还有三个月就是毕业生们答辩的时间了,但是很多毕业生们目前连选题都还没有选好。时间紧迫,我立马为大家精心整理了一些大学数学系本科毕业论文题目,供毕业生们参考! 1、导数在不等式证明中的应用 2、导数在不等式证明中的应用 3、导数在不等式证明中的应用 4、等价无穷小在求函数极限中的应用及推广 5、迪克斯特拉(Dijkstra)算法及其改进 6、第二积分中值定理“中间点”的性态 7、对均值不等式的探讨 8、对数学教学中开放题的探讨 9、对数学教学中开放题使用的几点思考 10、对现行较普遍的彩票发行方案的讨论 11、对一定理证明过程的感想 12、对一类递推数列收敛性的讨论 13、多扇图和多轮图的生成树计数 14、多维背包问题的扰动修复 15、多项式不可约的判别方法及应用 16、多元函数的极值 17、多元函数的极值及其应用 18、多元函数的极值及其应用 19、多元函数的极值问题 20、多元函数极值问题 21、二次曲线方程的化简 22、二元函数的单调性及其应用 23、二元函数的极值存在的判别方法 24、二元函数极限不存在性之研究 25、反对称矩阵与正交矩阵、对角形矩阵的关系 26、反循环矩阵和分块对称反循环矩阵 27、范德蒙行列式的一些应用 28、方阵A的伴随矩阵 29、放缩法及其应用 30、分块矩阵的应用 31、分块矩阵行列式计算的若干方法 32、辅助函数在数学分析中的应用 33、复合函数的可测性 34、概率方法在其他数学问题中的应用 35、概率论的发展简介及其在生活中的若干应用 36、概率论在彩票中的应用 37、概率统计在彩票中的应用 38、概率统计在实际生活中的应用 39、概率在点名机制中的应用 40、高阶等差数列的通项,前n项和公式的探讨及应用 41、给定点集最小覆盖快速近似算法的进一步研究及其应用 42、关联矩阵的一些性质及其应用 43、关于Gauss整数环及其推广 44、关于g-循环矩阵的逆矩阵 45、关于二重极限的若干计算方法 46、关于反函数问题的讨论 47、关于非线性方程问题的求解 48、关于函数一致连续性的几点注记 49、关于矩阵的秩的讨论 _ 50、关于两个特殊不等式的推广及应用 51、关于幂指函数的极限求法 52、关于扫雪问题的数学模型 53、关于实数完备性及其应用 54、关于数列通项公式问题探讨 55、关于椭圆性质及其应用地探究、推广 56、关于线性方程组的迭代法求解 57、关于一类非开非闭的商映射的构造 58、关于一类生态数学模型的几点思考 59、关于圆锥曲线中若干定值问题的求解初探 60、关于置信区间与假设检验的研究 61、关于周期函数的探讨 62、函数的一致连续性及其应用 63、函数定义的发展 64、函数级数在复分析中与在实分析中的关系 65、函数极值的求法 66、函数幂级数的展开和应用 67、函数项级数的收敛判别法的推广和应用 68、函数项级数一致收敛的判别 69、函数最值问题解法的探讨 70、蝴蝶定理的推广及应用 71、化归中的矛盾分析法研究 72、环上矩阵广义逆的若干性质 73、积分中值定理的再讨论 74、积分中值定理正反问题‘中间点’的渐近性 75、基于高中新教材的概率学习 76、基于最优生成树的'海底油气集输管网策略分析 77、级数求和的常用方法与几个特殊级数和 78、级数求和问题的几个转化 79、级数在求极限中的应用 80、极限的求法与技巧 81、极值的分析和运用 82、极值思想在图论中的应用 83、几个广义正定矩阵的内在联系及其区别 84、几个特殊不等式的巧妙证法及其推广应用 85、几个重要不等式的证明及应用 86、几个重要不等式在数学竞赛中的应用 87、几种特殊矩阵的逆矩阵求法
在一篇数学 教育 论文中,题目是论文的要件之首,它不同于一般 文章 的题目,我们要重视题目的重要性。以下是我为大家精心准备的数学教育论文题目,欢迎阅读!数学教育论文题目(一) 1、浅谈中学数学中的反证法 2、数学选择题的利和弊 3、浅谈计算机辅助数学教学 4、数学研究性学习 5、谈发展数学思维的 学习 方法 6、关于整系数多项式有理根的几个定理及求解方法 7、数学教学中课堂提问的误区与对策 8、中学数学教学中的创造性思维的培养 9、浅谈数学教学中的“问题情境” 0、市场经济中的蛛网模型 11、中学数学教学设计前期分析的研究 12、数学课堂差异教学 13、浅谈线性变换的对角化问题 14、圆锥曲线的性质及推广应用 15、经济问题中的概率统计模型及应用 数学教育论文题目(二) 1、二阶变系数齐次微分方程的求解问题 2、一种函数方程的解法 3、微分中值定理的再讨论 4、学生数学学习的障碍研究; 5、中学数学教育中的素质教育的内涵; 6、数学中的美; 7、数学的和谐和统一----谈论数学中的美; 8、推测和猜想在数学中的应用; 9、款买房问题的决策; 10、线性回归在经济中的应用; 11、数学规划在管理中的应用; 12、初等数学解题策略; 13、浅谈数学CAI中的不足与对策; 14、数学创新教育的课堂设计; 15、中学数学教学与学生应用意识培养; 16、关于培养和提高中学生数学学习能力的探究; 17、运用多媒体培养学生 18、高等数学课件的开发 19、 广告 效益预测模型; 数学教育论文题目(三) 1、浅谈菲波纳契数列的内涵和应用价值 2、一道排列组合题的解法探讨及延伸 3、整除与竞赛 4、足彩优化 5、向量的几件法宝在几何中的应用 6、递推关系的应用 7、坐标方法在中学数学中的应用 8、小议问题情境的创设 9、数学概念探索启发式教学 10、柯西不等式的推广与应用 11、关于几个特殊不等式的几种巧妙证法及其推广应用 12、一道高考题的 反思 13、数学中的研究性学习 15、数字危机 16、数学中的化归方法 17、高斯分布的启示 18、 的变形推广及应用 19、网络优化 20、泰勒公式及其应用 猜你喜欢: 1. 数学教育教学论文参考范文 2. 关于数学专业毕业论文题目参考 3. 数学教育专业毕业论文 4. 有关数学教育的论文范文 5. 数学教育专业毕业论文参考
小学教育是一个不错的专业,在毕业之后学生就能去中小学任教,就能教书育人。但是在毕业之前学生也需要完成毕业论文,这样才能够展示自己4年的学习成果,才能够成功的毕业。而小学教育的毕业论文也是有很多的研究课题的,比如说研究一下中国的教育发展史,以及中国教育应该怎么进行改革。
小编认为中国的教育模式是非常适合国情发展的,比如说在古代实施的是学堂教育,在教育的时候是1对1进行的,这样就能够培养出一些高端的人才,让他们能够为国家出谋划策,这样就能够让国家更加的强盛。而孔子提出了有教无类的想法,就是教育是应该面对任何人的,这种想法在现代得以实现了,现代实施的是9年义务教育,小学生就能够免费的去上学,并且任何人都是有受教育权的,我们不能够剥夺他们的受教育权。所以小学教育毕业论文就可以研究一下中国教育的发展史,这样就能够以信息教育的发展脉络。
