目标检测论文整理最近开始看一些object detection的文章,顺便整理一下思路。排版比较乱,而且几乎所有图片都是应用的博客或论文,如有侵权请联系我。文章阅读路线参考目前已完成的文章如下,后续还会继续补充(其中加粗的为精读文章):RCNNOverfeatMR-CNNSPPNetFast RCNNA Fast RCNNFaster RCNNFPNR-FCNMask RCNNYOLOYOLO 9000YOLO v3SSDDSSDR-SSDRetinaNet(focal loss)DSODCascade R-CNN(待续)吐槽一下,博客园的markdown竟然没有补齐功能,我还是先在本地补全再传上来吧。。。RCNN之前的故事Histogram of Gradient (HOG) 特征在深度学习应用之前,图像的特征是人工定义的具有鲁棒性的特征,如SIFT,HOG等,下面简要介绍一下HOG。8x8像素框内计算方向梯度直方图:HOG Pyramid特征金字塔,对于不同大小的物体进行适应,设计尺度不变性特征HOG特征 -> SVM分类DPM模型 Deformable Part Model加组件组合的HOG特征, 组件间计算弹性得分,优化可变形参数如果没有弹性距离,就是BoW (Bag of Word)模型, 问题很大, 位置全部丢失:n个组件的DPM计算流程:Selective Search 思想过分割后基于颜色纹理等相似度合并,然后,过分割、分层合并、建议区域排序基于Selective Search + DPM/HoG + SVM的物体识别此时的框架就是RCNN的雏形,因为DPM就是基本由RBG和他导师主导,所以大神就是大神。AlexNet的图像分类(深度学习登场)2012年AlexNet赢得LSVRC的ImageNet分类竞赛。深度CNN结构用来图像特征提取。bounding-box regression 框回归BBR 在DPM时代就和SVM分类结合,一般直接使用线性回归,或者和SVR结合RCNN: Rich feature hierarchies for accurate object detection and semantic segmentationRCNN作为深度学习用于目标检测的开山之作,可以看出是基于Selective Search + DPM/HoG + SVM框架,只不过将是将手工特征转变为CNN提取特征,本文主要贡献如下:CNN用于object detection解决数据集不足的问题主要流程如下:regional preposals(selective research)CNN feature extractionSVM ClassificationNMSbounding-box regression(BBR)为啥能work?优秀的目标检测框架,region proposal 和 regression offset降低了目标检测的难度,强大的CNN特征提取器,代替传统的已经到瓶颈的手工特征迁移训练降低了对数据集的要求MR-CNN:Object detection via a multi-region & semantic segmentation-aware CNN modelMulti-Region的提出, 开始对Box进一步做文章, 相当于对Box进一步做增强,希望改进增强后的效果,主要改善了部分重叠交叉的情况。特征拼接后使得空间变大,再使用SVM处理, 效果和R-CNN基本类似.OverFeat:Integrated Recognition, Localization and Detection using Convolutional Networks不得不说虽然OverFeat在但是比赛成绩不是太好,但是它的思想还是很有启发性的。OverFeat直接抛弃了Selective Search,采用CNN上slide windows来进行框推荐,并且把Bounding box Regression整合一起使用全连接层搞定, 解决了后面一端的问题(取代了SVM分类器和BBR线性回归器),这个思想影响了后来的Fast RCNN。是第一个End to End 的目标检测模型,模型虽然简陋,但是可以验证网络强大的拟合能力注意整合目标检测的各项功能(分类,回归)。亮点:先用CNN得到feature map再做slide windows推荐区域,避免了特征重复计算。设计了End to End模型,方便优化和加快检测速度设计全卷积网络,并进行多尺度图像训练maxpool offset(没有Fast RCNN的ROI Pooling自然)为啥能work?可以看出OverFeat将不同的两个问题物体分类和位置回归采用了两个分支网络,共用前面的CNN特征表述,而CNN提取的特征正如OverFeat所言,是一种类似于SIFT,HOG等人工描述子的一种稳定的描述子(底层抽象),可以用于构建不同的任务(高层表述),也就是模型为什么能work的原因。SPPNetR-CNN和Overfeat都存在部分多尺度,重叠效果的问题。 某种意义上, 应对了HoG特征, 这样对于物体来说类似BoW模型, 我们知道DPM里面,是带有组件空间分布的弹性得分的, 另外也有HoG Pyramid的思想。 如何把Pyramid思想和空间限制得分加入改善多尺度和重叠的效果呢? MR-CNN里面尝试了区域增强, Overfeat里面尝试了多尺度输入。 但是效果都一般。 这里我们介绍另外一个技术Spatial Pyramid Matching, SPM,是采用了空间尺度金字塔的特点。和R-CNN相比做到了先特征后区域, 和Overfeat相比自带Multi-Scale。SPP pooling layer 的优势:解决了卷积层到全连接层需要固定图片大小的问题,方便多尺度训练。能够对于任意大小的输入产生固定的输出,这样使得一幅图片的多个region proposal提取一次特征成为可能。进一步强调了CNN特征计算前移, 区域处理后移的思想, 极大节省计算量也能看出文章还是强调用CNN做特征的提取,还是用的BBR和SVM完成回归和分类的问题Fast RCNN可以看出Fast RCNN结合了OverFeat和Sppnet的实现,打通了高层表述和底层特征之间的联系主要流程:任意size图片输入CNN网络,经过若干卷积层与池化层,得到特征图;在任意size图片上采用selective search算法提取约2k个建议框;根据原图中建议框到特征图映射关系,在特征图中找到每个建议框对应的特征框【深度和特征图一致】,并在RoI池化层中将每个特征框池化到H×W【VGG-16网络是7×7】的size;固定H×W【VGG-16网络是7×7】大小的特征框经过全连接层得到固定大小的特征向量;将上一步所得特征向量经由各自的全连接层【由SVD分解实现(全连接层加速)】,分别得到两个输出向量:一个是softmax的分类得分,一个是Bounding-box窗口回归;利用窗口得分分别对每一类物体进行非极大值抑制剔除重叠建议框其中ROI POOL层是将每一个候选框映射到feature map上得到的特征框经池化到固定的大小,其次用了SVD近似求解实现全连接层加速。这里需要注意的一点,作者在文中说道即使进行多尺度训练,map只有微小的提升,scale对Fast RCNN的影响并不是很大,反而在测试时需要构建图像金字塔使得检测效率降低。这也为下一步的多尺度改进埋下了伏笔。为啥能更好的work?也是结合了OverFeat的和SPPnet的work,同时规范了正负样本的判定(之前由于SVM和CNN对区域样本的阈值划分不同而无法统一网络,当然这只是其中的一个原因。更多的估计是作者当时没想到),将网络的特征抽取和分类回归统一到了一个网络中。A Fast RCNN: Hard Positive Generation via Adversary for Object Detection这篇论文是对,CMU与rbg的online hard example mining(OHEM)改进,hard example mining是一个针对目标检测的难例挖掘的过程,这是一个更充分利用数据集的过程。实际上在RCNN训练SVM时就已经用到,但是OHEM强调的是online,即如何在训练过程中选择样本。同期还有S-OHEM的改进。