首页

> 期刊论文知识库

首页 期刊论文知识库 问题

数据挖掘论文参考文献排版

发布时间:

数据挖掘论文参考文献排版

论文后面的参考文献的格式怎么写

论文后面的参考文献的格式怎么写,参考文献是论文后面必不可少的一部分,有很多同学对参考文献的写法有很多疑惑,下面大家就跟随我一起来看看论文后面的参考文献的格式怎么写的相关知识吧,希望对大家能有所帮助。

格式为作品的“出版年份”或期刊的“年、卷(期)”+“:页码(或页数范围),”对于多个引用文件,每一引用文件的页码或页码范围(有些出版物也将表示引用文件位置的信息作为页码)应分别列在每个引用文件的序号中,放在方括号后(仅列出编号,前面和后面的单词和字符,如“p”或“page”没有添加)和标记。

所列参考文献的要求如下:

1、所列参考文献应为便于读者考证的官方出版物。

2、所列参考文献应当标明编号、书名、作者和出版信息。

扩展资料:

论文格式的.注意事项:

1、打印要求

所有毕业论文均采用A4纸打印,上下边距,左边距3cm,右边距。行距为行距的倍数(设定值为);字符间距为默认值(缩放100%,间距:标准),封面为教务处统一规定的封面。

2、字体要求

纸上使用的字体要求是宋体。

3、字号

第一级序、题为小三黑体;第二级序、题为小四黑体;第三级及以下序、题为小四宋体,正文与第二级相同。

4、页眉及页码

毕业论文每页为页眉,以宋体为中心,宋体5号,印有“XX大学X X X理科学生毕业论文(设计)”,页码应按阿拉伯数字(小字体五字)在页脚内连续排列,中间书写。

参考文献是根据GB/TB7714-2005《文后参考文献著录规则》,适用于“著者和编辑编录的文后参考文献,而不能作为图书馆员、文献目录编辑者以及索引编辑者使用的文献编著录规则”。参考文献的书写样式不可随意更改,要按照标准仔细地进行排版。

参考文献的编写顺序是按照论文中引用文献的顺序进行编排,采用中括号的数字连续编号,

依次书写作者、文献名、杂志或书名、卷号或期刊号、出版时间。

参考文献的书写首先要明确的一点是,参考文献的全角和半角问题。其实很简单,英文标点+半角;中文标点+全角。可以自己试一下全角和半角的差别在哪,其实就是字符问题,全角字符占两个字节,半角是占一个。另外我们要了解一下关于参考文献都有哪些类型。一共是分为16种类型,如下图所示。

其中对于专著、论文集中的析出文献,其文献类型标识建议采用单字母“A”;对于其他未说明的文献类型,建议采用单字母“Z”。

我们可以具体的学习一下参考文献格式

[序号] 期刊作者.题名[J].刊名.出版年,卷(期): 起止页码.

[序号] 专著作者.书名[M].版次(第一版可略).出版地:出版社,出版年∶起止页码.

[序号] 论文集作者.题名〔C〕.编者.论文集名.出版地∶出版社,出版年∶起止页码.

[序号] 学位论文作者.题名〔D〕.保存地点:保存单位,年份.

[序号] 专利所有者.专利文献题名〔P〕.国别:专利号.发布日期.

[序号] 标准编号,标准名称〔S〕.出版地:出版者,出版年.

[序号] 报纸作者.题名〔N〕.报纸名,出版日期(版次).

[序号] 报告作者.题名〔R〕.报告地:报告会主办单位,年份.

[序号] 电子文献作者.题名〔电子文献及载体类型标识〕.文献出处,日期.

相信这些大家都很清楚怎么用,参考文献的书写也是不可忽略的一部分。其中有几个小点也许一直被同学所忽略,我这里要提醒一下大家。第一,文献中的英文名字不可进行缩写,一定要写正确的人名称呼。第二中文和英文参考文献书写并不相同。中文的作者一般是“姓+名”;而英文参考文献是采用“姓,名.”的方式。第三,如果引用的中文文献作者有多个,一般是采用前三位作者署名,第三位作者后面添加等字;英文文献则采用,“姓,名,and名姓”的方式进行书写,除第一位以外,都按照正常顺序写。第四,特别需要注意的是注意无意间的空格,尤其是在书写英文的参考文献当中。第五,参考文献要按照论文引用文献顺序依次书写,这样论文的整体比较严谨,也不会混乱。

参考文献按照其在正文中出现的先后以阿拉伯数字连续编码,序号置于方括号内。一种文献被反复引用者,在正文中用同一序号标示。一般来说,引用一次的文献的页码(或页码范围)在文后参考文献中列出。

格式为著作的“出版年”或期刊的“年,卷(期)”等+“:页码(或页码范围).”。多次引用的文献,每处的页码或页码范围(有的刊物也将能指示引用文献位置的信息视为页码)分别列于每处参考文献的序号标注处,置于方括号后(仅列数字,不加“p”或“页”等前后文字、字符。

页码范围中间的连线为半字线)并作上标。作为正文出现的参考文献序号后需加页码或页码范围的,该页码或页码范围也要作上标。作者和编辑需要仔细核对顺序编码制下的参考文献序号,做到序号与其所指示的文献同文后参考文献列表一致。另外,参考文献页码或页码范围也要准确无误。

扩展资料:

根据GB 3469--83规定,以英文大写字母方式标识以下各种参考文献类型标识:专著[M],沦文集[C],报纸文章[N],期刊文章[J],学位论文[D],报告[R],标准[S],专利[P]。

对于非纸张型载体的电子文献,当被引用为参考文献时需在参考文献类型标识中同时标明其载体类型。建议采用以下标识:磁带(magnetic),磁盘(disk),光盘[CD],联机网络(online)。

参考资料来源:百度百科-参考文献

关于参考文献的正确格式

关于参考文献的正确格式,参考文献指的是在文章或者著作中参考到的文献,有一定的格式要求,而参考文献更加是学术论文的重要组成部分,下面分享关于参考文献的正确格式相关内容,一起来看看吧。

参考文献是根据GB/TB7714-2005《文后参考文献著录规则》,适用于“著者和编辑编录的'文后参考文献,而不能作为图书馆员、文献目录编辑者以及索引编辑者使用的文献编著录规则”。参考文献的书写样式不可随意更改,要按照标准仔细地进行排版。

参考文献的编写顺序是按照论文中引用文献的顺序进行编排,采用中括号的数字连续编号,

依次书写作者、文献名、杂志或书名、卷号或期刊号、出版时间。

参考文献的书写首先要明确的一点是,参考文献的全角和半角问题。其实很简单,英文标点+半角;中文标点+全角。可以自己试一下全角和半角的差别在哪,其实就是字符问题,全角字符占两个字节,半角是占一个。另外我们要了解一下关于参考文献都有哪些类型。一共是分为16种类型,如下图所示。

其中对于专著、论文集中的析出文献,其文献类型标识建议采用单字母“A”;对于其他未说明的文献类型,建议采用单字母“Z”。

我们可以具体的学习一下参考文献格式

[序号] 期刊作者。题名[J]。刊名。出版年,卷(期): 起止页码。

[序号] 专著作者。书名[M]。版次(第一版可略)。出版地:出版社,出版年∶起止页码。

[序号] 论文集作者。题名〔C〕。编者。论文集名。出版地∶出版社,出版年∶起止页码。

[序号] 学位论文作者。题名〔D〕。保存地点:保存单位,年份。

[序号] 专利所有者。专利文献题名〔P〕。国别:专利号。发布日期。

[序号] 标准编号,标准名称〔S〕。出版地:出版者,出版年。

[序号] 报纸作者。题名〔N〕。报纸名,出版日期(版次)。

[序号] 报告作者。题名〔R〕。报告地:报告会主办单位,年份。

[序号] 电子文献作者。题名〔电子文献及载体类型标识〕。文献出处,日期。

参考文献以正文中引用的先后次序排列。

以下分别是著作、学位论文和期刊的例子:

