且换索后拉索根数增加一倍;我国广州海印大桥于1988年年底建成, 1995年起陆续发生索股断裂及松断事故,调查表明产生的主要原因是管道压浆工艺未能保证拉索顶部灌注饱满,造成拉索直接与空气接触进而发生锈断,为防止事故的进一步发生,被迫进行全桥换索工程,耗资大量资金及时间; 2001年11月7日,宜宾南门大桥(拱桥)倒塌,事故调查发现拉索已经发生严重生锈;此外,国内外还有许多斜拉桥建成后陆续进行了局部换索或其它处理。美国在1903年建世界上第一座现代化长跨度悬索桥W illiamsburg桥,受当时技术水平和造价制约,没有对钢丝进行镀锌处理而采用一般防护,建成后仅7年就发现钢丝锈蚀断裂, 1922年对缆索补缠镀锌钢丝,但1934年又发现主缆内有水从锚碇处流出,虽陆续采取了多种处理方案,但都没有能够阻止锈蚀发展, 1992年开始被迫进行为期3年的主缆维护工作,耗资7 300万美元。3索结构的腐蚀特点索结构在桥梁工程的应用环境特点基本处于高空之中,主要的腐蚀环境是大气环境腐蚀,在高纬度地区,对悬索桥主缆索通常还要考虑到积雪对缆索的影响。目前构成桥梁索结构的材料基本为高强度钢丝或钢绞线组成,另外钢丝绳在悬索桥吊索中也有较多应用,而钢绞线或钢丝绳也是由不同直径的钢丝在工厂再加工而成,因此高强度钢丝是桥梁工程中索结构的最基本材料,属冷拨碳素钢,包括强度等各项技术指标不断取得提高,目前在不进行镀锌处理等条件下其标准强度多为1 860MPa,而2 000MPa及以上标准是今后的发展方向,且多采用低松弛系列,能够更好地适应工程实际需要,同时,在对钢丝进行镀锌处理过程中,钢丝表面会有一定损伤,因此镀锌钢丝(或钢丝绳)的抗拉强度等有所降低,目前相关标准中通常采用1 600~1 700MPa。由于钢丝的含碳量较高,通常在0. 75% ~0. 85%之间,因此塑性条件相对较差,在没有进行防护的条件下其抗腐蚀性很差,造成钢丝自身腐蚀的主要原因包括应力腐蚀及疲劳腐蚀:应力腐蚀是材料在一定环境中由于外加或本身残余的应力,加之腐蚀的作用,导致金属的早期破裂现象,金属的应力腐蚀破裂主要是对应力腐蚀较为敏感的合金上发生,纯金属很少产生,合金的化学成分、金相组织、热处理对合金的应力腐蚀破裂有很大影响,处于较高应力状态情况下,包括材料内部各种残余应力、组织应力、焊接应力或工作应力在内,且基本为拉应力影响,可以引起应力腐蚀破裂,防止应力腐蚀破裂的主要方法是消除或减少其应力状况,并且通过改变介质的腐蚀性(添加缓蚀剂),选用耐应力腐蚀破裂的金属材料,从而避免相关腐蚀的出现;疲劳腐蚀是钢铁在交变应力作用和腐蚀介质的共同作用下产生的一种腐蚀现象,同时也是在桥梁工程的索结构中发生较为普遍、概率较大的腐蚀现象,减少疲劳腐蚀的主要方法是选择适应相关腐蚀环境的抗腐蚀的材料,同时对材料表面进行镀锌、涂漆等方法减轻疲劳腐蚀的作用。桥梁工程设计施工过程中,针对索结构的应用,从保证其使用安全考虑通常都留有相对较大的安全系数,不同的索结构及材料类型对相应的安全系数有具体要求,尽管如此,各种索结构通常仍是在较高的应力状态下工作的,虽然对于工作疲劳应当没有影响,但是在高应力状态下,腐蚀介质和应力的相互发生作用,如果不进行合理有效的防护处理,其腐蚀是非常容易发生的,腐蚀发生将会大大影响钢丝的受力性能,同时从桥梁工程的构造特点考虑,索结构与其它构造的衔接部位通常也是最易受腐蚀的薄弱的地方,同时悬索桥的主缆索在锚碇范围是通过散索鞍后散开在锚室内进行锚固,而锚碇为地下结构,无论采用何种锚碇构造,锚室内的空气湿度通常都很大,对包括缆索及各种连接构件的防腐都十分不利,目前,在锚碇洞室内通常还需设置排水及除湿设备,以改善洞室内的腐蚀环境条件。1967年12月,美国西弗吉尼亚州和俄亥俄州之间的俄亥俄大桥突然倒塌,事故调查的结果就是因为应力腐蚀和腐蚀疲劳产生的裂缝所致。4钢丝的热浸镀锌处理热浸镀锌工艺在桥梁工程中得到了广泛应用,尤其是在各类索结构的防腐处理中应用更是极为普遍,是目前对钢丝防腐处理的常规工艺方法,对钢丝进行热浸镀锌可以有效防止或减小索结构在制造、运输、架设以及使用过程中的锈蚀,结合其它合理的防腐处理措施,切实保障其耐蚀要求,进而为整个工程的安全长期使用提供良好条件。热浸镀锌工艺已有较长的发展历程,用于钢丝防护主要是随着现代悬索桥的建设而得到发展并逐步扩大其应用范围,美国是世纪上建造现代悬索桥最早的国家,在20世纪30年代就开始在悬索桥上使用主缆及吊索系统用镀锌钢丝,比如世界闻名的金门大桥,而一些没有使用镀锌钢丝的桥梁多因应力腐蚀或腐蚀疲劳而不得不后期进行换索加固。热浸镀锌即是把钢铁浸入温度达440~465℃或者更高温度的熔化锌中进行处理的过程,铁基体与熔锌反应,形成铁-锌合金层覆盖在整个工件表面,镀锌表面有一定的韧性,可耐很大的摩擦及冲击,同时与基体有着良好的结合,钢丝热浸镀锌的基本工艺流程为:除油→水洗→酸洗→水冲洗→熔剂处理→烘干→热镀锌→后处理→收线→成品。热浸镀锌的镀层厚度通常在50~250μm,对于钢丝要求其锌层重量控制在300g/m2以上,同时对附着力按有关要求进行严格的检查控制,镀锌质量保证主要的控制因素包括表面基材处理效果、助熔方式、镀锌时间、引出方式、引出后的处理(锌层均匀性及表面效果)等。5环氧树脂涂层处理5. 1基本材料特点及应用条件环氧树脂是由环氧氯丙烷和双酚基丙烷在碱作用下缩聚而成的高聚物,含有极性高而不易水解的脂肪基和醚键,涂膜的耐化学性好,其结构是刚性的苯环和柔性的烃链交替排列,物理机械性能良好,同时其固化时体积收缩率低,可避免由于内应力的产生影响附着力,由于环氧树脂属热固性树脂,其固化后形成的三维交联的主体结构会导致其很少有分子键滑动,因而使用中需增加其韧性指标,通常可采用胺类固化剂,有机多元胺在常温条件下能与环氧树脂交联固化,所形成的涂膜具有良好的附着力及硬度指标,同时具有耐脂肪烃溶剂性、耐稀酸(碱)性和耐盐水性,防腐性能十分理想。当需要防护处理的金属结构等处于较为特殊的使用环境条件(如埋于地下土层当中等),根据其腐蚀特点及对防腐材料的性能特点要求,可针对配方作进一步改进以满足相关的使用要求。由于煤焦沥青含有环烃结构,如酚或塞酚之类具有很好的抗腐蚀细菌功能,同时具有很好的水下不渗透性,因此,在环氧树脂防腐体系里加入煤焦沥青可使其具有一般环氧树脂所不具有的特性,可以有效提高涂层在土壤中的抗水渗透性及抗细菌腐蚀性能等,其涂料配方由环氧树脂、溶剂、固化剂、填料等组成。根据实际使用环境条件的不同,钢铁等金属材料的腐蚀过程及腐蚀类型较为复杂多样,主要为化学腐蚀及电化学腐蚀等,为保证其使用耐久性及结构安全,必须进行防腐处理,对涂膜的基本质量要求包括涂膜厚度的合理选择、附着力、耐皂化性能、化学耐久性、耐冲击性等。采用环氧树脂涂层防护处理对工艺设备的要求很高,其应用于桥梁等工程的防护处理在美国、日本等国家发展起步较早,国内近年来也发展很快,由于需进行专业化生产的特点,已有部分生产厂家引进了必要的技术和设备,通过消化吸收具备了相应的生产能力。目前在桥梁等工程上应用最多的是环氧喷涂钢绞线(简称SC钢绞线),由于工艺处理复杂,技术要求高,因而其造价相对较高,但由于其优良的防腐性能条件和技术优势使之具备广阔的发展应用前景,主要应用于斜拉索、吊索、桥梁体外索加固、岩(土)体加固及一些地下工程等对防腐性能要求很高的工程,也可用于常规工程,用于桥梁等工程后防腐年限大幅度提高,结构安全更有保障,同时可以有效避免或减少后期损失,如斜拉桥曾较多地发生断索等工程事故需要进行更换处理,其换索施工不仅对正常交通造成很大影响,而且所需费用十分昂贵,各种损失巨大。5. 2SC钢绞线主要技术特点随着高强度预应力钢绞线在包括桥梁等许多工程中日趋广泛的应用,特别是根据各类索结构的构造形式、应用环境特征、腐蚀特点,同时考虑在保证工程整体寿命及结构安全方面的重要作用,对其防腐效果及耐久性提出了越来越高的要求,防腐处理技术的相应发展是其关键,为从根本上有效解决钢绞线的防腐耐久性问题,环氧树脂涂层预应力钢绞线(英文名称 Strand,故简称SC钢绞线)技术得到了很快的发展及应用,从涂装操作特点考虑属粉末涂装法,常用的粉末涂装主要有流动浸渍法和静电喷涂法, SC钢绞线系采用高压静电喷涂法将环氧树脂粉末喷射于钢绞线各根钢丝上,然后加热熔融、固化、冷却,从而在组成钢绞线的各根钢丝外表面形成一层致密的环氧涂膜,为实现这一目标,喷涂前需将钢绞线各根钢丝暂时打散,喷涂后再将其复扭成型。以前对钢绞线的防腐处理通常采用镀锌钢绞线、外表面整体进行树脂填充及涂装环氧层、普通钢绞线外侧设热挤PE防护层等处理方法,而SC钢绞线则是对组成钢绞线的各根钢丝外表面都进行环氧涂膜处理,要求环氧涂膜层有良好的致密性及厚度均匀,因此称之为全涂装钢绞线。SC钢绞线系与其它防腐处理类型的钢绞线的主要区别是由于所用的防腐材料与工艺上的不同,从而造成其防腐效果及钢绞线机械性能方面的较大差异,一般钢丝或钢绞线经镀锌处理后,由于镀锌过程对钢丝表面不可避免地产生一定损伤,因而机械性能均有所下降,体现在设计中的影响主要是强度指标需要降低,另外,镀锌钢绞线表面锌层被刮伤后,刮伤处会产生阴极电化学反应,从而加快腐蚀的发生,其它防腐处理方式也存在一定的薄弱之处,包括防腐效果、物理特性变化、锚具要求、与混凝土的附着效果、对施工操作的影响等方面, SC钢绞线主要技术特点如下:对构成钢绞线的各根钢丝都进行了充分的表面材质调整,各根钢丝一边旋转一边进行涂装处理,与其它涂装法比较,其膜层厚度较薄(平均120 ~180μm)且均匀,同时致密性好,耐磨性强,可靠性高,具有良好的耐离子渗透、耐化学品、耐电压、耐紫外线辐射、耐疲劳性能等基本特点,综合防腐效果十分理想,应用前景广阔。与涂装前的普通钢绞线相比, SC钢绞线的强度及柔软性没有降低,同时,由于涂装处理时的温度不高,不会出现镀锌处理造成的强度损失较大的特点,其强度指标与不涂装钢绞线基本没有区别,松弛率也可保证,十分有利于设计施工控制。普通钢绞线即使出厂不久,局部仍易产生锈蚀或浮锈,而在存放时间较长、保护措施不利条件下或由于施工养护等方面的原因,极易发生较为严重的腐蚀现象,甚至导致报废,而SC钢绞线在制造时需在打散情况下对各钢丝进行表面防腐处理,成型后不会出现防腐蚀薄弱部位,不会发生锈蚀现象,合理的操作可充分保证其涂膜质量。涂装处理后的SC钢绞线较原基材外径变化很小,目前所用的常规锚具、夹片仍可适用,无需另行采用专用锚具,有利于方便施工、合理控制投资。由于膜层厚度相对较薄, SC钢绞线的涂装材料用量较少,有条件作到价格更为合理,现场施工通常不会另行增加费用,目前主要在于出厂价格相对较高,其主要原因在于对设备、技术及操作工艺要求很高等方面因素,同时国内能够生产的厂家也有限,随着普及率的不断提高及各方面条件的不断改善,其价格也会相应降低。6结论(1)索结构由于其优异的材料性能特点,在桥梁等多种工程中得到广泛应用,同时,随着设计施工技术及材料工艺不断发展,其应用范围日益扩大,在工程建设中发挥着极为重要的作用,特别在大型工程建设中具有难以替代的作用。(2)为保证制造质量及精度要求,降低现场工作量及难度,进行工厂化生产制造是主要应用发展方向,应根据工程特点进行合理选择,包括合理的锚固连接构造。(3)根据材料自身及使用环境特点,为保证工程长期安全使用,避免或减少各种损失,对索结构的防腐必须高度重视,采取相应工程处理措施。(4)对索结构的防腐应采取综合工程措施,随着技术进步及认识程度的不断提高,在此方面已取得很大发展。除对索体材料自身进行必要的镀锌、环氧喷涂等措施外,对成型后的索体结构进行热挤PE及其它防护处理措施,可取得良好防腐效果。参考文献:[1]中华人民共和国交通部.公路悬索桥设计规范(报批稿)[S].[2]JTJ 027—96,公路斜拉桥设计规范(试行)[S].[3]GB/T 21073—2007,环氧涂层七丝预应力钢绞线[S].[4]唐清华,郑史雄.斜拉桥与悬索桥的防腐[ J].四川建筑, 2005(1): 125-126.