而随着但是GAN的火热,A-Fast-RCNN尝试生成hard example(使用对抗网络生成有遮挡和有形变的两种特征,分别对应网络ASDN和ASTN)结论如下:ASTN 和 随机抖动(random jittering)做了对比,发现使用AlexNet,mAP分别是和,使用VGG16,mAP分别是和,ASTN 的表现都比比随机抖动效果好。作者又和OHEM对比,在VOC 2007数据集上,本文方法略好( vs. ),而在VOC 2012数据集上,OHEM更好( vs. )。gan用于目标检测还没有很好的idea,这篇论文相当于抛砖引玉了。同时需要注意的一个问题,网络对于比较多的遮挡和形变情况识别情况更好;但是对于正常目标的特征抽象能力下降,所以有时候创造难例也要注意样本的数量。下面是一些由于遮挡原因造成的误判。Faster RCNN:Towards Real-Time Object Detection with Region Proposal Networks这篇文章标志着two-stage目标检测的相对成熟,其主要改进是对候选区域的改进,将候选区域推荐整合进了网络中。结合后面的一系列文章,可以马后炮一下它的缺点:虽然Faster RCNN已经共享了绝大部分卷积层运算,但是RoI之后还有部分ConvNet的计算,有没有可能把ROI之上的计算进一步前移? 请看R-FCNFaster RCNN还是没有很好的解决多尺度问题,如何解决,请看FPNYOLO:You Only Look Once作者的论文简直是一股论文界的泥石流,作者本身是一个喜欢粉红小马的大叔,萌萌哒。实际上YOLO一直发展到v3都是简单粗暴的目标检测方法,虽然学术界模型繁杂多样,但是在实际应用工业应用上YOLO绝对是一个首选的推荐。YOLO v1版本现在看来真是简单粗暴,也印证了网络抽象的强大之处。可以看出作者没有受到太多前辈的影响,将对象检测重新定义为单个回归问题,直接从图像像素到边界框坐标和类概率(当然这也是一个缺少坐标约束也是一个缺点)。YOLO的明显缺点,如多尺度问题,密集物体,检测框耦合,直接回归坐标等在yolo 9000中也做了比较好的改进。SSD:Single Shot MultiBox DetectorSSD作为one stage的代表模型之一,省去了判断推荐候选区域的步骤(实际上可以认为one-stage就是以feature map cell来抽象代替ROI Pooling功能) ,虽然SSD和Faster RCNN在Anchor box上一脉相承,但是Faster RCNN却还是有一个推荐候选区域(含有物体的区域)的监督部分(注意后面其实也是整合到了最终Loss中),因此one-stage优势是更快,而含有区域推荐的two-stage目前是更加准确一些。(更看好one-stage,其实区域推荐不太符合视觉系统,但是可以简化目标检测问题),主要贡献:用多尺度feature map来预测,也生成了更多的default box检测框对每一类对象产生分数(低耦合,对比yolo)缺点:底层feature map高级语义不足 (FPN)正负样本影响 (focal loss)feature map抽象分类和回归任务只用了两个卷积核抽象性不足(DSSD)为啥能更好的工作?SSD的出现对多尺度目标检测有了突破性进展,利用卷积层的天然金字塔形状,设定roi scale让底层学习小物体识别,顶层学习大物体识别FPN:feature pyramid networksSSD网络引入了多尺度feature map,效果显著。那Faster RCNN自然也不能落后,如何在Faster RCNN中引入多尺度呢?自然有FPN结构同时FPN也指出了SSD因为底层语义不足导致无法作为目标检测的feature map注意原图的候选框在Faster RCNN中只固定映射到同一个ROI Pooling中,而现在如果某个anchor和一个给定的ground truth有最高的IOU或者和任意一个Ground truth的IOU都大于,则是正样本。如果一个anchor和任意一个ground truth的IOU都小于,则为负样本。本文算法在小物体检测上的提升是比较明显的,另外作者强调这些实验并没有采用其他的提升方法(比如增加数据集,迭代回归,hard negative mining),因此能达到这样的结果实属不易。DSSD:Deconvolutional Single Shot Detector一个SSD上移植FPN的典型例子,作者主要有一下改动:将FPN的Upsampling变成deconv复杂了高层表述分支(分类,回归)网络的复杂度R-SSD:Enhancement of SSD by concatenating feature maps for object detection本文着重讨论了不同特征图之间的融合对SSD的影响(水论文三大法宝),这篇论文创新点不是太多,就不说了DSOD: Learning Deeply Supervised Object Detectors from Scratch这篇文章的亮点:提出来了不需要预训练的网络模型DSOD实际上是densenet思想+SSD,只不过并不是在base model中采用densenet,而是密集连接提取default dox的层,这样有一个好处:通过更少的连接路径,loss能够更直接的监督前面基础层的优化,这实际上是DSOD能够直接训练也能取得很好效果的最主要原因,另外,SSD和Faster RCNN直接训练无法取得很好的效果果然还是因为网络太深(Loss监督不到)或者网络太复杂。Dense Prediction Structure 也是参考的densenetstem能保留更多的信息,好吧,这也行,但是对效果还是有提升的。YOLO 9000:Better, Faster, Stronger很喜欢这个作者的论文风格,要是大家都这么写也会少一点套路,多一点真诚。。。。文章针对yolo做了较多的实验和改进,简单粗暴的列出每项改进提升的map。这个建议详细的看论文。下面列举几个亮点:如何用结合分类的数据集训练检测的网络来获得更好的鲁棒性将全连接层改为卷积层并结合了细粒度信息(passthrough layer)Multi-Scale TraningDimension Clustersdarknet-19更少的参数Direct locaion prediction对offset进行约束R-FCN:Object Detection via Region-based Fully Convolutional Networks本文提出了一个问题,base CNN网络是为分类而设计的(pooling 实际上是反应了位置的不变性,我一张人脸图片只要存在鼻子,两只眼睛,分类网络就认为它是人脸,这也就是Geoffrey Hinton 在Capsule中吐槽卷积的缺陷),而目标检测则要求对目标的平移做出准确响应。Faster RCNN是通过ROI pooling让其网络学习位置可变得能力的,再次之前的base CNN还是分类的结构,之前讲过R-FCN将Faster RCNN ROI提取出来的部分的卷积计算共享了,那共享的分类和回归功能的卷积一定在划分ROI之前,那么问题来了,如何设计让卷积对位置敏感?主要贡献:将用来回归位置和类别的卷积前置共享计算,提高了速度。巧妙设计score map(feature map)的意义(感觉设计思想和yolo v1最后的全连接层一样),让其何以获得位置信息,之后在经过ROI pooling和vote得到结果为啥能work?实际上rfcn的feature map设计表达目标检测问题的方式更加抽象(ROI pool前的feature map中每一个cell的channel代表定义都很明确),loss在监督该层时更能通过论文中关于ROI pool和vote设计,在不同的channel上获得高的响应,这种设计方式可能更好优化(这个是需要大量的实验得出的结论),至于前面的resnet-base 自然是抽象监督,我们本身是无法理解的,只是作为fintuning。实际上fpn的loss监督也是非常浅和明确的,感觉这种可以理解的优化模块设计比较能work。Focal Loss: Focal Loss for Dense Object Detection这篇文章实际上提供了另外一个角度,之前一直认为Single stage detector结果不够好的原因是使用的feature不够准确(使用一个位置上的feature),所以需要Roi Pooling这样的feature aggregation办法得到更准确的表示。