[1] 王兴业,唐羽章。复合材料力学性能[M]。长沙:国防科技大学出版社,1988:366–382。

[2] 李玉彬。环氧树脂电子束固化机制与应用基础研究[D]。北京:北京航空航天大学,2005。

[3] 武德珍,宋勇志,金日光。PVC/弹性体/纳米CaCO3 复合体系的加工和组成对力学性能的影响[J]。复合材料学报,2004,21(1):119–124。

论文参考文献主要有以下两种排序方式:

对于第 1 种方式,文献段落样式推荐使用“尾注”;对于第 2 种方式,文献段落样式推荐使用“列表段落”;

百度经验:参考文献列表如何快速自动排序

数据挖掘论文外文参考文献

参考文献[1] 李嶶,李宛州.基于数据仓库技术的进销存系统的设计与实现.2001(10):93-94[2]Jiawei Han.数据挖掘概念与技术.机械工业出版社2001,8 [3].数据仓库.机械工业出版社2000,5[4]林字等编著.数据仓库原理与实践.北京:人民邮电出版社,2003[5]张春阳,周继恩,刘贵全,蔡庆生.基于数据仓库的决策支持系统的构建,计算机工程.2002(4):249-252[6]陈德军,盛翊智,陈绵云.基于数据仓库的OLAP在DSS中的应用研究.2003(1):30-31[7]朱明,数据挖掘.合肥:中国科技大学出版社2002,5[8] 陈京民等.数据仓库与数据挖掘技术[M].北京:电子工业出版社,2002.[9] 毛国君等.数据挖掘原理与算法[M].北京:清华大学出版社,2005.[10] 陈文伟等.数据挖掘技术[M].北京:北京工业大学出版社,2002.

计算机论文常用参考文献

在平平淡淡的日常中,大家都有写论文的经历,对论文很是熟悉吧,论文一般由题名、作者、摘要、关键词、正文、参考文献和附录等部分组成。写论文的注意事项有许多,你确定会写吗?下面是我整理的计算机论文常用参考文献,希望能够帮助到大家。

[1]刘韬,楼兴华.SQL Server2000 数据库系统开发实例导航. 北京:人民邮电出版社,2004.

[2]丁宝康,董健全. 数据库实验教程. 北京:清华大学出版社, 2003:125-170.

[3]孙强. 基于 的专题网站的研究与设计. 东北师范大学,2006.

[4]Michele Leroux your Apps and WCF services with Windows CardSpace. MSDN Magazine,April 2007.

[5]肖建编. 编程实例与技巧集粹. 北京:北京希望电子出版社,2003.

[6]巴兹拉等. 安全性高级编程. 北京:清华大学出版社,2003.

[7]Jesse C#中文版. 电子工业出版社,2006.

[8]米切尔的等编著. 权威指南. 北京:中国电力出版社,2003.

[9]曾登高编著..NET 系统架构与开发. 北京:电子工业出版社,2003.

[10]Jeffrey Richter. Applied Microsoft .NET Framework programming.北京:清华大学出版社, 2003.

[11]张海藩. 软件工程导论. 北京:清华大学出版社, 2003.

[11]周佩德.数据库原理及应用〔M〕.北京:电子工业出版社,2004.

[12]刘炳文等.VISUAL BASIC 程序设计--数据库篇〔M〕.北京:人民邮电出版社,1999.

[13]李光明.Visual Basic 编程实例大制作〔M〕.北京:冶金工业出版社,2002.

[14]王兴晶,赵万军等.Visual Basic 软件项目开发实例[M].北京:电子工业出版社,2004.

[15]陈艳峰,高文姬等.Visual basic 数据库项目案例导航[M].北京:清华大学出版社,2004.

[16]李红等.管理信息系统开发与应用〔M〕.北京:电子工业出版社,2003.

[17]周之英.现代软件工程〔M〕.北京:科学出版社,2000.

[18]张红军,王红.Visual Basic 中文版高级应用与开发指南〔M〕.北京:人民邮电出版社,2001.

[1]孙卫琴,李洪成.《Tomcat 与 JSP Web 开发技术详解》.电子工业出版社,2003年6月:1-205

[2]BruceEckel.《JSP编程思想》. 机械工业出版社,2003年10月:1-378

[3]FLANAGAN.《JSP技术手册》. 中国电力出版社,2002年6月:1-465

[4]孙一林,彭波.《JSP数据库编程实例》. 清华大学出版社,2002年8月:30-210

[5]LEE ANNE PHILLIPS.《巧学活用HTML4》.电子工业出版社,2004年8月:1-319

[6]飞思科技产品研发中心.《JSP应用开发详解》.电子工业出版社,2003年9月:32-300

[7]耿祥义,张跃平.《JSP实用教程》. 清华大学出版社,2003年5月1日:1-354

[8]孙涌.《现代软件工程》.北京希望电子出版社,2003年8月:1-246

[9]萨师煊,王珊.《数据库系统概论》.高等教育出版社,2002年2月:3-460

[10]Brown等.《JSP编程指南(第二版)》. 电子工业出版社 ,2003年3月:1-268

[11]清宏计算机工作室.《JSP编程技巧》. 机械工业出版社, 2004年5月:1-410

[12]朱红,司光亚.《JSP Web编程指南》.电子工业出版社, 2001年9月:34-307

[13]赛奎春.《JSP工程应用与项目实践》. 机械工业出版社, 2002年8月:23-

[14]刁仁宏.网络数据库原理及应用[J].情报理论与实践,2004,(1).

[15]张莉,王强.SQL Server 数据库原理及应用教程[M].清华:清华大学出版社出版,2003.

[16]郭瑞军,李杰,初晓璐. 数据库开发实例精粹[M].西安:电子工业出 版社出版,2003.

[17]宋昕. 网络开发技术实用教程入门与提高[J].情报杂志,2005,(7).

[18]顼宇峰. Server 典型网站建设案例[M].清华:清华大学出版社出版,2006.

[1]米琦.基于多维变换的无线传感器网络定位算法研究[D].上海交通大学2007

[2]汤文亮,曾祥元,曹义亲.基于ZigBee无线传感器网络的森林火灾监测系统[J].实验室研究与探索.2010(06)

[3]宋保业.无线传感器网络关键技术研究[D].青岛科技大学2008

[4]熊俊俏,冯进维,罗帆.基于JN5139的无线传感器网络节点设计与实现[J].武汉工程大学学报.2010(05)

[5]祝勇.基于LS-SVC的传感网络链路质量评估机制研究[D].南昌航空大学2014

[6]程春蕊,刘万军.高内聚低耦合软件架构的构建[J].计算机系统应用.2009(07)

[7]孙利民等编着.无线传感器网络[M].清华大学出版社,2005

[8]甄甫,刘民,董明宇.基于面向服务架构消息中间件的业务流程系统集成方法研究[J].计算机集成制造系统.2009(05)

[9]陆莹.基于无线传感器网络的组网可靠性研究[D].天津大学2007

[10]潘虎.煤矿安全监控无线传感器网络系统研究[D].华中科技大学2007

[11]张杉.无线传感器网络通信机制的研究[D].电子科技大学2008

[12]魏宝玲.利用无线传感器网络实施道路维护与监控[D].国防科学技术大学2006

[13]吴中博,樊小泊,陈红.基于能量水平的多Sink节点传感器网络路由算法[J].计算机研究与发展.2008(01)