环氧树脂文献论文怎么写

关于参考文献的正确格式

关于参考文献的正确格式,参考文献指的是在文章或者著作中参考到的文献,有一定的格式要求,而参考文献更加是学术论文的重要组成部分,下面分享关于参考文献的正确格式相关内容,一起来看看吧。

参考文献是根据GB/TB7714-2005《文后参考文献著录规则》,适用于“著者和编辑编录的'文后参考文献,而不能作为图书馆员、文献目录编辑者以及索引编辑者使用的文献编著录规则”。参考文献的书写样式不可随意更改,要按照标准仔细地进行排版。

参考文献的编写顺序是按照论文中引用文献的顺序进行编排,采用中括号的数字连续编号,

依次书写作者、文献名、杂志或书名、卷号或期刊号、出版时间。

参考文献的书写首先要明确的一点是,参考文献的全角和半角问题。其实很简单,英文标点+半角;中文标点+全角。可以自己试一下全角和半角的差别在哪,其实就是字符问题,全角字符占两个字节,半角是占一个。另外我们要了解一下关于参考文献都有哪些类型。一共是分为16种类型,如下图所示。

其中对于专著、论文集中的析出文献,其文献类型标识建议采用单字母“A”;对于其他未说明的文献类型,建议采用单字母“Z”。

我们可以具体的学习一下参考文献格式

[序号] 期刊作者。题名[J]。刊名。出版年,卷(期): 起止页码。

[序号] 专著作者。书名[M]。版次(第一版可略)。出版地:出版社,出版年∶起止页码。

[序号] 论文集作者。题名〔C〕。编者。论文集名。出版地∶出版社,出版年∶起止页码。

[序号] 学位论文作者。题名〔D〕。保存地点:保存单位,年份。

[序号] 专利所有者。专利文献题名〔P〕。国别:专利号。发布日期。

[序号] 标准编号,标准名称〔S〕。出版地:出版者,出版年。

[序号] 报纸作者。题名〔N〕。报纸名,出版日期(版次)。

[序号] 报告作者。题名〔R〕。报告地:报告会主办单位,年份。

[序号] 电子文献作者。题名〔电子文献及载体类型标识〕。文献出处,日期。

参考文献以正文中引用的先后次序排列。

以下分别是著作、学位论文和期刊的例子:

[1] 王兴业,唐羽章。复合材料力学性能[M]。长沙:国防科技大学出版社,1988:366–382。

[2] 李玉彬。环氧树脂电子束固化机制与应用基础研究[D]。北京:北京航空航天大学,2005。

[3] 武德珍,宋勇志,金日光。PVC/弹性体/纳米CaCO3 复合体系的加工和组成对力学性能的影响[J]。复合材料学报,2004,21(1):119–124。

[1]曾清华,王栋知,王淀佐.聚合物-粘土矿物纳米复合材料.化工进展,1998,17(2):13~16.

[2]王立新,张楷亮,任丽,等.聚合物/层状硅酸盐纳米复合材料的研究进展.复合材料学报,2001,18(3):5~9.

[3] Giannalis E layered silicate Mater,1996,8(1):29~35.

[4] Alexandre M,Dubois silicate nanocomposites:Preparation,properties and uses of a new class of Sci Eng,2000,Report,28(1~2):1~63.

