首页

> 期刊论文知识库

首页 期刊论文知识库 问题

传感器毕业论文百度文库

发布时间:

传感器毕业论文百度文库

如果满意再追加100分。 2009-03-22 19:31可以再充分点吗?谢谢了

温度传感器原理及应用论文参考文献

温度传感器原理及应用论文参考文献,温度传感器是温度测量仪表的核心部分,是指能感受温度并转换成可用输出信号的传感器,品种繁多,也是用处比较广的工具。以下分享温度传感器原理及应用论文参考文献。

一、温度传感器工作原理–恒温器

恒温器是一种接触式温度传感器,由两种不同金属(如铝、铜、镍或钨)组成的双金属条组成。

两种金属的线性膨胀系数的差异导致它们在受热时产生机械弯曲运动。

一、温度传感器工作原理–双金属恒温器

恒温器由两种热度不同的金属背靠背粘在一起组成。当天气寒冷时,触点闭合,电流通过恒温器。当它变热时,一种金属比另一种金属膨胀得更多,粘合的双金属条向上(或向下)弯曲,打开触点,防止电流流动。

有两种主要类型的双金属条,主要基于它们在受到温度变化时的运动。有在设定温度点对电触点产生瞬时“开/关”或“关/开”类型动作的“速动”类型,以及逐渐改变其位置的较慢“蠕变”类型随着温度的变化。

速动型恒温器通常用于我们家中,用于控制烤箱、熨斗、浸入式热水箱的温度设定点,也可以在墙上找到它们来控制家庭供暖系统。

爬行器类型通常由双金属线圈或螺旋组成,随着温度的变化缓慢展开或盘绕。一般来说,爬行型双金属条对温度变化比标准的按扣开/关类型更敏感,因为条更长更薄,非常适合用于温度计和表盘等。

二、温度传感器工作原理–热敏电阻

热敏电阻通常由陶瓷材料制成,例如镀在玻璃中的镍、锰或钴的氧化物,这使得它们很容易损坏。与速动类型相比,它们的主要优势在于它们对温度、准确性和可重复性的任何变化的响应速度。

大多数热敏电阻具有负温度系数(NTC),这意味着它们的电阻随着温度的升高而降低。但是,有一些热敏电阻具有正温度系数 (PTC),并且它们的电阻随着温度的升高而增加。

热敏电阻的额定值取决于它们在室温下的电阻值(通常为 25 o C)、它们的时间常数(对温度变化作出反应的时间)以及它们相对于流过它们的电流的额定功率。与电阻一样,热敏电阻在室温下的电阻值从 10 兆欧到几欧姆不等,但出于传感目的,通常使用以千欧为单位的那些类型。

温度传感器类毕业论文文献有哪些?

1、[期刊论文]一种高稳定性双端出纤型光纤光栅温度传感器

期刊:《声学与电子工程》 | 2021 年第 002 期

摘要:针对双端出纤型光纤光栅温度传感器线性度较差、温度测量精度低的问题,文章首先对传感器内部结构进行了优化,使光纤光栅在整个温度测量区间内不受结构件热胀冷缩的应力影响,从而提升传感器的稳定性、实验验证,采用新工艺封装的.光纤光栅温度传感器在5~65°C的范围内温度精度达到0、1°C,且重复性良好,适用于自然环境下的温度传感、

关键词:光纤光栅;温度传感器;应力;测温精度

链接:、zhangqiaokeyan、com/academic-journal-cn_acoustics-electronics-engineering_thesis/0201290086379、html

2、[期刊论文]某型温度传感器防护套弯折疲劳试验的寿命研究

期刊:《环境技术》 | 2021 年第 001 期

摘要:由于动车组轴端温度传感器的大多数已达到三级修、四级修的修程,检修的数量和成本逐年增加,检修发现出现防护套破损的情况较多,需要大量更换,本文通过对温度传感器的防护套进行弯折疲劳试验,对数据结果进行统计分析,确认导致防护套弯折老化的主要原因、

关键词:防护套;破损;弯折疲劳

链接:、zhangqiaokeyan、com/academic-journal-cn_environmental-technology_thesis/0201288850019、html

3、[期刊论文]进气压力温度传感器锡晶须的分析

期刊:《机械制造》 | 2021 年第 004 期

摘要:对进气压力温度传感器的结构进行了介绍,对进气压力温度传感器产生锡晶须问题进行了分析,并在分析锡晶须生长机理的基础上提出了抑制方法、

关键词:传感器;锡晶须;分析

链接:、zhangqiaokeyan、com/academic-journal-cn_machinery_thesis/0201288850874、html

4、[期刊论文]一种具有±0、5℃精度的CMOS数字温度传感器

期刊:《电子设计工程》 | 2021 年第 001 期

摘要:该文设计了一种基于0、35μm CMOS工艺的采用双极型晶体管作为感温元件的数字温度传感器、该温度传感器主要由正温度系数电流产生电路、负温度系数电流产生电路、一阶连续时间Σ-Δ调制器、计数器和I2C总线接口等模块组成、为提高温度传感器的测量精度

该文深入分析了在不采用校准技术的情况下工艺漂移对温度传感器精度的影响,并在此基础上提出了简单的校准电路设计、根据电路仿真结果,在加入校准电路之后,温度传感器在-40~120℃温度范围内的精度可以达到±0、5℃、

关键词:数字温度传感器;CMOS工艺;双极型晶体管;校准

链接:、zhangqiaokeyan、com/academic-journal-cn_electronic-design-engineering_thesis/0201286451032、html

5、[期刊论文]柴油机冷却水温度传感器断裂故障分析

期刊:《内燃机与配件》 | 2021 年第 004 期

摘要:针对柴油机冷却水温度传感器断裂的问题,通过对该测点管路流腔进行CFD仿真计算,分析了流腔内部速度和压力场的变化情况,确定了传感器的断裂原因。计算结果表明:传感器位置处流速较大,导致传感器下部受振荡力,且发生了空蚀,使传感器失效。

本文针对此次传感器断裂故障提出了解决措施:对传感器的位置进行了优化布置;对传感器的结构形式进行了改进。通过改进,传感器随整机验证时间超过1500h,未再发生同类断裂故障,保证了柴油机的安全运行,为以后类似故障的分析和解决提供参考。

