那么量子纠缠和引力波超光速了吗?这其实是两个问题,我们必须分开讨论,因为两者的性质完全不同。 量子纠缠最早是由爱因斯坦提出的,用以质疑玻尔为首的哥本哈根学派对波函数坍缩的概率解释。他从哥本哈根学派认为在被测量到之前,微观粒子不存在确定的状态出发,提出了这么一种情况: 通过特殊的方式,我们可以得到一对状态(量子态)互相纠缠的光子,为了方便理解,我们可以假设这对光子的自旋方向 一个是上旋,一个是下旋。 我们可以把这对光子通过光路分开到一定的距离,比如1光年。然后对两者分别进行测量。 根据哥本哈根解释,在其中一个光子被测量到的那一刻,状态才会确定,也就是当我们在A点测量光子a时,它才随机坍缩到一个自旋态, 比如为上旋,那么基于纠缠的特性,在1光年外的B点处的光子b就应该会是下旋。 所以当我们通过以纠缠光子的发射点作为标准进行时间校准后,在相隔1光年的A、B两点同时进行测量,那么将会分别测量到一个上旋和一个下旋的光子,而肯定不会同时测量到两个上旋或两个下旋的光子。 (量子纠缠)那么问题来了,此时a、b两个光子相距已经有1光年远了,它们是怎么做的瞬间随机坍缩到一个状态而又能保证互为相反的呢? 如果a、b光子确实是被测量那一刻自旋态才被确定并且完全随机的话,那a、b之间就必须存在某种关联让双方知道对方的状态,而这种关联是瞬时的,也就是超光速的,这就违背了狭义相对论里的信息传递不能超光速了。 于是爱因斯坦以此向玻尔为首的哥本哈根学派发起挑战:是放弃狭义相对论还是放弃哥本哈根诠释? 在爱因斯坦看来,如果要承认狭义相对论的正确性,那么互相纠缠的光子应该在分开的那一刻状态就已经确定,这样无论它们之后分开多远,都能在测量时得到相反的自旋态。 所以他认为哥本哈根学派认为光子的状态在被测量时才确定的说法是错误的。 (爱因斯坦和玻尔)然而玻尔并不这么认为,他坚持哥本哈根诠释的正确性,他指出, 在测量前不存在两个光子的波函数,而是只有一个波函数,只有当其中一个光子被测量到时,这个唯一的波函数才随机坍缩为确定的两个光子。 既然只有一个波函数,随机坍缩的两个光子的状态自然是同时确定的,但这不需要在两个光子间传递信息,因为坍缩前只有一个波函数。这其实跟单个光子的波函数坍缩是完全一样的,单个光子在被测量前波函数弥漫在整个空间任何可能的地方,但一旦测量,它就从全空间坍缩到一个确定的位置,并且是唯一的位置,它无需告知别处所有可能出现的地方的“自己”不要出现。 在这种解释里,两个光子之间是不传递信息的,而由于其坍缩前无法确定状态,因此光子本身也不携带信息,而由于测量即坍缩,因此也不能提前录入信息。 既没有传递信息,也没有携带信息,也不能录入信息,量子纠缠自然就根本不存在超光速传递信息了。 量子纠缠没有超光速那引力波呢?这个问题分两种情况。首先引力波传播速度等于光速这是广义相对论得出的结论,虽然它其实是利用 光速常数c 强行规定的,但是在多次引力波事件的测量中已经证明,引力波传播速度就是光速!特别是双中子星合并引力波事件,由于引力波和多波段电磁波接收到同一信号,因此已经非常确定引力波传播速度与电磁波波速,即光速一致!(双中子星合并)但是在引力波问题上还存在另一种情况,就是宇宙膨胀。 我们知道根据天文观测,宇宙正以大约70km/s/Mpc的速度膨胀,这就导致 宇观尺度 下两点间的距离在渐渐拉大,因此在引力波源处发出引力波后,引力波沿空间传播过程中,空间距离被拉大了。距离变了那引力波速度怎么算?这问题其实跟宇宙膨胀下的光速是同一个问题。很显然,如果忽略掉宇宙膨胀本身的距离增加问题,宇观尺度下的引力波和光速都将下降,也就是都将低于 真空光速常数c 。这是很容易理解的,比如说一个距离地球1亿光年的双中子星发生碰撞,那么伽马射线爆和引力波将以光速向地球传播,这将需要1亿年时间,然而在这1亿年的传播过程中,双中子星与地球之间的空间在不断膨胀, 距离在不断增加,那么它还能在1亿年时到达地球吗?显然不可能,不然就超光速了。实际情况是引力波和伽马射线暴都将超过1亿年后才能到达地球,如果此时我们依然按照静态宇宙的距离1亿光年来计算,那引力波和伽马射线暴都将低于光速了…… 但实际上当我们引入考虑了宇宙膨胀的距离定义,问题就迎刃而解了,引力波和伽马射线暴依然刚好就是光速c。 (宇宙膨胀导致空间距离增加)综上分析,量子纠缠和引力波都没有超光速,量子纠缠压根不存在速度问题,它既没有能量传递,也没有信息传递。而引力波速度则严格等于光速,这已经在天文观测中得到严格证实了。 首先澄清一点,目前所知,引力波并没有超光速,这从理论上和实践上都已经得到证明:引力波是100多年前爱因斯坦在广义相对论中预测的,并从其引力场方程中推算出引力波的速度为光速;2017年8月17日美国LIGO探测器探测到距我们亿光年远的双中子星并合产生的引力波, 引力波和电磁对应体几乎同时到达地面,这有力地证明了引力波的速度为光速。 就目前的实践和认识水平,光速是不可超越的。实际上这个论断来自于爱因斯坦狭义相对论的光速不变原理。这个原理说的是对于任何惯性系来讲,光在真空中的传播速度是不变的,与观察者和光源的运动状态无关。这个速度的大小为299792458米/秒。光速对于无论以多快速度运动的物体来说仍然是不变。这意味着任何物体的运动速度不能超过光速,甚至达到光速都不行。光速就是最高速,这就是光速限制原理。你可以无限接近299792458米/秒,但在接近的过程中肯定会产生一些效应来阻止你接近,最终是没法达到光速的。比如质量趋向于无限大。(其中m为物体质量,m0为物体静质量,Ⅴ为物体运动速度,C为光速。) 当速度V→C时,分母→0,则物体质量m→+∞从上式可以看出,只有物质的静止质量m0为0,物质的质量才有可能为0,物质的速度才有可能达到或超过光速。中微子静止质量几乎为0,所以它接近光速;而电磁场(光子)的静止质量为0,所以它达到光速。空间没有质量,所以它的膨胀速度可以超光速(应该说相对论结论可以进一步延伸)。有的读者看到这里会觉得奇怪,不是说光速不可超越吗?怎么有的能超光速?对此传统的解释是:光速限制原理说的是有效信息和能量的传递速度不能超光速,对于没有信息传递的速度没有限制。比如说量子纠缠就没有信息的传递,所以它可以超光速。所谓的量子纠缠,指的是几个粒子在相互作用后,各个粒子的特性已综合成为一个整体性质,无法单独描述单个粒子的特性,只能描述整体系统的性质。纠缠就是分不开,即使分开了,也是一个整体。根据不确定性原理,在未观测之前两个量子还是一个整体,是没办法确定它们单独的状态的。观测时其中一个量子的自旋被确定了,另一个相距再远,即使在宇宙的另一边,也会瞬间被确定,即在观测前并没有两个实在量子,是观测影响了结果。其传输速度远远超过光速,至少是10000倍光速。由于并没有传递任何信息和能量,所以并没有违反相对论。 另一种解释是:两个量子的超光速作用并没有把任何一个粒子加速至超光速,这里根本就不涉及物质的运动。没有运动何来的超光速?量子力学是非定域化的,波函数弥漫全宇宙,宇宙是一个全息整体,所以量子才能超光速纠缠。 上面提到了空间膨胀速度,根据哈勃定律,以地球为中心,宇宙空间膨胀速度每326万光年增加7公里/秒,大约距地140亿光年,空间膨胀速度就达到了光速,现在的可观测宇宙是140亿光年以内的天体在它们随着空间超光速膨胀前发出的光经过若干亿年陆续到达地球后人们所看到的。据推算它们现在距我们有460亿光年了。那空间为什么可以超光速? 因为光速限制原理说的是所有在空间中运动的东西的最高速度,包括光子本身,这些运动都属于空间中的运动。物体的运动速度是以空间为背景衡量的(没有空间就没有速度可言),也是在空间的运动(再快的物体也跑不出空间“之外”去)。 而空间的膨胀则是空间自身的运动,是空间成份之间的相互远离运动,光速限制原理怎么能管了它 ? 这就是空间超光速的真正原因,而非什么没有信息传递可以超光速的说法。相对论是局域化的,即超光速的或探测不到的影响不到我们,对于我们就是不存在的。但量子力学却是认为全宇宙都有影响的,所以相互运动怎么会不传递信息?从上面叙述想到一个问题:引力波是时空的涟漪,如果空间超光速膨胀,那么引力波的传播速度是否也会超光速?目前发现的引力波距离我们较近、次数较少,它的速度问题还有待进一步确定。 关于量子纠缠,你可以这样理解:把一双鞋的左右两只分别放进两个盒子里,然后把这两个盒子分别放在宇宙两端,你打开其中一个盒子发现鞋子是左脚的,立马就知道了宇宙另一端的那只鞋是右脚。这个感知速度几乎就是无限的,但是并不违反相对论,因为这里的信息传递应该是从把鞋子分开那一刻算起的,而不是打开盒子的瞬间。其实量子纠缠的信息传递模式跟这个差不多,传递是从创造出一对纠缠粒子开始算起,而不是检测粒子自旋状态的时候,所以并不存在超光速信息传递,这个信息传递速度远低于光速。以上只是我为了便于理解打个比方而已,其实颇有不妥之处,但我相信这是最易懂的科普语言。量子通信的意义在于信息传递的绝对安全性,因为量子信息被接收一次后量子态就坍缩了。 关于引力波速度:在广义相对论理论里面,引力波的确是光速,这是爱因斯坦最早得到引力波的方程的时候就发现的。目前公开的几个探测到的引力波事件,同时测量到了对应的电磁波也就是光的信号,所以有力地证明了引力波速度和光速一致。 关于量子纠缠的问题,最先的争论方分别是爱因斯坦和波尔。 1935 年 5 月,爱因斯坦同美国两位年轻的物理学家波多尔斯基和罗森在美国第 47 期《物理评论》杂志上,发表了题为《能认为量子力学对物理实在的描述是完备的吗?》的论文,在物理学界、哲学界引起了巨大反响。 这篇论文提出了一个名垂千古的思维实验,以论文的三位联合作者的首字母命名,称为“ EPR 实验”。正如这篇论文的标题所表达的意思那样,爱因斯坦想用这个思维实验告诉物理界,哥本哈根的量子力学解释是有问题的。 玻尔在听到这个 EPR 实验之后确实大吃一惊,据说茶饭不思好多天。隔了几个月后他终于出声了,居然以同样的标题写了一篇论文,来回应爱因斯坦们的挑战。简单说来(抱歉我只能“简单说来”,复杂了我也说不来),玻尔说狭义相对论我是不反对的,但是这里面的关键问题在于,粒子 A 和粒子 B 在你爱因斯坦看来是不同的两个粒子,但是在我玻尔眼里,它们从未分开,它们仍然是一个完整的整体,不论它们相隔得有多远,它们都是一个整体,两个量子是难分难解地纠缠在一起,组成了一种量子纠缠态,这种纠缠与空间距离无关,哪怕它们分别位于宇宙的两端,它们也是纠缠在一起的。 爱因斯坦对于波尔提出的量子纠缠坚决否定,但是苦于他们只有一个理论基础,并没有做实验来证明这个理论的正确与否。在物理学上如果没有实验来证明你的理论,这个理论则是等于没用的。很遗憾,知道爱因斯坦和波尔都逝世了,这个实验还没有做出来。 直到出现了一个英国数学奇才,他的名字叫贝尔(注意不是发明电话的那个贝尔),他发现了一个数学“不等式”,这个不等式被科学界称为“贝尔不等式”,被誉为“科学中最深刻的发现”。这个惊天地泣鬼神的贝尔不等式有一个巨大的魔力,可以对我们这个宇宙的本质做出终极裁决,它可以使得 EPR 实验从思维走向实验室。 1982 年,法国奥赛研究所。 人类 历史 上,这是对 EPR 实验进行的首次严格的实验检测,这次实验被称为“阿斯派克特实验”,以这次实验的领导者阿斯派克特命名。这次实验总共进行了三个多小时,两个分裂的量子分离的距离达到了 12 米,积累了海量的数据。最后的结果与量子论的预言完全相符,爱因斯坦输得彻彻底底,从此 EPR 实验也被称之为“ EPR 佯谬”。 EPR 实验的结果无可辩驳地呈现给当时的整个物理学界这样一个事实:要么放弃定域,要么放弃客观实在。