[14]陈伟,吴健,胡正国.分布式监控组态系统实时数据传输模型[J].计算机工程.2006(22)

[15]原羿,苏鸿根.基于ZigBee技术的无线网络应用研究[J].计算机应用与软件.2004(06)

[16]任丰原,黄海宁,林闯.无线传感器网络[J].软件学报.2003(07)

[17]张雪平.使用SecureCRT实现网络管理自动化[J].内江师范学院学报.2005(02)

[1]江群斌.我国商业银行网络银行安全性研究[D].天津大学2012

[2]翟凤航.组织系统数字档案管理系统软件的设计及实现[D].天津大学2012

[3]张兴起.基于VPX标准和多核DSP阵列的信息处理平台设计[D].天津大学2012

[4]王璐.基于1553B总线的综合航电数据加载系统的设计与实现[D].天津大学2012

[5]孙树和.电力企业绩效管理系统研究与设计[D].天津大学2012

[6]郎桐.无源自组网络输电线路实时监测技术研究与应用[D].天津大学2014

[7]郭毅.部门预算管理系统的设计与实现[D].天津大学2014

[8]李灏.软件无线电平台上空时编码的实现和测量[D].天津大学2014

[9]谢国聪.基于.NET技术和多层架构的出租屋和流动人口信息管理系统的设计与实现[D].天津大学2014

[10]高宜文.基于Wi-Fi的智能无线网络视频监控系统视频采集与处理平台的设计[D].天津大学2012

[11]毛延超.无线传感器网络中分簇多信道传输协议研究[D].天津大学2012

[12]夏梓峻.LED-AODV:基于链路预测的车辆网络路由算法研究[D].天津大学2012

[13]尹超.无线网络视频传输性能评测工具的设计与实现[D].天津大学2009

[14]童曦.基于.NET技术和多层架构的人事信息管理系统[D].天津大学2014

[15]王广彧.基于历史轨迹预测的车辆自组织网络混合路由算法[D].天津大学2014

[16]王伟海.龙口矿业集团电网调度自动化系统设计与实现[D].天津大学2012

[17]贺明.基于NC-OFDM的与ZigBee共存技术研究[D].天津大学2012

[18]叶君骄.基于SAT的长距离无线mesh网络管理平台[D].天津大学2012

[19]张松.基于的长距离无线链路性能实验研究[D].天津大学2012

[20]钟武汨.基于压缩感知的空间无线频谱感知与重构系统研究[D].天津大学2012

[21]高明飞.北皂煤矿海域下开采水情在线监测应用系统[D].天津大学2012

[22]邹宇.基于卫星授时的长距离无线Mesh网络MAC协议ST-TDMA[D].天津大学2014

[23]王为睿.山东省龙口矿业集团6000m~3/h制氧工程DCS设计与实现[D].天津大学2013

[24]莫志德.基于Web应用的停车管理系统开发和设计[D].天津大学2013

[1](美)BruceMolay着,杨宗源,黄海涛译.Unix/Linux编程实践教程[M].清华大学出版社,2004

[2]姜毅,王兆青,曹丽.基于HTTP的实时信息传输方法[J].计算机工程与设计.2008(10)

[3]崔文婧.数字娱乐产业中流行文化对于电子游戏的'影响[D].北京服装学院2010

[4]刘晓晖.SAP系统中不同物料分类的创建方法[D].上海交通大学2011

[5]封炜.基于GPS/GIS/GSM的物流信息监控系统的设计与实现[D].上海交通大学2011

[6]赵胤.基于SAP的离散制造型企业成本控制设计与实现[D].上海交通大学2011

[7]李长斌.驼峰空压站监控系统的设计与实现[D].上海交通大学2012

[8]闵国石.铁路工务作业安全控制系统的研究[D].上海交通大学2012

[9]龚俊.基于Javamail技术的企业Email安全管理系统的设计与实现[D].上海交通大学2012

[10]朱骁勇.基于SCCM的软件分发管理与软件封装模板助手[D].上海交通大学2013

[11]彭诚.基于GPS的物流车辆监控系统的设计和实现[D].上海交通大学2013

[12]苏政华.离散制造型企业的SAP系统FICO模块设计与实现[D].上海交通大学2013

[13]周昕毅.Linux集群运维平台用户权限管理及日志审计系统实现[D].上海交通大学2013

[14]徐朱平.SDP-21框架下项目管理在对日软件外包中的应用[D].上海交通大学2010

[15]刘进学.DeltaVDCS系统在丙烯均相聚合系统中的应用与研究[D].上海交通大学2010

[16]李立平.基于数据挖掘的勘探随钻分析系统[D].上海交通大学2010

[17]王平.半自动闭塞控制信息数字化传输系统的设计与实现[D].上海交通大学2012

[18]潘忠锐.铁路OA系统的设计与实现[D].上海交通大学2012

[19]黄怡君.银行业的存储虚拟化系统设计与实现[D].上海交通大学2012

[20]孙英.浅谈Flash与XML之间的通信[J].电脑知识与技术.2008(15)

[1]刘韬,楼兴华.SQL Server2000 数据库系统开发实例导航. 北京:人民邮电出版社,2004.

[2]丁宝康,董健全. 数据库实验教程. 北京:清华大学出版社, 2003:125-170.

[3]孙强. 基于 的专题网站的研究与设计. 东北师范大学,2006.

[4]Michele Leroux your Apps and WCF services with Windows CardSpace. MSDN Magazine,April 2007.

[5]肖建编. 编程实例与技巧集粹. 北京:北京希望电子出版社,2003.

[6]巴兹拉等. 安全性高级编程. 北京:清华大学出版社,2003.

[7]Jesse C#中文版. 电子工业出版社,2006.

[8]米切尔的等编著. 权威指南. 北京:中国电力出版社,2003.

[9]曾登高编著..NET 系统架构与开发. 北京:电子工业出版社,2003.

[10]Jeffrey Richter. Applied Microsoft .NET Framework programming.北京:清华大学出版社, 2003.

[11]张海藩. 软件工程导论. 北京:清华大学出版社, 2003.

数据挖掘期刊

很多 建议上小木虫查查

数据挖掘相关的权威期刊和会议-----------------------------------------------[Journals] Transactions on Knowledge Discovery from Data (TKDD) Transactions on Knowledge and Data Engineering (TKDE) Mining and Knowledge and Information & Knowledge Engineering[Conferences] Conference on Management of Data (ACM) Conference on Very Large Data Bases (Morgan Kaufmann/ACM) International Conference on Data Engineering (IEEE Computer Society) Knowledge Discovery and Data Mining (ACM) World Wide Web Conferences (W3C) International Conference on Information and Knowledge Management (ACM) Conference on Principles and Practice of Knowledge Discovery in Databases (Springer-Verlag LNAI)个性化推荐建议去john riedl的主页逛逛,Grouplen的leader个性化推荐的书最出名的是 handbook 这是个性化推荐的"教科书" 国内貌似就有一本项亮的《推荐系统实践》

听说“Hans Journal of Data Mining”不错!不知道是不是真的!

