我们写论文,都需要寻找或者引用相关领域的参考文献,那么如何查找与论文课题相关的参考文献呢?下面我来演示一下吧。
论文查找文献的途径有:中国知网、百度学术、万方数据库、Pubmed
1、中国知网。输入主题或者关键词进行查询,这也是最常用的一种方式,中国知网也是国内最权威、最常用的一个数据库。
2、百度学术。百度学术上面有很多中文文献,百度学术搜索可检索到收费和免费的学术论文,可以通过时间筛选、标题、关键字、摘要、作者、出版物、文献类型、被引用次数等指标进行精准检索。
3、万方数据库。万方数据库也是国内较大的一个文献数据库,可以输入相应的关键词进行查找。
4、Pubmed网站。Pubmed网站是较全的英文文献数据库,在里面输入文献DOI号,文章题目即可。
以上内容参考:百度百科-百度学术 中国知网
分享5种找文献途径!1、百度学术百度学术是一个较大的文献知识库,包含好几个中英文数据库,因而内容会比较宽泛。知网中的文献也会收录在百度学术中,其他包含的数据库还有万方、维普及其一些英文数据库,英文数据库会在下面单独介绍。进入百度搜索百度学术,输入需要的关键词、作者或期刊名称都可以得明如到你想要的内容。2. Wiley Online library这个文献数据库百度学术中也包含,只是我们常常用百度学术习惯去搜中文文献,因此把它们单独拿出来讲。搜索方法也是进入百度,输入WileyOnlinelibrary就进入下面这个界面,把你想要搜索的关键翻译成英文复制进去就可以了。3、 Springer这个数据库和 WileyOnlinelibrary类似,也是英文文献查阅里常用的数据库,WileyOnlinelibrary和 Springer的特点就是能够下载的文献相对较多。4、 ScienceDirect这个数据库简称就是Sci了,虽然百度学术里也有它的冲埋数据库,但是它也有自己的官网,搜索方法与上面相同,它里面的内容质量相对好一些,但是下载需要方法,我们下载的方法是使用sci-hub,这个可以帮助散槐蚂你在没有下载权限的情况下下载文章。5、rsc这个期刊也是化学期刊中相当不错的,虽然比不上ACS,但是能在这上面发一篇文章已经很好了。完毕!
能不能给我发一份呢?
论文名称:Rich feature hierarchies for accurate object detection and semantic segmentation 提出时间:2014年 论文地址: 针对问题: 从Alexnet提出后,作者等人思考如何利用卷积网络来完成检测任务,即输入一张图,实现图上目标的定位(目标在哪)和分类(目标是什么)两个目标,并最终完成了RCNN网络模型。 创新点: RCNN提出时,检测网络的执行思路还是脱胎于分类网络。也就是深度学习部分仅完成输入图像块的分类工作。那么对检测任务来说如何完成目标的定位呢,作者采用的是Selective Search候选区域提取算法,来获得当前输入图上可能包含目标的不同图像块,再将图像块裁剪到固定的尺寸输入CNN网络来进行当前图像块类别的判断。 参考博客: 。 论文题目:OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks 提出时间:2014年 论文地址: 针对问题: 该论文讨论了,CNN提取到的特征能够同时用于定位和分类两个任务。也就是在CNN提取到特征以后,在网络后端组织两组卷积或全连接层,一组用于实现定位,输出当前图像上目标的最小外接矩形框坐标,一组用于分类,输出当前图像上目标的类别信息。也是以此为起点,检测网络出现基础主干网络(backbone)+分类头或回归头(定位头)的网络设计模式雏形。 