虽然中国教育非常的不错,特别适合现在的国情发展,但也是存在一些问题的,这些问题也经常遭受别人的攻击,所以小学教育的毕业生也可以研究一下中国教育存在的问题,并且提出一些有建设意义的意见。我们要知道每个人都是有一些聪明才智的,都是能够对一件事情有一些不同的看法的,所以我们就应该提出不同的意见,总能够帮助到小学教育的改革,让小学教育能够变得越来越好。所以小学教育的毕业论文就可以研究一下中国教育的改革问题。
初等 教育 是整个国民教育的基础,初等教育质量的高低影响着新一代 儿童 的素质发展,同时也影响着我国整体教育水平的发展。下面是我为大家整理的关于初等教育的论文,供大家参考。
初等教育(理科)专业对学生的培养目标是:掌握初等教育(理科)专业知识和专业技能,具有现代教育理念和一定的教育教学研究能力,能够胜任小学数学和小学科学课程教育教学工作的、一专多能的大学专科学历教师。那么如何围绕这一目标做好课程设置呢?本文将试做探析。
初等教育专业课程设置综合化当前师范专科学校在办学过程中课程设置中存在着一些困难和不足,主要表现在:一是专业目标定位不准。为了招生需要,往往把专业的定位拔高,名不符实,较少关注全体师范生的全面培养。二是课程设置缺乏合作举措。小教师资的培养与小学联系不紧密,没有合作 措施 ,共同教研活动很少,许多方案闭门造车。三是技能课程训练不够。学生基本功训练大多数是应付式的作业,纸上谈兵,缺乏行之有效的考核机制。四是课程内容老化陈旧,本科化倾向严重,开发校本教材的政策和措施不多,教师没有针对性教学的积极性,实际教学效果不佳。为此,笔者从课程设置的原则和重点、课程体系构建的过程序以及课程基本体系谈谈一些体会。
一、课程设置的原则
1.思想性原则,即坚持科学理论的指导并注重科学性与思想性的统一,注重学生正确的人生观、世界观和良好师德的培养,注重完善学生的人格结构。
2.师范性原则,即课程设置必须紧紧围绕小学教育、教学实际需要,突出小学教育的特点,坚持为小学教育服务的方向。
3.综合性原则,初等教育专业课程设置应注重学科之间的相互渗透,这不仅包括文理之间的相互渗透,也包括文科各学科和理科各学科之间的相互渗透,以培养教师全面化、多样化,一专多能的素质。
4.实践性原则,课程设置应注重学生的专业知识水准和从教实践能力的提高,使学生既具备坚实的专业知识基础,又具备良好的从教实践能力,并通过实践将知识内化为教师素质。
5.前瞻性原则,课程结构体系应具备适当的弹性和超前性,以满足现代社会快速发展的需要。
二、课程设置的重点
1.课程设置要强化小学教师专业化水平,突出小学教师综合培养。
(1)课程设置要全面化、多样化
课程设置要全面考虑小学教师综合技能及与小学生的沟通及照顾其成长的能力。小学教师除了需具备宽厚基础课程的相关知识,精通任教科目,还要求具有进行教学实践、与人沟通和参与社会竞争的能力。主要体现在职业知识、职业实践、职业关系三个方面。
(2)课程设置要综合化、弹性化
小学教师要有广泛的知识,在课程设置方 面相 对多样化、弹性化。给学生提供较大的选择空间,强调综合性,具有弹性,学生可以通过多种方式选修到自己感兴趣的学科。
重视学科的交叉设置,为师范生成为小学教师所需的广博的综合 文化 知识打下坚实的基础。专业教育课程要重视实践能力的培养,有效促成教师专业化成长。克服通识课程内容相对狭窄、观点陈旧,实践性不强,教育类课程内容普遍抽象,缺乏实践性的缺点。重视师范生综合素质的培养、教师实践能力的培养。
2.课程设置要重视教学实践能力的培养
(1)建立大学与小学长期合作关系
建立大学与小学长期合作关系是教师专业化的有效手段。联系周边的所有小学,与他们建立长期的合作,由大学教师和小学一线教师共同培养师范生,增加在小学进行的专业课程,加强师范生对小学情况包括小学每个年级的年龄特征的了解。让师范生在实践中发现问题,解决问题。
(2)重视教学实践能力的培养
注重实践能力的培养是提高教师整体素质的必由之路。加大实践实习在师范课程体系中的比重。加强教育见习、实习,小学教师的培养过程中,首先,保证实习时间,优化实习内容,让学生参与到实习学校的一切活动中,包括教研活动、班级管理、教工大会等。其次,进行分段实习,将实习贯穿于每个学期的教学中,这样不仅有利于学生在连续的实践过程中逐步认识小学教师职业,还能使学生有时间对其教学体验和感悟进行消化。
三、课程体系的构建过程
1.组建由专业带头人、骨干教师和兼职教师构成的课程体系建设团队。
2.调研、分析专业定位、岗位能力,写出分析 报告 ,提出对应课程模块。
3.依据专业定位,设计岗位需求的课程内容。根据专业知识、岗位能力、素质结构,设置课程及实践教学项目。
4.根据小学理科教师的职业素质、能力要求、国家教育改革与发展的政策和趋势,分解支撑该能力的知识点,制定相应的课程教学大纲、教学计划、考核标准,形成职业能力评价与考核标准与实施办法。
四、课程体系的基本结构
根据培养目标和初等教育(理科)专业“以能力形成为主线”的要求,确立构建如下合理、健全的初等教育专业课程体系与结构。
1.学年课程分布体系
(1)三年制高中 毕业 起点学生:学年为理论课(含校内实践课)+学年为校外实践课,即。
(2)五年制初中毕业起点学生:2学年为高中课程+学年为大专理论课(含校内实践课)+学年为校外实践课,即2+。
2.必、选课程体系
必修课程达到“理论够用”目的;选修课程达到“知识面广”目的。
3.课程模块体系
(1)理论课程模块:公共课(基本素质课程)、专业课(专业基础课、核心主干课、其他主干课)、职业素质课(职业基本素质课、教师基本技艺课)三类六模块课程体系。
(2)校内外实践课程模块:实验课、综合训练课、教育见习课、教育实习课和教育调查课共五类实践课程模块体系。
4.理论实践课程比体系
逐渐提高实践课程比例,达到“技术精湛”目的。实践课程占总课时的。
5.选修方向课程体系
在完成专业必须的基本知识、基础理论和基本技能课程后,设立若干个专业选修方向供学生选择,拓宽学生在小学教学的教学空间。
参考文献:
[1]高应东.学前教育三年建设方案(2013-2015年).
[2]王智秋.小学教育专业人才培养模式的研究与探索.教育研究,2007,(5).
[3]惠中.高等师范教育体系中小学教育专业建设的思考[J].高等师范教育研究,2003,(2):35-41.
[4]高璐.经济欠发达地区小学教育专业的定位与发展[J].教育理论与实践,2005,(3):30-32.
[5]王万良.小学数学教育与小学教育专业数学课程设计[J].课程・教材・教法,2006,(1):77-80.
