首页

> 期刊论文知识库

首页 期刊论文知识库 问题

数学与应用数学论文选题

发布时间:

数学与应用数学论文选题

数学专业毕业论文选题方向

1动态规划及其应用问题。

2计算方法中关于误差的分析。

3微分中值定理的应用。

4模糊聚类分析在学生素质评定中的应用。

5关于古典概型的几点思考。

6浅谈数形结合在数学解题中的应用。

7高校毕业生就业竞争力分析。

8最大模原理及其推广和应用。

9 最大公因式求解算法。

10行列式的计算。

新颖的数学论文题目有:

1、数学模型在解决实际问题中的作用。

2、中学数学中不等式的证明。

3、组合数学与中学数学。

4、构造方法在数学解题中的应用。

5、高中新教材中数学教学方法探讨。

6、组合数学恒等式的证明方法。

7、浅谈中学数学教育。

8、浅谈中学不等式的几何证明方法。

9、数学教育中学生创造性思维能力的培养。

10、高等数学在初等数学中的应用。

11、向量在几何中的应用。

12、情境认识在数学教学中的应用。

13、高中数学应用题的编制和一些解题方法。

14、浅谈反证法在中学教学中的应用。

15、探索证明线段相等的方法。

16、几个带参数的二阶边界值问题的正解的存在性研究。

17、关于丢番图方程1+x+y=z的一类特殊情况的研究。

18、变限积分函数的性质及应用。

19、有限集上函数的迭代及其应用。

20、小学课堂环境改着的行动研究。

21、网络环境下小学数学主题教学模式应用研究。

22、培养小学生数学学习兴趣的教学策略研究。

23、小学五年级儿童数学学习策略干预对改善其执行功能的研究。

24、小学生数学创新思维的培养。

25、促进小学生数学课堂参与的数学策略研究。

26、使学生真正成为学习的主人。

27、改革课堂教学的着力点。

28、谈素质教育在小学数学教学中的实施。

29、素质教育与小学数学教育改革。

30、浅谈学生数学思维能力的培养。

数学专业毕业论文选题方向如下:

1、并行组合数学模型方式研究及初步应用。

2、数学规划在非系统风险投资组合中的应用。

3、金融经济学中的组合数学问题。

4、竞赛数学中的组合恒等式。

5、概率方法在组合数学中的应用。

6、组合数学中的代数方法。

7、组合电器局部放电超高频信号数学模型构建和模式识别研究。

8、概率方法在组合数学中的某些应用。

9、组合投资数学模型发展的研究。

10、高炉炉温组合预报和十字测温数学建模。

11、基于数学形态学-小波分析组合算法的牵引网故障判定方法。

12、证券组合投资的灰色优化数学模型的研究。

13、一些算子在组合数学中的应用。

14、概率方法在组合数学及混合超图染色理论中的应用。

15、竞赛数学中的组合恒等式。

毕业论文(graduation study),按一门课程计,是普通中等专业学校、高等专科学校、本科院校、高等教育自学考试本科及研究生学历专业教育学业的最后一个环节,为对本专业学生集中进行科学研究训练而要求学生在毕业前总结性独立作业、撰写的论文。

论文的题目是论文的眼睛 ,是一篇文章成功的关键。下面我将为你推荐关于数学专业毕业论文题目参考的内容,希望能够帮到你!

1. 圆锥曲线的性质及推广应用

2. 经济问题中的概率统计模型及应用

3. 通过逻辑趣题学推理

4. 直觉思维的训练和培养

5. 用高等数学知识解初等数学题

6. 浅谈数学中的变形技巧

7. 浅谈平均值不等式的应用

8. 浅谈高中立体几何的入门学习

9. 数形结合思想

10. 关于连通性的两个习题

11. 从赌博和概率到抽奖陷阱中的数学

12. 情感在数学教学中的作用

13. 因材施教因性施教

14. 关于抽象函数的若干问题

15. 创新教育背景下的数学教学

16. 实数基本理论的一些探讨

17. 论数学教学中的心理环境

18. 以数学教学为例谈谈课堂提问的设计原则

1. 网络优化

2. 泰勒公式及其应用

3. 浅谈中学数学中的反证法

4. 数学选择题的利和弊

5. 浅谈计算机辅助数学教学

6. 论研究性学习

7. 浅谈发展数学思维的学习方法

8. 关于整系数多项式有理根的几个定理及求解方法

9. 数学教学中课堂提问的误区与对策

10. 中学数学教学中的创造性思维的培养

11. 浅谈数学教学中的“问题情境”

12. 市场经济中的蛛网模型

13. 中学数学教学设计前期分析的研究

14. 数学课堂差异教学

15. 一种函数方程的解法

16. 积分中值定理的再讨论

17. 二阶变系数齐次微分方程的求解问题

18. 毕业设计课题(论文主题等)

19. 浅谈线性变换的对角化问题

1. 浅谈奥数竟赛的利与弊

2. 浅谈中学数学中数形结合的思想

3. 浅谈中学数学中不等式的教学

4. 中数教学研究

5. XXX课程网上教学系统分析与设计

6. 数学CAI课件开发研究

7. 中等职业学校数学教学改革研究与探讨

8. 中等职业学校数学教学设计研究

9. 中等职业学校中外数学教学的比较研究

10. 中等职业学校数学教材研究

11. 关于数学学科案例教学法的探讨

12. 中外著名数学家学术思想探讨

13. 试论数学美

14. 数学中的研究性学习

15. 数字危机

16. 中学数学中的化归方法

17. 高斯分布的启示

数学与应用论文选题

可以的啊,写关于数学教学的都可以的。其实要是想好写一点的话,还是写数学教学方法方面的吧,比如写怎么提高数学教学效率啦,提高教学效率的主要方法啦,等等的,都很好的。也可以写一些数学思想的应用啊,比如化归思想等等啦。希望可以帮到楼主哎。

数学专业毕业论文选题方向如下:

1、并行组合数学模型方式研究及初步应用。

2、数学规划在非系统风险投资组合中的应用。

3、金融经济学中的组合数学问题。

4、竞赛数学中的组合恒等式。

5、概率方法在组合数学中的应用。

6、组合数学中的代数方法。

7、组合电器局部放电超高频信号数学模型构建和模式识别研究。

8、概率方法在组合数学中的某些应用。

9、组合投资数学模型发展的研究。

10、高炉炉温组合预报和十字测温数学建模。

11、基于数学形态学-小波分析组合算法的牵引网故障判定方法。

12、证券组合投资的灰色优化数学模型的研究。

13、一些算子在组合数学中的应用。

14、概率方法在组合数学及混合超图染色理论中的应用。

15、竞赛数学中的组合恒等式。

毕业论文(graduation study),按一门课程计,是普通中等专业学校、高等专科学校、本科院校、高等教育自学考试本科及研究生学历专业教育学业的最后一个环节,为对本专业学生集中进行科学研究训练而要求学生在毕业前总结性独立作业、撰写的论文。