定域性是经受了几十年严苛考验的伟大的相对论的推论,而客观实在则是大多数物理学家心目中的公理,不证自明的。如果是你,你会怎么选择呢?我看你可能最好奇的是那个发现贝尔不等式的可怜的贝尔,到底会做出怎样的选择。那个可怜的贝尔在被逼急了以后,只好表示如果非要放弃一个的话,他只能放弃定域了,但他仍然试图想说或许不用两个都放弃。 其实EPR 佯谬只是证明了定域和实在不可能同时正确,并没有证明有超光速的信号存在,这是两个不同的概念。如果愿意放弃实在性,则相对论依然是牢靠的。 量子这种纠缠态也被称之为量子的超隐形传输,可以用来做通信的加密,但是不能用来做超光速的通信。更加需要强调的一点是,量子的超隐形传输,传递的是量子态,而不是能量和物质。所以应与相对论的力学、运动学都没关联,也称不上超光速了! 关于引力波……这个也是爱因斯坦闲的蛋疼提出来的东东。爱因斯坦在 1916 年和 1918 年分别发表了两篇论文预言了引力波的存在。 先说明一下引力波是什么鬼,它是宇宙空间中的涟漪,靠着时空的卷曲在宇宙中震荡。首先我们得知道广义相对论里面的时空弯曲特点,也是引力的本质(引力的实质并不是一种力,只不过就是空间弯曲的外在表现)。在质量超大的物体所处的空间,会发生时空的弯曲。比如说我们的宇宙空间就好像一张张开的大网,太阳就压在这张时空的网上,网被压得凹陷了下去。如果太阳的质量突然变大或者突然爆炸没了,地球是不是会突然没受到太阳的万有引力,马上飞走了呢?答案是否定的。这个网就会以太阳凹下去的时空凹网会发生震荡,并以爱因斯坦命名的引力波传递作用给地球,根据狭义相对论所证明的,没有什么信号或者能量的传递速度能超过光速,所以这个过程也是有一段时间的,可能就那光速传过来最快也要8分钟…… 总结……量子纠缠只是量子态的同步,并没有和相对论运动学有冲突。引力波属于能量波,不会比光速块…… 光速不可超越应该是这样的,假如一个人某一时刻乘坐光速飞船离开地球,他观察到地球上的人永远静止在他离开时的那一瞬间画面。同时,地球上的人也观察到他也静止在离开地球时的那一刻画面。 对于地球上的人来说,他的时间好像停止了,他坐着光速飞船不需要时间,在宇宙中无限远的地方任意穿梭。 如果他坐上亚光速飞船离开地球,他观察到地球上的人动作很慢,例如吃一顿饭用了一年时间。同时地球上的人观察到他的动作也很缓慢。 对于地球上的人观察到的结果来说,他在亚光速飞船上时间变慢了,如果他再次回到地球,和他同年龄的人已经是白发苍苍的老人了,他还是原来那么年轻。 如果他坐在超光速飞船上离开地球,他可以观察到他和地球上的人过去的情境(时光倒流),因为他的超光速飞船追上了他和地球上的其他人以前发到宇宙空间中的光。 但他以超光速离开地球时,地球人再也永远看不到他了,就好像不存在这个超光速飞船了。这也可能就是相对论不能超光速的根本原因吧。 以上都是地球上的人和飞船上的人观察到的现象。但是无论如何,地球上和飞船上的人实际流逝的时间并未丝毫的减慢、停止和倒流。 理由是飞船不论以光速、亚光速还是超光速离开地球后匀速飞行时,不论把地球作为参照系还是把飞船作为参照系都是同等的,地球上的实际流逝时间不变慢、停止和倒流,飞船上的实际流逝时间绝不会减慢、停止和倒流。 由此可见,超光速在宇宙中不是没有的,而是普遍存在的。物体间万有引力的相互作用就是远超光速的,根据万有引力定律几乎是同时进行的。引力波的传播速度也是远超光速的。 众所周知,我们所在宇宙的直经为920亿光年。在量子纠缠中,一对手套在未观察前,它的状态是不确定的。如果把一只手套放在宇宙的这端,另一只手套放在宇宙的那端,当某一时刻观察到宇宙的这端为左手套,就立刻知道宇宙那端是右手套。 由此可见,量子纠缠的速度也远超光速,是瞬时进行的。 引力波是一个有趣的话题,前几年,诺贝尔哥让大家知道了引力波这个物理学名词。但真正了解它具体含义的却很少。至今还有人认为引力波是诺贝尔哥发现的。事实上,诺贝尔哥说的引力波根本就是他胡乱引用的一个物理学名词。引力波是100年前,由爱因斯坦通过广义相对论预言的现象。在当时,爱因斯坦认为引力波可能永远无法被探测出来,因为它实在是太微弱了。直到100年后,才由高灵敏度的LIGO装置探测到。该研究成果也获得了诺贝尔奖。 引力波的传播速度是光速。 自从潘建伟团队搞出量子加密通讯卫星后,量子纠缠这一名词也被大众知晓。在量子纠缠系统中,对其中一个粒子进行测量,就会立即影响到另一个粒子的状态,无论它们间隔多远。据测量, 纠缠中的量子相互影响的速度远远超过了光速。 不是常说“光速是宇宙的极限速度吗”?这句话其实并不完整。完整的是:光速是这个宇宙信息传递的极限速度。关键词是“信息”、“光速”。 量子纠缠是不会传递信息的,它在量子加密通讯里的作用是产生密码,而不是传递信息。信息依然走的传统信道,例如:光纤、电缆等。 我们能够通过引力波探测器了解在宇宙遥远地方的事情。例如,LIGO系统发现的第一个引力波信号就来自于距离地球约13亿光年处的,质量分别为36个与29个太阳质量黑洞的并合。引力波携带了黑洞合并的信息,所以,它不能超越光速。 宇宙膨胀也可以超过光速,它不传递任何信息,所以是相对论所允许的。 图:宇宙膨胀示意图。气球的膨胀并不会在气球表面上的两点之间传递信息 综上所述,只要不传递信息,超光速都是可以的。 都说了N遍了,力场如磁场和电场都是瞬间场,不需要传播时间,瞬间抵达远处,这个你能想象吗? 估计绝大多数人都无法想象,因为它超出了我们思维的惯性,我可以举出一百个理由来说明力场是瞬间场,就拿静电场来说,假设在空中有一个静电荷,那么在这个静电荷周围空间就存在着辐射状的电场力线,如果这个力场的传播是需要时间的,那么当这个电荷匀速运动时,那么在这个电荷运动方向后部的电场线就会收缩,而前部的电场线就会膨胀,也就是说电场线就不再是辐射状直线了,而是曲线形状。 这就直接违反了相对性原理,因为爱因斯坦的相对性原理告诉我们:在所有的惯性系统中,物理规律相同,而在这里我们却会在不同的坐标系中看到的同一个东西是不一样的,这显然是错误的,解释只有一个:静电场只能是瞬间场,只有这样、在所有的惯性系统中,你看到的都是辐射状的场线。 … 不是因为“都说光速不可超越”光速就不可超越了,有事实理论证明光速不可超越,这个事实就是爱因斯坦的狭义相对论。 有些人可能会说,或许爱因斯坦的相对论是错误的,那么光速就可以超越了,但请不要总是在自己想象的世界里获得满足感和成就感,我也一样爱因斯坦的相对论是错的,那样我们就有超越光速的可能了,但不能光有想象猜测,证据在哪里? 还有一点,引力波并没有超越光速,而是恰恰等于光速,也就是说引力波的传播速度正好等于光速,巧合吗?世界上哪有如此巧合的事情? 量子纠缠的速度确实远超光速,甚至可以说是瞬间的,但并不违反爱因斯坦的相对论,相对论并没有说“光速不可超越”,而是说“任何携带信息和能量的物体不能超越光速”! 言外之意,只要不携带任何信息和能量,你可以尽情地超越光速,而量子纠缠本身就不携带任何信息和能量,也不会传递任何信息,所以它超越光速也在情理之中! 量子纠缠讲的是一个整体,我们需要把纠缠中的各个量子用整体的概念去描述,而不是单独描述单个量子的行为状态。当我们试图观测任何一个量子的状态时,其他量子马上感知到,纠缠就也不存在了,这就是所谓的“鬼魅般的超距作用”! 为什么超光速或者说光速是一个坎,是一个瓶颈。首先相对论中对我们宇宙的描述没有问题,同时也是非常准确的。在我们的三维时空中光速就是极限,是一个常数,同时它限制了质量,为什么会造成这种现象,因为光速限制了我们的三维空间的时间轴。所有参数都被其限制。其实相对论不完善的地方就是没有把时间或者说时空加进去,其实光速就是我们时空的密度常数。有了这个常数再来看质量,似乎质量越大达到光速所需的能量越大。有质量的物体看似永远达不到光速,成为瓶颈。实际上应该还有一种物质形态,其场作用越强质量越低,甚至会成为负数。物理学上讲时间是不存在的,但是我们的时空却有着时空密度,这个密度导致了引力的产生,也影响着时间的速度。我很期待在受控核聚变试验和研究中人类能发现新的物质状态,在磁场中可以隔绝超高温,也许再大点可以隔绝时空也说不定,并且还可能改变物质形态。关于黑洞是什么,最新研究表明黑洞内部密度极低,奇点很有可能就是一个场。但是黑洞貌似质量又非常大,那么问题来了,这么大质量怎么来的?首先黑洞光子不可逃逸,在场的作用下,把光子加速到超光速,自然就不可见。根据相对论讲如果物体被加速到接近光速,那么在三维宇宙中质量无限大,那么黑洞所表现出来的质量是否就是事件视界物质的质量呢?这个问题留给天文学家解决吧!首先说答案:量子纠缠超光速,但不传递信息;引力波的速度等于光速而非是超光速。 知道了上述的两种描述方法就可以知道为什么量子纠缠超光速和宇宙膨胀可以超光速了,一个不传递信息一个膨胀的是空间。 爱因斯坦广义相对论提出后就预言了引力波的存在,从本质上解释了引力,认为引力是时空弯曲的外在表现。简单的理解就是:质量告诉时空如何弯曲,弯曲的时空告诉物体如何运动。而弯曲的时空像波纹一样传递就是引力波,也被称为时空涟漪。 一般黑洞或者中子星的融合产生的引力波,按照现在人类的技术才可以观测的到。这里天体可以使时空弯曲的曲率变得非常大,同时也是快速运动一直在“扰乱”平坦的时空。引力波的速度为光速意味着引力的速度同样为光速,也解释了牛顿万有引力定律中的“超距作用”。 而量子纠缠被爱因斯坦称为“鬼魅般的超距作用”,而实际上波尔对量子纠缠的解释是:处于纠缠态的两个量子已经不能分为两个独立的个体,而是一个统一的系统。即使是相隔天涯海角它们也是统一的整体,这里的超光速就没有实际意义了。潘教授团队研究的量子通信技术有的人误解为通过量子纠缠超光速传递信息,其实这是理解上的错误。 量子通信技术只是在加密信息,依托的依然是传统的电磁波通信,也超不了光速。