但是这篇文章基本否认了这个观点,提出Single stage detector不好的原因完全在于:极度不平衡的正负样本比例: anchor近似于sliding window的方式会使正负样本接近1000:1,而且绝大部分负样本都是easy example,这就导致下面一个问题:gradient被easy example dominant的问题:往往这些easy example虽然loss很低,但由于数 量众多,对于loss依旧有很大贡献,从而导致收敛到不够好的一个结果。所以作者的解决方案也很直接:直接按照loss decay掉那些easy example的权重,这样使训练更加bias到更有意义的样本中去。很直接地,如下图所示:实验中作者比较了已有的各种样本选择方式:按照class比例加权重:最常用处理类别不平衡问题的方式OHEM:只保留loss最高的那些样本,完全忽略掉简单样本OHEM+按class比例sample:在前者基础上,再保证正负样本的比例(1:3)Focal loss各种吊打这三种方式,coco上AP的提升都在3个点左右,非常显著。值得注意的是,3的结果比2要更差,其实这也表明,其实正负样本不平衡不是最核心的因素,而是由这个因素导出的easy example dominant的问题。RetinaNet 结构如下实际上就是SSD+FPN的改进版
北大+阿里巴巴——自动驾驶场景下的小目标识别(ACCV2018) 在自动驾驶场景中,对于小目标的检测精度和速度非常重要,在SSD的基础上,提出一个轻量级的框架,引入一个Comprehensive Feature Enhancement(特征增强模块,CFE),检测速度与RefineDet相当,但是精度较好,尤其是小目标检测更准确。 SSD对于小目标的检测效果并不好,在COCO数据集上small object的AP只有,召回率只有。它使用浅层特征来检测目标,浅层特征不具备丰富的语义信息,因此对分类来说区分度不高,容易造成分类错误。RefineDet使用了Encode-Decode 的结构来加深网络 ,并且用上采样来使大尺度特征图获取更多的语义信息,同时用级联回归的方式,Encode模块获取粗糙的位置,Decode模块进行位置精修。最终,在COCO数据集上small object的AP为,召回率为。 SSD采用特征金字塔的结构,Conv4_3等低层特征用于检测小目标,高层特征用于检测较大的目标。根据训练数据集上的对象尺度分布确定对应于每个特征图的锚点框尺寸的范围,在锚点匹配古城中,首先为每个标注框匹配一个拥有最高重叠比的默认框,然后将与任何标注框的重叠比大于的默认框匹配到对应的标注框。尽管SSD缓解了物体初度变化引起的问题,但是在小目标检测问题上还是局限性,主要原因是采用Conv4_3来检测小目标,该层特征太浅,没有足够的高层语义信息。本文旨在加强SSD的特征以此提高小目标检测性能。 CFENet 包含四个特征增强模块(CFE)和两个特征融合模块(FFB)。 CFE模块结构如下图,包含两个类似的分支,将 的卷积分成 和 的卷积,减少参数量的同时加深感受野,然后再接一个 的卷积,两个分支的不同之处在于 卷积的分解顺序,这个模块用于加强SSD结构中用于检测小目标的浅层特征(Conv4_3,Fc_7)。参考Xception模块,Large separable模块,ResNeXt模块。同时引入FFB模块将较浅层的特征融合,并接CFE模块产生用于检测的特征。 对于小目标提升效果比较明显。
论文链接: tensorflow源码链接: SSD是YOLO之后又一个引人注目的目标检测结构,它沿用了YOLO中直接回归 bbox和分类概率的方法,同时又参考了Faster R-CNN,大量使用anchor来提升识别准确度。通过把这两种结构相结合,SSD保持了很高的识别速度,还能把mAP提升到较高的水平。 原作者给了两种SSD结构,SSD 300和SSD 512,用于不同输入尺寸的图像识别。本文中以SSD 300为例,图1上半部分就是SSD 300,下半部分是YOLO,可以对比来看。SSD 300中输入图像的大小是300x300,特征提取部分使用了VGG16的卷积层,并将VGG16的两个全连接层转换成了普通的卷积层(图中conv6和conv7),之后又接了多个卷积(conv8_1,conv8_2,conv9_1,conv9_2,conv10_1,conv10_2),最后用一个Global Average Pool来变成1x1的输出(conv11_2)。a、重新启用了Faster R-CNN中anchor的结构 在SSD中如果有多个ground truth,每个anchor(原文中称作default box,取名不同而已)会选择对应到IOU最大的那个ground truth。一个anchor只会对应一个ground truth,但一个ground truth都可以对应到大量anchor,这样无论两个ground truth靠的有多近,都不会出现YOLO中bbox冲突的情况。 b、同时使用多个层级上的anchor来进行回归 作者认为仅仅靠同一层上的多个anchor来回归,还远远不够。因为有很大可能这层上所有anchor的IOU都比较小,就是说所有anchor离ground truth都比较远,用这种anchor来训练误差会很大。例如图2中,左边较低的层级因为feature map尺寸比较大,anchor覆盖的范围就比较小,远小于ground truth的尺寸,所以这层上所有anchor对应的IOU都比较小;右边较高的层级因为feature map尺寸比较小,anchor覆盖的范围就比较大,远超过ground truth的尺寸,所以IOU也同样比较小;只有图2中间的anchor才有较大的IOU。通过同时对多个层级上的anchor计算IOU,就能找到与ground truth的尺寸、位置最接近(即IOU最大)的一批anchor,在训练时也就能达到最好的准确度。SSD的优点在前面章节已经说了:通过在不同层级选用不同尺寸、不同比例的anchor,能够找到与ground truth匹配最好的anchor来进行训练,从而使整个结构的精确度更高。 SSD的缺点是对小尺寸的目标识别仍比较差,还达不到Faster R-CNN的水准。这主要是因为小尺寸的目标多用较低层级的anchor来训练(因为小尺寸目标在较低层级IOU较大),较低层级的特征非线性程度不够,无法训练到足够的精确度。 下图是各种目标识别结构在mAP和训练速度上的比较,可以看到SSD在其中的位置:
论文名称:Rich feature hierarchies for accurate object detection and semantic segmentation 提出时间:2014年 论文地址: 针对问题: 从Alexnet提出后,作者等人思考如何利用卷积网络来完成检测任务,即输入一张图,实现图上目标的定位(目标在哪)和分类(目标是什么)两个目标,并最终完成了RCNN网络模型。 创新点: RCNN提出时,检测网络的执行思路还是脱胎于分类网络。也就是深度学习部分仅完成输入图像块的分类工作。那么对检测任务来说如何完成目标的定位呢,作者采用的是Selective Search候选区域提取算法,来获得当前输入图上可能包含目标的不同图像块,再将图像块裁剪到固定的尺寸输入CNN网络来进行当前图像块类别的判断。 参考博客: 。 论文题目:OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks 提出时间:2014年 论文地址: 针对问题: 该论文讨论了,CNN提取到的特征能够同时用于定位和分类两个任务。也就是在CNN提取到特征以后,在网络后端组织两组卷积或全连接层,一组用于实现定位,输出当前图像上目标的最小外接矩形框坐标,一组用于分类,输出当前图像上目标的类别信息。也是以此为起点,检测网络出现基础主干网络(backbone)+分类头或回归头(定位头)的网络设计模式雏形。 创新点: 在这篇论文中还有两个比较有意思的点,一是作者认为全连接层其实质实现的操作和1x1的卷积是类似的,而且用1x1的卷积核还可以避免FC对输入特征尺寸的限制,那用1x1卷积来替换FC层,是否可行呢?