创新点: 在这篇论文中还有两个比较有意思的点,一是作者认为全连接层其实质实现的操作和1x1的卷积是类似的,而且用1x1的卷积核还可以避免FC对输入特征尺寸的限制,那用1x1卷积来替换FC层,是否可行呢?作者在测试时通过将全连接层替换为1x1卷积核证明是可行的;二是提出了offset max-pooling,也就是对池化层输入特征不能整除的情况,通过进行滑动池化并将不同的池化层传递给后续网络层来提高效果。另外作者在论文里提到他的用法是先基于主干网络+分类头训练,然后切换分类头为回归头,再训练回归头的参数,最终完成整个网络的训练。图像的输入作者采用的是直接在输入图上利用卷积核划窗。然后在指定的每个网络层上回归目标的尺度和空间位置。 参考博客: 论文题目:Scalable Object Detection using Deep Neural Networks 提出时间:2014年 论文地址: 针对问题: 既然CNN网络提取的特征可以直接用于检测任务(定位+分类),作者就尝试将目标框(可能包含目标的最小外包矩形框)提取任务放到CNN中进行。也就是直接通过网络完成输入图像上目标的定位工作。 创新点: 本文作者通过将物体检测问题定义为输出多个bounding box的回归问题. 同时每个bounding box会输出关于是否包含目标物体的置信度, 使得模型更加紧凑和高效。先通过聚类获得图像中可能有目标的位置聚类中心,(800个anchor box)然后学习预测不考虑目标类别的二分类网络,背景or前景。用到了多尺度下的检测。 参考博客: 论文题目:DeepBox: Learning Objectness with Convolutional Networks 提出时间:2015年ICCV 论文地址: 主要针对的问题: 本文完成的工作与第三篇类似,都是对目标框提取算法的优化方案,区别是本文首先采用自底而上的方案来提取图像上的疑似目标框,然后再利用CNN网络提取特征对目标框进行是否为前景区域的排序;而第三篇为直接利用CNN网络来回归图像上可能的目标位置。创新点: 本文作者想通过CNN学习输入图像的特征,从而实现对输入网络目标框是否为真实目标的情况进行计算,量化每个输入框的包含目标的可能性值。 参考博客: 论文题目:AttentionNet: AggregatingWeak Directions for Accurate Object Detection 提出时间:2015年ICCV 论文地址: 主要针对的问题: 对检测网络的实现方案进行思考,之前的执行策略是,先确定输入图像中可能包含目标位置的矩形框,再对每个矩形框进行分类和回归从而确定目标的准确位置,参考RCNN。那么能否直接利用回归的思路从图像的四个角点,逐渐得到目标的最小外接矩形框和类别呢? 创新点: 通过从图像的四个角点,逐步迭代的方式,每次计算一个缩小的方向,并缩小指定的距离来使得逐渐逼近目标。作者还提出了针对多目标情况的处理方式。 参考博客: 论文题目:Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition 提出时间:2014年 论文地址: 针对问题: 如RCNN会将输入的目标图像块处理到同一尺寸再输入进CNN网络,在处理过程中就造成了图像块信息的损失。在实际的场景中,输入网络的目标尺寸很难统一,而网络最后的全连接层又要求输入的特征信息为统一维度的向量。作者就尝试进行不同尺寸CNN网络提取到的特征维度进行统一。创新点: 作者提出的SPPnet中,通过使用特征金字塔池化来使得最后的卷积层输出结果可以统一到全连接层需要的尺寸,在训练的时候,池化的操作还是通过滑动窗口完成的,池化的核宽高及步长通过当前层的特征图的宽高计算得到。原论文中的特征金字塔池化操作图示如下。 