M87*是M87星系中心的超大质量黑洞,它以近乎光线的速度发射物质喷气流。黑洞吸引物质,其中一些物质被喷射返回到宇宙空间。这些被喷射的物质以喷射流或光束的形式沿着磁场线运动,由此产生喷射流。X射线数据显示有两结喷射流分别拥有和倍于光线的速度,而超光速运动可以解释这一“违背物理规律”的速度。早在很久以前,这个黑洞就被命名为M87*。天文学家们已经观察它很长时间了。去年,事件视界望远镜拍摄到了M87*的图像,也就是史上第一张黑洞图像。正是这张照片让M87*家喻户晓。 M87 星座 (也叫处女座 A 或 NGC 4486)是处女座中的一个超大型椭圆星系,离我们大约5300万光年。M87长轴长约24万光年,略微大于银河系的直径·。 M87 星座 拥有多达12,000个球状星团。相比之下,银河系仅有差不多200个星团。科学家认为M87与其他椭圆星系一样,都是通过合并来获得如此之多的球状星团。 M87* (M87 星) 是位于 M87 星系中心的超大质量黑洞 (SMBH),质量比任意已知的黑洞都大。它的质量是太阳的65亿倍。 M87*距地5500万光年之外,而它的喷射物延伸出足足5000光年。 几年前,哈勃望远镜记录拍摄到了这些喷射物质在可见光和红外波段下的合成图像。这张相片可以说在天文界无人不知。 多年来,天文学家一直在观察M87*喷射物在不同波长下的图像:长波、可见光波长和X射线。然而,钱德拉X射线仪观测首次发现,部分喷射物的移动速度似乎远远超过光速的99%。 在一次新闻发布会上,剑桥的哈佛和史密森尼 (Cfa)天体物理学中心的拉尔夫·卡夫说:"这可以说是X射线数据记录仪使用以来首次测出如此极端的速度。我们需要调整钱德拉X射线测量仪再次进行确认。 卡夫在夏威夷火奴鲁鲁举行的美国天文学会会议上介绍了这些新成果。研究结果也发表在《天体物理学杂志》上一篇题为"M87X射线喷射中视超光速运动的检测"的论文中。这些喷射物是怎么产生的? 像M87*这样的星系中心黑洞会不停的将物质拉向自己。随着距离的缩短(由于角动量守恒定律),这些物质开始围绕着黑洞高速旋转,从而形成了吸积盘。这种物质是很少会被黑洞吞噬的。 只有少量的物质会落入黑洞,而另一些则被射向太空。这些物质沿着磁场线,以射流和光的形式被喷射向太空。这些喷射物不是均匀平滑的:它们具有像钱德拉这样的观测仪可以分辨的物质团。 天文学家们对其中两个非常感兴趣。多年来,他们用图像来追踪这些物质团的运动。它们分别距离中心黑洞900光年和2500光年。 钱德拉天文台的X射线数据显示,这些物质团以令人难以置信的速度移动:靠近黑洞中心的那个物质团移动速度达到了倍光速,另一个物质团的速度是光速的倍。等等,没有物质的移动速度能够超过光速! 超光速运动?那是不可能的。没有什么比光运动得更快了。这当然是真理。所以一定可以解释这个观测结果的原因。 这个现象现在被称为"视超光速运动"。 "物理学界公认的定律之一便是,没有什么能比光运动的更快,"来自CfA的论文合作作者布拉德·斯尼奥斯说道,"我们并没有推翻物理学的基础,而是发现了一个叫做视超光速运动的神奇物理现象。“ 造成视超光速运动现象需要两个关键因素:物质的运动速度和它的运动轨迹与我们观察方向形成的夹角。当一个物体,比如说像这种黑洞的喷射物,以接近光速的速度几乎朝着我们运动,我们就会有一种,这个物体的运动速度超过了光速的错觉。这就是视超光速运动。 正是因为M87黑洞的喷射物本身的速度几乎和光一样快,而且它的喷射方向几乎正对着我们,所以这些物质看起来有着不可思议的速度。 天文学家以前确实观察到类似的视超光速运动的物质,但在X射线波段还是第一次。这意味着他们暂时没法确定到底是物质本身以99%的光速移动,还是喷流产生的冲击波。 M87* 黑洞的射流沿着自身的磁场方向呈螺旋状发散,这似乎可以告诉我们问题的答案。在X射线的观测中,研究团队发现,视速度达到光速倍的团块在2012年至2017年之间X射线强度下降了超过70%。 但这种能量损失只发生在X射线波段,在可见光和紫外波段没有明显现象,这很可能是由于粒子在沿着磁场运动的过程中不断逸散能量所致。 这种现象被称为同步辐射耗散。这意味着天文学家观测到的不同时间的X射线数据是来自同一群粒子的,也就是说,他们所观测的不可能波,而是实际存在的粒子。 "我们的工作提供了迄今为止最有力的证据,证明M87*的喷射物实际上是正以接近宇宙速度极限的速度飞行的大量粒子。"斯尼奥斯说。钱德拉、EHT (事件视界望远镜)和 M87* 钱德拉X射线观测仪的数据和事件视界望远镜在研究M87*方面可以说是相辅相成。当 EHT花了六天时间拍摄黑洞的事件穹界的时候,钱德拉观测仪正研究数百年前从M87*中喷出的物质。 同时EHT图像比钱德拉的成像小1亿倍。 "这就像事件视界望远镜正在提供火箭发射台的特写视图,"CfA的另一位共同作者保罗·努尔森说,"而钱德拉观测仪正在向我们展示飞行中的火箭。” 作者: sciencealert FY: 转载还请取得授权,并注意保持完整性和注明出处
这个速度介质,指宇宙真空。主要是指空间结构,空间微泡(以太,暗物质)导致的光速变化。光在水这些是折射等导致,其实速度内变化。回过头再看这个问题:假设如下在引力大地方可能是万公里秒,空间和真空不空引力更大地方25(出现干扰?),引力无穷大黑洞被停止运动0引力小地方40万公里秒,空间在水里10万公里秒,折射在光纤20万公里秒,折射光速受到折射和空间微泡弹性两个因素影响。绝对时间其实传导速度并无变化。
超光速,超过太阳光速(约为3×10的8次方)的速度是有的,太阳光速并不是最快的速度,质量大于太阳的恒星发出的光速都比太阳光速度快。人们所说的光速(约为3×10的8次方)实际上是太阳光的速度,决定恒星的光速的因素是恒星的质量和其他一些特性,恒星的光速随着质量的增大速度越快,大质量恒星的光速比小质量恒星的光速快,太阳只是一颗中等质量的恒星,所以太阳光速不是最快的光速,质量大于太阳的恒星发出的光速都比太阳光速度快,光的传播过程中的直线度与光速有关,光速越快光传播的直线度越好,光线越接近直线,光速越慢光传播的直线度越差,光线越接近曲线,光速与恒星的质量和它的其他特性有关,同一颗恒星发出的的光速离恒心距离越近光速越快,离恒星距离越远光速越慢,所以真空中的光速并不是最快的光速,离恒星最近的光速才是最快的光速,而那里并不是真空,同一个恒星的质量是不断减小的,所以光速也在不断减慢,光速不是恒定的值,恒星是不断旋转的,光也是不断旋转的,地球和恒星的位置不同,速度也不同,所以到达地球的光是偏转很大的。我的论文早就论述了太阳光速(约为3× 10的8次方)不是最快的速度。以上观点是我论文<光的形成和它的速度>中的一部分,不做实际的真实的研究,是不会得出以上结论的,我研究的主要方向是生命科学,物理学,天文学,我的研究和成果有:牛顿只做了一少半工作,另一大半工作没想也没做的工作,我已完成了它的主要工作;爱因斯坦后半生想了,做了,但没完成的工作,我已完成了它的主要工作;探测宇宙中某一星球是否存在生命,是否存在生命生存条件的一个方法;初探宇宙中某一星球存在哪些能源,是如何分布的;还有一些宇宙天体的人们未知的一些性质,我有研究成果,等等。中国西安陕汽王伟。我的博客:aimende的新浪博客,aimende的新浪轻博客
爱因斯坦1905年9月发表在德国《物理学年鉴》上的那篇著名的相对论论文《论动体的电动力学》,提到光速问题的话有四段: “光在空虚空间里总是以一确定的速度V传播着,这速度同发射体的运动状态无关。” “下面的考虑是以相对性原理和光速不变原理为依据的,这两条原理我们定义如下: 1. 物理体系的状态据以变化的定律,同描述这些状态变化时所参照的坐标系究竟是两个在互相匀速平行移动着的坐标系中的哪一个并无关系。 2. 任何光线在‘静止的’坐标系中都是以确定的速度V运动着,不管这道光线是由静止的还是运动的物体发射出来的。” “对于大于光速的速度,我们的讨论就变得毫无疑义了;在以后的讨论中,我们会发现,光速在我们的物理理论中扮演着无限大速度的角色。” “由此,当υ=V时,W就变成无限大。正像我们以前的结果一样,超光速的速度没有存在的可能。” (《爱因斯坦奇迹年━━改变物理学面貌的五篇论文》[美] 约翰•施塔赫尔主编,范岱年、许良英译,上海科技教育出版社2001年版 第97━98页,第100━101页,第109页,第127页。) 光速不变第四解为质速解,此解从质速关系得来。爱因斯坦质速关系式: m=m0/√1-υ2/c2(m为运动质量,m0为静止质量,υ为物体运动速度,c为光速)说明:物体以远低于光速的速度(人体尺度下)运动时,质量变化不明显,增加的质量忽略不计,可认为质量不变,以经典力学规律足可以应付计算需要。但接近光速运动时,物体质量增加较多,随着向光速的靠近,质量趋向无限大。大小两极相通,质量无限大因两极同一又为无限小,质量无限小可视为零,因此光子无静止质量。光作为极限物,大小同一,动静也同一,无静止质量即为无运动质量。从质速关系式也可得m0=0时,m=0,υ=c时,此公式不成立。有人认为没有质量怎会有能量?须知电磁场为能量场,光量子又是能量子,因光子无质量,任一能量值在与质量对比时都为无限大,因无质量,运动中也不消耗能量,除传递能量给其它物体外,光子能量足以保持其速度不变。 光子无质量为知性所不容,人们到处寻找有质量的根据。有人认为光有光压为有质量表现,但不知光压乃光电效应表现,是光量子、光能转化为电能的表现。也有人引爱因斯坦质能公式:E=mc2(E为能量,m为惯性质量,c为光速),认为有质量才有能量,这就和前述质速公式冲突,这种冲突说明光作为极限物,独立于两式之外。我们根据另一能量公式:E=hν(E为能量、n为普朗克常数、ν为光频率)可计算出一定频率光之光子能量,使m=hν/c2推导光子潜质量。注意,这里指的是一定能量必对应一定质量,但对光子而言这只是其潜在质量而非实在质量,这就是实验中找不到有质量的光子的原因,潜在质量只说明可以转变为多少质量。如按经典力学观点非认定光有质量,电磁场有质量,真空作为光量子场就要表现出巨大质量,一切有光的场所也会有沉重的质量压力,含有电磁场的粒子质量都需加倍, 引力定律还会使真空形变。推理继续,光越强,质量越大,引力越大,恒星都变成了黑洞,岂不荒谬!电磁场为能量场,引力场为质量场,二者进一步同一才将潜在的质能关系扬弃为真实关系,这却不是本篇所论之题。还有人以光线在引力场中弯曲来证光有质量,有质量的东西才受引力吸引。我们知道,能量为斥力,不受引力作用影响,至于为何会弯曲,以后自会了解。电磁场有能量而无质量,引力场有质量而无能量,实物处二者间而兼有之,我们需再走一段才能真正了解它们。 光速不变的第五解为时空解,时空解源自爱因斯坦相对论。相对论告诉我们,物体高速运动时会发生“尺短钟慢”的现象,这种现象在低速运动中变化极小,可按牛顿力学定律视其无变化,但在高速中变化明显。如沿运动方向取1米的标尺,以地球时间1秒计算,每秒速度在3万公里时,1米为米,1秒为秒;在15万公里时,1米为米,1秒为秒;在万公里时,1米为米,1秒为秒;在万公里时,1米为米,1秒为50秒。当物体运动速度达到光速时,物体沿空间方向的尺度会缩短为零,时间会慢到停止。 υ(公里/秒) ι0(米) ι(米) t 0(秒) t(秒) 万 1 1 万 1 1 万 1 1 万 1 1 万 1 1 50 C= 458万 1 0 1 0 “尺短钟慢”效应说明空间和时间是随物质运动速度的变化而变化的,它适用于一切物质,包括光。光速下,时钟停摆,零时间意味着光在传播过程中不消耗时间。空间是物质的延展性,时间是物质变化的连续性或延展性。没有时间就意味着物质静止不变,保持原状,所以光速不变。零时空虽是合理推论,是自然现象、自然法则,也为知性形而上学所不容。更有一部分人认为运动是绝对的,静止时相对的,不但把运动与静止相割裂和对立,且把本应一并使用的对应范畴——相对与绝对分赠不同事物,在形而上学中也沦落到低层次。 辩证法认为有无同一。零时空并不意味着真的一无所有,而是说我们无法测量这时空。无数光量子溶为一体,共同构成大统一场,不分彼此,此光即彼光,因为你无法分离出单个的光量子,你也就无法给定某个量子以特定的空间和时间。这一现象与经济学中全民所有疑难类同:生产资料归全体人民所有,每个人都拥有生产资料,这只是象征性的;每个人又不拥有生产资料,这是实际性的,无法确定哪些生产资料是某个人的,结果无产阶级仍是无产阶级。世风日下情况下,私心膨胀,就变成你的也是我的,不拿白不拿,大家都拿,拿大家的。 人类生活领域比起这宇宙来,渺如尘沙,不值一提。人长期生存于人体尺度领域中,其生活经验及认识局限于此,这个世界的两极——极大和极小都在我们世界之外。如果不是近代人类面临生存危机,迫使我们跨入两极神秘之域,寻求新的生存空间,我们将永不能理解老子及黑格尔的辩证思想。
光速不变原理是指不论采用哪种参照系,光的速度都是一样的. 这个是基本原理,不是计算得出的结果. 光速不变是相对论的一整套理论的中间一环;其正确性是局限在这个相对正确的理论里面.根据原理你不必计算就能得出火车上与地面上测得的光速相同.计算是一种误解. 世界上会有更正确的理论,但是永远不会有正确的理论.