[6]郭黎岩.发达国家小学教师培养的 经验 研究.比较教育研究,2007,(11):27
摘要:职业教育是培养应用型人才和具有一定文化水平和专业知识技能的劳动者。高等职业教育的发展使得我们必将教师这一特殊职业技能岗位的教育纳 入职 业教育的思考范畴。本文在职业教育的思想下讨论了初等教育专业的特性,并根据职业特性对小学教师的培养提出了几点思考。
关键词:职业教育 职业特性 初等教育
中图分类号:G712 文献标识码:C DOI:
职业教育是让受教育者获得职业或生产劳动所需要的职业知识、技能和职业道德的教育。与普通教育和成人教育相比较,职业教育侧重于实践技能和实际工作能力的培养。目前,我国的职业教育类专业大都采用“工学结合、校企合作、顶岗实习”的培养模式,每年培养数十万的职业类人才。传统认为,初等教育是属于普通教育下的师范教育,尽管有着知识积累与传承的这层特殊面纱,使得教师教育带有普通教育的知识特点,但是这无法遮掩“教师”是一个特殊职业技能岗位,也无法回避我们必将用职业教育的视角来看待教师教育。
1 初等教育专业的职业特性
职业教育的特性是其“职业性”,其基本内涵是“职业导向”。职业教育成效如何取决于它所培养的人才能否胜任其面临的岗位。我国初等教育专业所培养的大多是面向小学及教育岗位的人才。专家认为学前教育的主要职业特性是保育,是小学教育的前奏;中学教育的主要职业特性是学科教育,是小学教育的后续篇章;小学教育是两者的衔接,其低学段具有一定的保育性,高学段具有一定的学科教育性,它不仅要传递知识,更为重要的在于把握儿童成长的方向,不仅要保证儿童掌握基本知识和技能,而且更要帮助儿童学会学习,注重培养儿童的社会意识、创造能力、合作精神以及对 自然科学知识 的兴趣等,为其今后一生的可持续学习,成为开放的、具有全球视野的人打下基础。因此,促进小学生养成良好的品德与学习习惯是小学教育的基本目标。由此而言,养成性成为初等教育的主要职业特性。
2 职业特性对教师的要求
小学教师以小学生的教育为己任,而不仅仅以小学学科知识的传授为己任。小学生教育过程中育人是目的,知识的传授是手段。养成性作为初等教育的主要职业特性决定了初等教育的重心在于养成教育,这要求养成教育的执行者――小学教师必须具备以下素养:
知识体系――全科发展
职业视野下的小学教师知识结构与其职业对象密不可分。小学教师的职业对象是小学生。就认知特点来看,小学生的思维感知技能等方面都处于迅速发展的阶段。无论多么复杂的新事物,小学生都可以将其作为整体逐步同化纳入自己的认知体系进而掌握事物的整体特征。这一阶段的儿童不会像成人一样面对新鲜事物就立即将事物划分为各个零部件,了解零部件之后再加以整合进而认识新事物,小学生认识世界的过程是综合的整体的。美国卡内基教学促进基金会前主席波伊尔也曾指出初等教育区别于学前教育、中等教育、高等教育的最基本要素就是联系:人与人是互相联系的,各门课程与知识是互相联系的,课堂内容与文娱生活是互相联系的,学习与学生生活是互相联系的。因此,小学阶段需要有全科型教师对学生进行全方面知识的讲授,这有利于教师引导其更加全面发展的同时加强对学生整体素质的把握。目前,不少国家实行全科小学教师即是一个有力的佐证。
教学技能――知识传授的保证
目前,中国的教师国编招考政策允许综合型大学的学生通过统一考试进入教育行列。而教育专业的学生有别于其他专业学生的特殊性之一是学生在校期间的接受了专门的教学技能培养。初等教育专业定性在教育,决定了初等教育专业培养的学生必须通晓教育理论,熟练教学实践技能。当前,无论是国外还是国内,对职前教育培养都加强了实践教学教育。大多数采用2+1的培养模式和院-校合作的方式。但是小学教师的职业技能与中学教育技能不同,小学生模仿能力强,有很强的向师性,教师往往是学生的榜样,因此教师的教学技能必须规范。其次,理论研究和实践经验都表明,教育对象越是低龄,对教师的教育教学技能性和艺术性要求越高。儿童知觉过程的直觉性,使他们喜欢教师采用直观的教学呈现方式进行教学。因为儿童记忆的具体形象性,使他们更容易记住那些形象生动的事物。另外,儿童思维想象的独特性和情感的易感染性和弥散性等心理特点也都使得他们特别喜欢艺术活动。这些都要求小学教师在教学过程中,能结合小学生的心理特点,借助图片、声音、影像等生动活泼的载体,必要时辅之以儿歌、 童谣 、舞蹈、 简笔画 等形式帮助学生加深对知识的理解,并吸引学生的注意力,提高课堂效果。
职业的认识
教师职业是一种特殊的职业,是一种用生命感动生命,用心灵去浇灌心灵的职业。作为小学教师的初等教育专业毕业生对小学生的影响可以说是终身的,他们的工作态度,有时甚至一个随意的动作、一个不经意的眼神,都会在小学生们幼嫩的心里激起阵阵涟漪。小学教师的培养应该强调文化底蕴、通识教育、养成教育,使之具有较高的职业水准,使他们深刻认识什么叫教育,什么叫孩子,什么是初等教育,明确初等教育的养成教育意识,懂得养成教育的原理与 方法 ,这样才能促进他们的学生养成良好品德、良好习惯,才可能促进其生命的健康成长,真正实现对人的教育意义。
参考文献:
[1]陈莹.“职业性”:德国职业教育本质特征之研究[D].华东师范大学,2012.
[2]刘慧.初等教育学学科:高师小学教育专业的学科基础[J].课程・教材・教法,2011,(5).
[3]王佳艺.全科型小学教师培养的必要性及其途径[J].湖南第一师范大学学报,2012,(2).
[4]国家中长期教育改革和发展规划纲要2010-2020[EB/OL]..
[5]刘春玲.论小学教育专业学生应具备的语文教学技能[J].赤峰学院学报,2008,(8).
[6]司成勇.当代小学教育专业教师职业技能训练的内容、途径与策略[J].当代教师教育,2009,(9).
[7]雅斯贝尔斯著,邹进译.什么是教育[M].三联书店,1991.
[8]夏小林.初等教育专业毕业生素质问题研究[D].华中师范大学,2008.