数据挖掘(英语:Data mining),又译为资料探勘、数据采矿。它是数据库知识发现(英语:Knowledge-Discovery in Databases,简称:KDD)中的一个步骤。数据挖掘一般是指从大量的数据中通过算法搜索隐藏于其中信息的过程。数据挖掘通常与计算机科学有关,并通过统计、在线分析处理、情报检索、机器学习、专家系统(依靠过去的经验法则)和模式识别等诸多方法来实现上述目标。

数据挖掘论文ppt

你先看韩家炜的那本《数据挖掘》,然后看一下几个会议的论文SIGKDDCIKMICDMPAKDD里面的论文都是比较好的,具体内容需要看你最后做的是什么问题,现在做recommendation(推荐)的比较多。

数据挖掘在软件工程技术中的应用毕业论文

【 摘要 】计算机技术在发展,软件也发展的越来越复杂,而系统开发工作也显得更加重要。信息技术的广泛应用会产生大量数据,通过对数据进行挖掘,分析其存在的规律,对实现数据资源的有效利用意义重大。本文就数据挖掘技术在软件工程中的应用作简要阐述。

【 关键词 】数据挖掘技术;软件工程中;应用软件技术

随着信息技术发展而快速发展,但是其可控性并不是特别强。软件在应用过程中会产生大量数据,数据作为一种宝贵的资源,有效的利用可以带来价值增值。作为软件开发行业,数据挖掘技术应用则实现了数据资源的有效利用,通过对其中规律进行研究,为软件工程提供相应指导,并且对于系统故障能够有效处理,成本评估的有效性也能够提升。

1数据挖掘技术应用存在的问题

信息数据自身存在的复杂性

软件工程所包含的数据可以分为两个类别,结构化与非结构化。在非结构化数据中软件代码发挥着重要作用。而对结构化数据产生影响的则是软件版本信息。结构与非结构化数据二者之间联系非常密切。实现数据有效利用就需要通过一定技术找出其中的规律。数据挖掘技术则刚好满足需求。利用该技术对结构与非结构化数据进行整合,提升其使用的有效性。

在评价标准方面缺乏一致性

数据挖掘技术在生活中的应用比较广泛,通过该技术应用能够更好的对实际情况进行评价,从而对结果进行优化。但是由于没有统一标准,导致了软件信息复杂。而在表述方式方面自身又存有差异性。信息获取者无法有效的对信息进行应用及对比。而信息缺乏统一标准的原因就在于评价方式不一致。

2数据挖掘技术在软件工程中的应用

数据挖掘执行记录

执行记录挖掘主要是对主程序的路径进行分析,从而发现程序代码存有的相关关系。其实质是通过对相关执行路径进行分析,并进行逆向建模,最终达到目的。作用在于验证,维护,了解程序。记录挖掘的过程通常是对被分析的系统进行初步插装,之后是记录过程,该过程在执行上一步程序后,对应用编程接口,系统,模块的状态变量记录,最后是对所得到的信息进行约简,过滤,聚类。最终得到的模型能够表达系统的特征。

漏洞检测

系统或是软件自身都会存在漏洞,漏洞自身具一定的隐蔽性,由于人的思维存在某些盲区,无法发现漏洞的存在,就需要借助于某些软件。检测漏洞的目的就在于找出软件中存在的漏洞及错误,并对其进行修复,从而保证软件质量与安全。将数据挖掘技术应用于软件检测,首先要确定测试项目,结合到用户需要,对测试内容进行规划,从而确定测试方法,并制定出具体方案。测试工作环节主要是对数据进行清理与转换,其基础在于漏洞数据收集,通过对收集与采集的信息进行清理,将与软件数据有关联同时存在缺陷的数据筛选出来,而将剩余无数据清理,对丢失项目采取相应措施补充,将其属性转换为数值表示。之后是选择适当的'模型进行训练与验证,该环节要结合到项目实际的需要选择挖掘方式,通过对不同数据结果进行分析与比较找到最适合的方式。之后则是重复应用上述方法,对软件存在的漏洞进行定位与检测。并将与之对应的数据收集于软件库,在对漏洞进行描述的基础上分类,最后将通过挖掘得到的知识应用到测试的项目中.

开源软件

对于开源软件的管理由于其自身的开放,动态与全局性,需要与传统管理软件进行区别对待,一般情况下,成熟的开源软件对于软件应用记录较为完整,参与的内容包括了错误报告,开发者活动。参与开发的工作人员会处在动态变化之中,存在动态变化的原因就在于软件的开放性。同时对于软件中动态性特征的挖掘,可达到对开源软件进行优质管理的目标。

版本控制信息

为了保证参与项目人员所共同编辑内容的统一性,就需要对系统应用进行控制。软件开发工程应用中,开发工作管理与保护都会通过版本控制系统来实施。并且其应用方式主要是对变更数据挖掘,找出不同模块及系统存在关系,并对程序中可能会存在的漏洞进行检测。此类技术的应用,使得系统后期维护成本被有效的降低,而对后期变更产生的漏洞也有一定的规避作用。

3数据挖掘在软件工程中的应用

关联法

该方法作用在于寻找数据中存在的相关联系与有趣关联。而体现的关联规则有两个明显的特征。①支持度;②信度。前者表示在某个事物集中,两个子集出现的概率是相同的。而后者则表明了某事物在事物集中出现的概率,而另一事物也会出现。

分类方法

该方法主要是应用于分类标号与离散值的操作。该方法的操作步骤是,首先要建立相应的模型,对数据进行描述,并利用模型对其进行分类。在分类方法选择方面,常用的有判定树法,贝叶斯法,支持项量机法等。判定树法应用的基础是贪心算法。

聚类方法

该方法常用的有划分方法,基于密度,模型,网格的方法与层次方法。聚类分析输入的是一组有序对,有序对中的数据分别表示了样本,相似度。其基本的应用理论是依据不同的对象数据予以应用。

4数据挖掘在软件工程中的应用

对克隆代码的数据挖掘

在软件工程中最为原始的是对克隆代码的检查测试。就其方式而言有文本对比为基础,标识符对比为基础。前者是利用系统中程序代码包含的语句进行判断。该方法在后期改进过程中主要是对字符串匹配效率进行提升。实际应用过程中是通过相关函数匹配对效率进行优化。

软件数据检索挖掘

该方法同样是软件工程中原始的挖掘需求之一。该方法在应用时主要有以下三个步骤。

①数据录入。其实质是对需要检索的信息录入,并结合到使用者需要在数据中查找使用者需要的数据。

②信息查找过程。确认了用户需要查找的信息后,系统将依据信息内容在数据库中进行查找,并分类罗列。

③信息数据导出与查看。用户可以依据自身需要将数据导出或者是在线查看。数据在导出时会形成相应的记录,客户再次进行查找时就会更加的方便与快捷。而将数据导出则需要利用到相关的软件。

应用于设计的三个阶段

软件工程有许多关于软件的资料,资料通常是存放于代码库中。数据运用可以提升工作效率。软件工程每一次循环都会产生大量的数据。基于软件工程生命周期可以将其分为分析设计,迭代的开发,维护应用三个阶段。

面向项目管理数据集的挖掘

软件开发工作到目前已经是将多学科集中于一体。如经济学,组织行为学,管理学等。对于软件开发者而言,关注的重点除过技术方面革新外,同时也需要科学规范的管理。除过对于版本控制信息挖掘外,还有人员组织关系挖掘。对于大规模的软件开发工作而言,对人力资源的有效分配与协调也是软件工作领域需要面对的问题。例如在大型系统开发过程中,往往会有许多人参与其中,人员之间需要进行沟通交流。交流方式包括了面对面沟通,文档传递,电子信息等。通过对人员之间的关系进行挖掘,有利于管理工作开展。员工群体存在的网络是社会网络。通过人员合理组织与分配,将会影响到项目进度,成本,成功的可能性。而对该方面实施研究通常采用的是模拟建模。

5结束语

软件工程技术在生活中许多领域都有广泛的应用,数据挖掘作为其中的一项技术,其重要性及作用随着技术发展而表现的越加明显。为了保证挖掘技术的可靠性与高效,与其它工程技术有一定融合性。数据挖掘在实际应用工作中体现出了巨大的经济效益,因此应该大力推进其应用的范围,并拓展其应用的深度与层次。

参考文献

[1]李红兰.试论数据挖掘技术在软件工程中的应用综述[J].电脑知识与技术,2016(34).