波速只相对于介质不变,比如声波只要传播声音的空气相对于测量者是静止的,不管声源如何运动,你测得的声速都是不变的。只有介质相对于测量者运动,比如顺风或者逆风,你测得的声音速度才会有变化。 而光波和其他波有本质的区别,不说波粒二象性这个和声波等普通波的区别。光波的传播不依赖于介质的运动。不管你是如何运动,甚至两个测量者a和b。a相对于b在做1/2光速运动。但2个观测者测得的光速都是不变的。这就是光速对参考系的无关性,迈克尔逊莫雷实验证明了这个理论。 我非常奇怪,爱因斯坦理解了双曲几何,黎曼几何,电动力学,群论。竟然有人会认为爱因斯坦不理解一些初中生都能理解的东西。空气,水,玻璃都是光传播的介质,确实光速在空气中比真空慢,在水中比在空气中慢。但光速不变在介质运动时也成立,顺风的光并不比逆风的光快。
火车上地面上都是光速c=3*10E8,这是爱因斯坦的假设,用洛伦滋变换证明成立的定义。有好多人不理解呢,我也不理解。
随着社会的不断进步,人民对提高生活质量的需求,尤其是对视力保健的关注度越来越高。统计数据表明, 中国 在校小学生佩戴眼镜的人数比例达到30%,中学生为50%,而大学生则达到了75%,成为名符其实的眼镜王国”。 一、应社会需求 发展 起来的新学科 1988年,中国计量 科学 研究院(以下简称“计量院”)组织了新中国成立以来首次、也是北京市第一次眼镜市场的产品质量调查。根据英国标准化协会(BSI)的标准,京城20多家大眼镜店被抽查的上千副眼镜的质量合格率不足10%。 为此,我国著名光学专家王大珩院士率先向社会发出呼吁:眼镜是保健用品,不是一般的商品,全社会都应陔关注消费者的视力健康!一些政协委员和人大代表电纷纷提出提案,建议国家有关部门对眼镜行业进行治理和整顿。 眼镜质量问题引起了原国家技术监督局的高度重况和关注.眼镜立即在“质量万里行”活动中被列为重点监督的产品。计量院正是从这时开始涉足眼科光学领计量和检测标准的研究的。近20年过去了,具有中国旖色的眼科光学计量取得了长足的发展和进步。 二、眼科光学与相关产业密切结合、与其他学科相巨交叉 眼科光学是集眼科学、计量学、光学和光学仪器、验光学、眼镜学、像质评价技术、光电检测技术、光谱光度学、神经学、生物学、材料学、制造工艺等为一体的新兴的边缘学科。眼科光学计量是眼科诊断、 治疗 、视力矫正和眼保健的基础保证。 根据国际标准化组织(ISO)的专业划分,至少有五大产业领域与眼科光学密切相关,它们是眼镜镜片、眼科仪器、角膜接触镜、人工晶体和个体眼部防护用品。由此可见,眼科光学又是医疗卫生、眼镜行业和光学 工业 的结合体。 三、具有中国特色的眼科光学计量体系 根据日益增长的国际市场和贸易全球化的需要,20世纪80年代中期,ISO在IS0C172“光学和光子学”标准化技术委员会下面设立了SC7“眼科光学和仪器”标准化分技术委员会。由于信息不畅以及行业划分的制约,中国的眼科光学计量研究与国际IS0C172,sC7的建立虽然同步,却又毫不相干。而国际计量界的同行们,无论是德国联邦物理技术研究院(PTB)、美国国家标准与技术研究院(NIST),还是英国国家物理实验室(NPL),都还没有开展这一领域的研究。 命运注定,中国眼科光学计量的生存、确立和发展必须自主创新。 1。独创性 由于有了计量院这样一支实力雄厚的技术队伍的实质性介入,仅仅十几年,中国已经开始步人国际先进水平的行列。 在国家质检总局的大力支持下.计量院会同全国质监系统先后研究建立了顶焦度计量基准、验光机顶焦度工作基准、角膜接触镜顶焦度工作基准等一系列有代表性的基、标准装置,并在全国范围内建立了具有中国特色的顶焦度量值传递和溯源体系,如图1所示。 纵观国际眼科光学大家庭,中国的眼科光学计量颇具独创性。正如国际计量局局长瓦拉德于2005年下半年参观计量院眼科光学实验室时所说的:“我在你们这里看到了一片新天地。” 2.建标与量值传递的新模式 传统的计量工作,往往是先投入巨资研究检测装置,待建立计量基准或计量标准后,再对社会开展周期检定和量值溯源。 计量院在开展眼科光学计量研究的初期.面临着技术上走哪条路的抉择。由于服科光学计量服务的对象是一个个不同的生命体,从某种意义上说.如果初期没有选择好突破口,计量检定方法不能通过临床医学的考验,就不可能得到今天医学界的承认,更不会被国内外市场广泛使用并接受,也绝无可能发展到今天的规模和水平。回顾 历史 ,眼科光学计量所实现的突破在于: (1)选择了以动态或在线检测为研究目标 事实证明,这种模式能够较好地适应眼镜行业或医学界在使用现场进行动态测量或在线校准和检测的需求显然,传统的、基于静态或分量程的工业计量模式,以及高成本低使用率的计量建标和检定模式.不适于眼科临床医学的需求。而中国自主研发的各种眼科光学计量标准器具,如标准镜片和标准模拟眼等,则以其高科技含量、低成本高使用率、便于携带等显著特点.一下子就被国内外客户广泛接受,并占领了市场。 (2)以Map手段实现量值传递的新模式 面对具有3.6亿用户的眼镜市场,我们只有通过大面积的建标和计量检定,才能有效控制眼镜行业的产品质量,才能保证全国范围内顶焦度量值的统一。而Map了用客传递手段,就像勾画一张全国地图一样,把顶焦度一级或二级标准、验光机顶焦度标准、瞳距仪检定装置、透射比计量标准装置、角膜曲率计检定标准等通过自上而下的逐级推广、很快就覆盖了全国除 台湾 和西藏以外的大部分省、市地区计量所,甚至远销海外。这种新模式,满足了我国眼镜行业分布区域大、计量检定贯穿始终、无所不在的市场的需求。 四、计量基标准与科研成果转化 眼科光学领域内的基本物理量是顶焦度——VertexPowero 围绕着顶焦度这个重要物理量,我国先后研究建立了各项基(标)准,并将其迅速转化为市场上可流通的商用计量标准器具。例如:“顶焦度标准镜片”、“主观式和客观式标准模拟眼”、“接触镜顶焦度专用标准镜片”、“眼镜片透射比测量装置”、“瞳距仪计量检定装置”和“商用瞳距仪样机”、“角膜曲率计标准器”等。 上述计量标准器具均可直接用于对眼科光学计量仪器进行强制检定和计量校准,且具有包容性强、较长期的适应性、研究费用低廉、易于操作和大范围推广等优点,有利于调动地方质监部门的积极性。 上下齐抓共管大好局面的形成,使我国政府对眼科光学领域的产品质量实施市场监督的目标能够落到实处。 五、发挥龙头作用、形成计量院与地方技术机构双赢的局面 眼科光学计量之所以能够在短短十几年里取得如此快速的发展.并为提高我国眼镜行业产品质量的提高作出举足轻重的贡献,除了计量院自身的努力之外,另一个重要的原因就是这项工作得到了全国各地质监部门的积极响应和大力协助。 目前.除台湾、西藏以外的大多数省市级的计量和质检机构都开展了眼科光学计量检定和产品质量监督工作.各地技术机构直接使用计量院提供的计量标准器具。这种“统一研制、统一推广、统一培训、统一周期检定”的“四个统一”模式有效解决了巨大市场需求下的量值溯源和量值统一问题,使将原来看起来十分复杂和困难的技术管理和市场监督工作变得简化和顺畅起来。 眼科光学计量走出了一条计量为国民 经济 服务、为社会发展服务、为提高人民生活质量和身体健康服务的新思路,不但使社会和国民从中受益,也形成了计量院与地方技术机构双赢共进的新局面。 六、中国眼科光学计量研究实现“从零的突破到质变的跨越” 眼科光学计量所走过的路。为计量科学技术的发展开拓了广阔的研究领域,使计量科学更贴近生活,更贴近国民经济。也锻炼和造就了一批了解市场、了解 企业 需求。通过为社会服务而发现和寻找科研方向的新型的科技人员。 顶焦度计量标准(基准)、验光机工作基准、角膜接触镜顶焦度工作基准的相继研发成功。确立了计量院在国内眼科光学领域的“科研龙头”地位.同时。为提高中国在国际眼科光学界的地位赢得了关键的一票。
分光计的调节及其棱镜折射率的测定研究与分析杨贵宏(08物理2班 200802050253)引言:我们的生活离不开阳光,通常我们认为阳光是一种单色光(单一波长的光)。其实,笼罩在我们周围的光线本身是复色光(由两种或两种以上的单色光组成的光线),他是由不同波长波线的单色光组成的。广义的说,具有周期性的空间结构或光学性能(如透射率、折射率)的衍射屏,统称光栅。光栅的种类很多,有透射光栅和反射光栅,有平面光栅和凹面光栅,有黑白光栅和正弦光栅,有一维光栅,二维光栅和三维光栅,等等。此次实验所使用的光栅是利用全息照相技术拍摄的全息透射光栅光栅的表面若被污染后不易清洗,使用时应特别注意。分光计是一种能精确测量角度的光学仪器,常用来测量材料的折射率、色散率、光波波长和进行光谱观测等。由于该装置比较精密,控制部件较多而且复杂,所以使用时必须严格按照一定的规则和程序进行调整,以便测量出准确的结果。摘要: 分光计是一种能精确测量折射角的典型光学仪器,经常用来测量材料的折射率、色散率、光波波长和进行光谱观测等。由于该装置比较精密,控制部件较多而且操作复杂,所以使用时必须严格按照一定的规则和程序进行调整,方能获得较高精度的测量结果。关键词:分光计、棱镜、折射率Abstract: The spectrometer can accurately measure the angle of refraction is a typical optical instruments, often used to measure the material's refractive index, dispersion rate, wavelength, and spectral observations. As the more sophisticated devices, control components and operation are more complex, and therefore must be used strictly in accordance with certain rules and procedures to adjust to get the high precision measurement : spectrometer, prism, the refractive index二、实验目的: 1、了解分光计结构,学会正解调节和使用分光计的方法; 2、用分光计测量三棱镜的顶角; 3、学会用最小偏向角法测量三棱镜的折射率。三、实验仪器:分光计主要由五个部件组成:三角底座,平行光管、望远镜、刻度圆盘和载物台。图中各调节装置的名称及作用见表1。 图 1分光计基本结构示意图表1 分光计各调节装置的名称和作用代号 名称 作用1 狭缝宽度调节螺丝 调节狭缝宽度,改变入射光宽度2 狭缝装置 3 狭缝装置锁紧螺丝 松开时,前后拉动狭缝装置,调节平行光。调好后锁紧,用来固定狭缝装置。4 平行光管 产生平行光5 载物台 放置光学元件。台面下方装有三个细牙螺丝7,用来调整台面的倾斜度。松开螺丝8可升降、转动载物台。6 夹持待测物簧片 夹持载物台上的光学元件7 载物台调节螺丝(3只) 调节载物台台面水平8 载物台锁紧螺丝 松开时,载物台可单独转动和升降;锁紧后,可使载物台与读数游标盘同步转动9 望远镜 观测经光学元件作用后的光线10 目镜装置锁紧螺丝 松开时,目镜装置可伸缩和转动(望远镜调焦);锁紧后,固定目镜装置11 阿贝式自准目镜装置 可伸缩和转动(望远镜调焦)12 目镜调焦手轮 调节目镜焦距,使分划板、叉丝清晰13 望远镜光轴仰角调节螺丝 调节望远镜的俯仰角度14 望远镜光轴水平调节螺丝 调节该螺丝,可使望远镜在水平面内转动15 望远镜支架 16 游标盘 盘上对称设置两游标17 游标 分成30小格,每一小格对应角度 1’18 望远镜微调螺丝 该螺丝位于图14-1的反面。锁紧望远镜支架制动螺丝 21 后,调节螺丝18,使望远镜支架作小幅度转动19 度盘 分为360°,最小刻度为半度(30′),小于半度则利用游标读数20 目镜照明电源 打开该电源20,从目镜中可看到一绿斑及黑十字21 望远镜支架制动螺丝 该螺丝位于图14-1的反面。