作者在测试时通过将全连接层替换为1x1卷积核证明是可行的;二是提出了offset max-pooling,也就是对池化层输入特征不能整除的情况,通过进行滑动池化并将不同的池化层传递给后续网络层来提高效果。另外作者在论文里提到他的用法是先基于主干网络+分类头训练,然后切换分类头为回归头,再训练回归头的参数,最终完成整个网络的训练。图像的输入作者采用的是直接在输入图上利用卷积核划窗。然后在指定的每个网络层上回归目标的尺度和空间位置。 参考博客: 论文题目:Scalable Object Detection using Deep Neural Networks 提出时间:2014年 论文地址: 针对问题: 既然CNN网络提取的特征可以直接用于检测任务(定位+分类),作者就尝试将目标框(可能包含目标的最小外包矩形框)提取任务放到CNN中进行。也就是直接通过网络完成输入图像上目标的定位工作。 创新点: 本文作者通过将物体检测问题定义为输出多个bounding box的回归问题. 同时每个bounding box会输出关于是否包含目标物体的置信度, 使得模型更加紧凑和高效。先通过聚类获得图像中可能有目标的位置聚类中心,(800个anchor box)然后学习预测不考虑目标类别的二分类网络,背景or前景。用到了多尺度下的检测。 参考博客: 论文题目:DeepBox: Learning Objectness with Convolutional Networks 提出时间:2015年ICCV 论文地址: 主要针对的问题: 本文完成的工作与第三篇类似,都是对目标框提取算法的优化方案,区别是本文首先采用自底而上的方案来提取图像上的疑似目标框,然后再利用CNN网络提取特征对目标框进行是否为前景区域的排序;而第三篇为直接利用CNN网络来回归图像上可能的目标位置。创新点: 本文作者想通过CNN学习输入图像的特征,从而实现对输入网络目标框是否为真实目标的情况进行计算,量化每个输入框的包含目标的可能性值。 参考博客: 论文题目:AttentionNet: AggregatingWeak Directions for Accurate Object Detection 提出时间:2015年ICCV 论文地址: 主要针对的问题: 对检测网络的实现方案进行思考,之前的执行策略是,先确定输入图像中可能包含目标位置的矩形框,再对每个矩形框进行分类和回归从而确定目标的准确位置,参考RCNN。那么能否直接利用回归的思路从图像的四个角点,逐渐得到目标的最小外接矩形框和类别呢? 创新点: 通过从图像的四个角点,逐步迭代的方式,每次计算一个缩小的方向,并缩小指定的距离来使得逐渐逼近目标。作者还提出了针对多目标情况的处理方式。 参考博客: 论文题目:Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition 提出时间:2014年 论文地址: 针对问题: 如RCNN会将输入的目标图像块处理到同一尺寸再输入进CNN网络,在处理过程中就造成了图像块信息的损失。在实际的场景中,输入网络的目标尺寸很难统一,而网络最后的全连接层又要求输入的特征信息为统一维度的向量。作者就尝试进行不同尺寸CNN网络提取到的特征维度进行统一。创新点: 作者提出的SPPnet中,通过使用特征金字塔池化来使得最后的卷积层输出结果可以统一到全连接层需要的尺寸,在训练的时候,池化的操作还是通过滑动窗口完成的,池化的核宽高及步长通过当前层的特征图的宽高计算得到。原论文中的特征金字塔池化操作图示如下。 参考博客 : 论文题目:Object detection via a multi-region & semantic segmentation-aware CNN model 提出时间:2015年 论文地址: 针对问题: 既然第三篇论文multibox算法提出了可以用CNN来实现输入图像中待检测目标的定位,本文作者就尝试增加一些训练时的方法技巧来提高CNN网络最终的定位精度。创新点: 作者通过对输入网络的region进行一定的处理(通过数据增强,使得网络利用目标周围的上下文信息得到更精准的目标框)来增加网络对目标回归框的精度。具体的处理方式包括:扩大输入目标的标签包围框、取输入目标的标签中包围框的一部分等并对不同区域分别回归位置,使得网络对目标的边界更加敏感。这种操作丰富了输入目标的多样性,从而提高了回归框的精度。 参考博客 : 论文题目:Fast-RCNN 提出时间:2015年 论文地址: 针对问题: RCNN中的CNN每输入一个图像块就要执行一次前向计算,这显然是非常耗时的,那么如何优化这部分呢? 创新点: 作者参考了SPPNet(第六篇论文),在网络中实现了ROIpooling来使得输入的图像块不用裁剪到统一尺寸,从而避免了输入的信息丢失。其次是将整张图输入网络得到特征图,再将原图上用Selective Search算法得到的目标框映射到特征图上,避免了特征的重复提取。 参考博客 : 论文题目:DeepProposal: Hunting Objects by Cascading Deep Convolutional Layers 提出时间:2015年 论文地址: 主要针对的问题: 本文的作者观察到CNN可以提取到很棒的对输入图像进行表征的论文,作者尝试通过实验来对CNN网络不同层所产生的特征的作用和情况进行讨论和解析。 创新点: 作者在不同的激活层上以滑动窗口的方式生成了假设,并表明最终的卷积层可以以较高的查全率找到感兴趣的对象,但是由于特征图的粗糙性,定位性很差。相反,网络的第一层可以更好地定位感兴趣的对象,但召回率降低。 论文题目:Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks 提出时间:2015年NIPS 论文地址: 主要针对的问题: 由multibox(第三篇)和DeepBox(第四篇)等论文,我们知道,用CNN可以生成目标待检测框,并判定当前框为目标的概率,那能否将该模型整合到目标检测的模型中,从而实现真正输入端为图像,输出为最终检测结果的,全部依赖CNN完成的检测系统呢? 创新点: 将当前输入图目标框提取整合到了检测网络中,依赖一个小的目标框提取网络RPN来替代Selective Search算法,从而实现真正的端到端检测算法。 参考博客 :
作为计算机视觉三大任务(图像分类、目标检测、图像分割)之一,目标检测任务在于从图像中定位并分类感兴趣的物体。传统视觉方案涉及霍夫变换、滑窗、特征提取、边界检测、模板匹配、哈尔特征、DPM、BoW、传统机器学习(如随机森林、AdaBoost)等技巧或方法。在卷积神经网络的加持下,目标检测任务在近些年里有了长足的发展。其应用十分广泛,比如在自动驾驶领域,目标检测用于无人车检测其他车辆、行人或者交通标志牌等物体。
目标检测的常用框架可以分为两类,一类是 two-stage/two-shot 的方法,其特点是将兴趣区域检测和分类分开进行,比较有代表性的是R-CNN,Fast R-CNN,Faster R-CNN;另一类是 one-stage/one-shot 的方法,用一个网络同时进行兴趣区域检测和分类,以YOLO(v1,v2,v3)和SSD为代表。
Two-stage的方式面世比较早,由于需要将兴趣区域检测和分类分开进行,虽然精度比较高,但实时性比较差,不适合自动驾驶无人车辆感知等应用场景。因而此次我们主要介绍一下SSD和YOLO系列框架。
SSD与2016年由W. Liu et al.在 SSD: Single Shot MultiBox Detector 一文中提出。虽然比同年提出的YOLO(v1)稍晚,但是运行速度更快,同时更加精确。
SSD的框架在一个基础CNN网络(作者使用VGG-16,但是也可以换成其他网络)之上,添加了一些额外的结构,从而使网络具有以下特性:
用多尺度特征图进行检测 作者在VGG-16后面添加了一些特征层,这些层的尺寸逐渐减小,允许我们在不同的尺度下进行预测。越是深层小的特征图,用来预测越大的物体。
用卷积网络进行预测 不同于YOLO的全连接层,对每个用于预测的 通道特征图,SSD的分类器全都使用了 卷积进行预测,其中 是每个单元放置的先验框的数量, 是预测的类别数。