关于数学论文选题 在日常学习、工作生活中,大家都尝试过写论文吧,论文是对某些学术问题进行研究的手段。还是对论文一筹莫展吗?下面是我为大家整理的关于数学论文选题,欢迎大家借鉴与参考,希望对大家有所帮助。关于数学论文选题1 数学论文选题是找“热门”还是“冷门”?“热门”课题从事研究的人员众多,发展迅速。如果作者所在单位基础雄厚,在这个领域占有相当地位,当然要从这一领域深入研究或向相关领域扩展。如果自己在这方面基础差,起步晚又没有找到新的突破,就不宜跟在别人后面搞低水平重复。选择“冷门”,知识的空白处及学科交叉点为研究目标为较好的选择。无论选“冷门”还是“热门”,选题应遵循以下原则: (1)需要性 选题应从社会需要和科学发展的需要出发。 (2)创新性 选题应是国内外还没有人研究过或是没有充分研究过的问题。 (3)科学性 选题应有最基本的科学事实作依据。 (4)可行性 选题应充分考虑从事研究的主客观条件,研究方案切实可行。 请继续阅读相关推荐: 毕业论文 应届生求职 毕业论文范文查看下载 查看的论文开题报告 查阅参考论文提纲

统计数学对于我国人口变化情况的预测。这个题目可以作为人口关注以及城镇发展趋势的论文题目。

数学与应用数学专业毕业论文选题

你好,我也是数学系毕业的,学的是信息与计算科学,我觉得我们专业的话,可以选择一些函数,方程,或者是微积分等等课题。我当时毕业选的是《具有对称性点扩散函数的图像复原算法》,其实刚开始也不是很懂,后来请了一个研究生帮忙,不知道他现在还有空帮忙不,你找下他吧,好像现在是一个编辑,领硕学术网,你去找一下,希望对你有帮助吧。

数学专业毕业论文选题方向

1动态规划及其应用问题。

2计算方法中关于误差的分析。

3微分中值定理的应用。

4模糊聚类分析在学生素质评定中的应用。

5关于古典概型的几点思考。

6浅谈数形结合在数学解题中的应用。

7高校毕业生就业竞争力分析。

8最大模原理及其推广和应用。

9 最大公因式求解算法。

10行列式的计算。

在一篇数学 教育 论文中,题目是论文的要件之首,它不同于一般 文章 的题目,我们要重视题目的重要性。以下是我为大家精心准备的数学教育论文题目,欢迎阅读!数学教育论文题目(一) 1、浅谈中学数学中的反证法 2、数学选择题的利和弊 3、浅谈计算机辅助数学教学 4、数学研究性学习 5、谈发展数学思维的 学习 方法 6、关于整系数多项式有理根的几个定理及求解方法 7、数学教学中课堂提问的误区与对策 8、中学数学教学中的创造性思维的培养 9、浅谈数学教学中的“问题情境” 0、市场经济中的蛛网模型 11、中学数学教学设计前期分析的研究 12、数学课堂差异教学 13、浅谈线性变换的对角化问题 14、圆锥曲线的性质及推广应用 15、经济问题中的概率统计模型及应用 数学教育论文题目(二) 1、二阶变系数齐次微分方程的求解问题 2、一种函数方程的解法 3、微分中值定理的再讨论 4、学生数学学习的障碍研究; 5、中学数学教育中的素质教育的内涵; 6、数学中的美; 7、数学的和谐和统一----谈论数学中的美; 8、推测和猜想在数学中的应用; 9、款买房问题的决策; 10、线性回归在经济中的应用; 11、数学规划在管理中的应用; 12、初等数学解题策略; 13、浅谈数学CAI中的不足与对策; 14、数学创新教育的课堂设计; 15、中学数学教学与学生应用意识培养; 16、关于培养和提高中学生数学学习能力的探究; 17、运用多媒体培养学生 18、高等数学课件的开发 19、 广告 效益预测模型; 数学教育论文题目(三) 1、浅谈菲波纳契数列的内涵和应用价值 2、一道排列组合题的解法探讨及延伸 3、整除与竞赛 4、足彩优化 5、向量的几件法宝在几何中的应用 6、递推关系的应用 7、坐标方法在中学数学中的应用 8、小议问题情境的创设 9、数学概念探索启发式教学 10、柯西不等式的推广与应用 11、关于几个特殊不等式的几种巧妙证法及其推广应用 12、一道高考题的 反思 13、数学中的研究性学习 15、数字危机 16、数学中的化归方法 17、高斯分布的启示 18、 的变形推广及应用 19、网络优化 20、泰勒公式及其应用 猜你喜欢: 1. 数学教育教学论文参考范文 2. 关于数学专业毕业论文题目参考 3. 数学教育专业毕业论文 4. 有关数学教育的论文范文 5. 数学教育专业毕业论文参考

可以的啊,写关于数学教学的都可以的。其实要是想好写一点的话,还是写数学教学方法方面的吧,比如写怎么提高数学教学效率啦,提高教学效率的主要方法啦,等等的,都很好的。也可以写一些数学思想的应用啊,比如化归思想等等啦。希望可以帮到楼主哎。