锁紧后,只能用望远镜微调螺丝18使望远镜支架作小幅度转动22 望远镜支架与刻度盘锁紧螺丝 锁紧后,望远镜与刻度盘同步转动23 分光计电源插座 24 分光计三角底座 它是整个分光计的底座。底座中心有沿铅直方向的转轴套,望远镜部件整体、刻度圆盘和游标盘可分别独立绕该中心轴转动。平行光管固定在三角底座的一只脚上25 平行光管支架 26 游标盘微调螺丝 锁紧游标盘制动螺丝27后,调节螺丝26可使游标盘作小幅度转动27 游标盘制动螺丝 锁紧后,只能用游标盘微调螺丝26使游标盘作小幅度转动28 平行光管光轴水平调节螺丝 调节该螺丝,可使平行光管在水平面内转动29 平行光管光轴仰角调节螺丝 调节平行光管的俯仰角四、实验原理:三棱镜如图1 所示,AB和AC是透光的光学表面,又称折射面,其夹角 称为三棱镜的顶角;BC为毛玻璃面,称为三棱镜的底面。图2三棱镜示意图 1.反射法测三棱镜顶角 如图2 所示,一束平行光入射于三棱镜,经过AB面和AC面反射的光线分别沿 和 方位射出, 和 方向的夹角记为 ,由几何学关系可知: 图3反射法测顶角2.最小偏向角法测三棱镜玻璃的折射率假设有一束单色平行光LD入射到棱镜上,经过两次折射后沿ER方向射出,则入射光线LD与出射光线ER间的夹角 称为偏向角,如图3所示。 图4最小偏向角的测定转动三棱镜,改变入射光对光学面AC的入射角,出射光线的方向ER也随之改变,即偏向角 发生变化。沿偏向角减小的方向继续缓慢转动三棱镜,使偏向角逐渐减小;当转到某个位置时,若再继续沿此方向转动,偏向角又将逐渐增大,此位置时偏向角达到最小值,测出最小偏向角 。可以证明棱镜材料的折射率 与顶角 及最小偏向角的关系式为 实验中,利用分光镜测出三棱镜的顶角 及最小偏向角 ,即可由上式算出棱镜材料的折射率 。实验内容与步骤:1.分光计的调整(分光计结构如右图所示) 在进行调整前,应先熟悉所使用的分光计中下列螺丝的位置: ①目镜调焦(看清分划板准线)手轮; ②望远镜调焦(看清物体)调节手轮(或螺丝);③调节望远镜高低倾斜度的螺丝;④控制望远镜(连同刻度盘)转动的制动螺丝;⑤调整载物台水平状态的螺丝;⑥控制载物台转动的制动螺丝;⑦调整平行光管上狭缝宽度的螺丝;⑧调整平行光管高低倾斜度的螺丝; 图5 ⑨平行光管调焦的狭缝套筒制动螺丝。(1)目测粗调。将望远镜、载物台、平行光管用目测粗调成水平,并与中心轴垂直(粗调是后面进行细调的前提和细调成功的保证)。(2)用自准法调整望远镜,使其聚焦于无穷远。①调节目镜调焦手轮,直到能够清楚地看到分划板"准线"为止。 ②接上照明小灯电源,打开开关,可在目镜视场中看到如图4所示的“准线”和带有绿色小十字的窗口。 图6目镜视场 ③将双面镜按图5所示方位放置在载物台上。这样放置是出于这样的考虑:若要调节平面镜的俯仰,只需要调节载物台下的螺丝a1或a2即可,而螺丝a3的调节与平面镜的俯仰无关。图7平面镜的放置 ④沿望远镜外侧观察可看到平面镜内有一亮十字,轻缓地转动载物台,亮十字也随之转动。但若用望远镜对着平面镜看,往往看不到此亮十字,这说明从望远镜射出的光没有被平面镜反射到望远镜中。我们仍将望远镜对准载物台上的平面镜,调节镜面的俯仰,并转动载物台让反射光返回望远镜中,使由透明十字发出的光经过物镜后(此时从物镜出来的光还不一定是平行光),再经平面镜反射,由物镜再次聚焦,于是在分划板上形成模糊的像斑(注意:调节是否顺利,以上步骤是关键)。然后先调物镜与分划板间的距离,再调分划板与目镜的距离使从目镜中既能看清准线,又能看清亮十字的反射像。注意使准线与亮十字的反射像之间无视差,如有视差,则需反复调节,予以消除。如果没有视差,说明望远镜已聚焦于无穷远。 (3)调整望远镜光轴,使之与分光计的中心轴垂直。 平行光管与望远镜的光轴各代表入射光和出射光的方向。为了测准角度,必须分别使它们的光轴与刻度盘平行。刻度盘在制造时已垂直于分光计的中心轴。因此,当望远镜与分光计的中心轴垂直时,就达到了与刻度盘平行的要求。具体调整方法为:平面镜仍竖直置于载物台上,使望远镜分别对准平面镜前后两镜面,利用自准法可以分别观察到两个亮十字的反射像。如果望远镜的光轴与分光计的中心轴相垂直,而且平面镜反射面又与中心轴平行,则转动载物台时,从望远镜中可以两次观察到由平面镜前后两个面反射回来的亮十字像与分划板准线的上部十字线完全重合,如图6(c)所示。若望远镜光轴与分光计中心轴不垂直,平面镜反射面也不与中心轴相平行,则转动载物台时,从望远镜中观察到的两个亮十字反射像必然不会同时与分划板准线的上部十字线重合,而是一个偏低,一个偏高,甚至只能看到一个。这时需要认真分析,确定调节措施,切不可盲目乱调。重要的是必须先粗调:即先从望远镜外面目测,调节到从望远镜外侧能观察到两个亮十字像;然后再细调:从望远镜视场中观察,当无论以平面镜的哪一个反射面对准望远镜,均能观察到亮十字时,如从望远镜中看到准线与亮十字像不重合,它们的交点在高低方面相差一段距离如图6(a)所示。此时调整望远镜高低倾斜螺丝使差距减小为h/2,如图6(b)所示。再调节载物台下的水平调节螺丝,消除另一半距离,使准线的上部十字线与亮十字线重合,如图6(c)所示。之后,再将载物台旋转180o ,使望远镜对着平面镜的另一面,采用同样的方法调节。如此反复调整,直至转动载物台时,从平面镜前后两表面反射回来的亮十字像都能与分划板准线的上部十字线重合为止。这时望远镜光轴和分光计的中心轴相垂直,常称这种方法为逐次逼近各半调整法。图8亮十字像与分划板准线的位置关系 (4)调整平行光管 用前面已经调整好的望远镜调节平行光管。当平行光管射出平行光时,则狭缝成像于望远镜物镜的焦平面上,在望远镜中就能清楚地看到狭缝像,并与准线无视差。 ①调整平行光管产生平行光。取下载物台上的平面镜,关掉望远镜中的照明小灯,用钠灯照亮狭缝,从望远镜中观察来自平行光管的狭缝像,同时调节平行光管狭缝与透镜间的距离,直至能在望远镜中看到清晰的狭缝像为止,然后调节缝宽使望远镜视场中的缝宽约为1mm。 ②调节平行光管的光轴与分光计中心轴相垂直。望远镜中看到清晰的狭缝像后,转动狭缝(但不能前后移动)至水平状态,调节平行光管倾斜螺丝,使狭缝水平像被分划板的中央十字线上、下平分,如图7(a)所示。这时平行光管的光轴已与分光计中心轴相垂直。再把狭缝转至铅直位置,并需保持狭缝像最清晰而且无视差,位置如图7(b)所示。图9狭缝像与分划板位置 至此分光计已全部调整好,使用时必须注意分光计上除刻度圆盘制动螺丝及其微调螺丝外,其它螺丝不能任意转动,否则将破坏分光计的工作条件,需要重新调节。 2. 测量 在正式测量之前,请先弄清你所使用的分光计中下列各螺丝的位置:①控制望远镜(连同刻度盘)转动的制动螺丝;②控制望远镜微动的螺丝。(1)用反射法测三棱镜的顶角 如图2 所示,使三棱镜的顶角对准平行光管,开启钠光灯,使平行光照射在三棱镜的AC、AB面上,旋紧游标盘制动螺丝,固定游标盘位置,放松望远镜制动螺丝,转动望远镜(连同刻度盘)寻找AB面反射的狭缝像,使分划板上竖直线与狭缝像基本对准后,旋紧望远镜螺丝,用望远镜微调螺丝使竖直线与狭缝完全重合,记下此时两对称游标上指示的读数 、 。转动望远镜至AC面进行同样的测量得 、 。可得 三棱镜的顶角 为 重复测量三次取平均。(2) 棱镜玻璃折射率的测定 分别放松游标盘和望远镜的制动螺丝,转动游标盘(连同三棱镜)使平行光射入三棱镜的AC面,如图3 所示。转动望远镜在AB面处寻找平行光管中狭缝的像。然后向一个方向缓慢地转动游标盘(连同三棱镜)在望远镜中观察狭缝像的移动情况,当随着游标盘转动而向某个方向移动的狭缝像,正要开始向相反方向移动时,固定游标盘。轻轻地转动望远镜,使分划板上竖直线与狭缝像对准,记下两游标指示的读数,记为 、 ;然后取下三棱镜,转动望远镜使它直接对准平行光管,并使分划板上竖直线与狭缝像对准,记下对称的两游标指示的读数,记为 、 ,可得 重复测量三次求平均。用上式求出棱镜的折射。五、实验注意事项:1.望远镜、平行光管上的镜头,三棱镜、平面镜的镜面不能用手摸、揩。如发现有尘埃时,应该用镜头纸轻轻揩擦。三棱镜、平面镜不准磕碰或跌落,以免损坏。 2.分光计是较精密的光学仪器,要加倍爱护,不应在制动螺丝锁紧时强行转动望远镜,也不要随意拧动狭缝。 3.在测量数据前务须检查分光计的几个制动螺丝是否锁紧,若未锁紧,取得的数据会不可靠。 4.测量中应正确使用望远镜转动的微调螺丝,以便提高工作效率和测量准确度。 5.在游标读数过程中,由于望远镜可能位于任何方位,故应注意望远镜转动过程中是否过了刻度的零点。 6.调整时应调整好一个方向,这时已调好部分的螺丝不能再随便拧动,否则会造成前功尽弃。 7.望远镜的调整是一个重点。首先转动目镜手轮看清分划板上的十字线,而后伸缩目镜筒看清亮十字。 六、思考题:1. 分光计的调整有哪些要求?其检察的标准?答:①几何要求:“三垂直”。即载物小平台的平面,望远镜的主光轴、平行光管的主光轴均必须与分光计的中心轴垂直。②物理要求:“三聚焦”。即叉丝对目镜聚焦,望远镜对无穷远聚焦,狭缝对平行光管物镜聚焦。③检验三垂直的标准:“四平行”。即载物小平台平面、望远镜的主光轴、平行光管的主光轴和读数刻度盘四者相互平行。④检验三聚焦的标准:“三清晰”。即目镜中观察叉丝清晰,亮十字反回的像(绿十字)清晰,在望远镜中看到狭缝清晰。2. 即是重点又是难点内容的望远镜系统如何调整? 答:①目测粗调②打开小灯调节目镜,看清叉丝。③在载物台上放双平面镜(位置如胶片图所示,为什么?),调节物镜(仰俯角和伸缩)和载物台(螺钉),使双平面镜两面有绿十字像并清晰、无视差,此时望远镜已聚焦无穷远。④调整望远镜的光轴与分光计转轴垂直。使双平面镜两面有绿十字像。再用“减半逐步逼近法”使望远镜的光轴与分光计的中心轴垂直(对照胶片讲解,必要时示范讲解),即叉丝的像与调整叉丝完全重合。3. 平行光管如何调整?答:①用已调节好的望远镜作基准,调节平行光管下部仰俯螺钉,使其出射平行光。②调节平行光管的狭缝宽度(强调:不要损坏刀口!)③使平行光管光轴与分光计转轴垂直。使目镜中看到的水平和竖直的狭缝像均居中。 七、误差分析:在测量三棱镜折射率实验中,当调节分光计的平行光管光轴与望远镜光轴垂直于中心转轴后,由实验可知载物台平面的倾斜程度对最小偏向角的测量没影响,但顶角的测量随着载物台平面的倾斜程度不同,有着不同程度的影响。八、实验心得:1、提高了我们综合分析的能力,当面对一个问题时,首先要考虑怎样解决,既而开始考虑解决的具体方法,在实验前必须提前预习,把整个实验的原理,流程和注意的事项掌握清楚,这才能保证你实验既快又好的完成.在预习时要有目的,心中明白哪里里是实验的重点,哪里是必须注意的问题.设计实验步骤,并预测实验中可能出现的问题。对实验的每一个细节进行分析,尽可能的减小实验误差。这些都使我们初步培养了实验的素质和能力。 2、培养了实验中科学严谨的态度,尊重客观事实,对待任何实验都客观认真仔细。实验正式开始前,应该先清点下实验仪器和材料,并对其进行检查,以确保实验顺利进行.在动手前先将心中的实验知识对照一起过一遍再开始动手。实验过程更始需要很精细的态度和求实的态度。对每个步骤,每个细节都要留心。 3、养成了我们做事认真细致有耐心的习惯。在实验中,你必须有耐心,因为实验中每个变化都可能是细微的,必须集中精神才能去发现它,不可以急于求成。如果实验数据与正确数据相差过大时,应该把整个实验过程回想一下,对照每一步骤寻求问题所在,重新做一次。 4、悉了很多仪器的使用方法,在光学实验室良好的环境和设备的情况下,我们得到了很好的锻炼,对很多仪器的调试、测量,以及如何减小实验误差等,都有了很明确的认识。我想,这在我们以后的实验过程中会非常有用。 5、实验老师们的耐心讲解和对工作的认真态度给我留下了很深刻的印象。