[5]徐卫兵.聚合物/蒙脱土插层纳米复合材料的研究.中国科学技术大学,博士论文,2001.

[6]张琴.熔体插层聚丙烯纳米复合材料:形成过程、剥离机理、形态与性能.四川大学,博士论文,2002.

[7]袁昌来,董发勤.粘土/有机纳米复合粉体材料.中国非金属矿工业导刊,2003,(4):14~17.

[8]吕建坤.环氧树脂及高性能热塑性树脂与粘土插层复合的研究.浙江大学,博士论文,2001.

[9]须藤俊男,著.严寿鹤,刘万,贾克实,译.粘土矿物学.北京:地质出版社,1981.

[10] OlejnikSL,,1968,72(1):241~249.

[11] Theng B K G,Churchman G J,Whitton J S,Claridge G G of Intercalation Methods for differentiating halloysite from and Clay Minerals,1984,32(4):249~258.

[12] of Solid State13Cand29Si nuclear Magnetic Resonance spectra of Kaolinite and Clay Minerals,1985,33(3):173~180.

[13] Sugahara Y,Satokawa S,Kuroda K,Kato for the Formation of Interlayer Polyacrylonitrile in and Clay Minerals,1988,36(4):343~348.

[14] Sidheswaran P,Bhat A N,Ganguli of Salts of Fatty Acids into and Clay Minerals,1990,38(1):29~32.

[15] Sugahara Y,Satokawa S,Kuroda K,Kato of a kaolinite-polyacrylamide intercalation and Clay Minerals,1990,38(2):137~143.

[16] Tunney J J,Detellier and characterization of two distinctet hylene glycol derivatives of and Clay Minerals,1994,42(5):552~560.

[17] Tunney J J,Detellier nanocomposite (ethyleneglycol)-kaolinite ,8:927~935.

[18] Frost R L,Tran T H,Kristof spectroscopy of the lattice region of kaolinite and its Spectroscopy,1997,13:175~186.

[19] Frost R L,Kristof of halloysite:a Raman Spectroscopic and Clay Minerals,1997,45(4):551~563.

[20] Frost R L,Tran T H,Kristof structure of a intercalated ordered kaolinite-a Raman microscopy Minerals,1997,32:587~596.

[21] Komori Y,Sugahara kaolinite-NMF-methanol intercalation compound as a versatile intermediate for further intercalation reaction of ,1998,13(4):930~934.

[22] Komori Y,Sugahara Y,Kuroda transformation of a kaolinite-poly(acrylamide)intercalation ,1999,9:3081~3085.

[23] Gardolinski J E,Zamora P P,Wypych and Characterization of akaolinite-1-methyl-2-pyrrolidone Intercalation of Colloid and Interface Science,1999,211:137~141.

[24] Itagaki T,Komori Y,Sugahara Y,Kuroda of a kaolinite-poly(β-alanine)intercalation ,2001,11:3291~3295.

[25] Komori Y,Sugahara intercalation of poly(vinylpyrrolidone)into kaolinite by arefined guest displacement ,1999,11:3~6.

[26] Komori Y,Sugahara Y,Kuroda of alkylamines and water into kaolinite with methanol kaolinite as an Clay Science,1999,15:241~252.

[27] Takenawa R,Komori Y,Hayashi S,Kawamata J,Kuroda of nitroanilines into kaolinite and second harmonic ,2001,13:3741~3746.

[28] Matsumura A,Komori Y,Itagaki T,Sugahara Y,Kuroda of a kaolinite-nylon 6 intercalation ,2001,74:1153~1158.

[29] Szilvia Papp,Anna Szucs,Imre synthesis of monodisperse Pd nanoparticles in layered State Ionics,2001,141~142:169~176.

[30] Patakfalvi R,Oszko A,Dekany and characterization of silver nanoparticle/kaolinite and Surfaces A:,2003,220:45~54.

[31]卢寿慈.粉体加工技术.北京:中国轻工业出版社,1999.

[32]杨雅秀,张乃娴,苏昭冰,等.中国粘土矿物.北京:地质出版社,1994.

[33] Hayashi Study of Dynamics and Evolution of Guest Molecules in Kaolinite/Dimethyl and Clay Minerals,1997,45(5):724~732.

[34] Hayashi Study of Dynamics of dimethyl Sulfoxide Molecules in Kaolinite/Dimethyl Sulfoxide Intercalation ,1995,99:7120~7129.

[35] Hayashi S,Ueda T,Hayamizu K,et study of kaolinite.Ⅰ.29Si,27Al, Phys Chem,1992,96:10992~10928.

[36] Xie X L,Hayashi study of kaolinite in tercalation compound with formamide and its derivatives.Ⅰ.Structure and orientation of guest Phys Chem B,1999,103:5949~5955.

[37] Tunney J J,Detellier nanocomposite (ethyleneglycol)~kaolinite ,1998,8:927~935.

[38] Komori Y,Sugahara kaolinite-NMF-methanol intercalation compound as a versatile intermediate for further intercalation reaction of ,1998,13(4):930~934.

[39] Komori Y,Sugahara Y,Kuroda transformation of a kaolinite-poly(acrylamide)intercalation ,1999,9:3081~3085.

[40] Kelleher B P,Sutton D,O'Dwyer T Effect of Kaolinite Intercalation on the Structural Arrangements of NMethylformamide and of Colloid and Interface Science,2002,255:219~224.

[41]Frost R L,Kristof J,Horrath E,et Interface Sci,1999,412:380.

[42]王林江,吴大清,袁鹏,等.高岭石/甲酰胺插层的1H魔角旋转核磁共振谱.科学通报,2001,46(22):1910~1913.

[43] Tunney J J,Detellier modified of methoxy groups on the interlamellar aluminol surface of ,1996,6(10):1679~1685.

[44]赵顺平,夏华,张生辉.高岭石/有机插层复合材料的研究进展.材料科学与工程学报,2003,21(4):620~624.

[45]古映莹,廖仁春,吴幼纯,等.高岭石-MBT复合材料的制备及其对Pb2+的吸附性能.贵州化工,2001,26(3):23~25.

[46] FrostRL,VanDerGaastSJ,Zbik M,Kloro eJT,Paroz G kaolinite:a hihly ordered kaolinite that is difficult to intercalate-an XRD,SEM and Raman spectroscopic Clay Science,2002,20:177~187.

[47]王林江,吴大清.高岭石有机插层反应的影响因素.化工矿物与加工,2001,(5):29~32.

[48]李伟东,黄建国,许承晃.高岭土-二甲亚砜夹层复合物的形成机理.华侨大学学报(自然科学版),1994,15(1):48~52.

[49]李学强,夏华.高岭土-乙酸钾夹层复合物制备.非金属矿,2002,25(4):22~23.

[50] Tunney J J,Detellier and Characterization of two Distinct Ethylene Glycol Derivatives of and Clay Minerals,1994,42(5),552~560.

[51] Sato of Kaolinite-Amino acid intrecalates derived from hydrated and Clay Minerals,1999,47(6):793~802.

[52] Itagati A,Matsumura A,Kato M,et of material of science letters,2001,20:1483~1484.

[53]沈忠悦,袁明永,叶瑛,杨帅杰.高岭石的夹层化合物及其剥片作用.非金属矿,2000,23(6):12~13.

[54]刘岚,罗远芳,贾德民.聚合物/高岭石嵌入纳米复合材料研究进展.合成橡胶工业,2002,25(3):190~193.

[55] Lawrence G,Ginanelis polymer electrolyte nanocomposites:Melt intercalation of poly(ethyleneoxide)in micatype Mater,1995,7(2):154~156.

[56] LiuYJ,Schindler J L,DeGroot D C,et ,structure,and reactions of poly(ethyleneoxide)/V2O5intercalative Mater,1996,8(2):525~534.

[57] Murray H and new applications for kaolin,smectite,and palygorskite:A general Clay Sci,2000,17(5~6):207~221.

[58] Balbir Singh,Woodlands,Ian Donald Richard Mackinnon,Ellengrove,Both of Patent 6022821,2000.

[59] John Gerard Thompson,Page;Ian Donald Richard Mackinnon,Ellengrove;Sasha Koun,Cook;Neil Gabbitas,Kambah,all of Patent 5858081,1999.