设置先验框 对于每一个特征图上的单元格,我们都放置一系列先验框。随后对每一个特征图上的单元格对应的每一个先验框,我们预测先验框的 维偏移量和每一类的置信度。例如,对于一个 的特征图,若每一个特征图对应 个先验框,同时需要预测的类别有 类,那输出的大小为 。(具体体现在训练过程中) 其中,若用 表示先验框的中心位置和宽高, 表示预测框的中心位置和宽高,则实际预测的 维偏移量 是 分别是:
下图是SSD的一个框架,首先是一个VGG-16卷积前5层,随后级联了一系列卷积层,其中有6层分别通过了 卷积(或者最后一层的平均池化)用于预测,得到了一个 的输出,随后通过极大值抑制(NMS)获得最终的结果。
图中网络用于检测的特征图有 个,大小依次为 , , , , , ;这些特征图每个单元所对应的预置先验框分别有 , , , , , 个,所以网络共预测了 个边界框,(进行极大值抑制前)输出的维度为 。
未完待续
参考: chenxp2311的CSDN博客:论文阅读:SSD: Single Shot MultiBox Detector 小小将的知乎专栏:目标检测|SSD原理与实现 littleYii的CSDN博客:目标检测论文阅读:YOLOv1-YOLOv3(一)
作者的其他相关文章: 图像分割:全卷积神经网络(FCN)详解 PointNet:基于深度学习的3D点云分类和分割模型 详解 基于视觉的机器人室内定位
论文原文:
YOLO(you only look once)是继RCNN、faster-RCNN之后,又一里程碑式的目标检测算法。yolo在保持不错的准确度的情况下,解决了当时基于深度学习的检测中的痛点---速度问题。下图是各目标检测系统的检测性能对比:
如果说faster-RCNN是真正实现了完全基于深度学习的端到端的检测,那么yolo则是更进一步,将 目标区域预测 与 目标类别判断 整合到单个神经网络模型中。各检测算法结构见下图:
每个网格要预测B个bounding box,每个bounding box除了要回归自身的位置之外,还要附带预测一个confidence值。这个confidence代表了所预测的box中含有object的置信度和这个box预测的有多准两重信息,其值是这样计算的:
其中如果有object落在一个grid cell里,第一项取1,否则取0。第二项是预测的bounding box和实际的groundtruth之间的IoU值。
每个bounding box要预测(x, y, w, h)和confidence共5个值,每个网格还要预测一个类别信息,记为C类。即SxS个网格,每个网格除了要预测B个bounding box外,还要预测C个categories。输出就是S x S x (5*B+C)的一个tensor。(注意:class信息是针对每个网格的,即一个网格只预测一组类别而不管里面有多少个bounding box,而confidence信息是针对每个bounding box的。)
举例说明: 在PASCAL VOC中,图像输入为448x448,取S=7,B=2,一共有20个类别(C=20)。则输出就是7x7x30的一个tensor。整个网络结构如下图所示:
在test的时候,每个网格预测的class信息和bounding box预测的confidence信息相乘,就得到每个bounding box的class-specific confidence score:
等式左边第一项就是每个网格预测的类别信息,第二三项就是每个bounding box预测的confidence。这个乘积即encode了预测的box属于某一类的概率,也有该box准确度的信息。
得到每个box的class-specific confidence score以后,设置阈值,滤掉得分低的boxes,对保留的boxes进行NMS(非极大值抑制non-maximum suppresssion)处理,就得到最终的检测结果。
1、每个grid因为预测两个bounding box有30维(30=2*5+20),这30维中,8维是回归box的坐标,2维是box的confidence,还有20维是类别。其中坐标的x,y用bounding box相对grid的offset归一化到0-1之间,w,h除以图像的width和height也归一化到0-1之间。
2、对不同大小的box预测中,相比于大box预测偏一点,小box预测偏一点肯定更不能被忍受的。而sum-square error loss中对同样的偏移loss是一样。为了缓和这个问题,作者用了一个比较取巧的办法,就是将box的width和height取平方根代替原本的height和width。这个参考下面的图很容易理解,小box的横轴值较小,发生偏移时,反应到y轴上相比大box要大。其实就是让算法对小box预测的偏移更加敏感。
3、一个网格预测多个box,希望的是每个box predictor专门负责预测某个object。具体做法就是看当前预测的box与ground truth box中哪个IoU大,就负责哪个。这种做法称作box predictor的specialization。
4、损失函数公式见下图:
在实现中,最主要的就是怎么设计损失函数,坐标(x,y,w,h),confidence,classification 让这个三个方面得到很好的平衡。简单的全部采用sum-squared error loss来做这件事会有以下不足:
解决方法:
只有当某个网格中有object的时候才对classification error进行惩罚。只有当某个box predictor对某个ground truth box负责的时候,才会对box的coordinate error进行惩罚,而对哪个ground truth box负责就看其预测值和ground truth box的IoU是不是在那个cell的所有box中最大。
作者采用ImageNet 1000-class 数据集来预训练卷积层。预训练阶段,采用网络中的前20卷积层,外加average-pooling层和全连接层。模型训练了一周,获得了top-5 accuracy为(ImageNet2012 validation set),与GoogleNet模型准确率相当。
然后,将模型转换为检测模型。作者向预训练模型中加入了4个卷积层和两层全连接层,提高了模型输入分辨率(224×224->448×448)。顶层预测类别概率和bounding box协调值。bounding box的宽和高通过输入图像宽和高归一化到0-1区间。顶层采用linear activation,其它层使用 leaky rectified linear。
作者采用sum-squared error为目标函数来优化,增加bounding box loss权重,减少置信度权重,实验中,设定为\lambda _{coord} =5 and\lambda _{noobj}= 。
作者在PASCAL VOC2007和PASCAL VOC2012数据集上进行了训练和测试。训练135轮,batch size为64,动量为,学习速率延迟为。Learning schedule为:第一轮,学习速率从缓慢增加到(因为如果初始为高学习速率,会导致模型发散);保持速率到75轮;然后在后30轮中,下降到;最后30轮,学习速率为。
作者还采用了dropout和 data augmentation来预防过拟合。dropout值为;data augmentation包括:random scaling,translation,adjust exposure和saturation。
YOLO模型相对于之前的物体检测方法有多个优点:
1、 YOLO检测物体非常快
因为没有复杂的检测流程,只需要将图像输入到神经网络就可以得到检测结果,YOLO可以非常快的完成物体检测任务。标准版本的YOLO在Titan X 的 GPU 上能达到45 FPS。更快的Fast YOLO检测速度可以达到155 FPS。而且,YOLO的mAP是之前其他实时物体检测系统的两倍以上。
2、 YOLO可以很好的避免背景错误,产生false positives
不像其他物体检测系统使用了滑窗或region proposal,分类器只能得到图像的局部信息。YOLO在训练和测试时都能够看到一整张图像的信息,因此YOLO在检测物体时能很好的利用上下文信息,从而不容易在背景上预测出错误的物体信息。和Fast-R-CNN相比,YOLO的背景错误不到Fast-R-CNN的一半。