参考博客 : 论文题目:Object detection via a multi-region & semantic segmentation-aware CNN model 提出时间:2015年 论文地址: 针对问题: 既然第三篇论文multibox算法提出了可以用CNN来实现输入图像中待检测目标的定位,本文作者就尝试增加一些训练时的方法技巧来提高CNN网络最终的定位精度。创新点: 作者通过对输入网络的region进行一定的处理(通过数据增强,使得网络利用目标周围的上下文信息得到更精准的目标框)来增加网络对目标回归框的精度。具体的处理方式包括:扩大输入目标的标签包围框、取输入目标的标签中包围框的一部分等并对不同区域分别回归位置,使得网络对目标的边界更加敏感。这种操作丰富了输入目标的多样性,从而提高了回归框的精度。 参考博客 : 论文题目:Fast-RCNN 提出时间:2015年 论文地址: 针对问题: RCNN中的CNN每输入一个图像块就要执行一次前向计算,这显然是非常耗时的,那么如何优化这部分呢? 创新点: 作者参考了SPPNet(第六篇论文),在网络中实现了ROIpooling来使得输入的图像块不用裁剪到统一尺寸,从而避免了输入的信息丢失。其次是将整张图输入网络得到特征图,再将原图上用Selective Search算法得到的目标框映射到特征图上,避免了特征的重复提取。 参考博客 : 论文题目:DeepProposal: Hunting Objects by Cascading Deep Convolutional Layers 提出时间:2015年 论文地址: 主要针对的问题: 本文的作者观察到CNN可以提取到很棒的对输入图像进行表征的论文,作者尝试通过实验来对CNN网络不同层所产生的特征的作用和情况进行讨论和解析。 创新点: 作者在不同的激活层上以滑动窗口的方式生成了假设,并表明最终的卷积层可以以较高的查全率找到感兴趣的对象,但是由于特征图的粗糙性,定位性很差。相反,网络的第一层可以更好地定位感兴趣的对象,但召回率降低。 论文题目:Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks 提出时间:2015年NIPS 论文地址: 主要针对的问题: 由multibox(第三篇)和DeepBox(第四篇)等论文,我们知道,用CNN可以生成目标待检测框,并判定当前框为目标的概率,那能否将该模型整合到目标检测的模型中,从而实现真正输入端为图像,输出为最终检测结果的,全部依赖CNN完成的检测系统呢? 创新点: 将当前输入图目标框提取整合到了检测网络中,依赖一个小的目标框提取网络RPN来替代Selective Search算法,从而实现真正的端到端检测算法。 参考博客 :
用的是知网,抄袭之后最后修改一下,比如改下表达方式,知网系统计算标准详细说明:1.看了一下这个系统的介绍,有个疑问,这套系统对于文字复制鉴别还是不错的,但对于其他方面的内容呢,比如数据,图表,能检出来吗?检不出来的话不还是没什么用吗?学术不端的各种行为中,文字复制是最为普遍和严重的,目前本检测系统对文字复制的检测已经达到相当高的水平,对于图表、公式、数据的抄袭和篡改等行为的检测,目前正在研发当中,且取得了比较大的进展,欢迎各位继续关注本检测系统的进展并多提批评性及建设性意见和建议。 2.按照这个系统39%以下的都是显示黄色,那么是否意味着在可容忍的限度内呢?最近看到对上海大学某教师的国家社科基金课题被撤消的消息,原因是其发表的两篇论文有抄袭行为,分别占到25%和30%. 请明示超过多少算是警戒线?百分比只是描述检测文献中重合文字所占的比例大小程度,并不是指该文献的抄袭严重程度。只能这么说,百分比越大,重合字数越多,存在抄袭的可能性越大。是否属于抄袭及抄袭的严重程度需由专家审查后决定。 3.