参考文献标注的正确格式如下:1、参考文献格式为:[序号]+著作作者+篇名或书名等+参考文献的类型+著作的“出版年”或期刊的“年,卷(期)”等+“:页码(或页码范围)”。2、引用别人的毕业论文的标注格式为(毕业论文类型为学位论文[D]):[序号]主要责任者.文献题名[D].出版地:出版单位.出版年:起止页码(可选)。3、举例如:[11]张筑生.微分半动力系统的不变集[D].北京:北京大学数学系数学研究所,1983:1-7。

环氧树脂涂料毕业论文

环氧树脂市场分析 环氧树脂是指分子中含有两个或两个以上环氧基团的有机高分子化合物,其分子结构是以分子链中含有活泼的环氧基团为特征。这使它们可与多种类型的固化剂发生交联反应而形成不溶、不熔的具有三向网状结构的高聚物,并由此特性成为先进复合材料中应用最广泛的树脂体系,可适用于多种成型工艺配制成不同配方,可调节粘度范围大;以适应于不同的生产工艺。近年来橡胶弹性体增韧、树脂合金化改性以及环氧树脂增韧改性新技术等增韧技术的日益成熟,环氧树脂得到了更好更广泛的应用。目前环氧树脂统治着高性能复合材料的市场,因此对环氧树脂市场的研究有着广泛的意义。根据最新统计,我国2005年全年环氧树脂产量为44万吨、进口量为25万吨、出口量为6万吨、消费总量为63万吨,产量继续保持较大增长,进口量在总消费量中的比较进一步下降,消费量已趋于稳定合理。纵观近年来国际环氧树脂市场,1993年,世界环氧树脂生产能力为130万吨,1996年递增到万吨,1999年为万吨,2002年为186万吨,2005年为201万吨,预计2010年可达到250万吨左右。尤其是欧美、日本环氧树脂公司兼并及投资建设较为活跃。国际大鳄经过一系列重组整合,全球环氧树脂行业三甲已轮流坐庄,由20世纪末的Shell、DOW、Ciba-Geigy,变成Hexion、DOW、南亚。市场新三强生产能力分别达到38、36、30万吨/年!并且Hexion、DOW、南亚三甲目前在中国都设有生产基地,中国在数量上已成为全球环氧树脂最大生产国和重要消费国,但从消费结构以及企业个体角度来看,作为经济组织国内企业还有待做大做强。一、产业历史我国环氧树脂产业起步于1958年,但是计划经济的束缚、加上文革的影响,使我国的发展步子明显慢于国外。上世纪80年代情况有所好转,年增长率达到了7%左右,但从总量上看每年计划安排的环氧树脂用量始终在万吨以下。90年代初,我国经济发展逐渐与国际市场、国际经济接轨,环氧树脂行业出现了众多外资企业、中外合资企业,加上大量乡镇企业、私营企业的进入,我国环氧树脂生产企业如雨后春笋,一下子由原来的几十家扩大到近200家,出现了多种经济成份相互竞争、共同发展的局面。但当时的单套装置规模均在5000吨/年以下,与国外相比差距甚远,工艺技术上同样具有很大距离。经过上世纪90年代的大力发展,我国环氧树脂行业进入了又一个发展期。1998年环氧树脂消费量达到12万吨。技术引进在此过程中发挥了重要作用,使我国环氧树脂生产从技术水平到生产规模都有了一个很大的提高,他们生产的环氧树脂已经能够与进口货抗衡。在这一发展期间,我国环氧树脂行业出现了聚集发展的格局,龙头企业充分发挥了对整个行业的牵幅射作用,形成了我国环氧树脂的核心产业带;安徽黄山地区异军突起,他们独辟蹊径发展粉末涂料专用的固体树脂,凭借专业化的优势,构成了环氧树脂和环氧树脂粉末涂料联合生产基地;华南地区成为我国环氧树脂应用的一个高地,该地区凭借毗邻港的地域优势在大力发展电子工业的同时,带动了环氧树脂在电子领域的应用,是电子领域成为我国环氧树脂主要消费方向之一的重要推动力量。进入21世纪,电子电气、交通运输、石油化工、建筑工程等与环氧树脂相关的行业发展尤其迅猛,经济建设对环氧树脂的需求量急剧增加。在这一“发展”的大背景,我国环氧树脂迎来了黄金发展阶段。生产和消费的平均增长达到30%左右,远远高于同期全球3%的增长水平,成为全球环氧树脂增长的主要拉动力量。主要的发展特点表现为以下几个方面。二、产业特点一是外资带动。美国以及台资等纷纷在大陆建厂生产,这些外资工厂具有相当生产规模,几乎占了目前中国大陆环氧树脂生产能力的一半。同时采用的工艺技术都是国际最先进的,使我国环氧树脂产业不仅生产能力大幅提升,而且技术素质有了飞跃,特别是从国外到国内的技术“领先”刺激,促使国内原有的环氧树脂企业奋发创新,从而实现了良好的整体带动战略。二是行业内部通过结构调整,产业链与区域经济整体发展、同步提升,企业素质有了质的提高。规模化成为当前内资环氧树脂企业的最大特点,目前企业数量已从高峰时的200多家调整到100家左右,企业生产规模则有了极大提高,技术水平同样快速提高,而且其发展不再是孤立的而是具有带动或呼应整个产业链同步提升的能力,产生的聚集效应值得充分肯定,已经把我国环氧树脂产业水平推进到了一个新的高度。三是技术创新能力大为提高,技术水平进入世界较先进行列。当今环氧树脂产业领域的竞争,除了人才、管理、资本等因素外更重要的是技术的比较,目前中国环氧树脂业随着资本结构的多元化,同时也成为中外各种先进工艺技术的比拼舞台,在这一决定竞争成败的竞技场上,中国本土的企业在依靠自有知识产权的同时不断推进技术进步,在竞争中逐步发展壮大。四是整个行业呈现分工较为明确的格局。生产能力在2万吨/年左右的大型企业,无论内资、外资均以大宗的基础树脂为主,在这些领域没有规模就没有优势,小企业难以有所作为;内资企业的一些传统大厂也是新产品研发的中心,不断培育新的品种,不断形成新的大宗品种;而在粉末涂料重镇黄山,单一优势明显,产品大量出口;特种、专用产品和技术全面开花,一些小型企业“内精外王”,为业界瞩目。五是环氧树脂应用领域迅速打开。应用的力度和深度是产品生产规模的基础,材料制造行业为应用行业提供先进的材料、满足其生产出更好产品的要求,而应用行业又反过来要求材料制造行业提供更加先进的材料、促进其不断发展。其中许多以前依赖进口的产品,实现了国内部分或全部替代。六是信息化建设进展神速、与行业的现代化发展相辅相成。信息化促进产业化、产业化带动现代化已成该行业的真实写照,该行业先进企业大都有着信息化手段的有力支撑。通过ERP系统等全面的信息化建设,在流程上实现效率、在应用中实现了降耗的目标。三、应用分析目前我国环氧树脂应用主要领域有:电子信息,其中彩电、音响、电话机产量跃居世界第一,目前正在聚焦信息家电、移动计算、数字电视、无线局域网、汽车电子等领域的新兴市场,环氧树脂在其中的应用主要形式是敷铜板、塑封料、浇注料、包封料、贴片胶、模具胶等;交通设备,交通运输设备制造业中大量使用环氧电泳涂料、重防腐涂料、模具胶、工具胶等各类粘接剂、复合材料等;能源工业,环氧树脂在该行业中的应用主要是作为绝缘材料,应用形式主要有层压板、浇注料、塑封料、绝缘漆、粘接剂;汽车制造,高速发展的汽车产业将大力促使环氧树脂生产,目前每辆汽车平均需耗环氧树脂5公斤,随着我国汽车产业的腾飞,内需拉动下环氧树脂在该领域大有可为;建筑、水利行业,环氧树脂在该领域中的使用形式主要包括地坪、防腐涂料、其它建筑涂料、复合材料混凝土、环氧沥青、建筑补强和堵漏材料、大坝防腐材料等;石油石化,环氧树脂在石油石化的应用以防腐为核心,应用形式主要有海上石油平台、油罐、输油管道防腐材料。环氧树脂消费与经济发展存在着高度正相关联系,经济越发达、生活水平越高则环氧树脂消费量越高,目前发达国家人均消费环氧树脂水平达到1公斤/年左右。而我国人均消费环氧树脂2000年仅公斤,而2005年已达到公斤,增长了2倍,由于我国人口基数的庞大因此在今后几年的产业震荡中行业规模的扩张还是非常可观的。我国环氧树脂需求量的急速增加,引起国际业界高度关注。环氧树脂跨国公司几乎全部前来或正在前来我国投资兴建大型生产厂,国内企业也纷纷新建扩建环氧树脂装置。据公开披露的信息,目前拟新增环氧树脂生产能力达到55万吨/吨左右,加上现有生产能力40万吨/吨,预计2010年前后我国环氧树脂生产能力将达到130万吨/吨,接近全球的一半,成为世界环氧树脂大国。我国环氧树脂事业目前正进入一个新的关键发展期。四、市场建议但我国环氧树脂产业如何实现大国梦,并进而成为强国,还有很多课题要解决。首先要走专和特的道路。我国环氧树脂市场大,国产环氧树脂市场占有率一直持续上升并逐渐占据优势,同时开始走向国际市场,成绩可喜;但是进一步扩大优势就要从环氧树脂市场面大量广、用户产品更新换代快、工艺技术进步迅速这个特点出发,根据应用行业发展特点大力发展特种或专用环氧树脂,学习黄山的产业结构,中小企业力争单一优势,以专以特作市场。其次积极瞄准国外高档产品进行攻关,早日实现替代。我国短缺的、需要依赖进口的环氧树脂产品,价格都相当高甚至高得离谱,这些产品开发难度大、成本高,有些目前需求不大,但决不能因此放弃发展,有条件的厂应积极组织开发。一来可以为下游行业压缩过高成本,二来可以为自身赢得未来的市场。再次,要开发绿色产品,实现清洁生产。环氧树脂废水的治理是环氧树脂行业的一大难题,这主要是由于环氧废水中含有大量老化树脂和较高浓度的碱盐,采用传统的废水治理方法难以奏效。尤其电气、电子、建材方面对环保产品的要求呼声很高,目前大量使用非环保的溴化环氧树脂的覆铜板、阻燃电器浇注料已受到一定的限制,发展非卤化阻燃环氧树脂要立即行动。环保水溶性环氧树脂、无溶剂型环氧树脂、高固体份环氧树脂目前产量还很低、品种也不多,要大力推动发展。最后,必须加快发展原料、辅料的配套发展。目前我国双酚A、环氧氯丙烷、固化剂的生产远远跟不上环氧光固化涂料用环氧树脂的研究。五、上游行业分析环氧树脂生产中固化剂及环氧氯丙烷是最重要的生产要素。我国环氧树脂固化剂业的问题主要表现在以下几方面:一是产需矛盾突出,高档及许多专用固化剂需进口;二是品种少、系列化程度低,难以适应千变万化的环氧树脂配方之需;三是环氧树脂与固化剂配套发展水平极低,缺乏产业链的配套优势;四是固化剂发展缺乏统筹规划;五是研发状况不尽人意。我国环氧氯丙烷的发展,始终与环氧树脂的发展密切地联系在一起,至今为止我国环氧氯丙烷的主要用途还是用于生产环氧树脂。目前国内环氧氯丙烷消费结构为:环氧树脂行业占85%,合成甘油占7%,氯醇橡胶占2%,其他占6%。环氧氯丙烷在精细化工中的应用已开始起步,虽然使用量不能同环氧树脂同日而语,但其发展前景广阔,值得肯定。目前国内环氧氯丙烷生产企业在原材料及公用工程消耗、产品质量、生产成本等方面与国外先进水平比有较大差距。唯有大力改进生产技术,努力降低成本,提高产品质量,才能在提升行业国际竞争力的基础上更好的为国内的环氧树脂行业提供助力。按照环氧树脂消费与国民经济发展的关系曲线,以及与涂料、胶粘剂、复合材料等应用材料,电子、电工、建筑、汽车等应用领域的关联度,从多个方面进行测算,到2010年我国环氧树脂生产能力将达到130万吨,占全球总产能的一半,环氧树脂总消费量为150万吨左右,继去年成为全球最大生产国后,将于“十一五”中期成为全球最大消费国。