关键词:柴油机;温度传感器;流速;受力

链接:、zhangqiaokeyan、com/academic-journal-cn_internal-combustion-engine-parts_thesis/0201288594662、html

常见温度传感器

温度是与人类生活息息相关的物理量,在工业生产自动化流程中,温度测量点要占全部测量点的一半左右。它不仅和我们的生活环境密切相关,在科研及生产过程中,温度的变化对实验及生产的结果至关重要,所以温度传感器应用相当广泛。

温度传感器对温度敏感具有可重复性和规律性,是利用一些金属、半导体等材料与温度相关的特性制成的。现在来介绍一些温度传感器的工作原理。

铂容易提纯,其物理、化学性能在高温和氧化介质中非常稳定。铂电阻的输入-输出特性接近线性,且测量精度高,所以它能用作工业测温元件,还能作为温度计作基准器。

铂电阻在常用的热电阻中准确度最高,国际温标ITS-90中还规定,将具有特殊构造的铂电阻作为℃~℃标准温度计来使用。铂电阻广泛用于-200℃~850℃范围内的温度测量,工业中通常在600℃以下。

PN结温度传感器是利用PN结的结电压随温度成近似线性变化这一特性实现对温度的检测、控制和补偿等功能。实验表明,在一定的电流模式下,PN结的正向电压与温度之间具有很好的线性关系。

根据PN结理论,对于理想二极管,只要正向电压UF大于几个kbT/e(kb为波尔兹曼常数,e为电子电荷)。其正向电流IF与正向电压UF和温度T之间的关系可表示为

由半导体理论可知,对于实际二极管,只要它们工作的PN结空间电荷区中的复合电流和表面漏电流可以忽略,而又未发生大注入效应的电压和温度范围内,其特性与上述理想二极管是相符合的[6]。实验表明,对于砷化镓、

锗和硅二极管,在一个相当宽的温度范围内,其正向电压与温度之间的关系与式(1-3)是一致的,如图1-1所示。

实验发现晶体管发射结上的正向电压随温度的上升而近似线性下降,这种特性与二极管十分相似,但晶体管表现出比二极管更好的线性和互换性。

二极管的温度特性只对扩散电流成立,但实际二极管的正向电流除扩散电流成分外,还包括空间电荷区中的复合电流和表面漏电流成分。这两种电流与温度的关系不同于扩散电流与温度的关系,因此,实际二极管的电压—温度特性是偏离理想情况的。

由于三极管在发射结正向偏置条件下,虽然发射结也包括上述三种电流成分,但是只有其中的扩散电流成分能够到达集电极形成集电极电流,而另外两种电流成分则作为基极电流漏掉,并不到达集电极。因此,晶体管的

所以表现出更好的电压-温ICUBE关系比管的IFUF关系更符合理想情况,

度线性关系。根据晶体管的有关理论可以证明,NPN晶体管的基极—发射极电压UBE与温度T和集电极电流Ic的函数关系式与二极管的UF与T和IF函数关系式(1-3)相同。因此,在集电极电流Ic恒定条件下,晶体管的基极—发射极电压UBE与温度T呈线性关系。但严格地说,这种线性关系是不完全的,因为关系式中存在非线性项。

集成温度传感器是将温敏晶体管及其辅助电路集成在同一芯片的集成化温度传感器。这种传感器的优点是直接给出正比于绝对温度的理想的线性输出[7]。目前,集成温度传感器已广泛用于-50℃~+150℃温度范围内的温度检测、控制和补偿等。集成温度传感器按输出形式可分为电压型和电流型两种。

进气温度传感器工作原理是什么?

进气温度传感器的工作原理是:进气温度传感器在工作状态下,内部安装了一个具有负温度电阻系数的热敏电阻,通过这个负温度热敏电阻感知温度变化,进而调节电阻的大小改变电路电压。

以下是关于进气温度传感器的详细介绍:

1、原理:进气温度传感器就是一个负温度系数的热敏电阻,当温度升高的时候电阻阻值会变小,当温度降低的时候电阻值会增大,汽车的电压会随着汽车电路中电阻的变化而变化,从而产生不一样的电压信号,可以完成汽车控制系统的自动操作。

2、作用:汽车的进气温度传感器就是检测汽车发动机的进气温度,将进气温度转变为电压信号输入为ecu作为喷油修正的信号使用。

方向盘转角传感器将方向盘转角转换为一个可以代表驾驶员期望的行驶方向的信号,方向盘转角一般是根据光电编码来确定的,安装在转向柱上的编码盘上包含了经过编码的转动方向、转角等信息。这一编码盘上的信息由接近式光电耦合器进行扫描...

微藻素是一种从蓝藻细菌引起的水华中产生的细菌肝毒素,一种固定有表面细胞质粒基因组的生物传感器已经制得,用于测量水中微藻素的含量,它直接的测量范围是50~1000 �0�710-6g/l[22]。一种基于酶的抑制性分析的多重生物传感器用于测量毒性物质的设想也已经提出。在这种多重生物传感器中,应用了两种传导器—对pH敏感的电子晶体管和热敏性的薄膜电极,以及三种酶—尿素酶、乙酰胆碱酯酶和丁酰胆碱酯酶。该生物传感器的性能已经得到测试,效果较好[23]。除了发酵工业和环境监测,生物传感器还深入的应用于食品工程、临床医学、军事及军事医学等领域,主要用于测量葡萄糖、乙酸、乳酸、乳糖、尿酸、尿素、抗生素、谷氨酸等各种氨基酸,以及各种致癌和致变物质。三、 讨论与展望 美国的Harold 指出,生物传感器商品化要具备以下几个条件:足够的敏感性和准确性、易操作、价格便宜、易于批量生产、生产过程中进行质量监测。其中,价格便宜决定了传感器在市场上有无竞争力。而在各种生物传感器中,微生物传感器最大的优点就是成本低、操作简便、设备简单,因此其在市场上的前景是十分巨大和诱人的。相比起来,酶生物传感器等的价格就比较昂贵。但微生物传感器也有其自身的缺点,主要的缺点就是选择性不够好,这是由于在微生物细胞中含有多种酶引起的。现已有报道加专门抑制剂以解决微生物电极的选择性问题。除此之外,微生物固定化方法也需要进一步完善,首先要尽可能保证细胞的活性,其次细胞与基础膜结合要牢固,以避免细胞的流失。另外,微生物膜的长期保存问题也待进一步的改进,否则难于实现大规模的商品化。总之,常用的微生物电极和酶电极在各种应用中各有其优越之处。若容易获得稳定、高活性、低成本的游离酶,则酶电极对使用者来说是最理想的。相反的,若生物催化需经过复杂途径,需要辅酶,或所需酶不宜分离或不稳定时,微生物电极则是更理想的选择。而其他各种形式的生物传感器也在蓬勃发展中,其应用也越来越广泛。随着固定化技术的进一步完善,随着人们对生物体认识的不断深入,生物传感器必将在市场上开辟出一片新的天地。

