首页

> 期刊论文知识库

首页 期刊论文知识库 问题

图像分割算法研究毕业设计论文

发布时间:

图像分割算法研究毕业设计论文

现在还没写?估计来不及,不懂的话赶紧买吧

深度嵌入聚类算法研究 基于机器视觉的行人重识别算法的分析与实现 基于动力学模型的属性网络重叠社团发现 基于Spring-Boot框架的一体化运维监控应用的研究与实现 Android系统中基于手写密码与笔迹信息的综合认证技术研究 公交线路准点预测方法研究 基于深度学习的医学图像分割算法研究 基于CNN的高速公路流量预测 服务器安全防护与管理综合平台实现 JavaScript全栈视频播放系统设计与实现快速行人检测算法的研发 基于数据挖掘的药物分子筛选方法研究 基于消息队列的自定义审批流程管理系统设计与实现 基于CRF的初等数学命名实体识别 基于多尺度 CNN的图片语义分割研究 基于图像分割技术的连通区域提取算法的研究 基于背景因素推理的目标关系识别算法研究与实现 基于智能移动设备的非接触式人机交互系统设计与实现 分布式数据库物理查询计划调度优化算法研究 基于遮挡的人脸特征提取算法研究与实现 表情识别应用系统的设计与实现 基于CloudSim的云计算与大数据系统的可靠性仿真研究 多源数据库数据采集系统设计与实现 基于Android和WiFi的无线自组织网络P2P通信系统设计与实现 矩阵分解中的流形结构学习研究 基于无监督的OSN恶意账号检测 深度学习在基于视频的人体动作识别上的应用 用户评分的隐式成分信息的研究 线性规划求解算法的实现与应用 基于freeRTOS的嵌入式操作系统分析与实验设计 基于深度强化学习的信息检索的研究与实现 CPM语言编译链接系统的实现 基于SSD的Pascal Voc数据集目标检测设计与实现 复杂网络关键节点识别算法比较研究 基于对抗网络和知识表示的可视问答 基于FPGA实现存储器及虚拟存储器管理 匿名可信身份共享区块链的设计与实现 基于图像的场景分类算法的设计与实现 恶意APK静态检测技术研究与实现 车辆再识别技术研究

图像处理的很多任务都离不开图像分割。因为图像分割在cv中实在太重要(有用)了,就先把图像分割的常用算法做个总结。         接触机器学习和深度学习时间已经不短了。期间看过各种相关知识但从未总结过。本文过后我会尽可能详细的从工程角度来总结,从传统机器学习算法,传统计算机视觉库算法到深度学习目前常用算法和论文,以及模型在各平台的转化,量化,服务化部署等相关知识总结。         图像分割常用算法大致分为下面几类。由于图像的能量范函,边缘追踪等方法的效果往往只能解决特定问题,效果并不理想,这里不再阐述。当然二值化本身也可以分割一些简单图像的。但是二值化算法较多,我会专门做一个文章来总结。这里不再赘述。         1.基于边缘的图像分割算法:             有利用图像梯度的传统算法算子的sobel,roberts,prewitt,拉普拉斯以及canny等。             这些算法的基本思想都是采用合适的卷积算子,对图像做卷积。从而求出图像对应的梯度图像。(至于为什么通过如图1这样的算子卷积,即可得到图像的梯度图像,请读者复习下卷积和倒数的概念自行推导)由于图像的边缘处往往是图像像素差异较大,梯度较大地方。因此我们通过合适的卷积核得到图像的梯度图像,即得到了图像的边缘图像。至于二阶算子的推导,与一阶类似。优点:传统算子梯度检测,只需要用合适的卷积核做卷积,即可快速得出对应的边缘图像。缺点:图像边缘不一定准确,复杂图像的梯度不仅仅出现在图像边缘,可以能出现在图像内部的色彩和纹理上。              也有基于深度学习方法hed,rcf等。由于这类网络都有同一个比较严重的缺陷,这里只举例hed网络。hed是基于FCN和VGG改进,同时引出6个loss进行优化训练,通过多个层输出不同scale的粒度的边缘,然后通过一个训练权重融合各个层的边缘结果。hed网络结构如下: 可以得到一个比较完整的梯度图像,可参考github的hed实现。优点:图像的梯度细节和边缘完整性,相比传统的边缘算子要好很多。但是hed对于边缘的图像内部的边缘并不能很好的区分。当然我们可以自行更改loss来尝试只拟合外部的图像边缘。但最致命的问题在于,基于vgg的hed的网络表达能力有限,对于图像和背景接近,或者图像和背景部分相融的图片,hed似乎就有点无能为力了。         2.基于区域分割的算法:             区域分割比较常用的如传统的算法结合遗传算法,区域生长算法,区域分裂合并,分水岭算法等。这里传统算法的思路是比较简单易懂的,如果有无法理解的地方,欢迎大家一起讨论学习。这里不再做过多的分析。             基于区域和语意的深度学习分割算法,是目前图像分割成果较多和研究的主要方向。例如FCN系列的全卷积网络,以及经典的医学图像分割常用的unet系列,以及rcnn系列发展下的maskrcnn,以及18年底的PAnet。基于语意的图像分割技术,无疑会成为图像分割技术的主流。             其中,基于深度学习语意的其他相关算法也可以间接或直接的应用到图像分割。如经典的图像matting问题。18年又出现了许多非常优秀的算法和论文。如Deep-Image-Matting,以及效果非常优秀的MIT的 semantic soft segmentation(sss).             基于语意的图像分割效果明显要好于其他的传统算法。我在解决图像分割的问题时,首先尝试用了hed网络。最后的效果并不理想。虽然也参考github,做了hed的一些fine-tune,但是还是上面提到的原因,在我多次尝试后,最终放弃。转而适用FCN系列的网络。但是fcn也无法解决图像和背景相融的问题。图片相融的分割,感觉即需要大的感受野,又需要未相融部分原图像细节,所以单原FCN的网络,很难做出准确的分割。中间还测试过很多其他相关的网络,但都效果不佳。考虑到感受野和原图像细节,尝试了resnet和densenet作为图像特征提取的底层。最终我测试了unet系列的网络:                 unet的原始模型如图所示。在自己拍照爬虫等手段采集了将近1000张图片。去掉了图片质量太差的,图片内容太过类似的。爬虫最终收集160多张,自己拍照收集200张图片后,又用ps手动p了边缘图像,采用图像增强变换,大约有300*24张图片。原生unet网络的表现比较一般。在将unet普通的卷积层改为resnet后,网络的表达能力明显提升。在将resnet改为resnet101,此时,即使对于部分相融的图像,也能较好的分割了。但是unet的模型体积已经不能接受。                 在最后阶段,看到maskrcnn的实例分割。maskrcnn一路由rcnn,fasterrcnn发展过来。于是用maskrcnn来加入自己的训练数据和label图像进行训练。maskrcnn的结果表现并不令人满意,对于边缘的定位,相比于其他算法,略显粗糙。在产品应用中,明显还不合适。                         3.基于图的分割算法             基于深度学习的deepgrab,效果表现并不是十分理想。deepgrab的git作者backbone采用了deeplabv2的网络结构。并没有完全安装原论文来做。 论文原地址参考: 整体结构类似于encode和decoder。并没有太仔细的研究,因为基于resent101的结构,在模型体积,速度以及deeplab的分割精度上,都不能满足当前的需求。之前大致总结过计算机视觉的相关知识点,既然目前在讨论移动端模型,那后面就分模块总结下移动端模型的应用落地吧。 由于时间实在有限。这里并没有针对每个算法进行详细的讲解。后续我会从基础的机器学习算法开始总结。