辅导我们实验的每一位老师,对工作都极其认真,在实验前,老师通常会给大家讲解下实验的注意事项,对于我们实验中出现的问题都给予耐心的讲解,而且,在我们实验进行中和实验结束后,老师们都启发我们思考实验的一些外延内容,这对我们将实验所进行的内容跟课本密切联系起来,将知识更充分地掌握。九、试验总结:首先:光学试验的仪器测量都十分精密,实验中一个很小的环节都有可能导致试验的失败,以“应用全反射临界角法测定三棱镜的折射率”为例,在实验过程中要注意分光仪在进行本次实验时已做过校正,因此时在测量时就应该注意,只能调节载物台倾斜度调节螺丝,而对于像平行光管倾斜度调节螺丝、望远镜倾斜度调节螺丝等就不应该再进行调节,否则将会导致实验失败。 第二:对于数据的处理,光学实验也有较高的要求,数据不但要求准确度高,精确度也要高,而且通常要记录多组数据,最后取平均。 第三:光学实验的测量仪器在进行测量时,通常要求一个稳定的实验环境,当有光源时,通常要在实验开始前先打开光源,这样在进行实验时,光源已经达到稳定。对于“全息照相”,对环境的稳定性要求更高,实验仪器都放在防震台上,在仪器排好光路后,要用手轻敲台面,看光路是否改变,在进行曝光前,更是要求室内实验人员不得大声说话,因为声波震动而引起的空气密度变化都有可能导致实验失败,在装片后还必须有一个使台面上各元件自然稳定的时间,即使干涉条纹稳定下来了,时间也不得少于3分钟。可以说这是我做过的六次实验中对稳定性要求最高的实验 第四:我始终认为做好实验预习是最重要的,在作实验前,通过预习,我们可以了解要做实验的原理及要使用的仪器的使用方法,这样在实验之前就已对试验有了大概的了解,然后在课堂上通过老师的讲解,可以迅速掌握仪器的使用方法,这样做起实验来才会得心应手,同时也可以减少因不了解实验仪器的使用方法而导致的实验失败,甚至是对仪器造成损坏,可以说做好实验预习是一举多得的事情。九、参考文献:[1]、普通物理实验3光学部分 高等教育出版社 杨述武、赵立竹等编 2008年版;[2]、大学物理实验 章世恒 主编 西南交通大学出版社 2009 年1月 ;[3]、大学物理实验教程(第2版) 何春娟 主编 西北工业大学出版社 2009年4月。
光的干涉应用的新进展 光的干涉无处而不在,如在日光照射下,肥皂泡的薄层色及昆虫翅膀上的彩色便是最明显的例子。这仅在生活中光的干涉便随处可见,那么在它的实际应用岂不更让人意想不到。光的干涉最要的前提条件就是:必须满足传播方向相同、初相位恒定、频率相同。对于光干涉最开始的意愿是为了测单色光的波长,然而现在我们熟悉的照相机便也运用了光的干涉,普通照相是把照相机的镜头对着被拍摄的物体,让从物体上反射的光进入镜头,在感光底片上产生物体的像。感光底片上记录的是从物体上各点反射出来的光的强度。一、全息照相是应用光的干涉来实现的。它用激光(是良好的相干光)作光源。全息照相的原理如图所示,激光束被分成两部分:一部分射向被摄物体,另一部分射向反射镜(这束光叫参考光束)。从物体上反射出来的光(叫做物光束)具有不同的振幅和相位,物光束和从反射镜来的参考光束都射到感光片上,两束光发生干涉,在感光片上产生明暗的干涉条纹,感光片就成了全息照相。干涉条纹的明暗记录了干涉后光的强度,干涉条纹的形状记录了两束光的位相关系。 从全息照片的干涉条纹上不能直接看到物体的像,为了现出物体的像,必须用激光束(参考光束)去照射全息照片,当参考光束通过全息照片时,便复现出物光束的全部信息,于是就能看到物体的像。二、光学千涉生物传感器的建立及其在多种生物分子识别中的应用1.光学千涉生物传感器系统的设置(1)光学干涉生物传感器的硬件构成 (2)聚荃乙烯薄膜厚度与光学常数的测定及软件的编译2.光学干涉生物传感器敏感膜的构建3.光学干涉生物传感器在多种类型分子识别中的应用(1)酶标记的表面抗原一表面抗体相互作用(2)寡核昔酸分子杂交实验(3) L一天冬酞胺酶B细胞表位的筛选(4)不同细胞与固定化凝集素的相互作用三、当前光刻技术的主要研究领域及进展 1.光学光刻 光学光刻是通过光学系统以投影方法将掩模上的大规模集成电路器件的结构图形"刻"在涂有光刻胶的硅片上,限制光刻所能获得的最小特征尺寸直接与光刻系统所能获得的分辨率直接相关,而减小光源的波长是提高分辨率的最有效途径。因此,开发新型短波长光源光刻机一直是国际上的研究热点。 2.极紫外光刻(EUVL)极紫外光刻用波长为10-14纳米的极紫外光作 光源。虽然该技术最初被称为软X射线光刻,但实际上更类似于光学光刻。所不同的是由于在材料中的强烈吸收,其光学系统必须采用反射形式。如果EUVL得到应用,它甚至可能解决2012年的微米及以后的问题,对此发展应予以足够重视。总的来说,随着科学技术的迅速发展,在科学和技术领域中人们不断地利着光的干涉原理解决了许多复杂的实际问题。让我们更加深刻的认识光的干涉现象,以便日后更好的利用光的干涉知识解决生产及生活中的问题
直接去参考下这类的期刊文献,像应用物理,现代物理、生物物理学等这些吧
论文题目是全文给读者和编辑和第一印象,文题的好坏对论文能否利用具有举足轻重的作用。如何进行物理学 毕业 论文的选题呢?下面我给大家带来优秀物理学毕业论文题目2021,希望能帮助到大家!
物理学毕业论文题目
1、物理学史与物理教学结合的理论与实践研究
2、二氧化碳深含水层隔离的二相渗流模拟与岩石物理学研究
3、二十世纪中国原子分子物理学的建立和发展
4、普通高中物理课程内容与大学物理课程内容的适切性研究
5、从现代物理学理论发展探讨孙思邈修道养生观
6、地震岩石物理学及其应用研究
7、碎屑岩地震岩石物理学特征研究
8、信息技术支持下的物理学与教的研究
9、物理学中对称现象的语境分析及其意义
10、本质直观视域下的量子引力学困境
11、复杂金融系统的相互作用结构与大波动动力学研究
12、大小细胞视觉通路在早期开角型青光眼和双眼竞争中作用的功能磁共振成像及视觉心理物理学研究
13、经济物理学中的金融数据分析:统计与建模
14、农村高中物理学困生的差异教学研究
15、基于PD控制的拟态物理学优化算法的研究
16、多目标拟态物理学优化算法解集分布性研究
17、利用物理学史 教育 资源优化中学物理教学的研究
18、中学生与物理学家共同体概念形成过程的对比研究
19、物理学专业师范生PCK研究
20、物理学史融入高中物理教学的实践研究
21、莱布尼茨物理学哲学思想研究
22、运用高中物理教材栏目开展物理学史教育的实践
23、新课程下 高一物理 学困生转化策略
24、运用高中物理“学案教学”提高学生问题意识的实践
25、基于书目记录的《中图法》物理学类目调整 方法
26、物理学专业师范生教学技能训练现状调查与对策研究
27、高中物理学困生成因及转化策略研究
28、从物理学家的研究方法看物理学的进展
29、高中物理学困生学习动机的实证调查与影响因素分析
30、食管癌调强放疗物理学参数对放射性肺炎的评估价值
31、近代物理学史在高中物理教学中的应用
32、提升物理学困生自主学习能力的教学策略研究
33、物理学史在高中物理教学中的应用研究
34、关于培养学生物理学科素养的教学实践研究
35、高一物理学困生学习效率低下成因及转化策略
36、校本课程《生活中的物理学原理 DIY 》的开发与实践
37、高中物理教学中物理学史教育现状调查与研究
38、高中物理学困生学业情绪现状及影响因素的调查研究
39、利用物理学史促进高中生理解科学本质的实践研究
40、物理学史融入中学课堂教学的实践研究
2021中学物理论文题目
1、 中学物理教材的重难点内容表达方式的研究
2、 关于中学物理学习中学生素质培养之设想
3、 中学物理学习中互动作用的深入研究
4、 通过力学教学实现中学物理到大学物理的良好过渡
5、 一类变分问题在中学物理课外教学中的尝试
6、 在中学物理知识结构化中锻造学生核心素养
7、 浅谈中学物理探究教学的策略
8、 物理模型在中学物理教学中的作用研究
9、 浅谈中学物理学习中创造性思维的障碍与对策
10、 中学物理知识在甜樱桃保鲜中的应用
11、 浅谈中学物理教学中的“骆驼教学法”
12、 中学物理良性学习习惯的现状调查及分析
13、 函数图像法在中学物理中的应用
14、 中学物理异课同构教研活动设计研究
15、 中学物理教学中缄默知识的应用研究
16、 中学物理教学对大学物理教学的影响——以安阳师范学院为例
17、 物理实验在中学物理教学中的地位和作用
18、 中学物理活动教学的设计研究
19、 中学物理课堂环境评价量表的实证检测
20、 中学物理教学中概念的教学策略研究
21、 几何画板在中学物理教学中的应用
22、 引导式 反思 :将HPS教育融入中学物理教学的方式
23、 中学物理实验课堂环境的测评研究——以北京地区为例
24、 我国中学物理教育研究的进展与趋势——基于中国知网的文献计量学研究
25、 国际科学教育坐标中的我国中学物理教育研究:基于文献计量学的国际比较研究
26、 中学物理实验技能的评价研究
27、 中学物理教学中激发学生学习动机的策略研究
28、 突破中学物理教学难点的策略
29、 探究中学物理课堂的实际案例中如何引入新的教学模式
30、 中学物理“微实验”创设的价值思考
31、 中学物理实验教学的新思考
32、 提高中学物理教师信息技术应用技能的策略
33、 高师本科物理专业中学物理教学能力培养目标体系的研究
34、 刍议中学物理教科书中的举例说明题
35、 中学物理教学的问题情境创设
36、 3D虚拟增强现实技术在中学物理教学中的应用研究
37、 以藏族 文化 生活为例,开发藏区中学物理课程实验资源
38、 贯通大中学物理综合能力培养的物理学术竞赛教学模式
39、 中学物理在教学内容上的改革思考
40、 我国中学物理“时间观”课程教学的现实与改进
41、 中学物理教学中演示实验的应用策略
42、 中学物理教学中学生动手能力的培养
43、 新课程背景下农村中学物理实验教学的探索
44、 浅谈提高中学物理低成本实验教学的有效性
45、 浅谈中学物理“生活化”教学的策略
物理教学论文题目
1、 高中物理教学中常见电学实验问题分析
2、 以生活化教学模式提高初中物理教学的有效性
3、 工科专业大学物理教学现状与改革方向研究
4、 大学物理教学中创新型人才的培养与实践
5、 教学新范式下大学物理教学的几点思考
6、 基于翻转课堂理念的独立学院大学物理教学模式研究
7、 基于CDIO理念的大学物理教学改革探索
8、 统计物理教学中引入Jarzynski等式的必要性
9、 物理教学融入工匠精神的思考与实践
10、 让“陶花”在物理教学实践中绽放——浅议过程性评价和物理教学实践
11、 高中物理教学中培养学生的思维
12、 “蜂窝视频元”在高中物理教学中的应用实践研究
13、 中学物理教学中缄默知识的应用研究
14、 提高大学物理教学质量的 措施 与对策
15、 高分子物理教学中关于链段概念的讲解
16、 以提高人才培养质量为目标,探索新形势下大学物理教学策略
17、 基于翻转式课堂模式的大学物理教学研究
18、 中学物理教学对大学物理教学的影响——以安阳师范学院为例
19、 高分子物理教学中“结晶”概念的讲解
20、 引导式反思:将HPS教育融入中学物理教学的方式
21、 高中物理教学核心素养:演示实验创新
22、 数形结合思想在高中数学与物理教学中的应用研究
23、 浅析信息技术在初中物理教学中的应用——以欧姆定律学习为例
24、 新工科背景下大学物理教学研究
25、 地方本科院校大学物理教学改革模式探究
26、 高师本科物理专业中学物理教学能力培养目标体系的研究
27、 高中物理教学使用 思维导图 的几个误区
28、 中学物理教学的问题情境创设
29、 3D虚拟增强现实技术在中学物理教学中的应用研究
30、 MATLAB的可视化在物理教学中的应用
31、 案例教学法在“半导体器件物理”教学中的尝试与反思
32、 新工科背景下“类像思维”在半导体物理教学中的应用
33、 核心素养下的高校半导体物理教学改革路径研究