厚度传感器论文

知网什么的有好多 你留个邮箱发给你

《厚度传感器的结构及测量原理》《多传感器数据融合在涂层厚度检测中的应用》《冰层厚度传感器及其检测方法》等。共十篇相关资料, 已发送,请查收。

如果满意再追加100分。 2009-03-22 19:31可以再充分点吗?谢谢了

厚度传感器 测量材料及其表面镀层厚度的传感器。它在工业生产中常用于材料厚度检验和厚度控制系统的误差测量。在厚度控制系统中通常不要求测量厚度的绝对尺寸,而只要求测量厚度的变化值或与某一标准尺寸的差值,以便控制加工过程。厚度传感器可分为接触式和非接触式两类。接触式厚度传感器通常采用电感式位移传感器、电容式位移传感器、电位器式位移传感器、霍耳式位移传感器等(见位移传感器)进行接触式厚度测量。为了连续测量移动着的材料的厚度,常在位移传b感器的可动端头上安装滚动触头,以减少磨损。还常采用两个相同的位移传感器分别安装于被测材料的上下两面,将两个传感器的测量值平均,以提高测量精度。接触式厚度传感器可测量移动速度较低(小于5米/秒)的材料,精度可达。非接触式厚度传感器它的特点是适于连续快速测量,按工作原理可分为电涡流厚度传感器、磁性厚度传感器、电容厚度传感器、超声波厚度传感器、核辐射厚度传感器、X射线厚度传感器、微波厚度传感器等。电涡流厚度传感器它可用于测量金属材料厚度,特点是测量范围宽、反应快和精度高。可分为低频透射式(见电涡流式传感器)和高频反射式两类。高频反射式也由上下两个线圈(分别位于金属材料两面)和激励电路及测量电路组成,所不同的是线圈磁场并不穿透金属材料,电涡流效应对磁场的减弱程度与线圈至材料表面的距离有关。材料厚度等于两线圈间的距离减去上下两个测量距离之和。因此根据输出电压即可求出材料厚度。磁性厚度传感器用于测量磁性材料的厚度。图1是这种传感器的原理图。由于所测材料是磁性电路的一部分,故绕于铁心上的线圈的电感与材料的厚度有关。图中线圈又是振荡器的组成元件,因此振荡器的频率决定于线圈的电感。通过测量振荡器的频率可确定线圈电感,从而测出材料的厚度。电容厚度传感器用于测量绝缘材料(如绝缘塑料)的厚度。图2是这种传感器的原理图。在被测绝缘材料的两边设置了两块金属电极板,形成一个电容器。由于电容器的容量与介质厚度有关,而电容器又是振荡器的组成元件,因此通过测量振荡器的振荡频率可确定电容值,从而测出材料的厚度。超声波厚度传感器利用超声振动来检测材料的厚度。超声振动是以气体、液体或固体为介质的机械振动,其振动频率超出音频范围,即高于2万赫。超声振动由变送器产生,变送器将振荡器输出的电信号转换为相应的超声振动。超声波变送器分为磁致伸缩型和压电型两种(见超声波传感器)。磁致伸缩型超声波变送器由线圈和磁致伸缩棒(由铁磁材料制成)组成。在线圈产生的交变磁场的作用下,磁致伸缩棒按磁场交变频率而交替伸缩,它的一端被固定,另一端推拉膜片而产生超声波。压电型超声波变送器由压电材料(一般为石英晶体)制成。当加在压电材料上的电压以超声频率交变时,压电材料随之以超声频率伸缩,并带动膜片而产生超声波。图3是用超声波测量材料厚度的原理图。变送器置于材料上面,使超声波可穿过材料而至另一平面。超声波到达另一平面后再反射回到变送器。在相同条件下,超声波在材料内的往返时间取决于材料的厚度。若往返时间恰好等于超声振动的周期,就会产生共振。在共振时,变送器加给振荡器的负荷会突然改变,随之使振荡器电流相应改变。通过指示器记下电流改变时的振荡频率,就可确定超声波往返一次所需的时间,从而测出材料的厚度。核辐射厚度传感器又称同位素厚度传感器,它利用核辐射线进行测量。可分为穿透式和反射式两类。穿透式传感器由同位素核辐射源和核辐射传感器组成(图4)。被测的塑料料板、纸板、橡皮板等材料在辐射源和传感器之间经过。当射线穿过板材时,一些射线被板材吸收,使传感器接收到的射线减弱。对于密度不变的材料,辐射吸收量随厚度变化,因此可测出厚度。传感器的测量范围与材料密度有关,一般按被测表面单位面积所含质量计算,称为质量厚度(均匀材料的厚度与质量厚度正比)。穿透式核辐射传感器的测量范围在500毫克/厘米2以下。若采用γ射线,则可达100克/厘米2。精度为1%。反射式核辐射厚度传感器利用射线的弹性散射特性测量厚度。射线的反射强度是被测材料厚度的函数,因此测量反射强度就可确定厚度。这种传感器还适于测量镀层或涂层的厚度。镀层或涂层与基层物质的原子序数相差越大,界面处反射差异就越大,测量灵敏度也就越高。这种传感器的测量范围在150毫克/厘米2之内,精度可达1%。X射线厚度传感器它的结构类似于核辐射厚度传感器,不同之处是用X射线源代替核辐射源。特点是X射线的强度可控、发射可控,因此比较安全。测量范围大于10克/厘米2,精度可达1%。微波厚度传感器它利用波长为1毫米至1米的无线电波所具有的强辐射性和极小的绕射性制成。微波传感器受烟、尘、光强等外界影响不大,是一种新型厚度传感器。它由微波发生器、终端器、左右环形器、测量电路、调整电路和转换电路组成(图5)。微波信号由终端器向被测材料发射后,碰到材料反射回来又被终端器接收,因此左环形器左边微波路径的长度(称为电长度)与被测材料的厚度有关,而右环形器右边的电长度由可逆电机控制补偿短路器进行调整。当两侧电长度恰好相等时,对补偿短路器进行调整的量,经转换后变为正比于被测材料厚度的电信号。微波厚度传感器的精度可达1%。当厚度小于毫米时,精度为10%。