数学与应用数学小论文

数学是知识的工具,亦是 其它 知识工具的泉源。所有研究顺序和度量的科学均和数学有关。下文是我为大家搜集整理的关于数学小论文3000字的内容,欢迎大家阅读参考! 数学小论文3000字篇1 浅析小学数学中创设有效情境教学 新课程标准中明确规定了情境教学法在小学数学中的地位,倡导教师通过创建情境,引导学生展开学习。情境教学法的优势在于能够将抽象、难懂的数学知识更加直观地展现出来,符合小学阶段学生的学习特点以及因材施教的原则,针对小学数学教学中情境教学法的应用进行几点研究。 生活情境小学数学 高效课堂 情境教学法是倾向于学生的 教学 方法 ,而不是单纯地追求教学效果,为何要创建生活情境?它是以小学生实际能力为基础,在它们所能理解消化知识的最大范围内,运用更加便于学生理解的方式,来进行教学,从这一点可以看出生活情境完全符合因材施教,以生为本的原则,是非常值得在小学数学教学中应用和推广的。 一、小学数学课堂中情境教学法的优势 数学学科的特点是逻辑性强,要求学生具有一定的推理能力、分析能力以及理论联系实际的能力。小学阶段的数学,虽然在难度上有所控制,但是数学学科原本的性质并没有改变,它依旧具有抽象性、逻辑性以及实用性的特点,小学课本中一些图形、定义,教师如果单抽说教,学生很难理解和掌握。为了达到教有所成的目的,教师需要借助一定的教学方法,来简化这些数学知识,使学生能够更加轻松、快速地理解和掌握,情境教学法恰恰能够满足小学数学的有需求,借助情境教学法,能够将抽象知识点直观化的呈现出来,激发学生的学习欲望。教师通过构建一个个生动的情境,为学生营造更加生动、活泼的学习气氛,鼓励学生参与教学活动、学生的学习兴趣和热情被调动起来,教师的教学效率必然会得到提升。举例说明,进行“中心对称图形”这部分知识的讲解,采用传统的教学工具以及单一的口头讲述,学生很难理解其中的内涵和意义,而采用创建情境教学法,将学生带入到一个直观化的思维空间中,并通过多媒体技术将概念、关键知识点制作成动态的课件,学生很快就会投入学习状态,学习成效显著,教学效率得以提升。 二、合理创设情境,提升小学数学课堂教学效率 1.结合学生能力特点,创建教学情境 小学阶段,学生的学习能力不完善,学生第一次系统化的接触数学知识,学习起来难免会有些吃力,教师在教学情境创建的时候,应该尽量使用简单易懂、富有趣味性的语言,确保学生能够了解教师说什么,这是开展教学的第一步,在这个基础之上构建情境,才能够真正发挥情境教学的优势和作用。 比如,进行“分数的基本性质”这个知识点教学的时候,教师可以创建这样的情境:白兔子妈妈将一个苹果分成4块,准备分给白兔3兄弟吃,她将1块苹果分给了大哥,而二哥却嚷着要吃2块,妈妈没有办法就切了第2个苹果,分成了8块,给了二哥2块,可是这个时候,三弟又不开心了,他想吃3块,猴妈妈就把第3个苹果平均分成12块,给了三弟3块。那么问题来了,白兔三兄弟,谁分到的苹果最多呢?这个情境不仅富有趣味性,容易理解,同时也蕴含了把“单位1”平均分成几份,取出不同的分数,但是却表示相同的大小这个含义。 2.从学生兴趣出发,创建教学情境 首先教师要明确兴趣对于学习的重要性。激趣是学生主动学习数学的关键,激趣过程中运用运用学生熟悉并且感兴趣的话题创建情境,满足学生对于学习的各种需求,这样才能够达到提升教学效率与质量的目的,同时也培养了学生主动学习的习惯,激发了他们的学习欲望。 比如,在进行“用乘法口诀进行表内乘除法的口算”这个知识点的时候,教师可以将学生最喜欢的动画形象“熊大、熊儿”编成 故事 :有20个桃子,5个小动物,这个时候熊大和熊儿可为难了,它们要怎么分,才能够让每个小动物都获得一样多的桃子呢?这个时候学生的兴趣高涨,都会纷纷举手回答,这个导入成功的激发了学生的学习欲望和好奇心,也活跃了课堂气氛,在这样环境下,学生的学习效果会更好。教师在创建教学情境的时候,不能拘泥于一个方法,或者一种形式,根据不同的教学内容和目标,故事可以随时进行改编,即便是在课堂上,教师也可以灵活改变情境的设计,目的就是更好的带动学生学习,帮助学生更加轻松的领会数学知识和魅力。 3.结合学生心理特点,创建教学情境 创建教学情境,要注意结合小学生的心理发育特点。这个阶段游戏和动画是最能够吸引学生的手段,教师利用这一点进行情境创建,既能够寓教于乐,又做到了因材施教。在情境教学基础上,鼓励学会独立思考,强化学生数学应用意识,提升 逻辑思维 能力。 比如,“克与千克”知识点的讲解,教师可以采用小组合作做游戏的方式,游戏的规则是“比比谁最快、比比谁最准”。教师先将学会分成若干小组,每个小组都发一包黄豆,一瓶矿泉水,一本新华字典。然后先让这些小组自行估算这些物品的重量,然后将其填入表格中。然后教师再带领大家用称来测量,看看哪个小组估算最准确,并给予这个小组的成员一定的奖励,通过这样的游戏方法,锻炼学生的观察、估算以及验证意识。 三、结束语 教师应该基于教材基础,结合学生的自身的学习特点、兴趣等各方面因素,合理创建教学情境,丰富课堂教学内容,增加课堂教学趣味性。通过大量的实践教学分析发现,在小学数学教学中引入情境教学法,不仅有效提升了学生学习数学的兴趣,也培养了学生独立思维的能力,提升了小学数学课堂教学效率。 数学小论文3000字篇2 浅析中学数学的兴趣教学 中学数学在难度上和内容上都比小学阶段的数学要深广,因此学生在学习的时候经常出现畏难情绪,一开始产生学习困难而没有得到正确的解决,因此便一步步丧失对自己的信心。例如不少学生觉得自己学不好数学就是因为自己不够聪明,从而丧失学习的兴趣,上课心不在焉,很难集中注意力,这都需要教师给予高度的重视。如何有效解决这些负面现象的影响是教师应该着手的方面之一,我认为,要想真正使学生主动喜欢学习数学就必须要有兴趣的支撑,中学阶段学生自我的意识和约束力相对较弱,学习目的性不强,因此更加需要兴趣的辅助作用,有了兴趣之后,学生就会积极主动参与到学习活动中来,认真学习课本内容甚至还会对于一些拓展思考题有兴趣,自己进行研究探求。以下我结合自身的教学 经验 针对中学数学的兴趣教学谈几点看法。 一、建立和谐的师生关系 帮助学生培养兴趣,教师必须关注师生关系的建构。在中学阶段教师和学生相处的时间较长,因此教师自身对于学生的态度会对学生产生较大影响。尤其是中学时期,学生的个性和 兴趣 爱好 、人格、情感、意志等都在发展的过程中,教师的行为和语言都会对学生产生持久的影响,教师可以充分利用这一点,通过自身对学生的数学学习兴趣产生有效的引导作用。 第一,数学教师无论是否担任班主任都应该对学生十分用心。关注学生整体的发展,不仅仅是要求学生一定要把数学学好,占有学生课下的时间,实践证明数学教师如果要求过分苛刻会令学生产生逆反心理。例如,在每个阶段性考试进行完之后,询问学生整体的学习情况,并且及时给出建设性意见。学生都希望能够得到老师的关注和鼓励,这对于学生兴趣的建立有莫大的好处,良好的师生关系能够推动学生兴趣的培养进度。 第二,教师要关注学生非智力因素的发展。作为数学教师仍然有义务帮助学生建立积极乐观的价值观,教师应该以正确的价值引导,使学生对数学形成正确的认识,在心理上真正接受这门学科。例如,教师在课上讲到一些数学定理的时候,教师可以引导学生对数学家进行学习了解,继承和发扬数学家的精神。这需要教师明确自身的教学任务和作为 教育 者的责任,全面推动学生品质和能力的发展,当学生感到教师的用心和关注之后自然会产生亲切感,这无疑会对课堂教学效果和师生和谐关系的构建起到推动作用。 总之,师生关系的建立需要教师充分调动一切积极因素,帮助学生建立对教师的正确态度和认识,促进他们对数学学科的关注和学习,这是兴趣建立的重要步骤。 二、注重学生在教学中的主体性 主体性是建立兴趣的重要支撑,有了主体性,学生就会自觉产生对数学学习的认识,并且积极进行知识的学习,甚至会主动发现问题、解决问题,进行预习和主动复习等。中学阶段的数学教学内容多且课时紧,教师在课堂上都是紧赶慢赶,一节课下来以自己为中心,灌输式的学习方式严重压抑学生此阶段继续发展的主体性,导致学生无法获得相应的自由空间来发展自己,从而致使兴趣的失落。因此,教师应该充分尊重学生的主体性,在教学的过程中帮助学生建构主体性特征和能力,从而推动兴趣的发展。那么如何在教学形式和内容方面全方位建构学生的主体性呢?我认为从以下几点出发效果明显。 第一,在课堂教学中,教师应该减小功利性,不要总是告诉学生什么考什么不考,要让学生真正对于数学形成自己的认知感受,而不是为了应付考试才学数学。那么,教师就应该加大拓展思考题的训练和学习,打开学生的思维,形成开放性思维模式和创造性思维能力,这是建立主体性的主要内容之一。 第二,教师要采取启发式的教学方法,在课堂授课的过程中,很多教师发现虽然让学生主动预习,但是由于中学阶段学业压力较大,学生没有养成习惯进行预习,也没有时间和精力去提前预习准备,而这一过程实际上是很重要的,尤其对于学生主体性的发展很关键。因此,教师应该提前为每个阶段的学生设置合适的预习目标,并且给学生充分的时间进行预习讲解,学生之间相互检查和学习可以增强他们自我表现的意识,在自己预习的过程中,逐步养成积极主动的学习习惯,继而对今后的发展奠定良好的基础。 总之,主体性的建立是培养学生学习兴趣的必要过程,教师应该结合该阶段学生的发展特征进行主体性的建构和教学过程中的设置,充分尊重学生的发展需求和方向,满足其自我表达和个性发展的欲求,从而产生良好的教学影响。 三、加强合作 合作是开展兴趣教学的推动力和组成部分之一。合作教学和合作学习本身作为一种教学方法就是中学数学教育的重要内容,但是合作又可以作为兴趣教学的重要组成部分而开展,提高学生之间的互帮互助,有效帮助学困生的提升和困难克服,同时帮助学生在自由轻松的学习氛围中感受数学学习的乐趣,从而建立持久的兴趣。 第一,合作是学生之间的合作,教师要对学生进行有效的分组,并不是随机进行分组,小组的构成合理可以提高学生的参与兴趣。例如,有的小组构成差距过大,学困生产生自卑心理,几乎很少参与到合作中来,只会产生负面作用,因此教师要根据学生的性格发展和学习水平进行合理划分。 第二,合作不仅仅是学生之间的合作,也需要教师的参与,学生自由合作讨论可能会降低效率,学生自控力差,很难高效完成学习任务,因此教师要充分发挥引导和监督的作用,帮助学生快速完成任务,从而建立自信,在自豪感的形成过程中,学生逐步产生对数学的喜爱之情。 第三,教师也要充分利用多媒体来激发学生的兴趣,多媒体是符合时代发展的教学手段,学生对于电脑和高科技充满好奇和兴趣,教师应该及时学习最新教学技术,应用到数学课堂教学中来,作为激发因素帮助学生建立学习兴趣。总之,开展兴趣教学形式多样,需要广大教师群体不断进行探索和完善。 通过以上论述,我发现中学阶段数学的兴趣教学必须以学生的发展特征和需求为立足点,充分发挥教师的能动作用,围绕建立主体性为中心,关注学生全方面的发展情况和趋势,从而实现兴趣的有效建立。 猜你喜欢: 1. 数学文化论文3000字 2. 初中数学论文3000字 3. 数学论文范文3000字 4. 数学文化的论文范文参考 5. 物理学术论文3000字