关于初等教育的论文相关 文章 :
1. 有关初等教育毕业论文
2. 浅谈初等教育毕业论文范文
3. 初等教育专业论文参考
4. 初等教育毕业论文
5. 初等教育论文范文
6. 浅谈基础教育毕业论文范文
1.小学英语师资培训的探索与实践2.对农村小学语文教学现状的思考3.小学数学教学中发挥学生主体作用的研究4.浅论语文教学与人格教育5.谈小学自然教学中的学习迁移6.浅谈小学数学教学中应用能力的培养7.试论语文课堂教学中的素质教育8.谈中小学数学教学的衔接9.谈后进生转化的措施与体会10.论非权力性影响力在班级管理中的作用11.浅谈小学生听说能力的培养12.对教师课堂提问艺术的探讨13.试论制约自然教学的心理学因素14.谈地图在历史教学中的作用15.语文课堂教学美育探微16.对小学计算机教学的探索与思考17.关于我国电化教育的几个问题18.微格教学应用环境的设计与实施19.小学多媒体课件的设计与制作20.谈班主任的自身素质对学生的影响
问题学生的转化,小学的自我评析,老师的素质养成,留守小学生的心理健康教育,城镇小学师生的互动研究,这都是很好研究课题。
1, 16k + 11 = 15k + k + 11, k = 3, 16*3 + 11 = 15*3 + 14 = 45 + 14 = 59, 59 + 15*16*m = 13*4 + 7 + (13+2)*(13+3)m = 13*4 + 7 + 13(5 + 13)m + 6m = 13(18m + 5) + 6(m-1), m = 7, 59 + 15*16*7 = 1739 1739 + 13*15*16n, n = 0,1,2,... 满足要求。 2, 3^(2009) = 3*(3^2)^(1004) = 3*(10-1)^(1004) = 3*[10^(1004) - 1004*10^(1003)+ ... + 1004*1003*10^2/2 - 1004*10 + 1] 3^(2009) = 3*[-1004*10 + 1] (mod100) = 3[1 - 10040] (mod100) = 3[1 - 40] (mod100) = 3*61 (mod100) = 183 (mod100) = 83 (mod100) 3, 正整数a,b互质的充要条件是关于x,y的方程ax + by = 1有整数解。 因此,ax + by = c 有整数解的充要条件是 c为a,b 的最大公约数。 4, Legendre(a/p)=0, if a = 0 (modp); Legendre(a/p)=+1, if a不等于0,且对于某个整数x, x^2 = a (modp) Legendre(a/p)=-1, 若不存在整数x,使得x^2 = a (modp). Legendre(482/503)=Legendre(2/503)*Legendre(241/503) Legendre(2/503) = (-1)^[(503^2 - 1)/8] = (-1)^[502*504/8] = (-1)^[251*126] = 1, Legendre(241/503) = (-1)^[(241-1)*(503-1)/4]*Legendre(503/241) = (-1)^[240*502/4]*Legendre(21/241) = Legendre(3/241)*Legendre(7/241) = (-1)^[(3-1)*(241-1)/4]*Legendre(241/3)*(-1)^[(7-1)*(241-1)/4]*Legendre(241/7) = (-1)^[2*240/4]*Legendre(1/3)*(-1)^[6*240/4]*Legendre(3/7) = Legendre(1/3)*Legendre(3/7) = 1*(-1)^[(3-1)*(7-1)/4]*Legendre(7/3) = (-1)^[2*6/4]*Legendre(1/3) = (-1)*1 = -1. 娘啊,累惨了。。休息一哈。。5,512^50 = (11*45 + 17)^50 = 17^50 (mod45)= 289^25 (mod45) = (45*6 + 19)^25 (mod45) = 19^25(mod45)= 19*361^12(mod45)=19*(8*45+1)^12(mod45) = 19(mod45)6,[2009/3] + [2009/3^2] + [2009/3^3] + [2009/3^4] + [2009/3^5] + [2009/3^6] 【[]表示取整运算哈】= 669 + 223 + 74 + 24 + 8 + 2= 10007,x = 5
1、数学中的研究性学习2、数字危机4、高斯分布的启示5、a2+b2≧2ab的变形推广及应用6、网络优化7、泰勒公式及其应用9、数学选择题的利和弊10、浅谈计算机辅助数学教学11、论研究性学习12、浅谈发展数学思维的学习方法13、关于整系数多项式有理根的几个定理及求解方法14、数学教学中课堂提问的误区与对策16、浅谈数学教学中的“问题情境”17、市场经济中的蛛网模型19、数学课堂差异教学20、浅谈线性变换的对角化问题21、圆锥曲线的性质及推广应用22、经济问题中的概率统计模型及应用23、通过逻辑趣题学推理24、直觉思维的训练和培养25、用高等数学知识解初等数学题26、浅谈数学中的变形技巧27、浅谈平均值不等式的应用28、浅谈高中立体几何的入门学习29、数形结合思想30、关于连通性的两个习题31、从赌博和概率到抽奖陷阱中的数学32、情感在数学教学中的作用33、因材施教 因性施教34、关于抽象函数的若干问题35、创新教育背景下的数学教学36、实数基本理论的一些探讨37、论数学教学中的心理环境38、以数学教学为例谈谈课堂提问的设计原则39、不等式证明的若干方法40、试论数学中的美41、数学教育与美育42、数学问题情境的创设43、略谈创新思维44、随机变量列的收敛性及其相互关系45、数字新闻中数学应用46、微积分学的发展史47、利用几何知识求函数最值48、数学评价应用举例49、数学思维批判性50、让阅读走进数学课堂51、开放式数学教学52、浅谈中学数列中的探索性问题53、论数学史的教育价值54、思维与智慧的共享——从建构主义到讨论法教学55、微分方程组中的若干问题56、由“唯分是举”浅谈考试改革57、随机变量与可测函数58、二阶变系数齐次微分方程的求解问题59、一种函数方程的解法60、积分中值定理的再讨论1、浅谈菲波纳契数列的内涵和应用价值2、一道排列组合题的解法探讨及延伸3、整除与竞赛4、足彩优化5、向量的几件法宝在几何中的应用6、递推关系的应用8、小议问题情境的创设9、数学概念探索启发式教学10、柯西不等式的推广与应用11、关于几个特殊不等式的几种巧妙证法及其推广应用12、一道高考题的反思13、数学中的研究性学习15、数字危机16、数学中的化归方法17、高斯分布的启示18、 的变形推广及应用19、网络优化20、泰勒公式及其应用22、数学选择题的利和弊23、浅谈计算机辅助数学教学24、数学研究性学习25、谈发展数学思维的学习方法26、关于整系数多项式有理根的几个定理及求解方法27、数学教学中课堂提问的误区与对策29、浅谈数学教学中的“问题情境”30、市场经济中的蛛网模型32、数学课堂差异教学33、浅谈线性变换的对角化问题34、圆锥曲线的性质及推广应用35、经济问题中的概率统计模型及应用36、通过逻辑趣题学推理37、直觉思维的训练和培养38、用高等数学知识解初等数学题39、浅谈数学中的变形技巧40、浅谈平均值不等式的应用41、浅谈高中立体几何的入门学习42、数形结合思想43、关于连通性的两个习题44、从赌博和概率到抽奖陷阱中的数学45、情感在数学教学中的作用46、因材施教与因性施教47、关于抽象函数的若干问题48、创新教育背景下的数学教学49、实数基本理论的一些探讨50、论数学教学中的心理环境51、以数学教学为例谈谈课堂提问的设计原则52、不等式证明的若干方法53、试论数学中的美54、数学教育与美育55、数学问题情境的创设56、略谈创新思维57、随机变量列的收敛性及其相互关系58、数字新闻中的数学应用59、微积分学的发展史60、利用几何知识求函数最值61、数学评价应用举例62、数学思维批判性63、让阅读走进数学课堂64、开放式数学教学65、浅谈中学数列中的探索性问题66、论数学史的教育价值67、思维与智慧的共享——从建构主义到讨论法教学68、 