ad590温度传感器毕业论文

两个未知数,想要粗略计算,带进去两个值就能算出来了。想要详细的数值就用matlab什么的模拟个图,斜率为K,与X轴负方向为I0。按照你的式子,I0应该是early current,斜率应该是AD590内置电阻的倒数。至于最小二乘法是减少误差的方法.....算的话很麻烦,也可以用曲线拟合来做最小二乘法的曲线,可以比我说的算法精度提高不少。

数控车床智能控制系统的研究 摘要:针对目前现有数控车削加工过程中加工、测量、编程相互分离,导致生产效率低,智能化和自动化程度不高以 及对机床操作人员要求较高的现状和不足,对数控车床智能控制系统的研究进行了综述。 关键词:车床数控系统;在线测量; DSP;自动编程 0 引言 从20世纪80年代末以来,国内开始充分利用计 算机的软件资源来提高数控系统的性能。先后借助于 MS-DOS和W indows操作系统平台来开发基于个人计 算机(PC)的新一代数控系统[1]。 一般系统采用当前先进的PC+NC开放式体系结 构,选用高速DSP作为CPU来完成实时性的NC内 核任务,实现电机实时控制以及在线检测,而由PC 机来完成非实时性的任务,诸如编程模块中的图形信 息提取,通过USB串行通信实现上、下位机信息的 交互[2]。 1 数控车床智能控制系统结构 1·1 数控车床智能控制系统总体体系结构 富的资源和强大的运算能力和下位机DSP实时性强 的特点[3],整套系统功能配置合理,性价比高。系统 功能结构如图1所示。 1·2 系统工作流程 详细的系统工作流程如图2所示。 2 测量系统 通过引入测量系统,提高了数控车床的精度、生 产效率和自动化程度,同时基于测量的加工路径规划 功能使得数控车床的加工操作更加简便,使数控车床 具有了智能性。 2·1 测量的实现 测量实现的物理基础:工件为不透明物体,当有 光发射、接收元件组成的测量装置扫过其轮廓时,显 然在工件轮廓外光不被遮挡,接收元件可收到光;在 工件轮廓内光将被挡住,接收元件接收不到光,因 此,工件的轮廓位置可以由光的有无变化,进而由传 感器转化为电压的高低变化,来探测确定。如图3所 示。 2·2 测量方法 测量要完成的任务是要确定工件坐标系的原点位 置以及工件轮廓尺寸信息,并根据尺寸信息分析出刀 具参数信息,实现刀具补偿值的自动修正。 测量步骤如下: (1)数控机床启动后刀架先回机床零点,并通 过换刀命令使测量装置处于工作位置,即测量装置面 向待加工件。 (2)确定工件坐标系原点在机床坐标系中的位 置。 (3)工件尺寸的测定,可以确定任何位置处工 件的轮廓尺寸信息。 (4)测量结束后,刀架返回换刀点,通过换刀 命令使刀架转位,使下一工序使用的刀具处在工作位 置处,然后进行正常切削加工即可。 3 上位机(PC)功能的设计与实现 3·1 国内外研究现状 自动编程系统一般分为对话式数控语言编程系统 和图形交互自动编程系统。国际上流传最广、影响最 深的数控编程语言是APT语言,但随着计算机图形 编程和CAM软件的发展, APT语言已逐渐被淘汰。 随着计算机技术的迅速发展,计算机图形处理能 力有了很大增强,一种新的编程技术——— “图形交 互自动编程”便应运而生。图形交互自动编程系统 以机械计算机辅助设计(CAD)软件为基础,利用 CAD软件的图形编辑功能将零件的几何图形绘制到 计算机上,形成零件的图形文件,然后调用数控编程 模块,采用人机交互的方式在计算机屏幕上指定被加 工的部位,再输入相应的加工参数,计算机便可进行 必要的数学处理并编制数控加工程序,同时在计算机 屏幕上显示刀具的加工轨迹。这种编程方法具有速度 快、精度高、直观性好、使用简便、便于检查等优 点,现已成为目前国内外先进的CAD/CAM (计算机 辅助制造)软件所普遍采用的数控编程方法。 国外的图形自动编程系统起步较早,且发展迅 速,有些产品已经获得了较广泛的应用。如美国 AUTO-CODEMECHANICAL公司的AUTO-CODE图形 自动编程系统,德国OPEN MIND公司的hyperMILL 数控机床(加工中心)图形自动加工系统,英国 Pathtrce公司的EdgeCAM forMDT数控自动编程系统 和美国的MERRYMECHANICAL公司的SPM-81TM钣 金CAD/CAPPICAM系统等。以上系统大都采用美国 Autodesk公司的AutoCAD或MDT (Mechanical Desk- top)作为开发平台和造型工具进行开发。 国内的图形自动编程软件的开发起步较晚,但近 几年发展较快。