数学小论文一 关于“0” 0,可以说是人类最早接触的数了。我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”这样说显然是不正确的。我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。” “任何数除以0即为没有意义。”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少。一个整体无法分成0份,即“没有意义”。后来我才了解到a/0中的0可以表示以零为极限的变量(一个变量在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变量在变化过程中其绝对值永远大于任意大的已定正数)。从中得到关于0的又一个定理“以零为极限的变量,叫做无穷小”。 “105、203房间、2003年”中,虽都有0的出现,粗“看”差不多;彼此意思却不同。105、2003年中的0指数的空位,不可删去。203房间中的0是分隔“楼(2)”与“房门号(3)”的(即表示二楼八号房),可删去。0还表示…… 爱因斯坦曾说:“要探究一个人或者一切生物存在的意义和目的,宏观上看来,我始终认为是荒唐的。”我想研究一切“存在”的数字,不如先了解0这个“不存在”的数,不至于成为爱因斯坦说的“荒唐”的人。作为一个中学生,我的能力毕竟是有限的,对0的认识还不够透彻,今后望(包括行动)能在“知识的海洋”中发现“我的新大陆”。 数学小论文二 各门科学的数学化 数学究竟是什么呢?我们说,数学是研究现实世界空间形式和数量关系的一门科学.它在现代生活和现代生产中的应用非常广泛,是学习和研究现代科学技术必不可少的基本工具. 同其他科学一样,数学有着它的过去、现在和未来.我们认识它的过去,就是为了了解它的现在和未来.近代数学的发展异常迅速,近30多年来,数学新的理论已经超过了18、19世纪的理论的总和.预计未来的数学成就每“翻一番”要不了10年.所以在认识了数学的过去以后,大致领略一下数学的现在和未来,是很有好处的. 现代数学发展的一个明显趋势,就是各门科学都在经历着数学化的过程. 例如物理学,人们早就知道它与数学密不可分.在高等学校里,数学系的学生要学普通物理,物理系的学生要学高等数学,这也是尽人皆知的事实了. 又如化学,要用数学来定量研究化学反应.把参加反应的物质的浓度、温度等作为变量,用方程表示它们的变化规律,通过方程的“稳定解”来研究化学反应.这里不仅要应用基础数学,而且要应用“前沿上的”、“发展中的”数学. 再如生物学方面,要研究心脏跳动、血液循环、脉搏等周期性的运动.这种运动可以用方程组表示出来,通过寻求方程组的“周期解”,研究这种解的出现和保持,来掌握上述生物界的现象.这说明近年来生物学已经从定性研究发展到定量研究,也是要应用“发展中的”数学.这使得生物学获得了重大的成就. 谈到人口学,只用加减乘除是不够的.我们谈到人口增长,常说每年出生率多少,死亡率多少,那么是否从出生率减去死亡率,就是每年的人口增长率呢?不是的.事实上,人是不断地出生的,出生的多少又跟原来的基数有关系;死亡也是这样.这种情况在现代数学中叫做“动态”的,它不能只用简单的加减乘除来处理,而要用复杂的“微分方程”来描述.研究这样的问题,离不开方程、数据、函数曲线、计算机等,最后才能说清楚每家只生一个孩子如何,只生两个孩子又如何等等. 还有水利方面,要考虑海上风暴、水源污染、港口设计等,也是用方程描述这些问题再把数据放进计算机,求出它们的解来,然后与实际观察的结果对比验证,进而为实际服务.这里要用到很高深的数学. 谈到考试,同学们往往认为这是用来检查学生的学习质量的.其实考试手段(口试、笔试等等)以及试卷本身也是有质量高低之分的.现代的教育统计学、教育测量学,就是通过效度、难度、区分度、信度等数量指标来检测考试的质量.只有质量合格的考试才能有效地检测学生的学习质量. 至于文艺、体育,也无一不用到数学.我们从中央电视台的文艺大奖赛节目中看到,给一位演员计分时,往往先“去掉一个最高分”,再“去掉一个最低分”.然后就剩下的分数计算平均分,作为这位演员的得分.从统计学来说,“最高分”、“最低分”的可信度最低,因此把它们去掉.这一切都包含着数学道理. 我国著名的数学家关肇直先生说:“数学的发明创造有种种,我认为至少有三种:一种是解决了经典的难题,这是一种很了不起的工作;一种是提出新概念、新方法、新理论,其实在历史上起更大作用的、历史上著名的正是这种人;还有一种就是把原来的理论用在崭新的领域,这是从应用的角度有一个很大的发明创造.”我们在这里所说的,正是第三种发明创造.“这里繁花似锦,美不胜收,把数学和其他各门科学发展成综合科学的前程无限灿烂.” 正如华罗庚先生在1959年5月所说的,近100年来,数学发展突飞猛进,我们可以毫不夸张地用“宇宙之大、粒子之微、火箭之速、化工之巧、地球之变、生物之谜、日用之繁等各个方面,无处不有数学”来概括数学的广泛应用.可以预见,科学越进步,应用数学的范围也就越大.一切科学研究在原则上都可以用数学来解决有关的问题.可以断言:只有现在还不会应用数学的部门,却绝对找不到原则上不能应用数学的领域. 数学小论文三 数学是什么 什么是数学?有人说:“数学,不就是数的学问吗?” 这样的说法可不对。因为数学不光研究“数”,也研究“形”,大家都很熟悉的三角形、正方形,也都是数学研究的对象。 历史上,关于什么是数学的说法更是五花八门。有人说,数学就是关联;也有人说,数学就是逻辑,“逻辑是数学的青年时代,数学是逻辑的壮年时代。” 那么,究竟什么是数学呢? 伟大的革命导师恩格斯,站在辩证唯物主义的理论高度,通过深刻分析数学的起源和本质,精辟地作出了一系列科学的论断。恩格斯指出:“数学是数量的科学”,“纯数学的对象是现实世界的空间形式和数量关系”。根据恩格斯的观点,较确切的说法就是:数学——研究现实世界的数量关系和空间形式的科学。 数学可以分成两大类,一类叫纯粹数学,一类叫应用 数学。 纯粹数学也叫基础数学,专门研究数学本身的内部规律。中小学课本里介绍的代数、几何、微积分、概率论知识,都属于纯粹数学。纯粹数学的一个显著特点,就是暂时撇开具体内容,以纯粹形式研究事物的数量关系和空间形式。例如研究梯形的面积计算公式,至于它是梯形稻田的面积,还是梯形机械零件的面积,都无关紧要,大家关心的只是蕴含在这种几何图形中的数量关系。 应用数学则是一个庞大的系统,有人说,它是我们的全部知识中,凡是能用数学语言来表示的那一部分。应用数学着限于说明自然现象,解决实际问题,是纯粹数学与科学技术之间的桥梁。大家常说现在是信息社会,专门研究信息的“信息论”,就是应用数学中一门重要的分支学科, 数学有3个最显著的特征。 高度的抽象性是数学的显著特征之一。数学理论都算有非常抽象的形式,这种抽象是经过一系列的阶段形成的,所以大大超过了自然科学中的一般抽象,而且不仅概念是抽象的,连数学方法本身也是抽象的。例如,物理学家可以通过实验来证明自己的理论,而数学家则不能用实验的方法来证明定理,非得用逻辑推理和计算不可。现在,连数学中过去被认为是比较“直观”的几何学,也在朝着抽象的方向发展。根据公理化思想,几何图形不再是必须知道的内容,它是圆的也好,方的也好,都无关紧要,甚至用桌子、椅子和啤酒杯去代替点、线、面也未尝不可,只要它们满足结合关系、顺序关系、合同关系,具备有相容性、独立性和完备性,就能够构成一门几何学。 体系的严谨性是数学的另一个显著特征。数学思维的正确性表现在逻辑的严谨性上。早在2000多年前,数学家就从几个最基本的结论出发,运用逻辑推理的方法,将丰富的几何学知识整理成一门严密系统的理论,它像一根精美的逻辑链条,每一个环节都衔接得丝丝入扣。所以,数学一直被誉为是“精确科学的典范”。 广泛的应用性也是数学的一个显著特征。宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,生物之谜,日用之繁,无处不用数学。20世纪里,随着应用数学分支的大量涌现,数学已经渗透到几乎所有的科学部门。不仅物理学、化学等学科仍在广泛地享用数学的成果,连过去很少使用数学的生物学、语言学、历史学等等,也与数学结合形成了内容丰富的生物数学、数理经济学、数学心理学、数理语言学、数学历史学等边缘学科。 各门科学的“数学化”,是现代科学发展的一大趋势。