3、 YOLO可以学到物体的泛化特征
当YOLO在自然图像上做训练,在艺术作品上做测试时,YOLO表现的性能比DPM、R-CNN等之前的物体检测系统要好很多。因为YOLO可以学习到高度泛化的特征,从而迁移到其他领域。
尽管YOLO有这些优点,它也有一些缺点:
1、YOLO的物体检测精度低于其他state-of-the-art的物体检测系统。
2、YOLO容易产生物体的定位错误。
3、YOLO对小物体的检测效果不好(尤其是密集的小物体,因为一个栅格只能预测2个物体)。
论文名称:Rich feature hierarchies for accurate object detection and semantic segmentation 提出时间:2014年 论文地址: 针对问题: 从Alexnet提出后,作者等人思考如何利用卷积网络来完成检测任务,即输入一张图,实现图上目标的定位(目标在哪)和分类(目标是什么)两个目标,并最终完成了RCNN网络模型。 创新点: RCNN提出时,检测网络的执行思路还是脱胎于分类网络。也就是深度学习部分仅完成输入图像块的分类工作。那么对检测任务来说如何完成目标的定位呢,作者采用的是Selective Search候选区域提取算法,来获得当前输入图上可能包含目标的不同图像块,再将图像块裁剪到固定的尺寸输入CNN网络来进行当前图像块类别的判断。 参考博客: 。 论文题目:OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks 提出时间:2014年 论文地址: 针对问题: 该论文讨论了,CNN提取到的特征能够同时用于定位和分类两个任务。也就是在CNN提取到特征以后,在网络后端组织两组卷积或全连接层,一组用于实现定位,输出当前图像上目标的最小外接矩形框坐标,一组用于分类,输出当前图像上目标的类别信息。也是以此为起点,检测网络出现基础主干网络(backbone)+分类头或回归头(定位头)的网络设计模式雏形。 创新点: 在这篇论文中还有两个比较有意思的点,一是作者认为全连接层其实质实现的操作和1x1的卷积是类似的,而且用1x1的卷积核还可以避免FC对输入特征尺寸的限制,那用1x1卷积来替换FC层,是否可行呢?作者在测试时通过将全连接层替换为1x1卷积核证明是可行的;二是提出了offset max-pooling,也就是对池化层输入特征不能整除的情况,通过进行滑动池化并将不同的池化层传递给后续网络层来提高效果。另外作者在论文里提到他的用法是先基于主干网络+分类头训练,然后切换分类头为回归头,再训练回归头的参数,最终完成整个网络的训练。图像的输入作者采用的是直接在输入图上利用卷积核划窗。然后在指定的每个网络层上回归目标的尺度和空间位置。 参考博客: 论文题目:Scalable Object Detection using Deep Neural Networks 提出时间:2014年 论文地址: 针对问题: 既然CNN网络提取的特征可以直接用于检测任务(定位+分类),作者就尝试将目标框(可能包含目标的最小外包矩形框)提取任务放到CNN中进行。也就是直接通过网络完成输入图像上目标的定位工作。 创新点: 本文作者通过将物体检测问题定义为输出多个bounding box的回归问题. 同时每个bounding box会输出关于是否包含目标物体的置信度, 使得模型更加紧凑和高效。先通过聚类获得图像中可能有目标的位置聚类中心,(800个anchor box)然后学习预测不考虑目标类别的二分类网络,背景or前景。用到了多尺度下的检测。 参考博客: 论文题目:DeepBox: Learning Objectness with Convolutional Networks 提出时间:2015年ICCV 论文地址: 主要针对的问题: 本文完成的工作与第三篇类似,都是对目标框提取算法的优化方案,区别是本文首先采用自底而上的方案来提取图像上的疑似目标框,然后再利用CNN网络提取特征对目标框进行是否为前景区域的排序;而第三篇为直接利用CNN网络来回归图像上可能的目标位置。创新点: 本文作者想通过CNN学习输入图像的特征,从而实现对输入网络目标框是否为真实目标的情况进行计算,量化每个输入框的包含目标的可能性值。 参考博客: 论文题目:AttentionNet: AggregatingWeak Directions for Accurate Object Detection 提出时间:2015年ICCV 论文地址: 主要针对的问题: 对检测网络的实现方案进行思考,之前的执行策略是,先确定输入图像中可能包含目标位置的矩形框,再对每个矩形框进行分类和回归从而确定目标的准确位置,参考RCNN。那么能否直接利用回归的思路从图像的四个角点,逐渐得到目标的最小外接矩形框和类别呢? 创新点: 通过从图像的四个角点,逐步迭代的方式,每次计算一个缩小的方向,并缩小指定的距离来使得逐渐逼近目标。作者还提出了针对多目标情况的处理方式。 参考博客: 论文题目:Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition 提出时间:2014年 论文地址: 针对问题: 如RCNN会将输入的目标图像块处理到同一尺寸再输入进CNN网络,在处理过程中就造成了图像块信息的损失。在实际的场景中,输入网络的目标尺寸很难统一,而网络最后的全连接层又要求输入的特征信息为统一维度的向量。作者就尝试进行不同尺寸CNN网络提取到的特征维度进行统一。创新点: 作者提出的SPPnet中,通过使用特征金字塔池化来使得最后的卷积层输出结果可以统一到全连接层需要的尺寸,在训练的时候,池化的操作还是通过滑动窗口完成的,池化的核宽高及步长通过当前层的特征图的宽高计算得到。原论文中的特征金字塔池化操作图示如下。 参考博客 : 论文题目:Object detection via a multi-region & semantic segmentation-aware CNN model 提出时间:2015年 论文地址: 针对问题: 既然第三篇论文multibox算法提出了可以用CNN来实现输入图像中待检测目标的定位,本文作者就尝试增加一些训练时的方法技巧来提高CNN网络最终的定位精度。创新点: 作者通过对输入网络的region进行一定的处理(通过数据增强,使得网络利用目标周围的上下文信息得到更精准的目标框)来增加网络对目标回归框的精度。具体的处理方式包括:扩大输入目标的标签包围框、取输入目标的标签中包围框的一部分等并对不同区域分别回归位置,使得网络对目标的边界更加敏感。这种操作丰富了输入目标的多样性,从而提高了回归框的精度。 参考博客 : 论文题目:Fast-RCNN 提出时间:2015年 论文地址: 针对问题: RCNN中的CNN每输入一个图像块就要执行一次前向计算,这显然是非常耗时的,那么如何优化这部分呢? 创新点: 作者参考了SPPNet(第六篇论文),在网络中实现了ROIpooling来使得输入的图像块不用裁剪到统一尺寸,从而避免了输入的信息丢失。其次是将整张图输入网络得到特征图,再将原图上用Selective Search算法得到的目标框映射到特征图上,避免了特征的重复提取。 参考博客 : 论文题目:DeepProposal: Hunting Objects by Cascading Deep Convolutional Layers 提出时间:2015年 论文地址: 主要针对的问题: 本文的作者观察到CNN可以提取到很棒的对输入图像进行表征的论文,作者尝试通过实验来对CNN网络不同层所产生的特征的作用和情况进行讨论和解析。 创新点: 作者在不同的激活层上以滑动窗口的方式生成了假设,并表明最终的卷积层可以以较高的查全率找到感兴趣的对象,但是由于特征图的粗糙性,定位性很差。相反,网络的第一层可以更好地定位感兴趣的对象,但召回率降低。 论文题目:Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks 提出时间:2015年NIPS 论文地址: 主要针对的问题: 由multibox(第三篇)和DeepBox(第四篇)等论文,我们知道,用CNN可以生成目标待检测框,并判定当前框为目标的概率,那能否将该模型整合到目标检测的模型中,从而实现真正输入端为图像,输出为最终检测结果的,全部依赖CNN完成的检测系统呢? 创新点: 将当前输入图目标框提取整合到了检测网络中,依赖一个小的目标框提取网络RPN来替代Selective Search算法,从而实现真正的端到端检测算法。 参考博客 :