34、 材料专业大学物理教学内容的改革与实践
35、 为提高大学物理教学的学术水平而努力
36、 材料学专业固体物理教学中的抽象与形象思维转化
37、 大学物理教学研究现状与展望——基于10年核心期刊论文分析
38、 高考3+3新模式下中学与大学物理教学的衔接性校本研究:热学部分
39、 浅析STS教育在职业学校物理教学中的有效渗透
40、 智慧教育理念在大学物理教学改革中的应用研究
41、 混合教学模式在固体物理教学中的应用
42、 物理学思维方法在大学物理教学中的应用
43、 多媒体在应用型本科院校大学物理教学中的应用
44、 在物理教学中渗透生涯教育的探索——由新高考选考物理遇冷说开去
45、 浅谈初中物理教学中“弱势学生”激励策略
46、 “物理教学论实验”课程的“课例化”教学模式研究
47、 提高大学物理教学效果的策略
48、 利用虚拟实验改进物理教学
49、 基于建筑学学生思维特点的实践性建筑物理教学初探
50、 核心素养视角下初中物理教学的方法
优秀物理学毕业论文题目相关 文章 :
★ 物理学毕业论文题目
★ 物理学毕业论文选题
★ 物理学院毕业论文题目
★ 物理学毕业论文4000字
★ 物理学本科毕业论文
★ 物理学毕业论文
★ 有关物理学毕业论文
★ 物理学本科生毕业论文
★ 物理学毕业论文范文
★ 物理学理论研究论文
首先,题目不能太大。其实,题目太大以后,往往会因力不从心,容易失败。这里的"太大"是指:研究的问题"外延"太大,几乎是无所不在其中--不是概论、就是原理、不是数学、就是物理!这种文章表面上看起来很大气,可往往给人言之无物、华而不实之感。同样地,如果选择的题目太小了,则显得轻而易举,不费力气,也不利提高。当然 ,题目的大小,当然也不是绝对的,大题可以小作,小题可以大作。关键还在于如何确定具体的论证角度。一般来说,大题目写起来容易空泛,这往往是由于学力不足,无法深入,写少了象蜻蜒点水,如浮光掠影;写多了则显得又臭又长。相反,如果抓住一个重要的小题,能够深入本质,切中要害,从各个方面把它说深说透,有独到的新见解,那论文就一定有份量。在选题时一般要注意:它的实用性、互异性、准确性、突破性等等三、 材料要充分选材是否合理是文章成败的关键。写论文从整体构思,到题目确定,到论证过程等等,都不能离开选材--客观的资料。选材的目的,是采众家之长,成一已之见。因而,必须注意以下几个方面问题:如何确立论点 即通过资料的收集、汇总、整理,把与自己的想法吻合的论点、论据、论证方法等挑选出来,并且从新的视角,予以新的观察。如何独树一帜同类资料中,不同作者自有其不同的阐述与见解,我们可以把其中富有个性的典型论据、体现各自特点的合理论证,摘录出来,从而为自己独树一帜提供保证。如何表现自我不少文章大同小异,因而,有关资料内容的交叉争议之点,往往也是文章的价值所在,关键之处。如果我们注意把这方面的资料整理出来,对于形成自己的主见,确定文章的论证角度和发展方向,则大有裨益。如何精耕细作不少文章由于种种原因,原作者只是提出了问题。并未作详细而中肯回答。如将文中略写部分归拢在一起,加以扩充分析,我们会从中受到启发,从而修正原有的选题方向,对问题作出定向、定度的思考和研究。总而言之,选材时,一定要注意不去作大而无当的联系和比较。必须有选择、有重点地找一些与我们的论点有关的东西来作对比研究,以便从中提炼出自己的见解。四、 思路要清晰在写论文之前,我们不妨先拟好一个写作提纲,如有可能最好是来一个初稿,然后再动手。提纲可以帮助我们树立全局观,从整体出发,去检验每一个细节所占的地位,所起的作用,展现相互间的逻辑联系是否得当,各个部分之间的比例是否和谐,每一个部分、每一环节是否都是为全局所需要,是否丝丝入扣,配合默契,是否都能为主题服务……初稿提纲只是论文的大致轮廓,不可能对每一细节都考虑周密完善,因而可以先写一个初稿。有了它,很可能发现原来提纲中某些设想有不恰当之处,这时就应加以调整或修改;对于有错误的论点、论据,或发现新的论点、论据,还应及时抽掉与增补,使之逐步完善。初稿的写作通常有两种写法:(一)、按提纲的顺序分段进行,它可以便文章的格调、风格前后保持一致,前后衔接紧凑、自然,避免旁逸斜出,防止语言、文字上的重复;(二)、按内容的熟悉程度分段进行,这种写法有利于作者积极思考,便于捕捉创作的灵感。五、 表达要准确修改--论文的后期制作。反复推敲出佳句,精心修改得华章。只有反复推敲和字斟句酌,文章才会显得具体、准确、生动,才能恰如其分地表述自己的教育、教研成果。修改的范围可大可小,既可以来一个"亡羊补牢"--是发现什么问题,修改什么问题,通过材料的增删,使文章血肉丰满,使观点立之牢固,并与材料达到和统一;又可以"彻头彻尾"--发现问题,该舍就舍、该去则去,决不估息。在内容上包括修改观点,修改材料,在形式上包括修改结构,修改语言等。修改观点在初稿形成后,要再看一看全文的基本观点是否正确,说明它的若干个从属论点,是否有失偏颇、带有片面性或表述得欠准确;同时还要关注一下自己的观点是否与别人类似或雷同,有无创意与新意等等。修改结构从结构上来看,不仅要求论点、论据、论证三者关系处置得当、层次分明、脉络清楚,能使主题内容得到顺畅合理的表达,还要求文章的开头、结尾、段落、层次、过渡、照应、主次、详细等各个环节合理紧凑。修改语言 要在语言的准确性、学术性、可读性等方面下功夫,文字力求准确、精炼、简洁、专业,努力做到字字珠玑、句句充实。文章的最后衷心祝愿:每一位读者都成为锦绣文章的主人! ——发表吧
论文是需要自己好好写的,你可以找些资料,但是不能通过这种途径来获取。你可以从波动光学、几何光学、傅里叶光学等等方面对生活的影响来写。(具体得看你已经学到什么阶段来了,在早期,几何光学对人类的影响比较大,等到波动光学迅速崛起的时候,对几何光学产生了较大的冲击,也对人类社会生活产生了深远的影响,现在傅里叶光学是一门很重要的学科,对各学科都有作用)
在大学期间,1927年他就发表了第一篇学术论文,处理了双原子分子的光谱问题。同一年,他在用波动力学来处理韧致辐射的论文中,首次使用了后来被称为密度矩阵的概念,在后来的量子力学和量子统计物理学中起了重要的作用。在19岁生日的前两天,朗道从列宁格勒大学毕业,成为前苏联科学院列宁格勒技术物理研究所的研究生。经过数次申请,1929年10月,朗道被批准出国。在不到两年的时间中,朗道先后在德国、瑞士、荷兰、英国、比利时和丹麦进修访问。他曾回忆说,在这段时间里,除了费米之外,他见到了几乎所有的量子物理学家。在与这些著名科学家的交往中,朗道充分地展示了他的才能和个性。在丹麦的哥本哈根,朗道深受“哥本哈根精神”的感染,并成为玻尔研究班上的活跃分子。后来玻尔在谈到朗道时说:“他一来就给了我们深刻的印象。他对物理课题的洞察力,以及对人类生活的强烈见解,使许多次讨论会的水平上升了。”虽然朗道一生中接触过不计其数的物理学家,而他在玻尔那里只呆了四个月左右的时间,但他却对玻尔十分敬仰,终生只承认自己是玻尔的学生。在欧洲的进修访问期间,朗道在金属理论方面做了重要的工作。在1930年发表的《金属的抗磁性》这篇论文中,朗道应用量子力学来处理金属中的简并理想电子气,提出理想电子气具有抗磁性的磁化率。这一性质现在被称为朗道抗磁性。据说在瑞士苏黎世的一次讨论会上,当朗道作完了有关抗磁性的报告后,他的好友佩尔斯评论说:“朋友们,让我们面对现实吧,现在咱们只能靠朗道吃剩的面包皮维持生活了。”与此同时,朗道还和佩尔斯研究了将量子理论应用于电磁场的可能性,提出了在量子理论中电磁场量的可观测性问题。他们二人曾经专程赶到哥本哈根,就此问题和玻尔进行了马拉松式的激烈讨论,结果导致玻尔和罗森菲耳德撰写了关于这个问题的著名论文。1931年春天,朗道准备启程回国,虽然有人曾暗示他不要回去,但朗道自有主见,临行前,他对罗森菲耳德说:“我必须为我的国家工作。这是一次长久的离别。也许是永久的离别,除非你来访问我们。”后来,只在1933年和1934年,朗道再度短期访问过哥本哈根。回国后,最初朗道仍在列宁格勒物理研究所工作。朗道在内心深处是赞成革命的,并按自己的理解而相信马克思主义。但他反对中世纪式的思想专制和愚昧残忍,于是与当权者有了矛盾。另外由于他在学术问题上与研究所的领导约飞有分歧,虽然朗道是正确的,但却冒犯了这位权威。在一次朗道作了学术报告后,约飞宣称朗道所讲的内容不得要领,而朗道则毫不客气地当众回敬道:“理论物理学是一门复杂的科学,不是任何人都能理解的”。由于这样一些原因,朗道最后不得不离开了列宁格勒。从1932年起,朗道在哈尔科夫的乌克兰科学院物理——技术研究所工作,并担任了理论物理部的主任。1934年,在没有经过论文答辩的情况下,朗道获得了博士学位,1935年任哈尔科夫大学的教授,在哈尔科夫时,朗道开始计划写一部理论物理学的巨著。这部主要由朗道来构思,由郎道和他的学生里弗席兹合作完成的多卷本《理论物理学教程》从1938年开始陆续出版。这部几乎包罗万象的物理学名著,有近十种文字的译本,并于1962年获得列宁奖。在哈尔科夫,朗道还创立了著名的理论物理学须知,后来也被称为“朗道位垒”,这个考试纲目除了数学内容之外,几乎囊括了理论物理学所有的重要分支。在朗道逝世前,仅有43人冲过了这个“位垒”,其中许多人后来成为博士、教授和苏联科学院的院士。在朗道周围,也开始形成了一个独具特色的“朗道学派”。成为“朗道的学生”,则是苏联青年物理学家们既向往而又很有些望而生畏的目标。在哈尔科夫期间,朗道的科学研究工作继续深入。他发展了普遍的二级相变理论,不但说明了许多当时认为很奇特的现象,而且为此后各种新型相变的研究开辟了道路。他就铁磁磁畴结构、铁磁共振理论和反铁磁态理论发表了一系列的重要文章。此外,他还对原子碰撞理论、原子核物理学、天体物理学、量子电动力学、气体分子运动论、化学反应理论和有关库仑相互作用下的运动方程等方面作了研究。1937年,又是在一次与理工学院的院长发生口角后,朗道断然离开了哈尔科夫,随后到了卡皮查所领导的莫斯科物理问题研究所工作。他在哈尔科夫的一些最有才能的学生同事,也随他而去。1938年冬,在当时的“清洗”中,朗道突然以“德国间谍”的罪名被捕,并被判处十年徒刑,送到莫斯科最严厉的监狱。由于卡皮查等人的竭力营救,一年后,已经奄奄一息的朗道终于获释。朗道从1937年开始的对于低温物理学中液氦超流动性问题的研究,使他在1962年获得诺贝尔物理学奖。朗道提出了与理论不同的二流体模型,尤其是对液氦这种量子液体能谱的分析,显示了他深刻的物理洞察力。他提出了“旋子”的概念,根据这一理论,可以很好的解释液氦Ⅱ的超流动性,并进而预言了超流氦中“第二声”(一种温度波)的存在。这一预见于1944年得到了实验验证。朗道在物质凝聚态的研究方面进行过许多继往开来的基本工作,甚至有人说,从固体物理学到凝聚态物理学的过渡,可以认为是从朗道的工作开始的。他本人对超流性的工作特别满意,当有人间他“您一生中最得意的工作是什么”时,他回答:“当然是超流性理论,因为至今还没有人能够真正懂得它。”在莫斯科,朗道还研究了电子簇射的级联理论和超导体的混合态等问题。这时基本粒子物理学和核相互作用理论开始在他的工作中占了更大的比重。他发展了关于燃烧和爆炸的理论(1944—1945),探索了质子——质子散射和高速粒子在媒质中的电离损失等问题。1946年,他提出了等离子体的振动理论。在1947—1953年间,朗道考虑了电动力学中的各种问题,研究了氦Ⅱ的粘滞性理论,发展了关于超导性的新的维象理论和粒子在高速碰撞中的多重起源理论。前者在低温物理学中起了推动作用,后者对宇宙射线物理学相当重要。1954年,朗道研究了与量子场论的原理有关的一些问题,论证了量子电动力学和量子场论中所用的微扰方法在有些事例中并不是自洽的。从1956年到1958年,朗道创立了所谓费米液体的普遍理论,力图概括氦Ⅲ和金属中的电子。1957年,当宇称守恒定律已经显得不能普遍适用时,朗道提出了现代物理学中一条新的重要定律来代替它,即CP守恒定律。1959年,朗道又在基本粒子理论的结构方面提出了一些新的看法。他在一篇论文中提出了一种方法,来确定粒子的所谓相互作用振幅的基本性质。综上所述,朗道的学术工作领域是相当广阔的,而且成果丰硕。