本文的研究目的在于结合康泰医学进行医疗器械国际市场营销的实践,解析我国医疗器械企业所处的国际市场环境、竞争态势、分析把握市场机遇,为其进行国际市场营销提供客观依据。文章通过对康泰医学医疗器械国际市场营销策略的研究,分析其在国际市场营销过程中存在的不足,并对存在的问题提出可行性解决建议。根据文章特点,本文采取调查研究和资料分析、定性分析与定量分析、理论分析与实证分析相结合的研究方法。首先,本文详细阐述了市场营销相关理论,包括市场细分理论、目标市场定位、市场营销组合、SWOT分析等内容,这是进行本课题研究的理论和方法基础。其次,在深入分析国际医疗器械市场状况和市场竞争态势的基础上,阐述了康泰医学医疗器械国际市场营销策略,采用SWOT方法分析康泰医学在不同细分市场的优势、劣势、面临的机会与威胁。再次,文章调查医疗器械国际市场的概况,详细分析其市场竞争情况的基础上,详细研究其在国际市场采取的市场营销组合策略,具体包括:产品策略、定价策略、渠道策略和促销策略。最后,根据康泰医学在各目标市场采取的营销策略以及企业自身的特点,分析其在国际市场营销过程中的不足,分析其存在的问题并提出解决的建议,来保障其国际市场营销策略的实施。[1] 李燕静. 浅析我国医疗器械行业发展状况及其建议[J]. 中国外资. 2013(07)[2] 方海玲. 我国医疗器械市场现状分析与市场营销[J]. 安徽科技. 2012(12)[3] 刘娟. 高效的营销稽查监控体系构建探索[J]. 中国电力教育. 2012(36)[4] 方天成. 医疗器械行业的发展现状及其趋势分析[J]. 商业文化(下半月). 2012(11)[5] 余玉华,姚宝峰. 论国际市场营销环境下的企业如何做好危机营销[J]. 商场现代化. 2012(27)[6] 王远. 国际市场营销中的跨文化元素探索[J]. 中国集体经济. 2012(16)[7] 章昌裕. 中国入世十年成就回顾与前景展望[J]. 对外经贸. 2012(01)[8] 赵林晶. 浅谈中国产品在国际市场上的营销策略[J]. 现代商业. 2012(03)[9] 李俊伟,韩冰. 现代企业的营销服务意识与品牌战略对策[J]. 现代商业. 2011(07)[10] 黄志红,刘伟华. 国际市场营销风险的评价[J]. 统计与决策. 2011(03)

图像分割算法研究能只要论文吗

具体指的什么?是原理啊还是编程实现?