[2]雷蕾.关于数据挖掘技术在软件工程中的应用综述究[J].电子测试,2014(02).

[3]孙云鹏.数据挖掘技术在软件工程中的应用综述[J].中国新通信,2015(15).

Web数据挖掘技术探析论文

在日复一日的学习、工作生活中,大家或多或少都会接触过论文吧,论文对于所有教育工作者,对于人类整体认识的提高有着重要的意义。那么你知道一篇好的论文该怎么写吗?以下是我收集整理的Web数据挖掘技术探析论文,供大家参考借鉴,希望可以帮助到有需要的朋友。

引言

当前,随着网络技术的发展和数据库技术的迅猛发展,有效推动了商务活动由传统活动向电子商务变革。电子商务就是利用计算机和网络技术以及远程通信技术,实现整个商务活动的电子化、数字化和网络化。基于Internet的电子商务快速发展,使现代企业积累了大量的数据,这些数据不仅能给企业带来更多有用信息,同时还使其他现代企业管理者能够及时准确的搜集到大量的数据。访问客户提供更多更优质的服务,成为电子商务成败的关键因素,因而受到现代电子商务经营者的高度关注,这也对计算机web数据技术提出了新的要求,Web数据挖掘技术应运而生。它是一种能够从网上获取大量数据,并能有效地提取有用信息供企业决策者分析参考,以便科学合理制定和调整营销策略,为客户提供动态、个性化、高效率服务的全新技术。目前,它已成为电子商务活动中不可或缺的重要载体。

计算机web数据挖掘概述

1.计算机web数据挖掘的由来

计算机Web数据挖掘是一个在Web资源上将对自己有用的数据信息进行筛选的过程。Web数据挖掘是把传统的数据挖掘思想和方法移植到Web应用中,即从现有的Web文档和活动中挑选自己感兴趣且有用的模式或者隐藏的数据信息。计算机Web数据挖掘可以在多领域中展示其作用,目前已被广泛应用于数据库技术、信息获取技术、统计学、人工智能中的机器学习和神经网络等多个方面,其中对商务活动的变革起到重大的推动作用方面最为明显。

2.计算机Web数据挖掘含义及特征

(1)Web数据挖掘的含义

Web数据挖掘是指数据挖掘技术在Web环境下的应用,是一项数据挖掘技术与WWW技术相结合产生的新技术,综合运用到了计算机语言、Internet、人工智能、统计学、信息学等多个领域的技术。具体说,就是通过充分利用网络(Internet),挖掘用户访问日志文件、商品信息、搜索信息、购销信息以及网络用户登记信息等内容,从中找出隐性的、潜在有用的和有价值的信息,最后再用于企业管理和商业决策。

(2)Web数据挖掘的特点

计算机Web数据挖掘技术具有以下特点:一是用户不用提供主观的评价信息;二是用户“访问模式动态获取”不会过时;三是可以处理大规模的数据量,并且使用方便;四是与传统数据库和数据仓库相比,Web是一个巨大、分布广泛、全球性的信息服务中心。

(3)计算机web数据挖掘技术的类别

web数据挖掘技术共有三类:第一类是Web使用记录挖掘。就是通过网络对Web日志记录进行挖掘,查找用户访问Web页面的模式及潜在客户等信息,以此提高其站点所有服务的竞争力。第二类是Web内容挖掘。既是指从Web文档中抽取知识的过程。第三类是Web结构挖掘。就是通过对Web上大量文档集合的内容进行小结、聚类、关联分析的方式,从Web文档的组织结构和链接关系中预测相关信息和知识。

计算机web数据挖掘技术与电子商务的关系

借助计算机技术和网络技术的日臻成熟,电子商务正以其快速、便捷的特点受到越来越多的企业和个人的关注。随着电子商务企业业务规模的不断扩大,电子商务企业的商品和客户数量也随之迅速增加,电子商务企业以此获得了大量的数据,这些数据正成为了电子商务企业客户管理和销售管理的重要信息。为了更好地开发和利用这些数据资源,以便给企业和客户带来更多的便利和实惠,各种数据挖掘技术也逐渐被应用到电子商务网站中。目前,基于数据挖掘(特别是web数据挖掘)技术构建的电子商务推荐系统正成为电子商务推荐系统发展的一种趋势。

计算机web数据挖掘在电子商务中的具体应用

(1)电子商务中的web数据挖掘的过程

在电子商务中,web数据挖掘的过程主要有以下三个阶段:既是数据准备阶段、数据挖掘操作阶段、结果表达和解释阶段。如果在结果表达阶段中,分析结果不能让电子商务企业的决策者满意,就需要重复上述过程,直到满意为止。

(2)Web数据挖掘技术在电子商务中的应用

目前,电子商务在企业中得到广泛应用,极大地促进了电子商务网站的兴起,经过分析一定时期内站点上的用户的访问信息,便可发现该商务站点上潜在的客户群体、相关页面、聚类客户等数据信息,企业信息系统因此会获得大量的数据,如此多的数据使Web数据挖掘有了丰富的数据基础,使它在各种商业领域有着更加重要的.实用价值。因而,电子商务必将是未来Web数据挖掘的主攻方向。Web数据挖掘技术在电子商务中的应用主要包含以下几方面:

一是寻找潜在客户。电子商务活动中,企业的销售商可以利用分类技术在Internet上找到潜在客户,通过挖掘Web日志记录等信息资源,对访问者进行分类,寻找访问客户共同的特征和规律,然后从已经存在的分类中找到潜在的客户。

二是留住访问客户。电子商务企业通过商务网站可以充分挖掘客户浏览访问时留下的信息,了解客户的浏览行为,然后根据客户不同的爱好和要求,及时做出让访问客户满意的页面推荐和专属性产品,以此来不断提高网站访问的满意度,最大限度延长客户驻留的时间,实现留住老客户发掘新客户的目的。

三是提供营销策略参考。通过Web数据挖掘,电子商务企业销售商能够通过挖掘商品访问情况和销售情况,同时结合市场的变化情况,通过聚类分析的方法,推导出客户访问的规律,不同的消费需求以及消费产品的生命周期等情况,为决策提供及时而准确的信息参考,以便决策者能够适时做出商品销售策略调整,优化商品营销。

四是完善商务网站设计。电子商务网站站点设计者能够利用关联规则,来了解客户的行为记录和反馈情况,并以此作为改进网站的依据,不断对网站的组织结构进行优化来方便客户访问,不断提高网站的点击率。

结语

本文对Web数据挖掘技术进行了综述,讲述了其在电子商务中广泛应用。可以看出,随着计算机技术和数据库技术快速发展,计算机Web数据技术的应用将更加广泛,Web数据挖掘也将成为非常重要的研究领域,研究前景巨大、意义深远。目前,我国的Web数据应用还处于探索和起步阶段,还有许多问题值得深入研究。