六、市场预期2006年初,相对于原料行情的尴尬境地,环氧树脂市场达到了近10年来的高价位。但无论是双酚A价格疲软还是环氧氯丙烷供不应求,对于下游环氧树脂厂家来说均有一定影响,目前这种上下游之间的脱节必然是暂时现象,经过一段时间的调整后,在需求拉动下,环氧树脂及原料行业一定会回归共同繁荣的局面。中国环氧树脂产业“十一五”规划于日前正式开始编制,规划将特别贯彻环境友好、资源节约、自主创新原则。结合产业环境以及各行业需求,我们可以得出以下数据:1、预计2010年我国汽车产能将达到1200万辆,以目前辆汽车平均需耗环氧树脂5公斤计算,2010年我国汽车工业涂料消费环氧树脂约为6万吨,加上保有汽车的修补漆所需环氧树脂的量预计在9万吨左右。2、船舶工业、海洋工业所需环氧树脂涂料前景诱人。21世纪是“海洋的世纪”,是海洋开发的新时代。从现在到2010年,将是世界造船业大发展的时期,世界各类船只的需求量将增加50%。我国已脐身世界航运和造船业大国之列,码头设施、海上建筑、钻井平台、输油管道、海水养殖设施等行业也需要大量的环氧涂料(防腐、防海洋生物污染)。今后5年对环氧锌粉车间底漆、环氧铁红车间底漆、环氧沥清防锈漆、油舱压载水舱环氧涂料、环氧树脂软水舱漆、海洋工程及海上建筑用环氧防腐涂料的需求量很大,专家预测,2010年我国船舶工业、海洋工业需15万吨环氧树脂左右。3、集装箱工业:我国集装箱工业发展迅猛,已成为世界第一大集装箱生产国。预计2010年,集装箱用涂料需7万吨左右,要消耗环氧树脂5万吨左右。4、食品罐工业:随着生活水平的提高,食品罐头、食品贮存容器制造业持续高速发展,罐头涂料需要越来越多的环氧树脂。印度艾迪泰雅·比尔拉化学(泰国)有限公司总裁,最近在北京第3届酚酮及衍生物大会上称,今后3年中国将是亚洲环氧树脂市场中惟一保持赤字的国家。并进而表示2008年中国大陆环氧树脂生产能力42万吨/年、需求万吨/年,短缺万吨/年。中国环氧树脂行业协会()专家针对这一消息评论说,的论断指明了明环氧树脂全球过剩、中国短缺的趋势,这是正确的;但其所援引的数据是几年前的,按惯例几年间数据一般不会有大变化,但事实恰恰相反。变化如此巨大造成分析失误,可见我国环氧树脂业发展之快。 在2月24日于北京举行的第3届酚/酮及衍生物大会上,Agarwal称今后3年中国大陆环氧树脂需求增长率估计为,这明显高于日本、中国台湾地区和韩国,后3者的需求增长率估计分别为、和。至2008年中国将能生产近万吨/年环氧树脂,而其需求将为万吨/年,这导致短缺万吨/年。事实上近5年来中国大陆环氧树脂产需增长平均速度在20%以上,2005年中国大陆环氧树脂生产量32万吨、消费量62万吨。中国环氧树脂行业协会()专家说,这远“超过”先生2008年的预计数。 先生还表示,2008年中国台湾地区的环氧树脂产能将达到万吨/年,而其需求仅为万吨/年,导致过剩万吨/年。中国大陆的高增长率难以缓解亚洲过剩的供应,2005年亚洲环氧树脂总需求为万吨/年,而总产量为120万吨/年,导致过剩万吨/年。这种供需形势预计将不会得到改善,因为2008年亚洲环氧树脂总产量估计为万吨,而总需求为万吨,过剩45万吨。这些数字也大相径庭,实际上亚洲2005年环氧树脂需求为:中国大陆62万吨左右、台湾地区20万吨左右、日本18万吨左右,加上其它国家和地区根据不是万吨的概念。据中国环氧树脂行业协会()专家不完全统计,目前全球环氧树脂生产能力至少已达到万吨/年,中国占总能力的、其中大陆占总能力的。中国大陆环氧树脂生产能力从1999年5万吨/年、占世界总量的,发展到2005年32万吨/年、占世界总量的是个为全球了不起的成绩。中国已经成为全球环氧树脂主要生产国、重要消费国。 进入2006年,中国大陆环氧树脂生产能力已达到45万吨/年,同时在建生产能力达10万吨/年左右。从全球范围看环氧树脂产能已经过剩,但在中国大陆尚处于短缺,但短缺的是特种产品而非常规产品。中国环氧树脂行业协会()专家强调指出,业界投资时必须充分考虑这一现状,切忌低水平重复建设、一哄而上。为此要坚持以下原则:一是要改变以6101为主的产品思路,双酚A型环氧体系产品是世界环氧行业的主流,但应以618环氧树脂为基础树脂,长期以来我国环氧树脂的生产都是以6101或E-44为主要产品,而基础树脂618或E-51生产量极少,这是我国过去采用手糊法生产玻璃钢而造成的事实,现在形势已经发生变化故为此不能抱住6101这个产品不放,而应该扩大思路生产无溶剂、低粘度、或改性的新产品;二是发展目前紧缺的环氧树脂产品,目前我国环氧树脂年用量已达30万吨左右,但其中二分之一仍然依靠进口,国产环氧树脂以双酚A型为主,而且固化剂、活性稀释剂、助剂等配套不齐不成系统,150多家生产环氧树脂厂大多在双酚A型环氧树脂方面抡跑道,而一些前景好的跑道都让给外商,例如耐热系列、阻燃系列、水溶系列、高纯度系列的产品国内生产厂家很少,其实酚醛环氧、邻甲酚甲醛环氧、双酚F环氧、脂环族环氧、含磷环氧及光固化环氧、水性环氧都是目前看好的产品;三是开发有利环保的新产品,各行各业现在都十分注重环境保护,市面上出现了不少“绿色”产品,为此对使用的原料也提出了这方面的要求,如覆铜板、阻燃电器浇注料大量使用溴化环氧树脂,而溴化物因破坏大气层臭氧结构目前已受到一定的限制,生产非卤化阻燃环氧树脂必须尽早计议;四是走合作联合之路,开拓环氧系统产品,我国环氧树脂生产和科研起步不晚但发展速度慢了点,。在我国也有一些很有实力的环氧树脂生产和研究单位以及大专院校,曾经开发出许多当时比较先进的生产工艺和产品,但不知什么原因没有推广开来,现在很多单位已经采用鼓励科研开发新机制,相信发展新技术、新产品的速度会比以前快。 改革开放以来的事实证明了我国环氧树脂企业界有信心、有能力来发展好我国环氧树脂事业。当中国市场刚开放时国外环氧树脂大量涌进中国市场,一度国产环氧树脂曾被压得透不过气,国外环氧树脂在国内市场的占有率曾高达65%左右。时至今日虽然进口的环氧树脂为30万吨左右,但国产环氧树脂产量也达到30万吨左右,国产环氧树脂与国外环氧树脂在国内市场的占有率上已平分秋色。而且在环氧树脂的出口方面,虽然总量很小,但蓝星新材料无锡树脂厂等企业已实现批量出口,去年以来该厂出口增长巨大,这也说明我国环氧树脂也是有能力进入国际市场。 最近,由于下游行业开工情况不理想,加上原料双酚A价格低迷,国内环氧树脂行情在外盘走高的背景下反而趋疲,10天左右时间降幅300~500元/吨。目前液体树脂主流价格华东地区23000~24000、华南地区24000-24500、华北地区23000~24000、东北地区23500~24500元/吨,固体树脂主流价格华东地区18800~19000、华南地区19000~19200元/吨。 环氧树脂2大原料双酚A和环氧氯丙烷,前期价格一弱一挺,环氧氯丙烷的居高不下使环氧树脂承受成本之痛,双酚A的持续低迷让环氧树脂售价欲提还休;随着环氧氯丙烷行情的下调,环氧树脂价格迅速挫低。据中国环氧树脂行业协会()市场分析人士介绍,目前主导产品液体环氧树脂618(E-51)价格23500~24000元/吨,6101(E-44)价格23000~23500元/吨,固体环氧树脂604(E-12)价格为18700~19000元/吨。环氧氯丙烷行情的调整从固体产品疲、液体产品平,转变为液体产品疲、固体产品平,上周5(3月10日)华东、华南、华北、东北各地全面下挫。 国内环氧树脂市场当前的另一个特点是外盘高、内贸疲。虽然也感受到了出货困难的压力,但环氧树脂进口市场依然坚挺,其中美国瀚森(Hexion,原壳牌)828价格27000~27500元/吨,台湾南亚128(E-51)价格24800~25000元/吨,陶氏331(E-51)价格在26500元/吨。中国环氧树脂行业协会()市场人士介绍说,陶氏化学计划3月中旬上调环氧树脂美金报价,前期美国瀚森外盘价格上涨了100美元/吨。 从原料供应角度看目前成本难以下降。其中环氧氯丙烷行情虽有下调但空间有限,可以说是上涨下跌均受限:近期国内环氧氯丙烷整体成交量未有明显起色,由于前期下游环氧树脂行情持续疲软、需求冷清而造成无形压力,一方面外盘价格高挺、市场货源一般、贸易商走货意向不强,另一方面国内厂家价格持稳、走货顺畅,从而导致市场价格进入僵持局面,目前下游环氧树脂略有起色是为利好,但上周末约有2000吨环氧氯丙烷进口货到港,鉴于此前环氧氯丙烷价格一直高位徘徊,因此其行情上涨动力不足,近期走势波动空间有限。而双酚A在贸易商推价努力下开始起色,主流市场华东地区价格提升至11800~11900元/吨,且成交情况有所好转,中国环氧树脂行业协会()市场人士分析认为,双酚A内外盘倒挂已维持较长时间,加上近期亚太地区酚酮和双酚A装置逐步进入检修,外盘下行可能性甚小,从而将对内贸市场形成回升支撑,同时由于下游环氧树脂市场疲态减缓,双酚A行情有所重返12000元/吨平台.品 种 成交价格(元∕吨) 升跌率(%) 评 析环氧树脂 E-51 24500 / 受生产原材料等影响,价格稍有上升环氧树脂 E-54 24800 / 同上环氧树脂 E-44 24000 / 同上环氧树脂 E-20 23500 / 同上环氧树脂 E-12 24000 / 同上酚醛环氧树脂 F-51 33000~35000 / 固 化 剂 1044 16000 / 无毒、性价比高固 化 剂 2544 22000 / 无毒、性价比高固 化 剂 T-31 14500~17500 / 因产品质量及原材料不同,真假T-31之间差异较大固 化 剂 650 20000 / 固 化 剂 651 23000 / 固 化 剂 H300 22000 / 固 化 剂 593 28000~34000 / 部分厂家用591冒充593低价进入市场固 化 剂 113 19000 / 因主要原材料DDM主要产地都在华东,所以华南价格较高固 化 剂 (地坪面涂用) 42000 / 固 化 剂 (水晶胶用) 43000 / 固 化 剂 (打磨胶用) 62000 / 甲基四氢苯酐 910 16500 / 促 进 剂 DMP30 22000 / 促 进 剂 二甲基苄胺 38000 / 稀 释 剂 660A 30000 / 稀 释 剂 661 16000 / 稀 释 剂 6630 30000 / 前期,因环氧氯丙烷价格持续走高,导致环氧树脂价位逐步提升、双酚A价位较为稳定、对环氧的价位起一定的高位打压,所以环氧树脂的升浮步子不是很大。 前期,由于受到南亚等大装备将要投产,冲击市场,对业内人士心理上造成阴影,较多厂商压缩库存观望,但形势突变现象并未出现。主要原因是环氧生产量扩容,超过了前道ECH的供应量,ECH的价格提升,限制了环氧树脂的成本,使其已经没有回降的空间,再加上国内环氧树脂的出口大增,国内用量也逐步进入旺季,所以预测三,四,五月份环氧树脂价格仍呈上升趋势.