在数学领域里,应用数学占有重要的位置,理论上应用数学包括运筹学和线性代数,还有概率论及数理统计等学科。下文是我为大家整理的关于数学与应用数学 毕业 论文的内容,欢迎大家阅读参考!

浅析高校目前的应用数学教学状况与改革策略

在高校设立的学科中数学教学占有的位置不容忽视,加强数学 教育 就能够使学生在解决实际问题时更有把握,并且学生自身还可以构建其数学知识体系。所以,在进行高效实际数学教学改革时,师生都对教学改革的观念加以重视,同时要慢慢的培养学生养成良好的学习习惯。

1 高校应用数学内在的意义

高校应用数学这门学科非常重要,并且不同与以往的教学。其一,是应用领域上的不同,高校应用数学的开始针对性特别的强,以往是数学有着较为传统的应用领域。其二,应用数学主要关注的就是将理论知识联系到实际,可是,以往的数学主要就是对理论加以注重。即使有很大的差异存在这两种数学中,可是这两种学科的内容是不能分离的,他们是一个整体,存在的差异也只是在针对性方面和教学目标方面[1].

2 高校目前的应用数学的教学状况

建立应用数学的有关课堂

学生在深入学习应用数学知识后,可以对数学中的一些基础运算加以掌握,并且学生的思维能力也得到了提高,学生能够深入的分析数学中的所有问题,并在对所有问题应用所学的理论知识加以解决,对学生的数学理论知识的运用与创新能力进行培养,最后达到提升学生数学素养的目标。

大学生的教学课程就包括高等数学课程,并且高校还建立了与改课程有关的专人培养内容,对应用数学的学习有助于学习其他的学科,想要学好其他的课程,应用数学的学习必不可少[2].高校建立应用数学课堂,这样学生就能掌握数学的理论知识,学生的学习数学能力将会得到培养,同时增加学生的学习兴趣,学生的数学素养也会得到提高。

高校数学中出现的问题

(1)在教学内容上有问题存在。高校数学教学的内容上涵盖性较强,很多专业学生对数学的学习知识为基础理论,根本不能联系数学实践,所以,教学的领域根本不符合教学要求,并且,学生在整个学习的过程中对所有理论知识都不能深刻的理解,这都阻碍了学生积极主动的学习数学理论知识的想法。

(2)存在在教学内容上的问题。现在高校的数学教学课堂主要重视的就是学习技巧,同时还注重推理的严谨性,可是却忽视了实际问题中应用数学理论知识去解决,这样培养出的专业人才将不能以专业实现就业,没有做到立足于岗位,对专业素质的培养不加以重视,致使理论知识脱离于实践应用,最后不能有效的培养学生的职业能力[3].