摘要: 该文通过介绍电子商务及数据挖掘基本知识,分别从几个方面分析了电子商务中WEB数据挖掘技术的应用。

关键词: 电子商务;数据挖掘;应用

1概述

电子商务是指企业或个人以网络为载体,应用电子手段,利用现代信息技术进行商务数据交换和开展商务业务的活动。随着互联网的迅速发展,电子商务比传统商务具有更明显的优势,由于电子商务具有方便、灵活、快捷的特点,使它已逐渐成为人们生活中不可缺少的活动。目前电子商务平台网站多,行业竞争强,为了获得更多的客户资源,电子商务网站必须加强客户关系管理、改善经营理念、提升售后服务。数据挖掘是从数据集中识别出隐含的、潜在有用的、有效的,新颖的、能够被理解的信息和知识的过程。由数据集合做出归纳推理,从中挖掘并进行商业预判,能够帮助电子商务企业决策层依据预判,对市场策略调整,将企业风险降低,从而做出正确的决策,企业利润将最大化。随着电子商务的应用日益广泛,电子商务活动中会产生大量有用的数据,如何能够数据挖掘出数据的参考价值?研究客户的兴趣和爱好,对客户分门别类,将客户心仪的商品分别推荐给相关客户。因此,如何在电子商务平台上进行数据挖掘成为研究的热点问题。

2数据挖掘技术概述

数据挖掘(DataMining),也称数据库中的知识发现(KnowledgeDiscoveryinDatabase,KDD)。数据挖掘一般是指从海量数据中应用算法查找出隐藏的、未知的信息的过程。数据挖掘是一个在大数据资源中利用分析工具发现模型与数据之间关系的一个过程,数据挖掘对决策者寻找数据间潜在的某种关联,发现隐藏的因素起着关键作用。这些模式是有潜在价值的、并能够被理解的。数据挖掘将人工智能、机器学习、数据库、统计、可视化、信息检索、并行计算等多个领域的理论与技术融合在一起的一门多学科交叉学问,这些学科也对数据挖掘提供了很大的技术支撑。

3Web数据挖掘特点

Web数据挖掘就是数据挖掘在Web中的应用。Web数据挖掘的目的是从万维网的网页的内容、超链接的结构及使用日志记录中找到有价值的数据或信息。依据挖掘过程中使用的数据类别,Web数据挖掘任务可分为:Web内容挖掘、Web结构挖掘、Web使用记录挖掘。

1)Web内容挖掘指从网页中提取文字、图片或其他组成网页内容的信息,挖掘对象通常包含文本、图形、音视频、多媒体以及其他各种类型数据。

2)Web结构挖掘是对Web页面之间的结构进行挖掘,挖掘描述内容是如何组织的,从Web的超链接结构中寻找Web结构和页面结构中的有价值模式。例如从这些链接中,我们可以找出哪些是重要的网页,依据网页的主题,进行自动的聚类和分类,为了不同的目的从网页中根据模式获取有用的信息,从而提高检索的质量及效率。

3)Web使用记录挖掘是根据对服务器上用户访问时的访问记录进行挖掘的方法。Web使用挖掘将日志数据映射为关系表并采用相应的数据挖掘技术来访问日志数据,对用户点击事件的搜集和分析发现用户导航行为。它用来提取关于客户如何浏览和使用访问网页的链接信息。如访问了哪些页面?在每个页面中所停留的时间?下一步点击了什么?在什么样的路线下退出浏览的?这些都是Web使用记录挖掘所关心要解决的问题。

4电子商务中Web挖掘中技术的应用分析

1)电子商务中序列模式分析的应用

序列模式数据挖掘就是要挖掘基于时间或其他序列的模式。如在一套按时间顺序排列的会话或事务中一个项目有存在跟在另一个项目后面。通过这个方法,WEB销售商可以预测未来的访问模式,以帮助针对特定用户组进行广告排放设置。发现序列模式容易使客户的行为被电子商务的组织者预测,当用户浏览站点时,尽可能地迎合每个用户的浏览习惯并根据用户感兴趣的内容不断调整网页,尽可能地使每个用户满意。使用序列模式分析挖掘日志,可以发现客户的访问序列模式。在万维网使用记录挖掘应用中,序列模式挖掘可以用于捕捉用户路径之中常用的导航路径。当用户访问电子商务网站时,网站管理员能够搜索出这个访问者的对该网站的访问序列模式,将访问者感兴趣但尚未浏览的页面推荐给他。序列模式分析还能分析出商品购买的前后顺序,从而向客户提出推荐。例如在搜索引擎是发出查询请求、浏览网页信息等,会弹出与这些信息相关的广告。例如购买了打印机的用户,一般不久就会购买如打印纸、硒鼓等打印耗材。优秀的推荐系统将为客户建立一个专属商店,由每个客户的特征来调整网站的内容。也能由挖掘出的一些序列模式分析网站及产品促销的效果。

2)电子商务中关联规则的应用

关联规则是揭示数据之间隐含的相互关系,关联分析的任务是发现事物间的关联规则或相关程序。关联规则挖掘的目标是在数据项目中找出每一个数据信息的内在关系。关联规则挖掘就是要搜索出用户在服务器上访问的内容、页面、文件之间的联系,从而改进电子商务网站设计。可以更好在组织站点,减少用户过滤网站信息的负担,哪些商品顾客会可能在一次购物时同时购买?关联规则技术能够通过购物篮中的不同商品之间的联系,分析顾客的购物习惯。例如购买牛奶的顾客90%会同时还购买面包,这就是一条关联规则,如果商店或电子商务网站将这两种商品放在一起销售,将会提高它们的销量。关联规则挖掘目标是利用工具分析出顾客购买商品间的联系,也即典型购物篮数据分析应用。关联规则是发现同类事件中不同项目的相关性,例如手机加充电宝,鼠标加鼠标垫等购买习惯就属于关联分析。关联规则挖掘技术可以用相应算法找出关联规则,例如在上述例子中,商家可以依据商品间的关联改进商品的摆放,如果顾客购买了手机则将充电宝放入推荐的商品中,如果一些商品被同时购买的概率较大,说明这些商品存在关联性,商家可以将这些有关联的商品链接放在一起推荐给客户,有利于商品的销售,商家也根据关联有效搭配进货,提升商品管理水平。如买了灯具的顾客,多半还会购买开关插座,因此,一般会将灯具与开关插座等物品放在一个区域供顾客选购。依据分析找出顾客所需要的商品的关联规则,由挖掘分析结果向顾客推荐所需商品,也即向顾客提出可能会感兴趣的商品推荐,将会大大提高商品的销售量。

3)电子商务中路径分析技术的应用

路径分析技术通过对Web服务器的日志文件中客户访问站点的访问次数的分析,用来发现Web站点中最经常访问的路径来调整站点结构,从而帮助使用用户以最快的速度找到其所需要的产品或是信息。例如在用户访问某网站时,如果有很多用户不感兴趣的页面存在,就会影响用户的网页浏览速度,从而降低用户的浏览兴趣,同时也会使整个站点的维护成本提高。而利用路径分析技术能够全面地掌握网站各个页面之间的关联以及超链接之间的联系,通过分析得出访问频率最高的页面,从而改进网站结构及页面的设计。

4)电子商务中分类分析的应用

分类技术在根据各种预定义规则进行用户建模的Web分析应用中扮演着很重要的角色。例如,给出一组用户事务,可以计算每个用户在某个期间内购买记录总和。基于这些数据,可以建立一个分类模型,将用户分成有购买倾向和没有购买倾向两类,考虑的特征如用户统计属性以及他们的导航活动。分类技术既可以用于预测哪些购买客户对于哪类促销手段感兴趣,也可以预测和划分顾客类别。在电子商务中通过分类分析,可以得知各类客户的兴趣爱好和商品购买意向,因而发现一些潜在的购买客户,从而为每一类客户提供个性化的网络服务及开展针对性的商务活动。通过分类定位模型辅助决策人员定位他们的最佳客户和潜在客户,提高客户满意度及忠诚度,最大化客户收益率,以降低成本,增加收入。