工学论文开题报告

工学是理工科内的一大分支,工学的课程带有很强的可操作性和专业性,下面就是我为您收集整理的工学论文开题报告的相关文章,希望可以帮到您,如果你觉得不错的话可以分享给更多小伙伴哦!

毕业设计题目:年产4200吨环氧氯丙烷车间氯丙烯合成工段工艺设计

指导教师 :

院 系: 科亚学院

专业班级 : 科化工0401班

学 号:

姓 名:

日 期: XX年 3月 7日

1、环氧氯丙烷的物理、化学性质

环氧氯丙烷(ec)英文名:3—chloro—1,2—epoxypropane;epichlorohydrin。 分子式:c3h5clo ,分子量:92。52 , 熔点—25。6℃,沸点117。9℃,相对密度(水=1):1。18(20℃),相对密度(空气=1): 3。29 ,饱和蒸汽压 (kpa):1。8(20℃) ,自燃点415 ℃,折射率(nd20)1。438。 微溶于水,可混溶于醇、醚、4氯化碳、苯。无色油状液体,有氯仿样刺激气味。用于制环氧树脂,也是1种含氧物质的稳定剂和化学中间体 易燃其蒸气与空气形成爆炸性混合物,遇明火、高温能引起分解爆炸和燃烧。若遇高热可发生剧烈分解,引起容器破裂或爆炸事故。

2、环氧氯丙烷的生产原料及主要产品

环氧氯丙烷是1种重要的有机化工原料和精细化工产品,用途10分广泛。以它为原料制得的环氧树脂具有粘结性强,耐化学介质腐蚀、收缩率低、化学稳定性好、抗冲击强度高以及介电性能优异等特点,在涂料、胶粘剂、增强材料、浇铸材料和电子层压制品等行业具有广泛的应用。此外,环氧氯丙烷还可用于合成甘油、玻璃钢、电绝缘品、表面活性剂、医药、农药、涂料、胶料、离子交换树脂、增塑剂、(缩)水甘油衍生物、氯醇橡胶等多种产品,用作纤维素酯、树脂、纤维素醚的溶剂,用于生产化学稳定剂、化工染料和水处理剂等。

1原料:丙烯

丙烯的化学结构式:ch2=chch2oh 。物理性质::无色透明液体,熔点:—129,沸点:97。1,闪点:28,密度(20):0。854,折光率:1。4135。。