(3)存在在教师队伍方面的问题。现在,在数学教学中应用数学具有非常重要的作用,可是应用数学的教师并没有对这一点科学知识加以掌握,缺乏基本的教学能力,也缺少培养学生教学的 方法 ,在进行应用数学的教学过程中,经常出现的现象较为普遍就是缺乏专业理论知识,这样学生对理论知识就不能熟练掌握,学生也就体会不到结合理论知识和现实时间的基础要素。

3 高校应用数学的改革策略

高校应用数学制定了正确的教学观念

高校对与应用数学教学有关的课程进行制定时一定要对专业的要求加以确定,对学生所学的专业进行分析,适当的调整应用数学的教育理念。同时数学的基本开放原则为适用性,将学生提升自身的素质作为教学目标。同时还要注意数学教学所包含的育人能力,将学生的所有能力进行有效的培养,引导学生在实际生活中应用数学去解决问题,引领学生增强创新能力。

将以往的 教学方法 加以改变培养学生增加应用数学的意识

传统的数学教学方式为灌输式,新的教学方案要应用启发式来实现数学教学,同时要对多种教学方法进行深入的研究,使教学方法更有效,以往教师在进行教学时,教学方法为单一的,学生学习的知识都是被动接受的,学生在这种教学方法的带领下只能逐渐的失去数学学习的兴趣,这样需要教师将教学方法灵活化,为学生创建出一种愉悦的学习环境[4].主要就是要对学生实施因材施教,使学生能够充分发挥自己的学习热情。

高校在进行整个应用数学教学时,首先要培养的就是学生有基本的应用数学观念,同时数学知识的有效运用是教学中必不可少的内容。这就需要高校的数学教师担负起自己的教育责任,首先教师要掌握学生对应用数学的意识深浅,如果有较差的应用意识,要找其原因,同时一定要培养学生学习数学的兴趣,引导学生进行积极主动的学习,让学生能够认识到我们的生活中广泛的应用数学知识。教育者要对其进行深刻的研究,对应用数学加以重视,使应用数学的重要性在教学中得以发挥[5].同时还要将学生应用数学的意识加以提升,并且逐渐提高应用数学的能力。

对应用数学的教学内容加以改变

对数学的教学内容进行改革时,要对不同专业的内在要求加以综合,可以将课堂改变成弹性教学,对应用数学所具有的严谨性不应过多的强调,根据学生的专业内容进行教学课堂的设计,将众多的基础知识提供给学生,在以后能够更好的支持学生的职业技能,使学生的综合能力得到提高[6].

总之想要使学生的自身学习能力能够提高,就要注意到应用数学不同于纯数学,它的实践性较强,所以,想要使学生能够积极主动学习应用数学,就一定要培养学生的学习兴趣。高校要在数学师资投入这一方面加大力度,并且也要深入的去分析和研究这一教学课题,将应用数学的整体教学提升上来,使应用数学教学不断的发展。

参考文献:

[1] 邢潮锋,黄治琴,杨旭,等。 数学建模与高校数学教学改革的实践---以济南大学为例[J].高等函授学报(自然科学版),2010,23(2):20-22.

[2]郭娜,朱奕奕。浅谈高校应用数学教学改革与学生应用数学意识的培养[J].信息化建设,2015(4):61-63.

[3]王艳华,王笑岩。渗透数学建模思想方法的基本途径[J].辽宁师专学报(自然科学版),2012,14(4):5-6.

[4]王君轩。探究高校学生数学建模意识与方法的培养[J].大观周刊,2012(16):214-214.

[5]宋文静。浅谈高校数学教学中如何培养学生应用数学意识[J].东方青年·教师,2012(2):30.

[6]施明华,赵建中,周本达,等。应用型院校高等数学与数学建模融合的探索[J].教育教学论坛,2013(21):270-271.

浅谈小学生应用数学意识提升策略

在数学领域里,应用数学占有重要的位置,理论上应用数学包括运筹学和线性代数,还有概率论及数理统计等学科,这些学科的广泛应用都体现了应用数学的思想。 随着教育体制的改革,教学中也对应用数学教学提出了新的要求,要求应用数学教学要重视与生活的联系性,及与 其它 学科的关联。让小学生能用数学知识,解决实际生活中的一些问题。

1、丰富的生活与应用数学的联系

教师要注重生活素材的积累,并能将这些有用的素材贯穿到教学中,把数学书本中抽象的知识具体化,让小学生更好地进行消化和理解,认识到应用数学与实际生活的联系。 根据学习的内容老师可以有针对性布置一些作业。比如在进行米,厘米的学习时,可以让学生回家里量一下床、门、饭桌等家俱的尺寸,在学习元角分等时,可以让学生自己走超市买矿泉水等进行实践,这样可以加深对学习的数学知识的理解,并起到一定的巩固作用,是一个非常好的教学方法。

2、开启小学生学习应用数学的积极性

小学生的应用数学知识,大多比较简单,在生活中很容易找到切入点和联系性。所以要求老师在教学中,多进行书本与实际的联系,激发学生的学习积极性,多把理论化的数学知识转化成实际的问题。 这样不仅让学生认识起来更清晰,还会使学生真正感受到学习应用数学的价值,积极想办法用应用数学的思想解决问题。 在这个学习的过程中,学生就能够对应用数学产生浓厚的兴趣,有探究下去的意识,这才是教学的目的所在。例如分数部分的讲解,就可以通过分 蛋糕 、分苹果等生活中实际事例来进行讲解,这样学生不仅能很快理解,而且会明白在日常生活中如何去应用分数,所以这样往往教学效果比较理想。

3、不忽视教材的作用,教材融于生活

随着教学方法的推陈出新,很多老师对教材开始忽视。 因为越来越多的教学方式,象分组辅导活动、多媒体教学、课外设计等各种形式教学的开展,老师对教材就不象过去那么重视和依赖了,其实这种想法也是错误的。 任何的教学活动也是要以教材为蓝本的,都是互为补充的关系,教材起到统领性、目标性的作用,任何形式的教学都是围绕教材来进行的,如果脱离了教材就失去了意义,所以老师要充分地利用好手中教材的作用,并与实际生活展开联系。

如:小小采购员、小管家、数字与编码、节约能源、调查利率,计算利息等,这些实践活动内容既符合学生的年龄特征和知识基础,又符合学生的生活背景。因此,我们可充分利用这些资源,遵循教材的要求组织具体、有趣、富有实践性、全员参与的数学活动,培养学生用数学的眼光观察周围事物, 经历应用数学知识分析和解决实际问题的过程,将数学问题与生活 经验 联系起来,使学生认识到数学与日常生活息息相关,获得应用数学的成功体验。

4、生活情境化的练习促进应用数学的学习

对于应用数学的教学,最合适的方法就是放到具体的情境中去讲解,这样更利于学生的思考,并使数学看起来更有趣,更容易激发学生的学习兴趣。在这个方面,就需要教师用心去设计一些生活场景,并根据学生的 兴趣 爱好 ,多设置一些开放性的问题,老师适当进行引导。 这样让学生在回答问题和思考问题的过程中,进行了应用数学知识的学习。

比如,在学生学习加减法时,可以让几个同学进行分组,分别扮演顾客和营业员,拿钱和一些简单的货品进行加减法的运算练习,可以有同学喜欢的糖果,饮料等,也可以有一些平时常见的书包、本子和笔等文具。 这样学生会有参予的积极性,也会对加减法的运算产生浓厚的兴趣, 并且通过分组练习了解了加减法运算在实际生活中的运用,这种情境式教学方法,就是让学生在最熟悉的环境中去感受接触到新知识,在应用数学的教学中受到学生普遍好评。

5、学习应用数学的过程就是培养实际能力的过程

在学习的过程中也不断发现问题,然后再想办法去解决问题。 这整个的过程,都可以让学生不知不觉中去探究知识,增加 逻辑思维 能力与解决问题的能力。 另外,通过学生问问题,其它同学和老师解答,还可以加强学生的沟通交流能力。 在与老师和同学的交流探讨中,还可以让同学懂得集体的力量,懂得克服困难有时需要帮助,从各个角度和层面上,让学生了解感受数学在实际中的应用,应用数学的魅力及学习它的重要意义。