通用系统有北京华正公司的CAXA制 造工程师系列软件191,北京清华京渝天河公司的 PCAutoCAM系统等;另外大多数为专用数控编程系 统,如北京市机电研究所的VMC-750主轴箱体自动 编程系统,重庆ONLYSOFT的线切割自动编程系统 等。 图形自动编程系统是高效的数控编程手段,是数 控系统向集成化、智能化发展的必要环节,是当今数 控编程技术发展的主要潮流之一,是CAD/CAM研究 的重要领域。国外自动编程软件价格非常昂贵,国内 许多中小企业仍然采用繁琐、复杂、效率低的手工编 程。为此,在PC机上研究并开发数控车床自动编程 系统,能够实现CAD/CAM的集成。使系统具有读取 DXF文件、自动生成NC代码、二维仿真等功 能[4-5]。建立切削参数数据库,使自动编程系统可以 得到合理优化的切削用量,实现了整个系统信息集 成。 3·2 系统的总体框架结构与工艺流程 系统框架结构如图4所示,它主要包括AutoCAD 图形生成、提取图形数据信息、工艺干预、NC代码 生成、动态校验和数控加工程序输出6个功能模块。 机,主轴电机、刀架电机以及机床操作面板和机床 上开关I/O等。此外,还有测量接口电路。考虑到系 统可控制伺服的要求,控制接口要求有D/A输出和 脉冲串输出,同时有接受正交编码器的QEPI接口。 系统通过USB接口与PC机实现通讯,通过PC的丰 富功能实现系统的自动工艺规划、自动编程以及友好 的操作界面[6]。完成系统从CAD图形———工艺规 划———刀轨规划———编程后处理———数控加工的完整 过程。 4·1 硬件结构框图(图5) 4·2 软件实现 如图6所示,系统功能模块分为串行通讯、预处 理、加减速、轨迹插补、伺服输出、刀具补偿等分功 能模块,并通过加工信息缓冲区、轨迹缓冲区、插补 缓冲区交换信息,顺序进行最终驱动电机运行。 5 结束语 通过对数控车床智能控制系统的研究进行综述, 得到以下结论: (1)采用PC+DSP运动控制卡开放式体系结构, 面向用户的上位机(PC)界面友好,功能强大[7]。 用于电机控制的下位机(NC)采用DSP,实时性强。 上下位机采用USB串行通信。系统具有开放性、可 扩展性和模块化的特点。 (2)现有的数控系统和测量系统功能是相互分 离的,而且其仅用于工件定位、尺寸测量等固定 能,没有实现和数控系统的有机结合。本文提出一种 新型基于在线测量的数控系统,可以将测量信息直接 反馈到控制系统,由其实现刀具加工路径的智能规 划,减少机床操作人员对加工过程的干预。 (3)该系统的基于在线测量的车削加工路径智能 规划及自动编程功能,将极大简化数控车床操作,减 轻数控车床操作工人的劳动强度,提高设备生产率。 (4)该控制系统方案既可用于改造传统普通车 床,也可与新一代的经济型数控车床配套使用,符合 我国当前国情,能给制造企业带来可观的经济效益, 具有十分广阔的应用前景和市场价值。 参考文献 【1】毛军红,李黎川,吴序堂·机床数控软件化结构体系 [J]·机械工程学报, 2000, 36 (7): 48-51· 【2】Tao Cheng, Jie Zhang, et al·IntelligentMachine Tools in a Distributed Network Manufacturing Mode Environment [J]·The International JournalofAdvancedManufacturing Technology, 2001, 17: 221-232· 【3】J·Zuo, Y·P·Chen, et al·Building Open CNC Systems with Software IC Chips Based on Software Reuse [ J]. The International Journal of Advanced Manufacturing Technology, 2000, 16: 643-648· 【4】Mark·T·Hoske·New CNC Controller is‘Fully Open’ ControlEngineering, 1996, 43 (15): 69-70· 【5】R·E·Chalmer·Open-architecture CNC Continues Advan- cing [J]·Manufacturing Engineering, 2001, 126 (7): 48-52· 【6】王太勇,等·分布式智能协作体系结构构建集成化开 放结构数控系统的研究[J]·机械科学与技术, 2004 (12)· 【7】Y·Altintas·ModularCNC Design for IntelligentMachine Tools [J]·Annals of the CIRP, 1994, 43 (1)·