如何防止学位论文学术不端行为检测系统成为个人报复的平台?这也是我们在认真考虑的事情,目前这套检测系统还只是在机构一级用户使用。我们制定了一套严格的管理流程。同时,在技术上,我们也采取了多种手段来最大可能的防止恶意行为,包括一系列严格的身份认证,日志记录等。 4.最小检测单位是句子,那么在每句话里改动一两个字就检测不出来了么?我们对句子也有相应的处理,有一个句子相似性的算法。并不是句子完全一样才判断为相同。句子有句子级的相似算法,段落有段落级的相似算法,计算一篇文献,一段话是否与其他文献文字相似,是在此基础上综合得出的。 5.如果是从相关书籍上摘下来的原话,但是此话已经被数据库中的相关文献也抄了进去,也就是说前面的文章也从相关书籍上摘了相同的话,但是我的论文中标注的这段话来自相关的书籍,这个算不算学术抄袭?检测系统不下结论,是不是抄袭最后还有人工审查这一关,所以,如果是您描述的这种情况,专家会有相应判断。我们的系统只是提供各种线索和依据,让人能够快速掌握检测文献的信息。6.知网检测系统的权威性?学术不端文献检测系统并不下结论,即检测系统并不对检测文献定性,只是将检测文献中与其他已发表文献中的雷同部分陈列出来,列出客观事实,而这篇检测文献是否属于学术不端,需专家做最后的审查确认。 一篇论文的抄袭怎么才会被检测出来?知网论文检测的条件是连续13个字相似或抄袭都会被红字标注,但是必须满足3里面的前提条件:即你所引用或抄袭的A文献文字总和在你的各个检测段落中要达到5%。
要看你是哪个学校的 每个学校要求的相似率都是不同的 需要过检测找我 首先要把在准备工作当中搜集的资料整理出来,包括课题名称、课题内容、课题的理论依据、参加人员、组织安排和分工、大概需要的时间、经费的估算等等。第一是标题的拟定。课题在准备工作中已经确立了,所以开题报告的标题是不成问题的,把你研究的课题直接写上就行了。比如我曾指导过一组同学对伦教的文化诸如“伦教糕”、伦教木工机械、伦教文物等进行研究,拟定的标题就是“伦教文化研究”。第二就是内容的撰写。开题报告的主要内容包括以下几个部分:一、课题研究的背景。 所谓课题背景,主要指的是为什么要对这个课题进行研究,所以有的课题干脆把这一部分称为“问题的提出”,意思就是说为什么要提出这个问题,或者说提出这个课题。比如我曾指导的一个课题“伦教文化研究”,背景说明部分里就是说在改革开放的浪潮中,伦教作为珠江三角洲一角,在经济迅速发展的同时,她的文化发展怎么样,有哪些成就,对居民有什么影响,有哪些还要改进的。当然背景所叙述的内容还有很多,既可以是社会背景,也可以是自然背景。关键在于我们所确定的课题是什么。二、课题研究的内容。课题研究的内容,顾名思义,就是我们的课题要研究的是什么。比如我校黄姝老师的指导的课题“佛山新八景”,课题研究的内容就是:“以佛山新八景为重点,考察佛山历史文化沉淀的昨天、今天、明天,结合佛山经济发展的趋势,拟定开发具有新佛山、新八景、新气象的文化旅游的可行性报告及开发方案。”三、课题研究的目的和意义。课题研究的目的,应该叙述自己在这次研究中想要达到的境地或想要得到的结果。比如我校叶少珍老师指导的“重走长征路”研究课题,在其研究目标一栏中就是这样叙述的:1、通过再现长征历程,追忆红军战士的丰功伟绩,对长征概况、长征途中遇到了哪些艰难险阻、什么是长征精神,有更深刻的了解和感悟。2、通过小组同学间的分工合作、交流、展示、解说,培养合作参与精神和自我展示能力。3、通过本次活动,使同学的信息技术得到提高,进一步提高信息素养。四、课题研究的方法。在“课题研究的方法”这一部分,应该提出本课题组关于解决本课题问题的门路或者说程序等。