方程组中的若干问题69、由“唯分是举”浅谈考试改革70、随机变量与可测函数71、二阶变系数齐次微分方程的求解问题72、一种函数方程的解法73、微分中值定理的再讨论74、学生数学学习的障碍研究;76、数学中的美;77、数学的和谐和统一----谈论数学中的美;78、推测和猜想在数学中的应用;79、款买房问题的决策;80、线性回归在经济中的应用;81、数学规划在管理中的应用;82、初等数学解题策略;83、浅谈数学CAI中的不足与对策;84、数学创新教育的课堂设计;86、关于培养和提高中学生数学学习能力的探究;87、运用多媒体培养学生88、高等数学课件的开发89、 广告效益预测模型;90、最短路网络;91、计算机自动逻辑推理能力在数学教学中的应用;93、最优增长模型94、学生数学素养的培养初探96、 城市道路交通发展规划数学模型;97、函数逼近98、数的进制问题99、无穷维矩阵与序列Bannch空间的关系100、 多媒体课件教学设计----若干中小学数学教学案例101、一维,二维空间到欧氏空间102、初中数学新课程数与代数学习策略研究103、初中数学新课程统计与概率学习策略研105、数列运算的顺序交换及条件106、歇定理的推广和应用107、解析函数的各种等价条件及其应用108、特征函数在概率论中的应用109、数学史与中学教育110、让生活走进数学,数学方法的应用将数学应用于生活——谈xx111、数学竟赛中的数论问题112、新旧教材的对比与研究114、随机变量分布规律的求法115、简述概率论与数理统计的思想方法及其应用116、无穷大量存在的意义118、例谈培养数学思维的深刻性120、从坐标系到向量空间的基121 谈谈反证法122、一致连续性的判断定理及性质123、课堂提问和思维能力的培养125、函数及其在证明不等式中的应用126、极值的讨论及其应用127、正难则反,从反面来考虑问题128、实数的构造,完备性及它们的应用129、数学创新思维的训练 130、简述期望的性质及其作用131、简述概率论与数理统计的思想和方法132、穷乘积133、递推式求数列的通项及和134、划归思想在数学中的应用135、凸函数的定义性质及应用136、行列式的计算方法137、可行解的表式定理的证明140、充分挖掘例题的数学价值和智力开发功能141、数学思想方法的一支奇葩-----数学猜想初探142、关于实变函数中叶果罗夫定理的鲁津定理的证明143、于黎曼积分的定义144、微分方程的历史发展145、概率论发展史及其简单应用147、数学教学中使用多媒体的几点思考148、矩阵特征值的计算方法初探149、数形结合思想及其应用150、关于上、下确界,上、下极限的定义,性质及应用 151、复均方可积随机变量空间的讨论155、欧几里得第五公设产生背景及其对数学发展影响160、函数性质的应用163、中数学新课程空间与图形学习策略与研究167、函数的凸性及其在不等式中的应用171、数学归纳法教学探究174、关于全概率公式及其应用的研究176、变量代换法与常微分方程的求解188、不等式解法大观189、谈谈“ 隐函数 ”190、有限维矩阵的范数计算与估计191、数学奥赛中数论问题的解题方法研究193、微分方程积分因子的研究195、关于泰勒公式196、解析函数的孤立奇点的分类及其判断方法197、最大模原理的推广及其应用198、π的奥秘——从圆周率到统计199、对现代信息技术辅助数学及其发展的几点思考200、无理数e的发现及其应用202、闭区间套定理的推广和应用203、函数的上下极限及其应用205、关于多值函数的解析理论探讨208、比较函数法在常微分方程中的应用209、数学分析的直观与严密303、求随机函数的分布函数和分布密度的方法304、条件期望的性质及其应用308、凸函数的等价命题及其应用310、有界变差函数的定义及其性质311、初等函数的极值
概率问题:一个国家有一条法律,死刑犯抽签(两个纸团)决定生死。一个正直的大臣,国王想借他的一次失望杀了他,于是让法官把两个纸团都换成“死”字的。法院上,大臣看着眼前的纸团一笑,一把夺过一个塞进嘴里。“你干什么?”法官走了下来。“就让我没抽到的这张决定我抽到的那个吧,如果这个是‘生’那我死,如果这个是‘死’那我活。”请问:大臣为什么这么自信。
1. 因为(k,n)=d,则存在整数s, t,使得ks+nt=d. 所以a^(ks)=1(mod m) a^(nt)=1(mod m) a^d=a^(ks+nt)=1(mod m)2. 因为当(b,a)=1当且仅当(a-b, a)=1. 用如同高斯求1+2+......+100相同的方法可知: 和=1/2 *(a-b+b) *φ(a)=1/2 *a*φ(a).3. 需要证ax+b(x取遍m的完全剩余系)是m的完全剩余系。 因为ax+b=ay+b(mod m) 当且仅当a(x-y)=0(mod m) 当且仅当m|a(x-y). 因为(a,m)=1. 所以m|x-y. 即x=y(mod m). 所以所求式子=1/m+2/m+......+(m-1)/m=1/2 *(m-1).4. 接上题: 所求式子=a/m+2a/m+......+(m-1)a/m-1/2 *(m-1). =1/2 *(m-1)(a-1).5. 先看第6题,证明(p-1)!=-1(mod p). 因为p-a=-a(mod p). 所以(p-1)!=(((p-1)/2)!)*(-(p-1)/2)*......*(-2)(-1) =(((p-1)/2)!)^2 * (-1)^((p-1)/2). =-1(mod p). 所以(((p-1)/2)!)^2+(-1)^((p-1)/2)=0(mod p).6. (p, p-1)=1. (p-1)!=0(mod p-1). 下面证(p-1)!=-1(mod p). p=2, 3时成立;p>=5时: 首先对于任意a(2<=a<=p-2),存在唯一的b(2<=b<=p-2),使得ab=1(mod p). 对于a、2a、......、(p-1)a这p-1个数中,它们两两mod p不同余。 否则存在i、j(i、j不相等)使得ia=ja(mod p). p|a(i-j). p|i-j. 则i=j,矛盾。 又因为ia mod p不为0, 所以a、2a、......、(p-1)a这p-1个数中,mod p是1~p-1的一个排列, 所以存在唯一的b(1<=b<=p-1),使得ab=1(mod p). 又因为a与(p-1)a mod p都不为1,所以2<=b<=p-2. 这样,将每个a、b进行配对a1、b1、a2、b2...... 2*3*......*(p-2)=(a1*b1)(a2*b2)......=1(mod p). 所以(p-1)!=1*1*(p-1)=-1(mod p). 综上(p-1)!=p-1(mod p(p-1)). 7. x^y=y^(x-y). 显然x-y>=0. 若x=y,则x^x=x^0=1. 则x=1, y=1. 若x>y,则y
趣味数学故事:
战国时期,齐威王与大将田忌赛马,齐威王和田忌各有三匹好马:上马,中马与下马。比赛分三次进行,每赛马以千金作赌。由于两者的马力相差无几,而齐威王的马分别比田忌的相应等级的马要好,所以一般人都以为田忌必输无疑。
但是田忌采纳了门客孙膑(着名军事家)的意见,用下马对齐威王的上马,用上马对齐威王的中马,用中马对齐威王的下马,结果田忌以2比1胜齐威王而得千金。这是我国古代运用对策论思想解决问题的一个范例。
数学分支
1、数学史
2、数理逻辑与数学基础
a:演绎逻辑学(也称符号逻辑学),b:证明论(也称元数学),c:递归论,d:模型论,e:公理集合论,f:数学基础,g:数理逻辑与数学基础其他学科。
3、数论
a:初等数论,b:解析数论,c:代数数论,d:超越数论,e:丢番图逼近,f:数的几何,g:概率数论,h:计算数论,i:数论其他学科。
如果你看那些新有趣的数学论文小课题,有一些预言引发所有的数学考思考的话,可以这样去学一些知识的一些杂文,可以把题目写出来。
课程论文选题参考1.《高等代数》课程学习感悟2.《高等代数》中的。。。。思想3.《高等代数》中的。。。。方法4.高等代数与解析几何的关联性5.高等代数有关理论的等价命题6.高等代数有关理论的几何描述7.高等代数有关理论的应用实例8.高等代数知识在有关课程学习中的应用9.数学软件在高等代数学习中的应用10.应用高等代数知识的数学建模案例11.高等代数理论在金融中的应用12.反例在高等代数中的应用13.行列式理论的应用性研究14.一些特殊行列式的应用15.行列式计算方法综述16.范德蒙行列式的一些应用17.线性方程组的应用;18.线性方程组的推广——从向量到矩阵19.关于向量组的极大无关组20.向量组线性相关与线性无关的判别方法21.线性方程组求解方法综述 22.求解线性方程组的直接法与迭代法23.向量的应用24.矩阵多项式的性质及应用25.矩阵可逆的若干判别方法26.矩阵秩的不等式的讨论(应用)27.关于矩阵的伴随矩阵28.矩阵运算在经济中的应用29.关于分块矩阵30.分块矩阵的初等变换及应用31.矩阵初等变换及应用32.矩阵变换的几何特征33.二次型正定性及应用34.二次型的化简及应用35.化二次型为标准型的方法36.矩阵对角化的应用37.矩阵标准形的思想及应用38.矩阵在各种变换下的不变量及其应用39.线性变换的应用40.特征值与特征向量的应用41.关于线性变换的若干问题42.关于欧氏空间的若干问题43.矩阵等价、合同、相似的关联性及应用44.线性变换的命题与矩阵命题的相互转换问题45.线性空间与欧氏空间46.初等行变换在向量空间Pn中的应用47.哈密顿-凯莱定理及其应用48.施密特正交化方法的几何意义及其应用49.不变子空间与若当标准型之间的关系50.多项式不可约的判别方法及应用51.二次型的矩阵性质与应用52.分块矩阵及其应用53.欧氏空间中的正交变换及其几何应用54.对称矩阵的性质与应用55.求两个子空间的交与和的维数和一个基的方法56.关于n维欧氏空间子空间的正交补57.求若当标准形的几种方法58.相似矩阵的若干应用59.矩阵相似的若干判定方法60.正交矩阵的若干性质61.实对称矩阵正定性的若干等价条件62.欧氏空间中正交问题的探讨63.矩阵特征根及其在解题中的应用64.矩阵的特征值与特征向量的应用65.行列式在代数与几何中的简单应用66.欧氏空间内积不等式的应用67.求标准正交基的若干方法研究68.高等代数理论在经济学中的应用69.矩阵中的最小二乘法70.常见线性空间与欧式空间的基与标准正交基的求法
想想,初中都学了那些?我在上中学时都没写过论文,现在上初中都要写论文啦?真是悲剧呀!但初中的数学还是很简单的,写一篇论文,可以联系到自己已经上过的知识。下面给你一些建议: 可以写,对任意的二元一次方程组的解转换为图形的交点问题。 还有,不知道三角函数有没有上,如果上了可以论证三角公式,比如说,(sinA)^2+(cosA)^2=1,(tanX)^2=(secX)^2-1
这个问题也不太难啊,你可以向你的学长和学姐们请教一下,或者向你的老师问问
这个应该是比较简单的,关于这个命题的证明好象很多书上都是有的,而且好象还不址一种.找找最古老的一本高等代数或者线性代数的书看看就可以了我推荐北京大学的,好象是不错的,武汉大学的有个教材也不错.主要是证明乘积后的秩的规律性
大学数学论文范文
导语:无论是在学校还是在社会中,大家都写过论文,肯定对各类论文都很熟悉吧,论文是探讨问题进行学术研究的一种手段。怎么写论文才能避免踩雷呢?以下是我收集整理的论文,希望对大家有所帮助。
论文题目: 大学代数知识在互联网络中的应用
摘要: 代数方面的知识是数学工作者的必备基础。本文通过讨论大学代数知识在互联网络对称性研究中的应用,提出大学数学专业学生检验自己对已学代数知识的掌握程度的一种新思路,即思考一些比较前沿的数学问题。
关键词: 代数;对称;自同构
一、引言与基本概念
《高等代数》和《近世代数》是大学数学专业有关代数方面的两门重要课程。前者是大学数学各个专业最重要的主干基础课程之一,后者既是对前者的继续和深入,也是代数方面研究生课程的重要先修课程之一。这两门课程概念众多,内容高度抽象,是数学专业学生公认的难学课程。甚至,很多学生修完《高等代数》之后,就放弃了继续学习《近世代数》。即使对于那些坚持认真学完这两门课程的学生来讲,也未必能做到“不仅知其然,还知其所以然”,而要做到“知其所以然,还要知其不得不然”就更是难上加难了。众所周知,学习数学,不仅逻辑上要搞懂,还要做到真正掌握,学以致用,也就是“学到手”。当然,做课后习题和考试是检验是否学会的一个重要手段。然而,利用所学知识独立地去解决一些比较前沿的数学问题,也是检验我们对于知识理解和掌握程度的一个重要方法。这样做,不仅有助于巩固和加深对所学知识的理解,也有助于培养学生的创新意识和自学能力。笔者结合自己所从事的教学和科研工作,在这方面做了一些尝试。
互连网络的拓扑结构可以用图来表示。为了提高网络性能,考虑到高对称性图具有许多优良的性质,数学与计算机科学工作者通常建议使用具有高对称性的图来做互联网络的模型。事实上,许多著名的网络,如:超立方体网络、折叠立方体网络、交错群图网络等都具有很强的对称性。而且这些网络的构造都是基于一个重要的代数结构即“群”。它们的对称性也是通过其自同构群在其各个对象(如:顶点集合、边集合等)上作用的传递性来描述的。
下面介绍一些相关的概念。一个图G是一个二元组(V,E),其中V是一个有限集合,E为由V的若干二元子集组成的集合。称V为G的顶点集合,E为G的边集合。E中的每个二元子集{u,v}称为是图G的连接顶点u与v的一条边。图G的一个自同构f是G的顶点集合V上的一个一一映射(即置换),使得{u,v}为G的边当且仅当{uf,vf}也为G的边。图G的全体自同构依映射的合成构成一个群,称为G的全自同构群,记作Aut(G)。图G称为是顶点对称的,如对于G的任意两个顶点u与v,存在G的自同构f使得uf=v。图G称为是边对称的,如对于G的任意两条边{u,v}和{x,y},存在G的自同构f使得{uf,vf}={x,y}。
设n为正整数,令Z2n为有限域Z2={0,1}上的n维线性空间。由《近世代数》知识可知,Z2n的加法群是一个初等交换2群。在Z2n中取出如下n个单位向量:
e1=(1,0,…,0),e2=(0,1,0,…,0),en=(0,…,0,1)。
●n维超立方体网络(记作Qn)是一个以Z2n为顶点集合的图,对于Qn的任意两个顶点u和v,{u,v}是Qn的一条边当且仅当v-u=ei,其中1≤i≤n。
●n维折叠立方体网络(记作FQn)是一个以Z2n为顶点集合的图,对于Qn的任意两个顶点u和v,{u,v}是Qn的一条边当且仅当v-u=ei(1≤i≤n)或者v-u=e1+…+en。