在教学低年级学生学习比多比少,比大比小的知识并能做简单的减法讲讲算算后,可让学生调查家里人的岁数,编成应用题,如奶奶66 岁,爸爸 30 岁,奶奶比爸爸大几岁? 等等,讨论谁的年龄大,谁的年龄小,谁比谁小多少,谁与谁相差多少? 两人相加是多少岁? 谁的年龄是谁的几倍等。 再如教学乘法、除法的含义时,通过摆一摆学具的活动,掌握抽象的概念。 教师要鼓励学生多思考、多观察,从中发现数学问题,并将其分析、探索、组织、锻炼、筛选等活动方式自编应用题,有利于培养学生学数学、用数学的意识,也有利于培养学生从不同角度,全方位分析问题和解决问题的能力。

6、结束语

在我们的日常工作和生活中有着大量的应用数学问题。 只要小学数学教师能够将平时收集和观察到的实践问题的资料, 经过 总结 、概括、处理之后,就能够设计和提炼出相关的应用数学问题,让学生把他们所学到的知识应用于实践生活当中去,从而使学生认识到学习数学的价值,激发学生学习数学的兴趣,开拓学生的数学思维,提高学生灵活运用数学知识的意识和能力。 因此,充分发挥应用数学在小学数学教学中的作用,不仅能够教会学生如何运用学到的数学知识来解决实际应用数学问题,还能激发每个学生的创造潜能,培养学生的创新能力。

参考文献:

[1]季山红.对小学生数学建模思想的培养[J].语数外学习:初中版中旬,2012(09)。

[2]郭霞.在小学阶段进行数学建模的探索[J].中国电力教育,2009(13)。

[3]吴信钰.小学数学教学联系生活策略的研究[D].东北师范大学,2011.

游戏中的数学一天,熙熙姐姐交给我们一个游戏:两人轮流从1—10按顺序报数,每次只能报1、2或3个数,谁先报到10,谁就赢了.大家都想将对方“打倒”,但是,怎样才能让自己百分之百的胜利呢?这个问题总在我的脑海中回荡,使我疑惑不解.回到家,我在小篮子里挑了十个石子,准备新手操作一下.我把爸爸叫来,让爸爸和我一起做这个游戏.我找来一支笔和一本本子,将我做的每一步记录下来.规则是这样的:我和爸爸轮流拿石子,最多拿3个,最少拿1个,谁拿到最后一个,谁就赢了.第一场我失败了.原来,爸爸先拿,爸爸让我在最短的时间内输的“很惨”;第二场我先拿,我居然赢了……我将记录反复看了几遍,终于发现,我用最大的和最小的数相加:即1+3=4,又用了石子总数除以最大数与最小数的和,也就是10÷4=2…2,如果有余数,就我先拿,余数是几就那几个石子,如果没有余数,让对方先拿.现在余数是2,就拿2个石子,剩下的每次拿的石子和对方拿的和是除数3,我就可以必胜了.为了保证答案的准确性,我又拿了28个石子和爸爸重新玩,有了上面的规律,我果然战无不胜!原来,生活中数学无处不在,它们正等着你去发现呢! 学数学就是为了能在实际生活中应用,数学是人们用来解决实际问题的,其实数学问题就产生在生活中.比如说,上街买东西自然要用到加减法,修房造屋总要画图纸.类似这样的问题数不胜数,这些知识就从生活中产生,最后被人们归纳成数学知识,解决了更多的实际问题. 我曾看见过这样的一个报道:一个教授问一群外国学生:“12点到1点之间,分针和时针会重合几次?”那些学生都从手腕上拿下手表,开始拨表针;而这位教授在给中国学生讲到同样一个问题时,学生们就会套用数学公式来计算.评论说,由此可见,中国学生的数学知识都是从书本上搬到脑子中,不能灵活运用,很少想到在实际生活中学习、掌握数学知识. 从这以后,我开始有意识的把数学和日常生活联系起来.有一次,妈妈烙饼,锅里能放两张饼.我就想,这不是一个数学问题吗?烙一张饼用两分钟,烙正、反面各用一分钟,锅里最多同时放两张饼,那么烙三张饼最多用几分钟呢?我想了想,得出结论:要用3分钟:先把第一、第二张饼同时放进锅内,1分钟后,取出第二张饼,放入第三张饼,把第一张饼翻面;再烙1分钟,这样第一张饼就好了,取出来.然后放第二张饼的反面,同时把第三张饼翻过来,这样3分钟就全部搞定. 我把这个想法告诉了妈妈,她说,实际上不会这么巧,总得有一些误差,不过算法是正确的.看来,我们必须学以致用,才能更好的让数学服务于我们的生活. 数学就应该在生活中学习.有人说,现在书本上的知识都和实际联系不大.这说明他们的知识迁移能力还没有得到充分的锻炼.正因为学了不能够很好的理解、运用于日常生活中,才使得很多人对数学不重视.希望同学们到生活中学数学,在生活中用数学,数学与生活密不可分,学深了,学透了,自然会发现,其实数学很有用处. 我在商场里学数学用数学之买家角度 作为一个买家,最主要的是要做到货比三家.要买一件衣服,遇到合适的不妨先把品牌、尺码、价格记下来再到别的店做比较.一个物品的价格是进价+运费+税费+厂商利润,还有店铺租金员工工资等一系列附加成本,所以往往卖价要比商品价值高太多了.其实在省钱这方面有一个更好的办法——网上购物.网上购物价格要便宜多了.在网上一个物品的价格是进价+运费.一件三四百的衣服,在网上可能只卖五六十,十分实惠.就算加上运费也要便宜许多.所以,我认为现在商场中挑选自己合适的东西,把品牌、货号、以及自己合适的尺码记好,再到网上购买.当然有些东西在网上是买不到的,这是就只有货比三家挑出最实惠的再买了.可能有许多人认为一分价钱一分货,便宜没好货……我可以这么说,只要掌握好方法,便宜也是可以买到好东西的.同样一件商品,便宜的和贵的,您会选择哪个呢? 大家也知道网上东西便宜,但存在的风险较大.这就需要我们有一定的警惕性了!网上卖东西的商家是有信誉度的,这个信誉度直接显示在网页上以供买家参考.同时还有成交量啊,好评度阿以及买家的留言,这些都是购物网站为了防止网上行所设置的.现在网上购物已经很透明了,多转转多看看总吃不了亏. 毕竟网上购物还是风险大,所以不妨我们再来看看商场里的活动吧,商场里的活动多,又诱人,其中会不会有什么小陷阱呢?这时就需要运用我们的数学啦! “买一赠一了啊,满200送200!”哟,你瞧,活动来了! 1.满额送券销售活动 每过节假日,我们行走在繁华的大街上,随处可见商家打出的“满200送200”的促销招牌.消费者们蜂拥而至,商场里人山人海,抢购成风.而实际上商家心里早打好了如意算盘.俗话说:只有买亏,没有卖亏,“满200送200元券”只是商家的一种促销手段,其中暗藏着数学问题. 就说满200送200元购物券.某顾客先用490元买了一件羊绒外衣,送来了400元购物券.此时得到的四百元购物券,一般顾客心理都会产生一种捡便宜的感觉,于是就产生了较强的购买欲望,意欲花完为快(一般商家的购物券都是限期消费,在一定的时期内没有消费就过期作废).于是这位顾客又花了248元券买了一双鞋,又用剩下的150元券中的128买了一条围巾.那么顾客到底便宜了多少呢?我们可以算一下128+248+490=866(元),这是原来不打折时需要花的钱.490/866,所打的折扣大约是五六折.这位先生处理还好,因为购物券只能在指定地点使用,如果买了送,送了买…….这样循环下去的话,那商家就赚大了!因为你不得不一直在这个地点消费,商家就算把你套上套了,所以经过真么一算,看来数学真的很重要! “快看报纸!快看看!有奖耶~!诶?!还有个商场打折耶~!不过哪个合算啊?”你瞧瞧!又是一个活动哟… 2.有奖销售与折扣比较 某报纸上报道了两则广告,甲商厦实行有奖销售:特等奖10000元1名,一等奖1000元2名,二等奖100元10名,三等奖5元200名,乙商厦则实行九五折优惠销售.我们想一想;哪一种销售方式更吸引人?哪一家商厦提供给销费者的实惠大? 面对问题我们并不能一目了然.在实际问题中,甲商厦每组设奖销售的营业额和参加抽奖的人数都没有限制.所以这个问题应该有几种答案. 分析:(1)若甲商厦确定在单位时间内抽奖,当参加人数较少,少于213(1十2+10+200=213人)人,人们会认为获奖机率较大,则甲商厦的销售方式更吸引顾客;(2)若甲商厦确定在单位时间内抽奖,而在单位时间内的消费者很多,那么它给顾客的优惠幅度就相应的小.因为甲商厦提供的优惠金额是固定的,共14000元(10000+2000+1000+1000=14000).假设两商厦提供的优惠都是14000元,则可知乙商厦的营业额为280000元(14000÷5%=280000). “喔~~~原来如此啊!这个还得看人数呢!还牵扯到优惠金额,嗯……数学是多么重要哇!” 学数学固然重要,但是最终目的还是能把它合理运用到实际生活中来,我们要学会学数学用数学!