一般来说,研究性学习的课题研究方法有:实地调查考察法(通过组织学生到所研究的处所实地调查,从而得出结论的方法)、问卷调查法(根据本课题的情况和自己要了解的内容设置一些问题,以问卷的形式向相关人员调查的方法)、人物采访法(直接向有关人员采访,以掌握第一手材料的方法)、文献法(通过查阅各类资料、图表等,分析、比较得出结论)等等。在课题研究中,应该根据自己课题的实际情况提出相关的课题研究方法,不一定面面俱到,只要实用就行。五、课题研究的步骤。课题研究的步骤,当然就是说本课题准备通过哪几步程序来达到研究的目的。所以在这一部分里应该着重思考的问题就是自己的课题大概准备分几步来完成。一般来说课题研究的基本步骤不外乎是以下几个方面:准备阶段、查阅资料阶段、实地考察阶段、问卷调查阶段、采访阶段、资料的分析整理阶段、对本课题的总结与反思阶段等。六、课题参与人员及组织分工。这属于对本课题研究的管理范畴,但也不可忽视。因为管理不到位,学生不能明确自己的职责,有时就会偷懒或者互相推诿,有时就会做重复劳动。因此课题参与人员的组织分工是不可少的。最好是把所有的参与研究的学生分成几个小组,每个小组通过民主选举的方式推选出小组长,由小组长负责本小组的任务分派和落实。然后根据本课题的情况,把相关的研究任务分割成几大部分,一个小组负责一个部分。最后由小组长组织人员汇总和整理。七、课题的经费估算。一个课题要开展,必然需要一些经费来启动,所以最后还应该大概地估算一下本课题所需要 的资金是多少,比如搜集资料需要多少钱,实地调查的外出经费,问卷调查的印刷和分发的费用,课题组所要占用的场地费,有些课题还需要购买一些相关的材料,结题报告等资料的印刷费等等。所谓“大军未动,粮草先行”,没有足够的资金作后盾,课题研究势必举步维艰,捉襟见肘,甚至于半途而废。因此,课题的经费也必须在开题之初就估算好,未雨绸缪,才能真正把本课题的研究做到最好。开题报告主要包括以下几个方面:(一)论文名称论文名称就是课题的名字第一,名称要准确、规范。准确就是论文的名称要把论文研究的问题是什么,研究的对象是什么交待清楚,论文的名称一定要和研究的内容相一致,不能太大,也不能太小,要准确地把你研究的对象、问题概括出来。第二,名称要简洁,不能太长。不管是论文或者课题,名称都不能太长,能不要的字就尽量不要,一般不要超过20个字。(二) 论文研究的目的、意义研究的目的、意义也就是为什么要研究、研究它有什么价值。这一般可以先从现实需要方面去论述,指出现实当中存在这个问题,需要去研究,去解决,本论文的研究有什么实际作用,然后,再写论文的理论和学术价值。这些都要写得具体一点,有针对性一点,不能漫无边际地空喊口号。主要内容包括:⑴ 研究的有关背景(课题的提出): 即根据什么、受什么启发而搞这项研究。 ⑵ 通过分析本地(校) 的教育教学实际,指出为什么要研究该课题,研究的价值,要解决的问题。(三) 本论文国内外研究的历史和现状(文献综述)。 规范些应该有,如果是小课题可以省略。一般包括:掌握其研究的广度、深度、已取得的成果;寻找有待进一步研究的问题,从而确定本课题研究的平台(起点)、研究的特色或突破点。(四)论文研究的指导思想指导思想就是在宏观上应坚持什么方向,符合什么要求等,这个方向或要求可以是哲学、政治理论,也可以是政府的教育发展规划,也可以是有关研究问题的指导性意见等。(五) 论文写作的目标论文写作的目标也就是课题最后要达到的具体目的,要解决哪些具体问题,也就是本论文研究要达到的预定目标:即本论文写作的目标定位,确定目标时要紧扣课题,用词要准确、精练、明了。常见存在问题是:不写研究目标;目标扣题不紧;目标用词不准确; 目标定得过高, 对预定的目标没有进行研究或无法进行研究。确定论文写作目标时,一方面要考虑课题本身的要求,另一方面要考率实际的工作条件与工作水平。(六)论文的基本内容研究内容要更具体、明确。并且一个目标可能要通过几方面的研究内容来实现,他们不一定是一一对应的关系。