集成温度传感器AD590及其应用 作者:刘振全 出处: 更新时间: 2004年11月12日摘要:介绍了集成温度传感器AD590,给出了AD590测量热力学温度、摄氏温度、两点温度差、多点最低温度、多点平均温度的具体电路,并以节能型温、湿度控制系统为例介绍了利用AD590测两点温差电路的应用。 关键词: AD590;集成温度传感器;温度差; 中图分类号:TP368 文献标识码:A文章编号::1006-883X(2003)03-0035-03 一、引言 集成温度传感器实质上是一种半导体集成电路,它是利用晶体管的b-e结压降的不饱和值VBE与热力学温度T和通过发射极电流I的下述关系实现对温度的检测: 式中,K—波尔兹常数; q—电子电荷绝对值。 集成温度传感器具有线性好、精度适中、灵敏度高、体积小、使用方便等优点,得到广泛应用。集成温度传感器的输出形式分为电压输出和电流输出两种。电压输出型的灵敏度一般为10mV/K,温度0℃时输出为0,温度25℃时输出。电流输出型的灵敏度一般为1mA/K。 二、AD590简介 AD590是美国模拟器件公司生产的单片集成两端感温电流源。它的主要特性如下: 1、流过器件的电流(mA)等于器件所处环境的热力学温度(开尔文)度数,即: mA/K 式中: —流过器件(AD590)的电流,单位为mA; T—热力学温度,单位为K。 2、AD590的测温范围为-55℃~+150℃。 3、AD590的电源电压范围为4V~30V。电源电压可在4V~6V范围变化,电流 变化1mA,相当于温度变化1K。AD590可以承受44V正向电压和20V反向电压,因而器件反接也不会被损坏。 4、输出电阻为710MW。 5、精度高。AD590共有I、J、K、L、M五档,其中M档精度最高,在-55℃~+150℃范围内,非线性误差为±℃。 三、AD590的应用电路 1、基本应用电路 图1(a)是AD590的封装形式,图1(b)是AD590用于测量热力学温度的基本应用电路。因为流过AD590的电流与热力学温度成正比,当电阻R1和电位器R2的电阻之和为1kW时,输出电压VO随温度的变化为1mV/K。但由于AD590的增益有偏差,电阻也有误差,因此应对电路进行调整。调整的方法为:把AD590放于冰水混合物中,调整电位器R2,使VO=。或在室温下(25℃)条件下调整电位器,使VO=(mV)。但这样调整只可保证在0℃或25℃附近有较高精度。 2、摄氏温度测量电路 如图2所示,电位器R2用于调整零点,R4用于调整运放LF355的增益。调整方法如下:在0℃时调整R2,使输出VO=0,然后在100℃时调整R4使VO=100mV。如此反复调整多次,直至0℃时,VO=0mV,100℃时VO=100mV为止。最后在室温下进行校验。例如,若室温为25℃,那么VO应为25mV。冰水混合物是0℃环境,沸水为100℃环境。 要使图2中的输出为200mV/℃,可通过增大反馈电阻(图中反馈电阻由R3与电位器R4串联而成)来实现。另外,测量华氏温度(符号为℉)时,因华氏温度等于热力学温度减去再乘以9/5,故若要求输出为1mV/℉,则调整反馈电阻约为180kW,使得温度为0℃时, VO=;温度为100℃时,VO=。AD581是高精度集成稳压器,输入电压最大为40V,输出10V。 3、温差测量电路及其应用 (1). 电路与原理分析 图3是利用两个AD590测量两点温度差的电路。在反馈电阻为100kW的情况下,设1#和2# AD590处的温度分别为 (℃)和 (℃),则输出电压为 。图中电位器R2用于调零。电位器R4用于调整运放LF355的增益。 由基尔霍夫电流定律:(1) 由运算放大器的特性知:(2)(3) 调节调零电位器R2使:*(4) 由(1)、(2)、(4)可得: 设:R4=90kW 则有: = = (5) 其中, 为温度差,单位为℃。 由式(5)知,改变 的值可以改变VO的大小。 (2). 应用举例 以某节能型药材仓库温、湿度控制系统为例,若要求库房温度低于T℃,相对湿度低于A1B1%RH。则采取的两种控制模式如下: 控制模式一:当库内相对湿度高于A1B1%RH且库外温度低于T℃时,进行库内外通风。这种方式是利用库内外湿度差进行空气的交换,以达到库内除湿的要求,其优点是高效、节能、节省资金。但这种方式受到严格的控制。首先,库外的相对湿度要低于库内的,它们之间的差要大于A2B2%RH,这样才能有效保证及时地进行库内的除湿。其次,库内库外的温度差要小于△T℃,这是因为,如果在库外温度远高于库内温度时进行通风,热空气进入库区后遇上冷空气就会造成药品、器材表面结露的现象,进而影响药品和器材的质量。反之,如果在库内温度远高于库外温度时进行通风,冷空气进入库内后也会在药品器材表面结露。另外,库外温度不能接近T℃。这是因为,如果库外温度接近T℃时进行通风,很可能使密闭的库温升高,从而超过温度上限T℃。 控制模式二:当温度高于T℃或湿度高于A1B1%RH但不满足第一种情况时,开启冷冻空调机组进行库内降温除湿。 为避免因库内外温差过大通风时药品、器材表面结露的现象,必须严格控制系统温差值的精度。传统的测温差方法是对两点温度分别进行处理(调理电路、A/D、运算处理)后求差值,此方法所得温差精度低。库内外温差测量可采用图3所示电路,利用温差值直接与设定值相比较,既能保证较高的精度,又简化了系统的软件设计,提高了系统的可靠性。 4、N点最低温度值的测量 将不同测温点上的数个AD590相串联,可测出所有测量点上的温度最低值。 该方法可应用于测量多点最低温度的场合。 5、N点温度平均值的测量 把N个AD590并联起来,将电流求和后取平均,则可求出平均温度。 该方法适用于需要多点平均温度但不需要各点具体温度的场合。 四、结束语 AD590测量热力学温度、摄氏温度、两点温度差、多点最低温度、多点平均温度的具体电路,广泛应用于不同的温度控制场合。由于AD590精度高、价格低、不需辅助电源、线性好,常用于测温和热电偶的冷端补偿。