●n维交错群图网络(记作AGn)是一个以n级交错群An为顶点集合的图,对于AGn的任意两个顶点u和v,{u,v}是AGn的一条边当且仅当vu-1=ai或ai-1,这里3≤i≤n,ai=(1,2,i)为一个3轮换。
一个自然的问题是:这三类网络是否是顶点对称的?是否边对称的?但值得我们注意的是,这些问题都可以利用大学所学的代数知识得到完全解决。
二、三类网络的对称性
先来看n维超立方体网络的对称性。
定理一:n维超立方体网络Qn是顶点和边对称的。
证明:对于Z2n中的任一向量x=(x1,…,xn),如下定义V(Qn)=Z2n上面的一个映射:f(x):u→u+x,u取遍V(Qn)中所有元素。容易验证f(x)是一个1-1映射。(注:这个映射在《高等代数》中已学过,即所谓的平移映射。)而{u,v}是Qn的一条边,当且仅当v-u=ei(1≤i≤n),当且仅当vf(x)-uf(x)=ei(1≤i≤n),当且仅当{v(fx),u(fx)}是Qn的一条边。所以,f(x)也是Qn的一个自同构。这样,任取V(Qn)中两个顶点u和v,则uf(v-u)=v。从而说明Qn是顶点对称的。
下面证明Qn是边对称的。只需证明:对于Qn的任一条边{u,v},都存在Qn的自同构g使得{ug,vg}={0,e1},其中0为Z2n中的零向量。事实上,{uf(-u),vf(-u)}={0,v-u},其中v-u=ei(1≤i≤n)。显然,e1,…,ei-1,ei,ei+1,…,en和ei,…,ei-1,e1,ei+1,…,en是Z2n的两组基向量。由《高等代数》知识可知存在Z2n上的可逆线性变换t使得t对换e1和ei而不动其余向量。此时易见,若{a,b}是Qn的一条边,则a-b=ej(1≤j≤n)。若j=1,则at-bt=ei;若j=i,则at-bt=e1;若j≠1,i,则at-bt=ej;所以{at,bt}也是Qn的一条边。由定义可知,t是Qn的一个自同构。进一步,{0t,(v-u)t}={0,e1},即{uf(-u)t,vf(-u)t}={0,e1}。结论得证。
利用和定理一相似的办法,我们进一步可以得到如下定理。
定理二:n维折叠立方体网络FQn是顶点和边对称的。
最后,来决定n维交错群图网络的对称性。
定理三:n维交错群图网络AGn是顶点和边对称的。
证明:首先,来证明AGn是顶点对称的。给定An中的一个元素g,如下定义一个映射:R(g):x→xg,其中x取遍An中所有元素。容易验证R(g)为AGn顶点集合上上的一个1-1映射。(注:这个映射在有限群论中是一个十分重要的'映射,即所谓的右乘变换。)设{u,v}是AGn的一条边,则vu-1=ai或ai-1,这里1≤i≤n。易见,(vg)(ug)-1=vu-1。所以,{vR(g),uR(g)}是AGn的一条边。因此,R(g)是AGn的一个自同构。这样,对于AGn的任意两个顶点u和v,有uR(g)=v,这里g=u-1v。这说明AGn是顶点对称的。
下面来证明AGn是边对称的。只需证明对于AGn的任一条边{u,v},都存在AGn的自同构g使得{ug,vg}={e,a3},其中e为An中的单位元。给定对称群Sn中的一个元素g,如下定义一个映射:C(g):x→g-1xg,其中x取遍An中所有元素。由《近世代数》知识可知,交错群An是对称群Sn的正规子群。容易验证C(g)是AGn的顶点集合上的一个1-1映射。(注:这个映射其实就是把An中任一元素x变为它在g下的共轭。这也是有限群论中一个十分常用的映射。)令x=(1,2),y(j)=(3,j),j=3,…,n。下面证明C(x)和C(y(j))都是AGn的自通构。取{u,v}为AGn的任一条边,则vu-1=ai或ai-1。从而,vC(x)(u-1)C(x)=(x-1vx)(x-1u-1x)=x-(1vu-1)x=ai-1或ai。
因此,{uC(x),vC(x)}也是AGn的一条边。从而说明C(x)是AGn的自通构。同理,若j=i,有vC(y(j))(u-1)C(y(j))=a3-1或a3;若j≠i,则有vC(y(j))(u-1)C(y(j))=ai-1或ai。这说明{uC(y(j)),vC(y(j))}也是AGn的一条边,从而C(y(j))是AGn的自通构。现在,对于AGn的任一条边{u,v},令g=u-1,则{uR(g),vR(g)}={e,vu-1}={e,ai}或{e,ai-1}。若i=3,则{e,a3-1}C(x)={e,a3}。而若i≠3,则{e,ai}C(y(j))={e,a3}而{e,ai-1}C(y(j))={e,a3-1}。由此可见,总存在AGn的自同构g使得{ug,vg}={e,a3},结论得证。
至此,完全决定了这三类网络的对称性。不难看出,除了必要的图论概念外,我们的证明主要利用了《高等代数》和《近世代数》的知识。做为上述问题的继续和深入,有兴趣的同学还可以考虑以下问题:
1、这些网络是否具有更强的对称性?比如:弧对称性?距离对称性?
2、完全决定这些网络的全自同构群。
实际上,利用与上面证明相同的思路,结合对图的局部结构的分析,利用一些组合技巧,这些问题也可以得到解决。
三、小结
大学所学代数知识在数学领域中的许多学科、乃至其他领域都有重要的应用。笔者认为任课教师可以根据自己所熟悉的科研领域,选取一些与大学代数知识有紧密联系的前沿数学问题,引导一些学有余力的学生开展相关研究,甚至可以吸引一些本科生加入自己的课题组。当然,教师要给予必要的指导,比如讲解相关背景知识、必要的概念和方法等。指导学生从相对简单的问题入手,循序渐进,由易到难,逐步加深对代数学知识的系统理解,积累一些经验,为考虑进一步的问题奠定基础。
结束语
本文所提到的利用《高等代数》和《近世代数》的知识来研究网络的对称性就是笔者在教学工作中曾做过的一些尝试。在该方面,笔者指导完成了由三名大三学生参加的国家级大学生创新实验项目一项。这样以来,学生在学习经典数学知识的同时,也可以思考一些比较前沿的数学问题;学生在巩固已学知识的同时,也可以激发其学习兴趣,训练学生的逻辑思维,培养学生的创新思维,以及独立发现问题和解决问题的能力。
【摘要】
随着数学文化的普及与应用,学术界开始重视对于数学文化的相关内容进行挖掘,这其中数学史在阶段我国大学数学教学之中,具有着重要的意义。从实现大学数学皎月的两种现象进行分析,在揭示数学本质的基础上,着重分析数学史在我国大学数学教育之中的重要作用,强调在数学教学之中利用数学史进行启发式教学活动。本文从数学史的角度,对于大学数学教学进行全面的分析,从中分析出适合我国大学数学教育的主要意义与作用。
【关键词】
数学史;大学数学教育;作用
一、引言
数学史是数学文化的一个重要分支,研究数学教学的重要部分,其主要的研究内容与数学的历史与发展现状,是一门具有多学科背景的综合性学科,其中不仅仅有具体的数学内容,同时也包含着历史学、哲学、宗教、人文社科等多学科内容。这一科目,距今已经有二千年的历史了。其主要的研究内容有以下几个方面:
第一,数学史研究方法论的相关问题;
第二,数学的发展史;
第三,数学史各个分科的历史;
第四,从国别、民族、区域的角度进行比较研究;
第五,不同时期的断代史;
第六、数学内在思想的流变与发展历史;
第七,数学家的相关传记;
第八,数学史研究之中的文献;
第九,数学教育史;
第十,数学在发展之中与其他学科之间的关系。
二、数学史是在大学数学教学之中的作用
数学史作为数学文化的重要分支,对于大学数学教学来说,有着重要的作用。利用数学史进行教学活动,由于激发学生的学习兴趣,锻炼学生的思维习惯,强化数学教学的有效性。
笔者根据自身的教学经验,进行了如下总结:首先,激发学生的学习兴趣,在大学数学的教学之中应用数学史,进行课堂教学互动,可以最大限度的弱化学生在学习之中的困难,将原本枯燥、抽象的数学定义,转变为简单易懂的生动的事例,具有一定的指导意义,也更便于学生理解。