论文名称:Rich feature hierarchies for accurate object detection and semantic segmentation 提出时间:2014年 论文地址: 针对问题: 从Alexnet提出后,作者等人思考如何利用卷积网络来完成检测任务,即输入一张图,实现图上目标的定位(目标在哪)和分类(目标是什么)两个目标,并最终完成了RCNN网络模型。 创新点: RCNN提出时,检测网络的执行思路还是脱胎于分类网络。也就是深度学习部分仅完成输入图像块的分类工作。那么对检测任务来说如何完成目标的定位呢,作者采用的是Selective Search候选区域提取算法,来获得当前输入图上可能包含目标的不同图像块,再将图像块裁剪到固定的尺寸输入CNN网络来进行当前图像块类别的判断。 参考博客: 。 论文题目:OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks 提出时间:2014年 论文地址: 针对问题: 该论文讨论了,CNN提取到的特征能够同时用于定位和分类两个任务。也就是在CNN提取到特征以后,在网络后端组织两组卷积或全连接层,一组用于实现定位,输出当前图像上目标的最小外接矩形框坐标,一组用于分类,输出当前图像上目标的类别信息。也是以此为起点,检测网络出现基础主干网络(backbone)+分类头或回归头(定位头)的网络设计模式雏形。 创新点: 在这篇论文中还有两个比较有意思的点,一是作者认为全连接层其实质实现的操作和1x1的卷积是类似的,而且用1x1的卷积核还可以避免FC对输入特征尺寸的限制,那用1x1卷积来替换FC层,是否可行呢?作者在测试时通过将全连接层替换为1x1卷积核证明是可行的;二是提出了offset max-pooling,也就是对池化层输入特征不能整除的情况,通过进行滑动池化并将不同的池化层传递给后续网络层来提高效果。另外作者在论文里提到他的用法是先基于主干网络+分类头训练,然后切换分类头为回归头,再训练回归头的参数,最终完成整个网络的训练。图像的输入作者采用的是直接在输入图上利用卷积核划窗。然后在指定的每个网络层上回归目标的尺度和空间位置。 参考博客: 论文题目:Scalable Object Detection using Deep Neural Networks 提出时间:2014年 论文地址: 针对问题: 既然CNN网络提取的特征可以直接用于检测任务(定位+分类),作者就尝试将目标框(可能包含目标的最小外包矩形框)提取任务放到CNN中进行。也就是直接通过网络完成输入图像上目标的定位工作。 创新点: 本文作者通过将物体检测问题定义为输出多个bounding box的回归问题. 同时每个bounding box会输出关于是否包含目标物体的置信度, 使得模型更加紧凑和高效。先通过聚类获得图像中可能有目标的位置聚类中心,(800个anchor box)然后学习预测不考虑目标类别的二分类网络,背景or前景。用到了多尺度下的检测。 参考博客: 论文题目:DeepBox: Learning Objectness with Convolutional Networks 提出时间:2015年ICCV 论文地址: 主要针对的问题: 本文完成的工作与第三篇类似,都是对目标框提取算法的优化方案,区别是本文首先采用自底而上的方案来提取图像上的疑似目标框,然后再利用CNN网络提取特征对目标框进行是否为前景区域的排序;而第三篇为直接利用CNN网络来回归图像上可能的目标位置。创新点: 本文作者想通过CNN学习输入图像的特征,从而实现对输入网络目标框是否为真实目标的情况进行计算,量化每个输入框的包含目标的可能性值。 参考博客: 论文题目:AttentionNet: AggregatingWeak Directions for Accurate Object Detection 提出时间:2015年ICCV 论文地址: 主要针对的问题: 对检测网络的实现方案进行思考,之前的执行策略是,先确定输入图像中可能包含目标位置的矩形框,再对每个矩形框进行分类和回归从而确定目标的准确位置,参考RCNN。那么能否直接利用回归的思路从图像的四个角点,逐渐得到目标的最小外接矩形框和类别呢? 创新点: 通过从图像的四个角点,逐步迭代的方式,每次计算一个缩小的方向,并缩小指定的距离来使得逐渐逼近目标。作者还提出了针对多目标情况的处理方式。 参考博客: 论文题目:Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition 提出时间:2014年 论文地址: 针对问题: 如RCNN会将输入的目标图像块处理到同一尺寸再输入进CNN网络,在处理过程中就造成了图像块信息的损失。在实际的场景中,输入网络的目标尺寸很难统一,而网络最后的全连接层又要求输入的特征信息为统一维度的向量。作者就尝试进行不同尺寸CNN网络提取到的特征维度进行统一。创新点: 作者提出的SPPnet中,通过使用特征金字塔池化来使得最后的卷积层输出结果可以统一到全连接层需要的尺寸,在训练的时候,池化的操作还是通过滑动窗口完成的,池化的核宽高及步长通过当前层的特征图的宽高计算得到。原论文中的特征金字塔池化操作图示如下。 参考博客 : 论文题目:Object detection via a multi-region & semantic segmentation-aware CNN model 提出时间:2015年 论文地址: 针对问题: 既然第三篇论文multibox算法提出了可以用CNN来实现输入图像中待检测目标的定位,本文作者就尝试增加一些训练时的方法技巧来提高CNN网络最终的定位精度。创新点: 作者通过对输入网络的region进行一定的处理(通过数据增强,使得网络利用目标周围的上下文信息得到更精准的目标框)来增加网络对目标回归框的精度。具体的处理方式包括:扩大输入目标的标签包围框、取输入目标的标签中包围框的一部分等并对不同区域分别回归位置,使得网络对目标的边界更加敏感。这种操作丰富了输入目标的多样性,从而提高了回归框的精度。 参考博客 : 论文题目:Fast-RCNN 提出时间:2015年 论文地址: 针对问题: RCNN中的CNN每输入一个图像块就要执行一次前向计算,这显然是非常耗时的,那么如何优化这部分呢? 创新点: 作者参考了SPPNet(第六篇论文),在网络中实现了ROIpooling来使得输入的图像块不用裁剪到统一尺寸,从而避免了输入的信息丢失。其次是将整张图输入网络得到特征图,再将原图上用Selective Search算法得到的目标框映射到特征图上,避免了特征的重复提取。 参考博客 : 论文题目:DeepProposal: Hunting Objects by Cascading Deep Convolutional Layers 提出时间:2015年 论文地址: 主要针对的问题: 本文的作者观察到CNN可以提取到很棒的对输入图像进行表征的论文,作者尝试通过实验来对CNN网络不同层所产生的特征的作用和情况进行讨论和解析。 创新点: 作者在不同的激活层上以滑动窗口的方式生成了假设,并表明最终的卷积层可以以较高的查全率找到感兴趣的对象,但是由于特征图的粗糙性,定位性很差。相反,网络的第一层可以更好地定位感兴趣的对象,但召回率降低。 论文题目:Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks 提出时间:2015年NIPS 论文地址: 主要针对的问题: 由multibox(第三篇)和DeepBox(第四篇)等论文,我们知道,用CNN可以生成目标待检测框,并判定当前框为目标的概率,那能否将该模型整合到目标检测的模型中,从而实现真正输入端为图像,输出为最终检测结果的,全部依赖CNN完成的检测系统呢? 创新点: 将当前输入图目标框提取整合到了检测网络中,依赖一个小的目标框提取网络RPN来替代Selective Search算法,从而实现真正的端到端检测算法。 参考博客 :
能不能给我发一份呢?