5)电子商务中聚类分析的应用

聚类技术可以将具有相同特征的数据项聚成一类。聚类分析是对数据库中相关数据进行对比并找出各数据之间的关系,将不同性质特征的数据进行分类。聚类分析的目标是在相似的基础上收集数据来分类。根据具有相同或相似的顾客购买行为和顾客特征,利用聚类分析技术将市场有效地细分,细分后应可每类市场都制定有针对性的市场营销策略。聚类分别有页面聚类和用户聚类两种。用户聚类是为了建立拥有相同浏览模式的用户分组,可以在电子中商务中进行市场划分或给具有相似兴趣的用户提供个性化的Web内容,更多在用户分组上基于用户统计属性(如年龄、性别、收入等)的分析可以发现有价值的商业智能。在电子商务中将市场进行细化的区分就是运用聚类分析技术。聚类分析可根据顾客的购买行为来划分不同顾客特征的不同顾客群,通过聚类具有类似浏览行为的客户,让市场人员对顾客进行类别细分,能够给顾客提供更人性化的贴心服务。比如通过聚类技术分析,发现一些顾客喜欢访问有关汽车配件网页内容,就可以动态改变站点内容,让网络自动地给这些顾客聚类发送有关汽车配件的新产品信息或邮件。分类和聚类往往是相互作用的。在电子商务中通过聚类行为或习性相似的顾客,给顾客提供更满意的服务。技术人员在分析中先用聚类分析将要分析的数据进行聚类细分,然后用分类分析对数据集合进行分类标记,再将该标记重新进行分类,一直如此循环两种分析方法得到相对满意的结果。

5结语

随着互联网的飞速发展,大数据分析应用越来越广。商业贸易中电子商务所占比例越来越大,使用web挖掘技术对商业海量数据进行挖掘处理,分析客户购买喜好、跟踪市场变化,调整销售策略,对决策者做出有效决策及提高企业的市场竞争力有重要意义。

参考文献:

[1]庞英智.Web数据挖掘技术在电子商务中的应用[J].情报科学,2011,29(2):235-240.

[2]马宗亚,张会彦.Web数据挖掘技术在电子商务中的应用研究[J].现代经济信息,2014(6):23-24.

[3]徐剑彬.Web数据挖掘技术在电子商务中的应用[J].时代金融,2013(4):

[4]周世东.Web数据挖掘在电子商务中的应用研究[D].北京交通大学,2008.

[5]段红英.Web数据挖掘技术在电子商务中的应用[J].陇东学院学报,2009(3):32-34.

大数据与数据挖掘论文

首先介绍大数据带来的好处,然后介绍大数据带来的弊端。

大数据带来的好处

1、大数据便利我们的生活:

自助缴水、电、燃气、电视费,汽车摇号、手机充值、违章查询、公积金查询、手机代开发票、查询法院案子进展,这是运用大数据促进保证和改善民生的典型事例。此外,大数据还运用到智能家居中,智能照明体系等。

2、大数据便利看病:

大数据最强大的应用就是电子医疗记录的收集。每一个病人都有自己的电子记录,包括个人病史、家族病史、过敏症以及所有医疗检测结果等。大数据收集病人信息,可以尽早发现疾病,对于患者来说,不但降低了身体健康受损的风险,同时也能够减少医疗支出。

另一个创新是可穿戴设备的应用,这些设备能够实时汇报病人的健康状况。这些新的分析设备具备同样的功能,但能在医疗机构之外的场所使用,降低了医疗成本,病人在家就能获知自己的健康状况,同时还获得智能设备所提供的治疗建议。

3、大数据便利我出行:

人们的出行越来越离不开大数据的协助,运用电子地图,初来乍到的游客可以在生疏的城市自由行走;繁忙一天的上班族可以查询最快回家的交通方法;出租车司机经过语音导航,知晓前方路程状况,防止堵车或超速违章。

大数据仍是缓解交通压力的利器,它可以猜测未来交通状况,为改善交通状况供给优化方案,这有助于交通部门进步对路程交通的把控才干,防止缓和解交通拥堵。

4、利用大数据提升自己:

大数据技能不只能够提高人们使用数据的效率,并且能够实现数据的再使用和重复使用,进而大大降低交易成本,提升人们开发自我潜能的空间。

大数据的弊端

1、个人数据隐私与安全

大数据会记录浏览习惯,购买习惯,常用淘宝支付宝这些软件的人,消费能力、购物习惯、活动产所、收入情况、生活质量、年龄、身高、体重、鞋码、三围、口味等,都是可以分析出来的,这些基本囊括了我们的生活。

个人数据安全就成了一个大问题,一旦数据泄露(或被买卖),可能会对用户人身财产、国家和公司的安全造成威胁。

2、大数据杀熟

杀熟,即同样的商品或服务,老客户看到的价格反而比新客户要贵出许多。

包括滴滴出行、携程、飞猪、京东、美团、淘票票等多家互联网平台均被曝疑似存在“杀熟”情况,涵盖在线差旅、在线票务、网络购物、交通出行等多个领域,特别是OTA(Online Travel Agent)在线差旅平台较为突出。

大数据的价值体现

1、对许多顾客供给产品或服务的企业可以运用大数据进行精准营销。

2、做小而美形式的中小微企业可以运用大数据做服务转型。

3、面对互联网压力之下,有必要转型的传统企业需求与时俱进充沛运用大数据的价值。

在当前的“大数据”时代,人们可能会受到大数据带来的损失。大数据分析包括使用来自多个来源的大量数据进行链接和分析,以发现预测人类行为的模式。即使在完全合法的情况下,这样的分析也会伤害到人们的利益。