阿基米德 古希腊 浮力定律 以及一句名言“给我一个支点和一根足够长的棍子,我可以撬动地球”伽利略 意大利 加速度的计算,钟摆计算,以及初期的相对论 著名的比萨斜塔试验,以及伽利略的大船,都被我们所记住牛顿 英国 力学三大定律,奠定了物理学的基础,当然还有微积分的发明,不过这让牛顿很丢人,最被我们记住的当然是苹果落地的故事麦克斯韦 英国 经典电动力学的创始人,统计物理学的奠基人之一。不过他还有一个麦克斯韦小妖爱因斯坦 美国 相对论,及光电效应 他的伟大我就不说了,不过他也曾经犯过错误,因为他说上帝是不会掷色子的,还有一个故事是说爱因斯坦获得诺贝尔物理学奖是因为他的光电效应,为什么不是相对论呢,因为当时没有几个人明白,不知道对错,所以不能评奖,万一几年后有人证明是错的,那不是贻笑大方了。还有很多,比如哥本哈根学派 他们共同研究出了量子力学,这也是让爱因斯坦犯了错近代的 费曼 霍金 。。。。很多了
近日,南开大学物理科学学院超快电子显微镜实验室付学文教授团队与美国布鲁克海文国家实验室Yimei Zhu教授团队等开展合作,基于自主开发的4D超快透射电镜,观测到了银膜上飞秒激光诱导表面等离激元的分布及动力学过程,为等离激元器件的设计和应用提供了指导。该研究于近日以“Nanoscale-Femtosecond Imaging of Evanescent Surface Plasmons on Silver Film by Photon-Induced Near-Field Electron Microscopy”为题,发表在国际重要学术期刊《Nano Letters》。 近年来,付学文教授研究团队与合作者在4D超快透射电镜中发展了基于自由电子-光子强相互作用的光子诱导近场电子显微镜(PINEM)技术,并提出了一种新型双色光子超快泵浦-探测方案,将四维超快电镜的时间分辨提升了一个数量级(达到50飞秒),在飞秒与纳米时空尺度揭示了单个Mott绝缘体VO2纳米线的绝缘体-金属相变动力学过程(Nat. Commun. 2020, 11, 5770)。在本工作中,研究团队进一步用PINEM成像技术研究了银膜上表面等离激元的分布及超快动力学过程。 表面等离激元是金属表面自由电子的集体共振振荡,可以将光限制在非常小的尺寸,实现在纳米尺度操纵光场。这些独特的优点使得表面等离激元在表面增强拉曼光谱、传感器、光伏器件和量子通信等领域具有广阔的应用前景。由于银纳米结构具有从可见光到近红外光范围内可调谐的表面等离激元共振特性,因此被认为是最重要的表面等离激元材料之一。银纳米结构表面等离激元的共振特性可以通过改变其形态、大小和其他参数来调节。为了更好地设计和使用等离激元器件,理解表面等离激元的产生、传播和衰减过程是至关重要的。然而,所有这些过程都发生在飞秒的时间尺度和纳米的空间尺度上。因此,以合适的时空分辨率直接表征和捕获不同银纳米结构的表面等离激元具有重要的意义。 研究团队利用配备了电子能量损失谱仪的4D超快透射电子显微镜,通过PINEM技术研究了银膜上飞秒激光(波长515 nm)诱导的表面等离激元。实验得到的电子与表面等离激元近场相互作用后的能谱呈现出典型的PINEM能谱特征:电子能谱零损失峰(ZLP)两侧出现一系列离散的峰,其间隔为入射光子能量的整数倍,意味着电子在与表面等离激元近场相互作用中吸收或放出了多个光子(图1a)。通过改变泵浦激光的能量密度并对电子能量谱中的PINEM部分积分, 他们发现PINEM强度首先随激光能量密度线性增长,在15mJ/cm2达到饱和(图1a、b)。在15mJ/cm2的入射激光能量密度下,通过改变激光的偏振研究了PINEM强度的偏振依赖性。发现与纳米线、纳米棒等结构的偏振依赖性不同,激光偏振方向的改变不会影响银膜上的PINEM强度(图1c)。 图1:a、不同入射激光能量密度下的电子能谱;b、相对PINEM强度与入射激光能量密度的关系;c、PINEM强度与入射激光偏振方向的关系。 通过只选择吸收光子能量的电子进行能量过滤成像,他们直接观测到了表面等离激元的空间分布,并通过改变入射激光的偏振方向揭示了激光偏振方向对表面等离激元分布的影响(图2a)。表面等离激元在产生后首先沿着激光的偏振方向传播,然后在垂直于偏振方向的晶界处发生散射,在能量过滤图像中表现为偏振依赖的条纹。通过改变激光脉冲和电子脉冲之间的时间延迟,他们跟踪了光激发表面等离激元随时间的演化,实现了在纳米飞秒尺度对表面等离激元的直接可视化(图2b)。 图2:a、t= ps(左)和t=0 ps(中、右)时的能量过滤图像,激光偏振方向如绿色箭头所示;b、不同时间延迟下的能量过滤图像,其中激光脉冲的偏振方向与a(中)的偏振方向相同。 棒状纳米结构的PINEM效应被广泛用于识别4D超快电镜中泵浦激光脉冲和探测电子脉冲的时空重叠。但是在这些实验中激光脉冲的偏振应该垂直于纳米结构的纵向轴,以最大限度地提高近场激发,这就使得这种方法在实际使用中受到一定限制。相比之下,银膜的PINEM信号不存在偏振依赖性,即入射飞秒激光的偏振可以是任意方向的,这使得银膜成为识别4D超快电镜时间零点的更好平台。此外,能量过滤PINEM图像上观察到的条纹也可能与光诱导周期表面结构(LIPSS)的机理有关,而LIPSS的形成过程是一个复杂的非平衡过程,其物理机制尚不清楚。鉴于PINEM成像的高时空分辨率,未来可进一步用PINEM技术从实验上 探索 LIPSS的物理机制。该研究工作不仅为各种微纳结构与超材料的表面等离激元分布及动力学研究提供了高时空分辨手段,同时对于银膜表面等离激元的激光能量密度和偏振依赖性,以及超快动力学过程的研究结果对微纳尺度表面等离激元器件的设计和应用具有重要指导意义。 南开大学物理科学学院付学文教授为论文第一作者兼通讯作者,Yimei Zhu教授为共同通讯作者,南开大学2020级硕士生孙泽鹏为共同一作,南开大学为论文第一单位。该研究得到了国家自然科学基金委、国家 科技 部、天津市 科技 局、中央高校基础研究经费等的大力支持。
拓扑光子学 开始于拓扑边缘态作为鲁棒波导的发现,而另一种最常用的光学元件--光腔也可以利用拓扑缺陷态做出性能上的独特创新。近日,中国科学院物理研究所/北京凝聚态物理国家研究中心光物理重点实验室L01组陆凌研究员等人的团队,理论提出并且实验证实了一种全新的 拓扑光子晶体微腔 —— 狄拉克涡旋腔 , 不但可以支持任意简并度的腔模 , 而且是目前已知光腔中, 大面积单模性最好的 。这个拓扑光腔填补了半导体激光器在选模腔体设计上的空白,为下一代高亮度单模面发射器件提供了符合商用激光器 历史 规律的新发展方向,对激光雷达和激光加工等技术有潜在的积极意义。此项工作也是对拓扑物理应用出口的一次 探索 ,相关研究成果以“Dirac-vortex topological cavities”为题于2020年10月19日在线发表在Nature Nanotechnology杂志网站上(), 相关专利也已获得授权。
半导体激光器因其体积小、效率高、寿命长、波长范围广、易于集成和调制等优点被广泛应用于通信、加工、医疗和军事等领域。 其中单模器件因为其最理想的线宽和光束质量 , 成为众多应用的首选 , 而单模工作的关键是选模 , 依靠的都是光子晶体结构 (图一)。比如整个光纤互联网络的光源是分布式反馈激光器(Distributed Feedback: DFB,图1左上),早期的DFB激光器采用一维周期光栅结构选模,但是因为有两个带边模式相互竞争,导致单模输出不够稳定。教科书般的解决方案是引入一个缺陷(四分之一波长的相移,图1右上),进而在光子带隙正中间产生一个缺陷模式,保证了稳定单模工作。此外,现在广泛使用于近距离通讯、光电鼠标、激光打印机和人脸识别中的垂直腔面发射激光器(vertical-cavity surface-emitting lasers: VCSEL)的谐振腔也同样利用了带间缺陷态来选模。然而由于上述两种主流产品都是采用一维光子晶体来选模的,所以在其他两个没有周期结构的方向就因为没有选模机制而无法在尺寸上超过波长量级,否则就会多模激射。器件尺寸上不去,单模功率也就遇到了瓶颈。 一个自然的提高单模功率的方案是采用二维光子晶体结构 ,而二维光子晶体面发射激光器(photonic-crystal surface-emitting lasers: PCSEL,图1左下)的产品也已经在2017年由日本滨松公司成功推出,具有大面积单模输出、高功率、窄发散角等多方面优势,但PCSEL也至少有两个高品质因子(Q)的带边模式相互竞争。因此,如果能像一维主流产品DFB和VCSEL那样, 设计出鲁棒的二维带间缺陷模式 , 有可能成为未来高功率单模激光器的主流方向 。
物理所的研究团队运用拓扑原理设计出了具有二维带间缺陷模式的光腔 。团队首先意识到DFB及VCSEL中的一维缺陷态其实是拓扑的,与很多熟知的一维拓扑模型相等价,包括Shockely, Jackiw-Rebbi和SSH模式。特别是高能物理中的一维Jackiw-Rebbi模式有直接的二维对应,即Jackiw-Rossi模式,是狄拉克方程的质量涡旋解,并且原则上可以在凝聚态体系的蜂窝晶格中用广义的Kekulé调制来实现(HCM模型)。团队通过涡旋调制狄拉克光子晶体设计出了这种拓扑光腔,并且实验上在硅晶片(SOI)上和光通信波段(1550nm)实现了这种狄拉克涡旋腔(图1右下)。 该腔可实现带间单模 、 任意多简并模式 、 最大的自由光谱范围 、 小远场发散角 、 矢量光场输出 、 模式面积从微米到毫米范围可调以及多种衬底兼容等优良特性 。
最佳的大面积单模性是狄拉克涡旋腔有别于其他已知光腔的最独特优势 ,大面积单模性有利于提高单模激光器的功率和稳定性。市场对于功率的需求永远在增长,已有产品在单模能量输出上已经达到瓶颈,需要新的思路。而且高功率和单模本身就是一对矛盾,因为高功率需要大面积的光腔,而模式数量必然随着光腔的尺寸增加,让单模工作更加难以稳定维持,现在狄拉克涡旋腔的出现就是一个潜在的新技术路线。光腔的单模性可以用自由光谱范围(Free Spectral Range: FSR)来表征,之前已知所有光腔的模式间距(FSR)都和模式体积成反比(V -1 ),所以增大FSR的方法就是减小腔的体积。但是狄拉克光腔的FSR与模式体系的根号成反比(V -1/2 ,图1右下),所以在同等模式体积下FSR远超普通光腔(大一到两个数量级)。形成这一区别的原因是普通光腔中的光子态密度为一个非零常数,模式等间距排布;而狄拉克点频率处的光子态密度等于零,两边的模式间距(FSR)最大化(图2左)。
任意模式简并度是狄拉克涡旋腔另一个独特的地方 ,因为体系的拓扑不变量为涡旋的缠绕数(winding number: w),所以拓扑中心腔模的数量等于w,可以是任意正负整数,而且所有w个拓扑模式都是接近频率简并的,图2右展示了w=+1,+2,+3的实验光谱。高度简并光腔能降低多模激光的空间相干性,可用于激光照明技术中。
论文的通讯作者为物理所陆凌研究员,共同第一作者为南开大学与物理所联合培养的博士生高晓梅(现为物理所博士后)和物理所博士生杨乐臣,其他作者为物理所博士生林浩、南开大学本科生张琅(现为耶鲁大学博士生)、清华大学高等研究院汪忠研究员、北京理工大学物理学院李家方教授(原物理所副研究员)和南开大学物理科学学院薄方教授,拓扑微腔的样品制备在中科院物理所微加工实验室完成,物理所博士后李广睿参与了工作的后期讨论。该工作得到了国家重点研发计划(2017YFA0303800, 2016YFA0302400),国家自然科学基金 (11721404),中科院先导专项(XDB33000000)和北京市自然科学基金 (Z200008)等项目的支持。