大家在确定研究内容的时候,往往考虑的不是很具体,写出来的研究内容特别笼统、模糊,把写作的目的、意义当作研究内容。基本内容一般包括:⑴对论文名称的界说。应尽可能明确三点:研究的对象、研究的问题、研究的方法。⑵本论文写作有关的理论、名词、术语、概念的界说。(七)论文写作的方法具体的写作方法可从下面选定: 观察法、调查法、实验法、经验总结法、 个案法、比较研究法、文献资料法等。(八)论文写作的步骤论文写作的步骤,也就是论文写作在时间和顺序上的安排。论文写作的步骤要充分考虑研究内容的相互关系和难易程度,一般情况下,都是从基础问题开始,分阶段进行,每个阶段从什么时间开始,至什么时间结束都要有规定。课题研究的主要步骤和时间安排包括:整个研究拟分为哪几个阶段;各阶段的起止时间 希望我们可以帮你。
将所知道的作者姓名输入到检索框中,检索字段选择作者,需要注意的是姓要用拼音的全拼,名用首字母,姓与名之间空格;为确保检索准确,可以通过作者地址进行限定,作者地址是原文中提供的地址的规范化,常用的地址词使用缩写或者城市名、邮政编码(有可能会漏捡)。为确保不漏检,最好使用作者甄别工具。除了利用作者的名字来查询外,下面这些方法也可以用到:只知道单位名称的情况下:需要说明的是,在输入单位名称前,要确保名称的准确性和是否完全,一些重点实验室的名称也应该考虑进去。利用布尔逻辑运算符号编辑成检索式进行检索。利用收录号查询:需要注意的是文献记录中的IDSNumber并不是SCI的收录号,只是文件处理编号。这个收录号是用来获得论文全文,也可以用来确认和区分各个杂志收录的论文。这里要注意标题简介等的关键词一定要与你发表论文的词语匹配,包括单复数。参考:查尔斯沃思论文润色贴士
1、首先打开CNKI的官方网站,选择页面右方的高级检索选项。
2、点击上方菜单栏里面的“专业检索”选项。
3、专业检索的界面如下图所示,在上方的输入框输入需要的检索表达式即可。表达式的下方是一个简易教程。
如上面写着可检索的字段:SU=主题,TI=题名,KY=关键词,AB=摘要,FT=全文,AU=作者,FI=第一责任人,AF=机构,JN=文献来源, RF=参考文献,YE=年,FU=基金,CLC=中图分类号,SN=ISSN,CN=统一刊号,IB=ISBN ,CF=被引频次。
以及提供了三个检索示例,可照着示例的格式写出自己需要的检索表达式。
4、值得一提的是,有的时候你输入检索内容,它会提示你,服务器不存在此用户,参数错误。这基本上代表你的检索式格式不正确。
如果你对照示例之后觉着没问题的话,那么检查一下你这里面是不是混入了中文符号,检索式要求全部都是英文符号。特别是括号、逗号、引号这些符号,如果用中文的话会报错。
扩展资料:
组成部分
1、自由词
自由词也称任意词,它可以是随机选取的词,也可以是一句自然语句。有些数据库可以用自然语句(即以问话的方式提问),但系统后台会针对语句自动抽取关键词。
2、关键词
关键词也称专业词、非受控词,在主题检索中是指那些带有实际意义的词。
关键词具有一词多义现象,即一个关键词会出现多个同义词或拼写方式不同的词,如一种化学物质,它有学名、有俗称,可以用分子式表示,也可以用登记号表示,还可以用结构式表示。
因此.用关键词作检索词,必须要考虑到它的同义词和不同二恬写形式的问题,否则就会漏检。关键词被称之为非受控词,以示它与主题词的区别。
参考资料:
百度百科-检索式
检索期刊论文方法如下:
1、论文检索前,首先要知道你之前所发表的期刊被哪个数据库收录,接下来以知网举例。进入知网,选择检索主题:篇名或作者,直接检索查找即可。
2、点击出版物检索,输入对应的期刊名称。不过这里有个注意事项,知网有部分期刊是不能直接在主页面检索到文章的,需要进到对应的期刊中进行检索,以电子世界举例,示例如下:
3、进入期刊列表,选择对应的刊期,选择检索主题进行检索即可,如下图:
4、打开对应的文章截图保存即可。
在确定选题之后,可以将论文的题目拆分为关键字,按照关键字在检索框中搜索自己所需的资料,以与选题相关的权威文献为原则
一般的有一个数据库的账号和密码,然后进行检索。比如cnki的,先登录中国知网网站,用账户和密码登录,输入您要找文献作者等就可以了
论文检索页查询方法:
1、论文检索页直接按照题目、单位、姓名检索。
2、搜索到需要的论文后,直接点击进入搜索出来的页面。
3、然后用截图软件直接把当前界面截图下来就可以了。
4、打开截好的图片,点击打印按钮,按提示下一步操作就可以进行了。
论文检索,是发表的学术论文在主流数据库的检索情况,是你的论文在正规数据库里的一项证明材料。检索能够提供你的论文发表的时间、刊物名称、摘要、关键字、刊期、分类号、相似文献等信息。
检索链接是你论文的发表证明,能够呈现论文的基本信息,但是不能查看论文的内容。如果需要下载论文内容,知网是需要充值才能下载的。
论文检索的重要性
论文检索就是作者所发表的文章被学术检索系统检索收录的意思,如今不论是什么用途的文章,很可能都会要求文章见刊且被系统检索,才算是有效的发表,这一点在职称评审中尤为明显。
除此之外,还要被相应的检索系统检索才行,这是比较容易出差错的环节,有的作者就容易忽略这个问题最终导致文章发表无效,耽误了最终的晋升,因此要引起注意。
中国知网的检索方法有一框式检索、高级检索、专业检索、浏览检索、作者检索等多种,写出专业检索式进行检索的方法为“专业检索”,
在中国知网的专业检索方法的页面给出了专业检索式编写方法,具体查找步骤:
1、打开中国知网
2、点击右侧的“高级检索”
3、进入高级检索界面
4、点击上方的“专业检索”
5、可见“可检索字段”(字段代码)和“示例”
除此之外还会用到布尔逻辑算符、条件限定(如and、or、not等)等代码,即可编写专业检索式。
扩展资料:
检索介绍:1 快速检索:
提供了类似搜索引擎的检索方式,用户只需要输入所要找的关键词,点击“快速检索”就查到相关的文献。
2 标准检索:
在标准检索中,将检索过程规范为三个步骤:一输入时间、支持基金、文献来源、作者等检索控制条件;二输入文献全文、篇名、主题、关键词等内容检索条件;三对检索结果的分组排序,反复筛选修正检索式得到最终结果。
3 专业检索:
使用逻辑运算符和关键词构造检索式进行检索,用于图书情报专业人员查新、信息分析等工作。
4 引文检索:
以检索参考文献为出发点,根据文献的引用关系,找到引用文献。引文数据库中的所有文献都与其它文献具有引用或被引用的关系,引文检索是通过这些关系检索到文献。
5 “知网节”检索:
是基于文献知网节的作者、题名、关键词、摘要等特征信息,查找到重要文献知网节,最终找到与这些知网节相关的一组文献。
6 作者发文检索:
是通过作者姓名、单位等信息,查找作者发表的全部文献及被引下载情况。通过作者发文检索不仅能找到某一作者发表的文献,还可以通过对结果的分组筛选情况全方位的了解作者主要研究领域,研究成果等情况。
7 科研基金检索:
科研基金检索是通过科研基金名称,查找科研基金资助的文献。通过对检索结果的分组筛选,还可全面了解科研基金资助学科范围,科研主题领域等信息。
8 句子检索:
句子检索是通过用户输入的两个关键词,查找同时包含这两个词的句子。由于句子中包含了大量的事实信息,通过检索句子可以为用户提供有关事实的问题的答案。
9 知识元检索:
知识元检索是将文献总库中的学术术语、概念、数字、图形、表格等知识元信息抽取出来,为用户提供有关知识元的事实检索。
论文估算时样本量首先点击打开“样本量”计算表格。