用途::丙烯醇是医药,农药和香料的中间体。主要的衍生物及其用途为:用于合成环氧氯丙烷、甘油、1,4—丁2醇以及烯丙基酮,生产增塑剂和工程塑料等重要有机合成原料。此外,其碳酸盐可以做光学树脂、安全玻璃和显示屏,其醚可以做聚合物的增黏剂等。

2主要产品:环氧树脂

目前我国的环氧氯丙烷主要用于生产环氧树脂,其消费比例为环氧树脂占85%,合成甘油占7%,氯醇橡胶占2%,其他如溶剂、稳定剂、表面活性剂、阻燃剂、油田化学品、水处理剂等占6%

3、环氧氯丙烷工艺生产方法及选择

目前,工业上环氧氯丙烷的生产方法主要有丙烯高温氯化法和乙酸丙烯酯法两种。

丙烯高温氯化法是工业上生产环氧氯丙烷的经典方法,由美国shell公司于1948年首次开发成功并应用于工业化生产。目前,世界上90%以上的环氧氯丙烷采用此法进行生产。其工艺过程主要包括丙烯高温氯化制氯丙烯,氯丙烯与次氯酸化合成2氯丙醇,2氯丙醇皂化合成环氧氯丙烷3个反应单元。

4、 工艺流程叙述

(1)丙烯高温氯化法:

(1)丙烯高温氯化制氯丙烯

丙烯与氯气经干燥、预热后以摩尔比4~5:1混合进入高温氯化反应器,短时间(约3 s)内进行反应,生成氯丙烯和氯化氢气体。精制后得氯丙烯产品,同时副产d—d混剂(1,2—2氯丙烷和1,3—2氯丙烯),氯化氢气体经水吸收后得到工业盐酸。

ch2=chch2 + cl2 →ch2=chch2cl +hcl

(2)氯丙烯次氯酸化合成2氯丙醇

氯气在水中生成次氯酸(或采用介质叔丁醇和氯气在naoh溶液中反应生成叔丁基次氯酸盐,该盐水解生成次氯酸,叔丁醇循环使用),次氯酸与氯丙烯反应生成2氯丙醇(过程中2氯丙醇浓度1般控制在4%左右)。

2ch2=chch2cl +2hocl→ clch2chclch2oh + clch2chohch2cl

2,3—2氯丙醇,70%) (1,3—2氯丙醇,30%)

(3)2氯丙醇皂化合成环氧氯丙烷

2氯丙醇水溶液与ca(oh)2或naoh反应生成环氧氯丙烷。

(3)2氯丙醇皂化合成环氧氯丙烷

2氯丙醇水溶液与ca(oh)2或naoh反应生成环氧氯丙烷。

clch2chclch2oh + clch2chohch2cl + 1/2 ca(oh)2→

clch2chclch2oh + clch2chohch2cl + 1/2 ca(oh)2→

丙烯高温氯化法的特点是生产过程灵活,工艺成熟,操作稳定,除了生产环氧氯丙烷外,还可生产甘油、氯丙烯等重要的有机合成中间体,副产d—d混剂(1,3—2氯丙烯和1,2—2氯丙烷)也是合成农药的重要中间体。缺点是原料氯气引起的设备腐蚀严重,对丙烯纯度和反应器的材质要求高,能耗大,氯耗量高,副产物多,产品收率低。生产过程产生的含氯化钙和有机氯化物污水量大,处理费用高,清焦周期短。

(2)乙酸丙烯酯法

前苏联科学院与日本昭和电工均开发了利用乙酸丙烯酯为原料生产环氧氯丙烷的生产工艺。前苏联是采用先氯化后水解工艺,昭和电工则采用先水解后氯化工艺。其工艺过程主要包括合成乙酸丙烯酯,乙酸丙烯酯水解制烯丙醇,合成2氯丙醇以及2氯丙醇皂化生成环氧氯丙烷4个反应单元。

(1)在钯和助催化剂作用下,丙烯与氧在温度160~180 ℃、压力0。5~1。0 mpa,乙酸存在下反应生成乙酸丙烯酯。

ch2=chch2+ 1/2o2 + ch3cooh→ ch2=chch2ococh3 +h2o

(2)在温度60~80 ℃、压力0。1~1。0 mpa下,以强酸性阳离子交换树脂为催化剂,乙酸丙烯酯经水解反应生成烯丙醇。

ch2=chch2ococh3 +h2o→ ch2=chch2oh +ch3cooh

(3)在温度0~10 ℃,压力0。1~0。3 mpa条件下,烯丙醇与氯通过加成反应生成2氯丙醇。

ch2=chch2oh + cl2→ ch2clchclch2oh

(4)2氯丙醇与氢氧化钙发生皂化反应生成环氧氯丙烷。

ch2clchclch2oh+ 1/2ca(oh)2→ ch2— chch2cl + 1/2cacl2 +h2o

与传统的丙烯高温氯化法相比较,乙酸丙烯酯法具有以下优点:(1)避免了高温氯化反应,反应条件温和,易于控制,不结焦、操作稳定,丙烯、氢氧化钙和氯气的用量大大减少,反应副产物和含氯化钙废水的排放量也大大减少。(2)开发了丙烯醇的氯化加成反应系统,成功地将氧引入环氧化物中,首次实现了由氧氧化代替氯氧化的技术,减少了醚化副反应,提高了系统的收率。(3)工艺过程无副产盐酸产生。(4)可以较容易获得目前技术还不能得到的高纯度烯丙醇。主要缺点是工艺流程长,催化剂寿命短,投资费用相对较高。

5、安全环保措施

(1)燃烧爆炸危险性:

危险特性:其蒸气与空气形成爆炸性混合物,遇明火、高温能引起分解爆炸和燃烧。若遇高热可发生剧烈分解,引起容器破裂或爆炸事故。易燃性(红色):3 反应活性(黄色):2

灭火方法:泡沫、2氧化碳、干粉、砂土。消防器具(包括scba)不能提供足够有效的防护。若不小心接触,立即撤离现场,隔离器具,对人员彻底清污。高温下能发生自反应,阻塞安全阀,导致罐体爆炸。蒸气能扩散到远处,遇点火源着火,并引起回燃。封闭区域内的蒸气遇火能爆炸。如果该物质或被污染的流体进入水路,通知有潜在水体污染的下游用户。

(2)包装与储运

储存于阴凉、通风仓间内。远离火种、热源。仓温不宜超过 30℃。防止阳光直射。包装要求密封,不可与空气接触。应与氧化剂、酸类、碱类分开存放。储存间内的照明、通风等设施应采用防爆型。罐储时要有防火防爆技术措施。禁止使用易产生火花的机械设备和工具。搬运时要轻装轻卸,防止包装及容器损坏。 erg指南:131 erg指南分类:易燃液体—有毒的

(3)毒性危害

接触限值:中国mac:1mg/m3[皮] 前苏联mac:1mg/m3 美国tlv—twa:acgih 2ppm,7。6mg/m3 美国tlv—stel:未制订标准。

蒸气对呼吸道有强烈刺激性。反复和长时间吸入能引起肺、肝和肾损害。高浓度吸入致中枢神经系统抑制可致死。蒸气对眼有强烈刺激性,液体可致眼灼伤。皮肤直接接触液体可致灼伤。口服引起肝、肾损害,可致死。慢性中毒:长期少量吸入可出现神经衰弱综合征和周围神经病变。 iarc评价:2a组,可疑人类致癌物;动物证据充分 ntp:可疑人类致癌物 idlh:75ppm,潜在致癌物嗅阈:0。934ppm osha:表z—1空气污染物 niosh标准文件:niosh 76—206 健康危害(蓝色):

(4)防护措施

密闭操作,全面排风。空气中浓度超标时,戴面具式呼吸器。紧急事态抢救或撤离时,建议佩戴自给式呼吸器。戴化学安全防护眼镜。穿紧袖工作服,长筒胶鞋。戴防化学品手套。工作后,淋浴更衣。保持良好的卫生习惯。防止皮肤和粘膜的损害。

(5)泄漏处置:

疏散泄漏污染区人员至安全区,禁止无关人员进入污染区,切断火源。应急处理人员戴自给式呼吸器,穿防护服。不要直接接触泄漏物,在确保安全情况下堵漏。喷水雾可减少蒸发。用砂土或其它不燃性吸附剂混合吸收,然后收集运至废物处理场所。如大量泄漏,利用围堤收容,然后收集、转移、回收或无害处理后废弃。

6、当前生产中存在的问题及建议

(1) 积极发展环氧氯丙烷下游产品,带动环氧氯丙烷的生产与发展今后几年,世界主要国家和地区的环氧氯丙烷下游各消费领域依然会发展较快,各地区的环氧氯丙烷的生产主要是自用,估计会有少量出口。今后几年我国的汽车工业,住宅建设,电子工业等领域将有1个高速发展的阶段,随着我国西部大开发,将有大规模的基础设施投入建设,因此,今后几年,我国的环氧氯丙烷的下游产品,如:环氧树脂、合成甘油等的市场需求量将会很大,美国、西欧及日本主要