"大数据"是一个体量特别大,数据类别特别大的数据集,并且这样的数据集无法用传统数据库工具对其内容进行抓取、管理和处理。 "大数据"首先是指数据体量(volumes)?大,指代大型数据集,一般在10TB?规模左右,但在实际应用中,很多企业用户把多个数据集放在一起,已经形成了PB级的数据量;其次是指数据类别(variety)大,数据来自多种数据源,数据种类和格式日渐丰富,已冲破了以前所限定的结构化数据范畴,囊括了半结构化和非结构化数据。接着是数据处理速度(Velocity)快,在数据量非常庞大的情况下,也能够做到数据的实时处理。最后一个特点是指数据真实性(Veracity)高,随着社交数据、企业内容、交易与应用数据等新数据源的兴趣,传统数据源的局限被打破,企业愈发需要有效的信息之力以确保其真实性及安全性。从所周知,大数据已经不简简单单是数据大的事实了,而最重要的现实是对大数据进行分析,只有通过分析才能获取很多智能的,深入的,有价值的信息。那么越来越多的应用涉及到大数据,而这些大数据的属性,包括数量,速度,多样性等等都是呈现了大数据不断增长的复杂性,所以大数据的分析方法在大数据领域就显得尤为重要,可以说是决定最终信息是否有价值的决定性因素。基于如此的认识,大数据分析普遍存在的方法理论有哪些呢?大数据分析的使用者有大数据分析专家,同时还有普通用户,但是他们二者对于大数据分析最基本的要求就是可视化分析,因为可视化分析能够直观的呈现大数据特点,同时能够非常容易被读者所接受,就如同看图说话一样简单明了。大数据分析的理论核心就是数据挖掘算法,各种数据挖掘的算法基于不同的数据类型和格式才能更加科学的呈现出数据本身具备的特点,也正是因为这些被全世界统计学家所公认的各种统计方法(可以称之为真理)才能深入数据内部,挖掘出公认的价值。另外一个方面也是因为有这些数据挖掘的算法才能更快速的处理大数据,如果一个算法得花上好几年才能得出结论,那大数据的价值也就无从说起了。大数据分析最终要的应用领域之一就是预测性分析,从大数据中挖掘出特点,通过科学的建立模型,之后便可以通过模型带入新的数据,从而预测未来的数据。大数据分析广泛应用于网络数据挖掘,可从用户的搜索关键词、标签关键词、或其他输入语义,分析,判断用户需求,从而实现更好的用户体验和广告匹配。大数据分析离不开数据质量和数据管理,高质量的数据和有效的数据管理,无论是在学术研究还是在商业应用领域,都能够保证分析结果的真实和有价值。 大数据分析的基础就是以上五个方面,当然更加深入大数据分析的话,还有很多很多更加有特点的、更加深入的、更加专业的大数据分析方法。当下我国大数据研发建设应在以下四个方面着力一是建立一套运行机制。大数据建设是一项有序的、动态的、可持续发展的系统工程,必须建立良好的运行机制,以促进建设过程中各个环节的正规有序,实现统合,搞好顶层设计。二是规范一套建设标准。没有标准就没有系统。应建立面向不同主题、覆盖各个领域、不断动态更新的大数据建设标准,为实现各级各类信息系统的网络互连、信息互通、资源共享奠定基础。三是搭建一个共享平台。数据只有不断流动和充分共享,才有生命力。应在各专用数据库建设的基础上,通过数据集成,实现各级各类指挥信息系统的数据交换和数据共享。四是培养一支专业队伍。大数据建设的每个环节都需要依靠专业人员完成,因此,必须培养和造就一支懂指挥、懂技术、懂管理的大数据建设专业队伍。

数据挖掘的算法及技术的应用的研究论文

摘要: 数据挖掘是从大量的、不完全的、有噪声的、模糊的、随机的实际应用数据中发现隐含的、规律性的、人们事先未知的, 但又是潜在有用的并且最终可被理解的信息和知识的非平凡过程。任何有数据管理和知识发现需求的地方都可以借助数据挖掘技术来解决问题。本文对数据挖掘的算法以及数据挖掘技术的应用展开研究, 论文对数据挖掘技术的应用做了有益的研究。

关键词: 数据挖掘; 技术; 应用;

引言: 数据挖掘技术是人们长期对数据库技术进行研究和开发的结果。起初各种商业数据是存储在计算机的数据库中的, 然后发展到可对数据库进行查询和访问, 进而发展到对数据库的即时遍历。数据挖掘使数据库技术进入了一个更高级的阶段, 它不仅能对过去的数据进行查询和遍历, 并且能够找出过去数据之间的潜在联系, 从而促进信息的传递。

一、数据挖掘概述

数据挖掘是从大量的、不完全的、有噪声的、模糊的、随机的实际应用数据中发现隐含的、规律性的、人们事先未知的, 但又是潜在有用的并且最终可被理解的信息和知识的非平凡过程。

二、数据挖掘的基本过程

(1) 数据选择:选择与目标相关的数据进行数据挖掘。根据不同的数据挖掘目标, 对数据进行处理, 不仅可以排除不必要的数据干扰, 还可以极大地提高数据挖掘的效率。 (2) 数据预处理:主要进行数据清理、数据集成和变换、数据归约、离散化和概念分层生成。 (3) 模式发现:从数据中发现用户感兴趣的模式的过程.是知识发现的主要的处理过程。 (4) 模式评估:通过某种度量得出真正代表知识的模式。一般来说企业进行数据挖掘主要遵循以下流程——准备数据, 即收集数据并进行积累, 此时企业就需要知道其所需要的是什么样的数据, 并通过分类、编辑、清洗、预处理得到客观明确的目标数据。数据挖掘这是最为关键的步骤, 主要是针对预处理后的数据进行进一步的挖掘, 取得更加客观准确的数据, 方能引入决策之中, 不同的企业可能采取的数据挖掘技术不同, 但在当前来看暂时脱离不了上述的挖掘方法。当然随着技术的进步, 大数据必定会进一步成为企业的立身之本, 在当前已经在很多领域得以应用。如市场营销, 这是数据挖掘应用最早的领域, 旨在挖掘用户消费习惯, 分析用户消费特征进而进行精准营销。就以令人深恶痛绝的弹窗广告来说, 当消费者有网购习惯并在网络上搜索喜爱的产品, 当再一次进行搜索时, 就会弹出很多针对消费者消费习惯的商品。

三、数据挖掘方法

1、聚集发现。

聚集是把整个数据库分成不同的群组。它的目的是要群与群之间差别很明显.而同一个群之间的数据尽量相似.聚集在电子商务上的典型应用是帮助市场分析人员从客户基本库中发现不同的客户群, 并且用购买模式来刻画不同客户群的特征。此外聚类分析可以作为其它算法 (如特征和分类等) 的预处理步骤, 这些算法再在生成的簇上进行处理。与分类不同, 在开始聚集之前你不知道要把数据分成几组, 也不知道怎么分 (依照哪几个变量) .因此在聚集之后要有一个对业务很熟悉的人来解释这样分群的意义。很多情况下一次聚集你得到的分群对你的业务来说可能并不好, 这时你需要删除或增加变量以影响分群的方式, 经过几次反复之后才能最终得到一个理想的结果.聚类方法主要有两类, 包括统计方法和神经网络方法.自组织神经网络方法和K-均值是比较常用的`聚集算法。

2、决策树。

这在解决归类与预测上能力极强, 通过一系列的问题组成法则并表达出来, 然后经过不断询问问题导出所需的结果。典型的决策树顶端是一个树根, 底部拥有许多树叶, 记录分解成不同的子集, 每个子集可能包含一个简单法则。

四、数据挖掘的应用领域

市场营销

市场销售数据采掘在销售业上的应用可分为两类:数据库销售和篮子数据分析。前者的任务是通过交互式查询、数据分割和模型预测等方法来选择潜在的顾客以便向它们推销产品, 而不是像以前那样盲目地选择顾客推销;后者的任务是分析市场销售数据以识别顾客的购买行为模式, 从而帮助确定商店货架的布局排放以促销某些商品。

金融投资

典型的金融分析领域有投资评估和股票交易市场预测, 分析方法一般采用模型预测法。这方面的系统有Fidelity Stock Selector, LBS Capital Management。前者的任务是使用神经网络模型选择投资, 后者则使用了专家系统、神经网络和基因算法技术辅助管理多达6亿美元的有价证券。

结论:数据挖掘是一种新兴的智能信息处理技术。随着相关信息技术的迅猛发展, 数据挖掘的应用领域不断地拓宽和深入, 特别是在电信、军事、生物工程和商业智能等方面的应用将成为新的研究热点。同时, 数据挖掘应用也面临着许多技术上的挑战, 如何对复杂类型的数据进行挖掘, 数据挖掘与数据库、数据仓库和Web技术等技术的集成问题, 以及数据挖掘的可视化和数据质量等问题都有待于进一步研究和探索。

参考文献

[1]孟强, 李海晨.Web数据挖掘技术及应用研究[J].电脑与信息技术, 2017, 25 (1) :59-62.

[2]高海峰.智能交通系统中数据挖掘技术的应用研究[J].数字技术与应用, 2016 (5) :108-108.

相关百科

热门百科

首页
发表服务