数学与应用数学毕业论文题目

统计数学对于我国人口变化情况的预测。这个题目可以作为人口关注以及城镇发展趋势的论文题目。

数学专业毕业论文选题方向如下:

1、并行组合数学模型方式研究及初步应用。

2、数学规划在非系统风险投资组合中的应用。

3、金融经济学中的组合数学问题。

4、竞赛数学中的组合恒等式。

5、概率方法在组合数学中的应用。

6、组合数学中的代数方法。

7、组合电器局部放电超高频信号数学模型构建和模式识别研究。

8、概率方法在组合数学中的某些应用。

9、组合投资数学模型发展的研究。

10、高炉炉温组合预报和十字测温数学建模。

11、基于数学形态学-小波分析组合算法的牵引网故障判定方法。

12、证券组合投资的灰色优化数学模型的研究。

13、一些算子在组合数学中的应用。

14、概率方法在组合数学及混合超图染色理论中的应用。

15、竞赛数学中的组合恒等式。

毕业论文(graduation study),按一门课程计,是普通中等专业学校、高等专科学校、本科院校、高等教育自学考试本科及研究生学历专业教育学业的最后一个环节,为对本专业学生集中进行科学研究训练而要求学生在毕业前总结性独立作业、撰写的论文。

可以的啊,写关于数学教学的都可以的。其实要是想好写一点的话,还是写数学教学方法方面的吧,比如写怎么提高数学教学效率啦,提高教学效率的主要方法啦,等等的,都很好的。也可以写一些数学思想的应用啊,比如化归思想等等啦。希望可以帮到楼主哎。

还有三个月就是毕业生们答辩的时间了,但是很多毕业生们目前连选题都还没有选好。时间紧迫,我立马为大家精心整理了一些大学数学系本科毕业论文题目,供毕业生们参考! 1、导数在不等式证明中的应用 2、导数在不等式证明中的应用 3、导数在不等式证明中的应用 4、等价无穷小在求函数极限中的应用及推广 5、迪克斯特拉(Dijkstra)算法及其改进 6、第二积分中值定理“中间点”的性态 7、对均值不等式的探讨 8、对数学教学中开放题的探讨 9、对数学教学中开放题使用的几点思考 10、对现行较普遍的彩票发行方案的讨论 11、对一定理证明过程的感想 12、对一类递推数列收敛性的讨论 13、多扇图和多轮图的生成树计数 14、多维背包问题的扰动修复 15、多项式不可约的判别方法及应用 16、多元函数的极值 17、多元函数的极值及其应用 18、多元函数的极值及其应用 19、多元函数的极值问题 20、多元函数极值问题 21、二次曲线方程的化简 22、二元函数的单调性及其应用 23、二元函数的极值存在的判别方法 24、二元函数极限不存在性之研究 25、反对称矩阵与正交矩阵、对角形矩阵的关系 26、反循环矩阵和分块对称反循环矩阵 27、范德蒙行列式的一些应用 28、方阵A的伴随矩阵 29、放缩法及其应用 30、分块矩阵的应用 31、分块矩阵行列式计算的若干方法 32、辅助函数在数学分析中的应用 33、复合函数的可测性 34、概率方法在其他数学问题中的应用 35、概率论的发展简介及其在生活中的若干应用 36、概率论在彩票中的应用 37、概率统计在彩票中的应用 38、概率统计在实际生活中的应用 39、概率在点名机制中的应用 40、高阶等差数列的通项,前n项和公式的探讨及应用 41、给定点集最小覆盖快速近似算法的进一步研究及其应用 42、关联矩阵的一些性质及其应用 43、关于Gauss整数环及其推广 44、关于g-循环矩阵的逆矩阵 45、关于二重极限的若干计算方法 46、关于反函数问题的讨论 47、关于非线性方程问题的求解 48、关于函数一致连续性的几点注记 49、关于矩阵的秩的讨论 _ 50、关于两个特殊不等式的推广及应用 51、关于幂指函数的极限求法 52、关于扫雪问题的数学模型 53、关于实数完备性及其应用 54、关于数列通项公式问题探讨 55、关于椭圆性质及其应用地探究、推广 56、关于线性方程组的迭代法求解 57、关于一类非开非闭的商映射的构造 58、关于一类生态数学模型的几点思考 59、关于圆锥曲线中若干定值问题的求解初探 60、关于置信区间与假设检验的研究 61、关于周期函数的探讨 62、函数的一致连续性及其应用 63、函数定义的发展 64、函数级数在复分析中与在实分析中的关系 65、函数极值的求法 66、函数幂级数的展开和应用 67、函数项级数的收敛判别法的推广和应用 68、函数项级数一致收敛的判别 69、函数最值问题解法的探讨 70、蝴蝶定理的推广及应用 71、化归中的矛盾分析法研究 72、环上矩阵广义逆的若干性质 73、积分中值定理的再讨论 74、积分中值定理正反问题‘中间点’的渐近性 75、基于高中新教材的概率学习 76、基于最优生成树的'海底油气集输管网策略分析 77、级数求和的常用方法与几个特殊级数和 78、级数求和问题的几个转化 79、级数在求极限中的应用 80、极限的求法与技巧 81、极值的分析和运用 82、极值思想在图论中的应用 83、几个广义正定矩阵的内在联系及其区别 84、几个特殊不等式的巧妙证法及其推广应用 85、几个重要不等式的证明及应用 86、几个重要不等式在数学竞赛中的应用 87、几种特殊矩阵的逆矩阵求法

相关百科

热门百科

首页
发表服务