一、课题的依据和意义:

1、依据:时尚是有艺术品位的生活,时知务也,尚在品质!时尚一族的生活是艺术化的,所追求的生活随着时间的变化也会不断的提高的,但不变的是一直在追求高品质的生活。为了满足这一人群的需要,时尚产品也在不断的更新,向更高的品质发展。

概念车可以理解为未来汽车,汽车设计师利用概念车向人们展示新颖、独特、超前的构思,反映着人类对先进汽车的梦想与追求。概念车往往只是处在创意、试验阶段,也许永不投产。与大批量生产的'商品车不同,每一辆概念车都可以摆脱生产制造工艺的束缚,尽情地夸张地展示自己的独特魅力。时尚一族这个人群在未来的社会中,随着生活水平和精神追求的提高将会愈来愈庞大。为了满足这一人群的旅游出行进行交通设计是又必要性的。

概念车的最大功能就是发现与引导这些变化的方向。肯·奥库亚马说过世界在变,汽车在变,在今后的10年到20年内会变得很剧烈。交通工具也要随着这种变化不管更新、改变。未来概念车的设计可以推动我们的交通发展,解决很多我们生活中现有的一些问题,使我们未来的出行、旅游更加方便。

天马行空、随心所欲在设计中不再是不切实际,对于概念车的设计天马行空的创意和随心所欲的想象已经成为一种珍贵财富。舞动的概念、迸发的理念塑造了经典概念车的楷模。概念车体现了汽车设计师的灵感和风

格,概念车甚至不受量产车的条件限制,可任意采用未经充分验证的新工艺、新材料和新设计,充分发挥想象力和创造力。

针对时尚一族的概念车设计需要打造出时尚、艺术、高品位的产品,因为品质与美是要艺术的手法去塑造,艺术提高品位,艺术是脱俗的,出类拔萃的;时尚是高尚的,时尚离不开艺术,艺术可以创造时尚。

2、意义:时尚赋予人们不同的内涵和神韵,带给人的是一种愉悦的心情和优雅、纯粹与不凡感受,能体现不凡的生活品味,精致、展露个性。人类对时尚的追求,在精神上的或是物质上的追求都促进了人类生活。概念车是汽车中内容最丰富、最深刻、最前卫、最能代表世界汽车科技发展和设计水平的汽车。概念车是时代的最新汽车科技成果,代表着未来汽车的发展方向,因此它展示的作用和意义很大,能够给人以启发并促进相互借鉴学习。因为概念车有超前的构思,体现了独特的创意,并应用了最新科技成果,所以它的鉴赏价值极高。概念车也是艺术性最强、最具吸引力的汽车。

针对时尚一族未来型概念车的设计,将会改变未来生活的方式,改变时尚潮流的走向,引领未来生活中交通方式的发展方向。

二、国内外研究概况及发展趋势:

1、国内概况:中国概念车设计的起步较晚,1999年在上海国际车展,中国以吉祥动物麒麟为名的第一款概念车吸引了世人的目光,这是第一辆由中国人设计,在中国制造并面向中国市场的经济型汽车。稚嫩的车型,俗气的颜色,平平的参数是人不得不感慨中国汽车设计的落后。但是他最

大的意义就是唤起了中国概念车的设计。

2003年的“鲲鹏”是中国感念车的一个亮点。终于有了对外形和颜色的思考,但是不得不说造型依然很丑。虽然不足还有很多,但是“鲲鹏”对所在微型车细分领域的全新探索,演练了低成本构造,泛亚以每两年一辆概念车的速度成长,这使得中国汽车厂商在目睹这一个又一个的中国概念车之后开始醒悟,中国需要概念车的设计。

2、国外概况:国外概念车的设计尤其是欧美国家的概念车设计较为成熟,不论技术上、造型上、色彩搭配上、还是使用方式等创新都处在世界的前端。

发展趋势:

趋势一:传统车型分类被打破交叉车型成趋势。如今越来越多的车型打出了交叉车型的概念。如大众概念车ConceptA亮点:运动轿车与SUV的结合;斯柯达概念车Yeti亮点:SUV、轿车、旅行车等集于一身。趋势二:传统能源殆尽新能源汽车代替。能源问题是目前汽车技术的最大课题,其也直接影响到节能、环保等一系列技术。如雪佛兰Sequel氢燃料电池车亮点:最先进的氢燃料电池车型;福特Reflex柴电混合动力概念车亮点:利用太阳能的柴油电力混合动力。

趋势三:打破汽车结构的未来智能行走机器。设计师们不满足于这些传统汽车概念,他们需要打破常规的、面向未来的智能行走机器。如丰田全新未来概念车Fine—T亮点:智能交通下的未来车。

趋势四:个性化的突破设计。外形设计的突破性,是一款概念车的基

本要求。如雷诺Zoe概念车亮点:不对称的车门设计;福特iosis概念车亮点:奠定福特未来风格的雕塑感设计

三、研究内容及基本思路:

1、研究内容:

造型上,整车为流线型设计,考虑空气力学,要有效地减小风阻,车体设计时尚前卫,动感活力,遵循简约主义的同时又要凸显个性。整车将采用仿生学进行形态设计,将会运用一些中国传统元素穿插在设计之中。把中国风贯彻在在设计中,要体现原创性。

结构上,整车为两厢设计,发动机中置,车门为双开门上旋打开方式。车型初步定为跑车类汽车。

材料上,材料主要以环保型材料取代钢铁和塑料,可能采用碳纤维,不过更多的将会使用采用铝或者钢这样的常见材料。

色彩上,定位人群为时尚一族,因此选用较亮丽的彩色,多种配色方案。

人机上,考虑人与机器的关系,遵循人机工程学。

2、基本思路:

打造一款时尚的未来型概念跑车,形态上拥有张力,在年轻的90后上寻找灵感,根据时尚的90后们的喜好来进行设计。收集一些相关的资料,研究90后时尚人群中的习惯和遇到的问题,这些研究在设计中得以体现。结构设计会在现有的一些汽车结构基础上进行改进,尽量保持楔形车型。

四、进度安排:

1、前期阶段(—):

1)—制定工作计划,指导教师资格审定;

2)10月13日下午召开毕业设计(论文)动员大会(全院);

3)—指导老师制定毕业设计题目,学生进行选题;指导老师与学生双向选择,题目

上要求做到一人一题。下达具体任务书;

2、中期阶段(—寒假前)

1)—开题报告,毕业设计调研分析及材料整理;前期发散草图;

2)—课题研究报告,毕业设计前期方案、方案初选及深入;

3)—方案定稿,深入草图,毕业论文前三章初稿。

4)2011年12月18日学院毕业设计(论文)中期检查;

5)—寒假放假毕业设计建模、渲染、版面,寒假放假前集中检查;

今天,人们越来越重视环境保护和健康。因此,环氧地面施工地板的环氧涂料正在获得消费者对环保涂料的支持。地板环氧涂料有哪些好处?让小编介绍一下这种地板环氧涂料的性能和优点。

众所周知,在环氧地面施工中的地板环氧树脂涂料具有很强的耐化学性。环氧树脂不含酯且其中所含的脂族羟基与碱反应,因此环氧树脂具耐碱性和耐油性。环氧树脂涂料通常用于耐腐蚀底漆,油槽和其他。因而环氧涂料通常耐酸。环氧底漆(WD-079)

2.环氧地面施工主要成型材料为特种环氧树脂和聚酰胺固化剂,添加溶剂和表面活性剂,形成环氧底漆涂料。环氧地坪项目中使用的底漆用于增加基层附着力和封闭层的基层,并且坚固,无裂缝并可从水泥地面上剥离。

3,在环氧地面施工中地板环氧树脂不仅可以作为后面,还可以防止环氧树脂地板的泄漏,增加数量和成本,防止地下水,灰尘,油渍等渗透造成环氧树脂层。 它广泛应用于制药厂,电子厂,防尘,防霉,抗菌等各种工厂。

1,附着力极佳

由于环氧地面施工中底部的环氧树脂涂料含有大量的羟基和醚键,因此它可以吸附到基材上。另外,由于环氧涂料在固化时的体积收缩率仅为约2%,因此与其它极性基材的粘合性优异。

2,优异的耐化学性

在环氧地面施工中因为含有烃和醚键的环氧树脂,酯键通常在碱性油性醇酸树脂底漆中很高,只有环氧漆层的耐化学性能。因此,当皂化时,阴极部分的腐蚀被破坏。可广泛用作耐腐蚀底漆,具有优异的环氧涂料附着力和耐碱性。

相关百科

热门百科

首页
发表服务