然后点击输入公式“=”号。再输入目标总体数量的平方值,并乘以标准偏差。接着用1减去标准偏差,乘以误差幅度的平方值 。样本量计算方法:样本量=目标总体数量^2*标准偏差*(1-标准偏差)/(误差幅度)^最后按“Enter回车键”确定,计算得出样本量。这样就计算好了。
样本量的计算公式是n=z²σ²/d²。其中,Z为置信区间、n为样本容量、d为抽样误差范围、σ为标准差,一般取。应用于统计学、数学、物理学等学科。样本量大小是选择检验统计量的一个要素。样本量计算举例:样本量估算可以通过统计学公式,也可以通过专用软件进行,但首先仍需要确定研究背景、研究假设、主要评价指标和设计模型。目前常用的样本量估算软件有nQuery Advisor+nTerim、MedCalc、PASS、SAS、Stata、R语言等。
采用统计学公式进行样本量估算的相关要素一般包括临床试验的设计类型、评价指标的期望值、Ⅰ类和Ⅱ类错误率,以及预期的受试者脱落的比例等。评价指标的期望值根据(基于目标人群样本的)已有临床数据和小样本预试(如有)的结果来估算,应在临床试验方案中明确这些参数的确定依据。
具体确定样本量还有相应的统计学公式,不同的抽样方法对应不同的公式。
根据样本量计算公式,不难知道,样本量的大小不取决于总体的多少,而取决于:
(1) 研究对象的变化程度;
(2) 所要求或允许的误差大小(即精度要求);
(3) 要求推断的置信程度。
样本量n=C²σ²/p²
P — 精度(Precision),也称精确度,由审计师设定,代表样本与总体之间的可接受误差范围。在属性抽样中,精度以百分比表示,在变量抽样中,精度用一个数值表示。精度值越大,样本量越小,总体误差值就越大;反之,精度值越小,样本量越大,总体误差值就越小,但增加了抽样工作量。
样本量是指总体中抽取的样本元素的总个数,应用于统计学、数学、物理学等学科。样本量大小是选择检验统计量的一个要素。由抽样分布理论可知,在大样本条件下,如果总体为正态分布,样本统计量服从正态分布;如果总体为非正态分布,样本统计量渐近服从正态分布。
参考资料:百度百科-样本量
问卷样本数量在500-1000即可,太多了数据差异性不明显,太少了没有信度。
首先,取决于样本总体的广泛性,比如研究汉族和藏族学生,那样本量差异就很大。因为汉族学生的总体很庞大,要想获得一个具有代表性样本,显然需要很大的样本量。而藏族学生的总体很少,相对少的样本量理论上代表性也可能比较好了。
那么样本量如何确定呢,主要有以下几个因素:
1、总体指标的变异情况。这会影响到应答率的准确率,从而对样本量产生影响,在计算样本的过程中,还要考虑好以下几个重要环节。
2、预测值要有一定的精确度。因为抽样误差的大小会直接影响到估计值的准确程度。
3、一是为保证抽样率的准确性,必须要做好抽样推断,使之有一定的可信度;在确定样本后,样本量的计算是一个很关键的问题,需要一个科学的公式,是专业性的。总体来主,样本量要根据估计的域的多少来决定样本量的多少。
4、总之样本量的确定要遵循一人原则,即:精度和费用的互相作用,费用一定精度最高,精度一定费用最低。
5、而样本的收集与整理可以上各大问卷网站或者沃销众填上解决,也可以加入QQ、微信群免费互填问卷。
6、这里介绍一个公式,对于已知数据为绝对数,我们一般根据下列步骤来计算所需要的样本量。已知期望调查结果的精度(E), 期望调查结果的置信度(L),以及总体的标准差估计值σ的具体数据,总体单位数N。
计算公式为:n=σ2/(e2/Z2+σ2/N)。
特殊情况下,如果是很大总体,计算公式变为:n= Z2σ2/e2。
大众调查。调查问卷的样本量就是样本中所包含的单位的个数,也就是抽样个体的数量。通常样本量在题目的5~10倍左右为宜,一份标准点的问卷题目数普遍在30题以上,所以计算一下样本量大概要在150~300之间比较适合。