摘要:介绍了集成温度传感器AD590,给出了AD590测量热力学温度、摄氏温度、两点温度差、多点最低温度、多点平均温度的具体电路,并以节能型温、湿度控制系统为例介绍了利用AD590测两点温差电路的应用。关键词: AD590;集成温度传感器;温度差;中图分类号:TP368 文献标识码:A 文章编号::1006-883X(2003)03-0035-03一、引言集成温度传感器实质上是一种半导体集成电路,它是利用晶体管的b-e结压降的不饱和值VBE与热力学温度T和通过发射极电流I的下述关系实现对温度的检测:式中,K—波尔兹常数; q—电子电荷绝对值。集成温度传感器具有线性好、精度适中、灵敏度高、体积小、使用方便等优点,得到广泛应用。集成温度传感器的输出形式分为电压输出和电流输出两种。电压输出型的灵敏度一般为10mV/K,温度0℃时输出为0,温度25℃时输出。电流输出型的灵敏度一般为1mA/K。二、AD590简介AD590是美国模拟器件公司生产的单片集成两端感温电流源。它的主要特性如下:1、流过器件的电流(mA)等于器件所处环境的热力学温度(开尔文)度数,即:mA/K式中: —流过器件(AD590)的电流,单位为mA;T—热力学温度,单位为K。2、AD590的测温范围为-55℃~+150℃。3、AD590的电源电压范围为4V~30V。电源电压可在4V~6V范围变化,电流 变化1mA,相当于温度变化1K。AD590可以承受44V正向电压和20V反向电压,因而器件反接也不会被损坏。4、输出电阻为710MW。5、精度高。AD590共有I、J、K、L、M五档,其中M档精度最高,在-55℃~+150℃范围内,非线性误差为±℃。三、AD590的应用电路1、基本应用电路图1(a)是AD590的封装形式,图1(b)是AD590用于测量热力学温度的基本应用电路。因为流过AD590的电流与热力学温度成正比,当电阻R1和电位器R2的电阻之和为1kW时,输出电压VO随温度的变化为1mV/K。但由于AD590的增益有偏差,电阻也有误差,因此应对电路进行调整。调整的方法为:把AD590放于冰水混合物中,调整电位器R2,使VO=。或在室温下(25℃)条件下调整电位器,使VO=(mV)。但这样调整只可保证在0℃或25℃附近有较高精度。2、摄氏温度测量电路如图2所示,电位器R2用于调整零点,R4用于调整运放LF355的增益。调整方法如下:在0℃时调整R2,使输出VO=0,然后在100℃时调整R4使VO=100mV。如此反复调整多次,直至0℃时,VO=0mV,100℃时VO=100mV为止。最后在室温下进行校验。例如,若室温为25℃,那么VO应为25mV。冰水混合物是0℃环境,沸水为100℃环境。要使图2中的输出为200mV/℃,可通过增大反馈电阻(图中反馈电阻由R3与电位器R4串联而成)来实现。另外,测量华氏温度(符号为℉)时,因华氏温度等于热力学温度减去再乘以9/5,故若要求输出为1mV/℉,则调整反馈电阻约为180kW,使得温度为0℃时, VO=;温度为100℃时,VO=。AD581是高精度集成稳压器,输入电压最大为40V,输出10V。3、温差测量电路及其应用(1). 电路与原理分析 图3是利用两个AD590测量两点温度差的电路。在反馈电阻为100kW的情况下,设1#和2# AD590处的温度分别为 (℃)和 (℃),则输出电压为 。图中电位器R2用于调零。电位器R4用于调整运放LF355的增益。由基尔霍夫电流定律: (1)由运算放大器的特性知: (2)(3)调节调零电位器R2使:* (4)由(1)、(2)、(4)可得:设:R4=90kW则有: == (5)其中, 为温度差,单位为℃。由式(5)知,改变 的值可以改变VO的大小。(2). 应用举例以某节能型药材仓库温、湿度控制系统为例,若要求库房温度低于T℃,相对湿度低于A1B1%RH。则采取的两种控制模式如下:控制模式一:当库内相对湿度高于A1B1%RH且库外温度低于T℃时,进行库内外通风。这种方式是利用库内外湿度差进行空气的交换,以达到库内除湿的要求,其优点是高效、节能、节省资金。但这种方式受到严格的控制。首先,库外的相对湿度要低于库内的,它们之间的差要大于A2B2%RH,这样才能有效保证及时地进行库内的除湿。其次,库内库外的温度差要小于△T℃,这是因为,如果在库外温度远高于库内温度时进行通风,热空气进入库区后遇上冷空气就会造成药品、器材表面结露的现象,进而影响药品和器材的质量。反之,如果在库内温度远高于库外温度时进行通风,冷空气进入库内后也会在药品器材表面结露。另外,库外温度不能接近T℃。这是因为,如果库外温度接近T℃时进行通风,很可能使密闭的库温升高,从而超过温度上限T℃。控制模式二:当温度高于T℃或湿度高于A1B1%RH但不满足第一种情况时,开启冷冻空调机组进行库内降温除湿。为避免因库内外温差过大通风时药品、器材表面结露的现象,必须严格控制系统温差值的精度。传统的测温差方法是对两点温度分别进行处理(调理电路、A/D、运算处理)后求差值,此方法所得温差精度低。库内外温差测量可采用图3所示电路,利用温差值直接与设定值相比较,既能保证较高的精度,又简化了系统的软件设计,提高了系统的可靠性。4、N点最低温度值的测量将不同测温点上的数个AD590相串联,可测出所有测量点上的温度最低值。该方法可应用于测量多点最低温度的场合。5、N点温度平均值的测量把N个AD590并联起来,将电流求和后取平均,则可求出平均温度。该方法适用于需要多点平均温度但不需要各点具体温度的场合。四、结束语AD590测量热力学温度、摄氏温度、两点温度差、多点最低温度、多点平均温度的具体电路,广泛应用于不同的温度控制场合。由于AD590精度高、价格低、不需辅助电源、线性好,常用于测温和热电偶的冷端补偿。