从学生接受性的角度来讲,数学史促进了学生的接受心理,帮助学生对于数学概念形成了自我认知,促进了学生对于知识的透彻掌握,激发了学生兴趣的产生。其次,锻炼学生的创新思维习惯,数学史实际意义上来说,有很多讲授数学家在创新思维研发新的理论的故事,这些故事从很多方面对于当代大学生据有启迪作用。例如数学家哈密顿格拉斯曼以及凯利提出的不同于普通代数的具有某种结构的规律的代数的方法代开了抽象代数的研究时代。用减弱或者勾去普通代数的各种各样的假设,或者将其中一个或者多个假定代之一其他的假定,就有更多的体系可以被研究出来。这种实例,实际上让学生从更为根本的角度对于自己所学的代数的思想进行了了解,对于知识的来龙去脉也有了一定的认识,针对这些过程,学生更容易产生研究新问题的思路与方法。
再次,认识数学在社会生活之中的广泛应用,在以往的大学数学教学之中,数学学科往往是作为一门孤立的学科而存在的,其研究往往是形而上的研究过程,人们对于数学的理解也是枯燥的,是很难真正了解到其内涵的。但是数学史的应用,与其在大学数学教学之中的应用,可以让学生了解到更多的在社会生活之中的数学,在数学的教学之中使得原本枯燥的理论更加贴近生活,更加具有真实性,将原本孤立的学科,拉入到了日常生活之中。从这一点上来说,数学史使得数学更加符合人类科学的特征。
三、数学史在大学数学教学之中的应用
第一,在课堂教学之中融入数学史,以往枯燥的数学课堂教学,学生除了记笔记验算,推导以外,只能听老师讲课,课堂内容显得比较生硬,教师针对数学史的作用,可以在教学之中融入数学史,在教学活动之中将数学家的个人传记等具有生动的故事性的数学史内容,进行讲解,提高学生对于课堂教学的兴趣。例如一元微积分学的相关概念,学生在普通的课堂之中,很难做到真正意义的掌握,而更具教学大纲,多数老师的教学设计是:极限——导数与微分——不定积分——定积分。这种传统的教学方式虽然比较呼和学生的一般认知规律,但是却忽视了其产生与又来,教师在教学之中可穿插的讲授拗断——莱布尼茨公式的又来,将微积分艰难的发展史以故事的形式呈现出来,更加便于学生理解的同时也激发了学生的学习热情。
第二,利用数学方法论进行教学,数学方法论是数学史的之中的有机组成部分,而方法论的探索对于大学数学教学来说,也具有着重要的意义,例如在极限理论的课堂教学来说,除了单纯的对于极限的相关概念进行讲解的基础上,也可以将第二次数学危机以及古希腊善跑英雄阿基里斯永远追不上乌龟等相关故事,融入到课堂之中。这种让学生带着疑问的听课方式,更进一步促进了学生对于教学内容的兴趣,全面的促进了学生在理解之中自然而然的形成了理解极限的形成思想,并逐渐的享受自身与古代数学家的共鸣,从而促进自身对于数学的理解,提高学生的学习兴趣,进一步提高课堂的教学效果。所以,在大学数学课堂教学之中,融入数学史的相关内容,不仅具有积极的促进作用,同时在实践之中,也具有一定的可操作性。这种教学模式与方法对于提高我国大学数学教学的质量有着积极的推动作用,同时也更进一步推动了大学数学教学改革的进行。
作为工科类大学公共课的一种,高等数学在学生思维训练上的培养、训练数学思维等上发挥着重要的做用。进入新世纪后素质教育思想被人们越来越重视,如果还使用传统的教育教学方法,会让学生失去学习高等数学的积极性和兴趣。以现教育技术为基础的数学建模,在实际问题和理论之间架起沟通的桥梁。在实际教学的过程中,高数老师以课后实验着手,在高等数学教学中融入数学建模思想,使用数学建模解决实际问题。
一、高等数学教学的现状
(一)教学观念陈旧化
就当前高等数学的教育教学而言,高数老师对学生的计算能力、思考能力以及逻辑思维能力过于重视,一切以课本为基础开展教学活动。作为一门充满活力并让人感到新奇的学科,由于教育观念和思想的落后,课堂教学之中没有穿插应用实例,在工作的时候学生不知道怎样把问题解决,工作效率无法进一步提升,不仅如此,陈旧的教学理念和思想让学生渐渐的失去学习的兴趣和动力。
(二)教学方法传统化
教学方法的优秀与否在学生学习的过程中发挥着重要的作用,也直接影响着学生的学习成绩。一般高数老师在授课的时候都是以课本的顺次进行,也就意味着老师“由定义到定理”、“由习题到练习”,这种默守陈规的教学方式无法为学生营造活跃的学习氛围,让学生独自学习、思考的能力进一步下降。这就要求教师致力于和谐课堂氛围营造以及使用新颖的教育教学方法,让学生在课堂中主动参与学习。
二、建模在高等数学教学中的作用
对学生的想象力、观察力、发现、分析并解决问题的能力进行培养的过程中,数学建模发挥着重要的作用。最近几年,国内出现很多以数学建模为主体的赛事活动以及教研活动,其在学生学习兴趣的提升、激发学生主动学习的积极性上扮演着重要的角色,发挥着突出的作用,在高等数学教学中引入数学建模还能培养学生不畏困难的品质,培养踏实的工作精神,在协调学生学习的知识、实际应用能力等上有突出的作用。虽然国内高等院校大都开设了数学建模选修课或者培训班,但是由于课程的要求和学生的认知水平差异较大,所以课程无法普及为大众化的教育。如今,高等院校都在积极的寻找一种载体,对学生的整体素质进行培养,提升学生的创新精神以及创造力,让学生满足社会对复合型人才的需求,而最好的载体则是高等数学。
高等数学作为工科类学生的一门基础课,由于其必修课的性质,把数学建模引入高等数学课堂中具有较广的影响力。把数学建模思想渗入高等数学教学中,不仅能让数学知识的本来面貌得以还原,更让学生在日常中应用数学知识的能力得到很好的培养。数学建模要求学生在简化、抽象、翻译部分现实世界信息的过程中使用数学的语言以及工具,把内在的联系使用图形、表格等方式表现出来,以便于提升学生的表达能力。在实际的学习数学建模之后,需要检验现实的信息,确定最后的结果是否正确,通过这一过程中的锻炼,学生在分析问题的过程中可以主动地、客观的辩证的运用数学方法,最终得出解决问题的最好方法。因此,在高等数学教学中引入数学建模思想具有重要的意义。
三、将建模思想应用在高等数学教学中的具体措施
(一)在公式中使用建模思想
在高数教材中占有重要位置的是公式,也是要求学生必须掌握的内容之一。为了让教师的教学效果进一步提升,在课堂上老师不仅要让学生对计算的技巧进一步提升之余,还要和建模思想结合在一起,让解题难度更容易,还让课堂氛围更活跃。为了让学生对公式中使用建模思想理解的更透彻,老师还应该结合实例开展教学。
(二)讲解习题的时候使用数学模型的方式
课本例题使用建模思想进行解决,老师通过对例题的讲解,很好的讲述使用数学建模解决问题的方式,让学生清醒的认识在解决问题的过程中怎样使用数学建模。完成每章学习的内容之后,充分的利用时间为学生解疑答惑,以学生所学的专业情况和学生水平的高低选择合适的例题,完成建模、解决问题的全部过程,提升学生解决问题的效率。
(三)组织学生积极参加数学建模竞赛
一般而言,在竞赛中可以很好地锻炼学生竞争意识以及独立思考的能力。这就要求学校充分的利用资源并广泛的宣传,让学生积极的参加竞赛,在实践中锻炼学生的实际能力。在日常生活中使用数学建模解决问题,让学生独自思考,然后在竞争的过程中意识到自己的不足,今后也会努力学习,改正错误,提升自身的能力。
四、结束语
高等数学主要对学生从理论学习走向解决实际问题的能力进行培养,在高等数学中应用建模思想,促使学生对高数知识更充分的理解,学习的难度进一步降低,提升应用能力和探索能力。当前,在高等教学过程中引入建模思想还存在一定的不足,需要高校高等数学老师进行深入的研究和探索的同时也需要学生很好的配合,以便于今后的教学中进一步提升教学的质量。
浅谈中学数学中的反证法数学选择题的利和弊浅谈计算机辅助数学教学论研究性学习浅谈发展数学思维的学习方法关于整系数多项式有理根的几个定理及求解方法