论文原文:
YOLO(you only look once)是继RCNN、faster-RCNN之后,又一里程碑式的目标检测算法。yolo在保持不错的准确度的情况下,解决了当时基于深度学习的检测中的痛点---速度问题。下图是各目标检测系统的检测性能对比:
如果说faster-RCNN是真正实现了完全基于深度学习的端到端的检测,那么yolo则是更进一步,将 目标区域预测 与 目标类别判断 整合到单个神经网络模型中。各检测算法结构见下图:
每个网格要预测B个bounding box,每个bounding box除了要回归自身的位置之外,还要附带预测一个confidence值。这个confidence代表了所预测的box中含有object的置信度和这个box预测的有多准两重信息,其值是这样计算的:
其中如果有object落在一个grid cell里,第一项取1,否则取0。第二项是预测的bounding box和实际的groundtruth之间的IoU值。
每个bounding box要预测(x, y, w, h)和confidence共5个值,每个网格还要预测一个类别信息,记为C类。即SxS个网格,每个网格除了要预测B个bounding box外,还要预测C个categories。输出就是S x S x (5*B+C)的一个tensor。(注意:class信息是针对每个网格的,即一个网格只预测一组类别而不管里面有多少个bounding box,而confidence信息是针对每个bounding box的。)
举例说明: 在PASCAL VOC中,图像输入为448x448,取S=7,B=2,一共有20个类别(C=20)。则输出就是7x7x30的一个tensor。整个网络结构如下图所示:
在test的时候,每个网格预测的class信息和bounding box预测的confidence信息相乘,就得到每个bounding box的class-specific confidence score:
等式左边第一项就是每个网格预测的类别信息,第二三项就是每个bounding box预测的confidence。这个乘积即encode了预测的box属于某一类的概率,也有该box准确度的信息。
得到每个box的class-specific confidence score以后,设置阈值,滤掉得分低的boxes,对保留的boxes进行NMS(非极大值抑制non-maximum suppresssion)处理,就得到最终的检测结果。
1、每个grid因为预测两个bounding box有30维(30=2*5+20),这30维中,8维是回归box的坐标,2维是box的confidence,还有20维是类别。其中坐标的x,y用bounding box相对grid的offset归一化到0-1之间,w,h除以图像的width和height也归一化到0-1之间。
2、对不同大小的box预测中,相比于大box预测偏一点,小box预测偏一点肯定更不能被忍受的。而sum-square error loss中对同样的偏移loss是一样。为了缓和这个问题,作者用了一个比较取巧的办法,就是将box的width和height取平方根代替原本的height和width。这个参考下面的图很容易理解,小box的横轴值较小,发生偏移时,反应到y轴上相比大box要大。其实就是让算法对小box预测的偏移更加敏感。
3、一个网格预测多个box,希望的是每个box predictor专门负责预测某个object。具体做法就是看当前预测的box与ground truth box中哪个IoU大,就负责哪个。这种做法称作box predictor的specialization。
4、损失函数公式见下图:
在实现中,最主要的就是怎么设计损失函数,坐标(x,y,w,h),confidence,classification 让这个三个方面得到很好的平衡。简单的全部采用sum-squared error loss来做这件事会有以下不足:
解决方法:
只有当某个网格中有object的时候才对classification error进行惩罚。只有当某个box predictor对某个ground truth box负责的时候,才会对box的coordinate error进行惩罚,而对哪个ground truth box负责就看其预测值和ground truth box的IoU是不是在那个cell的所有box中最大。
作者采用ImageNet 1000-class 数据集来预训练卷积层。预训练阶段,采用网络中的前20卷积层,外加average-pooling层和全连接层。模型训练了一周,获得了top-5 accuracy为(ImageNet2012 validation set),与GoogleNet模型准确率相当。
然后,将模型转换为检测模型。作者向预训练模型中加入了4个卷积层和两层全连接层,提高了模型输入分辨率(224×224->448×448)。顶层预测类别概率和bounding box协调值。bounding box的宽和高通过输入图像宽和高归一化到0-1区间。顶层采用linear activation,其它层使用 leaky rectified linear。
作者采用sum-squared error为目标函数来优化,增加bounding box loss权重,减少置信度权重,实验中,设定为\lambda _{coord} =5 and\lambda _{noobj}= 。
作者在PASCAL VOC2007和PASCAL VOC2012数据集上进行了训练和测试。训练135轮,batch size为64,动量为,学习速率延迟为。Learning schedule为:第一轮,学习速率从缓慢增加到(因为如果初始为高学习速率,会导致模型发散);保持速率到75轮;然后在后30轮中,下降到;最后30轮,学习速率为。
作者还采用了dropout和 data augmentation来预防过拟合。dropout值为;data augmentation包括:random scaling,translation,adjust exposure和saturation。
YOLO模型相对于之前的物体检测方法有多个优点:
1、 YOLO检测物体非常快
因为没有复杂的检测流程,只需要将图像输入到神经网络就可以得到检测结果,YOLO可以非常快的完成物体检测任务。标准版本的YOLO在Titan X 的 GPU 上能达到45 FPS。更快的Fast YOLO检测速度可以达到155 FPS。而且,YOLO的mAP是之前其他实时物体检测系统的两倍以上。
2、 YOLO可以很好的避免背景错误,产生false positives
不像其他物体检测系统使用了滑窗或region proposal,分类器只能得到图像的局部信息。YOLO在训练和测试时都能够看到一整张图像的信息,因此YOLO在检测物体时能很好的利用上下文信息,从而不容易在背景上预测出错误的物体信息。和Fast-R-CNN相比,YOLO的背景错误不到Fast-R-CNN的一半。
3、 YOLO可以学到物体的泛化特征
当YOLO在自然图像上做训练,在艺术作品上做测试时,YOLO表现的性能比DPM、R-CNN等之前的物体检测系统要好很多。因为YOLO可以学习到高度泛化的特征,从而迁移到其他领域。
尽管YOLO有这些优点,它也有一些缺点:
1、YOLO的物体检测精度低于其他state-of-the-art的物体检测系统。
2、YOLO容易产生物体的定位错误。
3、YOLO对小物体的检测效果不好(尤其是密集的小物体,因为一个栅格只能预测2个物体)。
CVPR论文可以说是世界顶级水平论文。
图片来源于网络
CVPR是IEEE Conference on Computer Vision and Pattern Recognition的缩写,即IEEE国际计算机视觉与模式识别会议。该会议是由IEEE举办的计算机视觉和模式识别领域的顶级会议。这是一个一年一次的会议,举办地从来没有出过美国。正如它的名字一样,这个会上除了视觉的文章,还会有不少模式识别的文章,当然两方面的结合自然也是重点。
下面是前几年CVPR论文的接收情况:
图片来源于网络
cvpr录用标准相当严格,通常会议整体的录取率不超过25%,而口头报告的论文比例更只占5%不到。其会议的组织方是一个循环的志愿群体,其成员遴选一般会在某次会议召开的三年前进行。cvpr的审稿过程中会议的审稿方与投稿方均不知道对方的信息。而且一篇论文经常需要由三位审稿者进行审读。最后再由会议的领域主席决定是否接收。
在各种学术会议统计中,CVPR被认为有着很强的影响力和很高的排名。目前在中国计算机学会推荐国际学术会议的排名中,CVPR为人工智能领域的A类会议。