加速度传感器毕业论文

我是机械电子工程的学生,老师给了我们几个论文题目,我想请教下哪个比较好写:1、浅析机电一体化技术的现状和发展趋势2、机器人的智能化及其应用3、齿轮传动系统的故障诊断方法的研究4、模具制造业的发展现状及趋势5、制造业的绿色生产6、浅谈数控技术的现状及其发展7、浅谈液压传动系统故障分析8、液压冲击机械工作原理与控制技术现状的分析9、加速度传感器原理与应用10、液压传动技术在自动化生产中应用11、从安全事故看高空作业车的设计、制造、选型和使用麻烦有经验的朋友帮忙一下,万分感谢!!!

首先必须说明的是,在绝大多数情况下,本文大小标题及全文中所说的传感器其实是泛指了三大类器件:将非电学输入参量转换成电磁学信号输出的传感器;将电学信号转换成非电学参量输出的执行器;以及既能用作传感器又能用作执行器,其中较多的是将一种电磁学参量形式转变成另一种电磁学参量形态输出的变送器。就是说,关于微传感器、智能传感器的技术特性可以扩大类推到微执行器、微变送器-传感器(或执行器、或变送器)的物理尺度中至少有一个物理尺寸等于或小于亚毫米量级的。微传感器不是传统传感器简单的物理缩小的产物,而是基于半导体工艺技术的新一代器件:应用新的工作机制和物化效应,采用与标准半导体工艺兼容的材料,用微细加工技术制备的。因此有时也称为硅传感器。可以用类似的定义和技术特征类推描述微执行器和微变送器。 它由两块芯片组成,一是具有自检测能力的加速度计单元(微加速度传感器),另一块则是微传感器与微处理器(MCU)间的接口电路和MCU。这是一种较早期(1996年前后)的,但已相当实用的器件,可用于汽车的自动制动和悬挂系统中,并且因微加速度计具有自检能力,还可用于安全气囊。从此例中可以清楚看到,微传感器的优势不仅是体积的缩小,更在于能方便地与集成电路组合和规模生产。应该指的是,采用这种两片的解决方案可以缩短设计周期、降低开发前期小批量试产的成本。但对实际应用和市场来说,单芯片的解决方案显然更可取,生产成本更低,应用价值更高。 智能传感器(Smart Sensor)、智能执行器和智能变送器-微传感器(或微执行器,或微变送器)和它的部分或全部处理器件、处理电路集成在一个芯片上的器件(例如上述的微加速度计的单芯片解决方案)。因此智能传感器具有一定的仿生能力,如模糊逻辑运算、主动鉴别环境,自动调整和补偿适应环境的能力,自诊断、自维护等。显然,出于规模生产和降低生产成本的要求,智能传感器的设计思想、材料选择和生产工艺必须要尽可能地和集成电路的标准硅平面工艺一致。可以在正常工艺流程的投片前,或流程中,或工艺完成后增加一些特殊需要的工序,但也不应太多。 在一个封装中,把一只微机械压力传感器与模拟用户接口、8位模-数转换器(SAR)、微处理器(摩托罗拉69HC08)、存储器和串行接口 (SPI)等集成在一个芯片上。其前端的硅压力传感器是采用体硅微细加工技术制作的。制备硅压力传感器的工序既可安排在集成 CMOS 电路工艺流程之前,亦可在后。这种智能压力传感器的技术和市场都已成熟,已广泛用于汽车(机动车)所需的各式各样的压力测量和控制单元中,诸如各种气压计、喷嘴前集流腔压力、废气排气管、燃油、轮胎、液压传动装置等。智能压力传感器的应用很广,不局限于汽车工业。目前,生产智能压力传感器的厂商已不少,市售商品的品种也很多,已经出现激烈的竞争。结果是智能压力传感器体积越来越小,随之控制单元所需的外围接插件和分立元件越来越少,但功能和性能却越来越强,而且生产成本降低很快(现在约为几美元一只)。 顺便需要说说的是,在一些中文资料中,尤其是一些产品宣传性材料中,笼统地将Smart Sensor(或device)和Intelligent sensor(或device)都称之为智能传感器,但在欧美文献中是有所差别的。西方专家和公众通常认为,Smart(智能型)传感器比Intelligent(知识型)的智慧层次和能力更高。当然,知识型的内涵也在不断进化,但那些只能简单响应环境变化,作一些相应补偿、调整工作状态的,特别是不需要集成处理器的器件,其知识等级太低,一般不应归入智能器件范畴。 相信大多数读者能经常接触到的,最贴近生活的智能传感器可能要算是用于摄像头、数码相机、摄像机、手机摄像中的CCD图像传感器了。这是一种非智能型传感器莫属的情况,因为CCD 阵列中每个硅单元由光转换成的电信号极弱,必须直接和及时移位寄存、并处理转换成标准的图像格式信号。还有更复杂一些的,在中、高档长焦距(IOX)光学放大数码相机和摄像机上装备的电子和光学防抖系统,特别是高端产品中的真正光学防抖系统。它的核心是双轴向或3轴向的微加速度计或微陀螺仪,通过它监测机身的抖动,并换算成镜头的各轴向位移量,进而驱动镜头中可变角度透镜的移动,使光学系统的折射光路保持稳定。 微系统(Microsystem)和MEMS(微机电系统)-由微传感器、微电子学电路(信号处理、控制电路、通信接品等)和微执行器构成一个三级级联系统、集成在一个芯片上的器件称之为微系统。如果其中拥有机械联动或机械执行机构等微机械部件的器械则称之为MEMS。 MEMS芯片的左侧给出的是制备MEMS芯片需要的基本工艺技术。它的右侧则为主要应用领域列举。很明显,MEMS 的最好解决方案也是选用与硅工艺兼容的材料及物理效应、设计理念和工艺流程,也即采用常规标准的CMOS 工艺与二维、三维微细加工技术相结合的方法,其中也包括微机械结构件的制作。 微传感器合乎逻辑的发展延伸是智能传感器,智能传感器自然延伸则是微系统和MEMS,MEMS 的进一步发展则是能够自主接收、分辨外界信号和指令,进而能独立、正确动作的微机械(Micromachines)。现在,开发成功、并已有商业产品的MEMS品种已不少,涵盖图4所示的各大领域。其中包括全光光通信和全光计算机的关键部件之一的二维、三维MEMS光开关。 通过控制芯片上的微反射镜阵列,实现光输入/输出的交叉互联。这是目前全光交换技术的成熟的最佳方案。市场上可买到的MEMS光开关已达1296路,开关转换时间约为20ms。 微机械(也称为纳米机械)则尚处于开发试验阶段,但已有许多很重要的实验室产品涌现,如著名的纳米电机、微昆虫、微直升机和潜水艇等。技术产业界普遍认为,它们的开发成功和投入实际应用将对工业技术和生活质量产生深远的影响。

楼上的人真没意思。建议去科技论文网去查,你去你们学校图书馆问问,有没有买什么数据库,一般学校都有的。然后输入你的关键字去查都能查到。

看车辆的设计要求, 方向盘转角传感器(SAS)主要测量汽车转向时方向盘的“旋转角度”,该方向盘转角传感器为多圈绝对角度输出方式,可以检测方向盘“多圈旋转”时的“绝对角度”。多应用于以下系统当中: A、自适应前照灯系统(AFS)B、导航及辅助驾驶系统(ADAS)C、电子稳定系统(ESP)D、智能泊车系统(PLA)E、电动助力转向系统(EPS)功能:“方向盘转角传感器”广泛应用于汽车动力稳定性控制系统。其稳定性、精度与行车安全直接关联。与目前汽车上普遍应用“ABS系统”相比较,其不仅包含“ABS系统”的全部功能,还能在汽车失去稳定时主动制动,从而实现对“车身姿态”的控制,一定程度上保障了行车安全。“方向盘转角传感器”是实现“ESP”主动制动关键部件之一,不仅检测方向盘转动角度,同时提供给“ECU”系统相关信号作为“ESP”控制依据。 类型:传统的方向盘转角传感器基于多种原理:如霍尔效应、磁阻效应、光电效应、电阻分压效应等。根据原始信号编或解码方式的不同,转角传感器又可以分“绝对值转角传感器”和“相对值转角传感器”。目前又出现了一些新型传感器,如“GMR、AMR”等方向盘转角传感器,应用较为广泛。

毕业论文传到百度文库

^_^文章写得好大家都想学习、借鉴下吧!

是不是你也是抄的!然后那个人也抄了同一个人的,你俩就一样了,哈哈!这种事很正常

可能有人传的嘛

就是这样任性,怕别人干嘛?!

相关百科

热门百科

首页
发表服务