以前用过的一个比较笨的方法,多下载论文,尤其是国外论文(国内论文很多有滥竽充数之嫌),上面自适应分割算法很多。选出比较可信的论文,尝试着用C语言或OPENCV实现其中的分割算法,看下是否结果是否满意,在不断的试验中找到能获得最理想结果的算法。很多分割算法的理论基础是概率统计,求出使两类差别最大的一个阈值。曾经感觉比较好用的是最大类间方差法(大津法)。当然还是书上说的,不同的图像适用于不同的算法。每种算法都有充足的理由证明它能获得好的结果,但适用于特定处理对象的,往往需要多试验,有了好的试验结果,论文就好写了。另外,想要获得好的分割结果,合适的图像预处理是必须的。

图像处理的很多任务都离不开图像分割。因为图像分割在cv中实在太重要(有用)了,就先把图像分割的常用算法做个总结。         接触机器学习和深度学习时间已经不短了。期间看过各种相关知识但从未总结过。本文过后我会尽可能详细的从工程角度来总结,从传统机器学习算法,传统计算机视觉库算法到深度学习目前常用算法和论文,以及模型在各平台的转化,量化,服务化部署等相关知识总结。         图像分割常用算法大致分为下面几类。由于图像的能量范函,边缘追踪等方法的效果往往只能解决特定问题,效果并不理想,这里不再阐述。当然二值化本身也可以分割一些简单图像的。但是二值化算法较多,我会专门做一个文章来总结。这里不再赘述。         1.基于边缘的图像分割算法:             有利用图像梯度的传统算法算子的sobel,roberts,prewitt,拉普拉斯以及canny等。             这些算法的基本思想都是采用合适的卷积算子,对图像做卷积。从而求出图像对应的梯度图像。(至于为什么通过如图1这样的算子卷积,即可得到图像的梯度图像,请读者复习下卷积和倒数的概念自行推导)由于图像的边缘处往往是图像像素差异较大,梯度较大地方。因此我们通过合适的卷积核得到图像的梯度图像,即得到了图像的边缘图像。至于二阶算子的推导,与一阶类似。优点:传统算子梯度检测,只需要用合适的卷积核做卷积,即可快速得出对应的边缘图像。缺点:图像边缘不一定准确,复杂图像的梯度不仅仅出现在图像边缘,可以能出现在图像内部的色彩和纹理上。              也有基于深度学习方法hed,rcf等。由于这类网络都有同一个比较严重的缺陷,这里只举例hed网络。hed是基于FCN和VGG改进,同时引出6个loss进行优化训练,通过多个层输出不同scale的粒度的边缘,然后通过一个训练权重融合各个层的边缘结果。hed网络结构如下: 可以得到一个比较完整的梯度图像,可参考github的hed实现。优点:图像的梯度细节和边缘完整性,相比传统的边缘算子要好很多。但是hed对于边缘的图像内部的边缘并不能很好的区分。当然我们可以自行更改loss来尝试只拟合外部的图像边缘。但最致命的问题在于,基于vgg的hed的网络表达能力有限,对于图像和背景接近,或者图像和背景部分相融的图片,hed似乎就有点无能为力了。         2.基于区域分割的算法:             区域分割比较常用的如传统的算法结合遗传算法,区域生长算法,区域分裂合并,分水岭算法等。这里传统算法的思路是比较简单易懂的,如果有无法理解的地方,欢迎大家一起讨论学习。这里不再做过多的分析。             基于区域和语意的深度学习分割算法,是目前图像分割成果较多和研究的主要方向。例如FCN系列的全卷积网络,以及经典的医学图像分割常用的unet系列,以及rcnn系列发展下的maskrcnn,以及18年底的PAnet。基于语意的图像分割技术,无疑会成为图像分割技术的主流。             其中,基于深度学习语意的其他相关算法也可以间接或直接的应用到图像分割。如经典的图像matting问题。18年又出现了许多非常优秀的算法和论文。如Deep-Image-Matting,以及效果非常优秀的MIT的 semantic soft segmentation(sss).             基于语意的图像分割效果明显要好于其他的传统算法。我在解决图像分割的问题时,首先尝试用了hed网络。最后的效果并不理想。虽然也参考github,做了hed的一些fine-tune,但是还是上面提到的原因,在我多次尝试后,最终放弃。转而适用FCN系列的网络。但是fcn也无法解决图像和背景相融的问题。图片相融的分割,感觉即需要大的感受野,又需要未相融部分原图像细节,所以单原FCN的网络,很难做出准确的分割。中间还测试过很多其他相关的网络,但都效果不佳。考虑到感受野和原图像细节,尝试了resnet和densenet作为图像特征提取的底层。最终我测试了unet系列的网络:                 unet的原始模型如图所示。在自己拍照爬虫等手段采集了将近1000张图片。去掉了图片质量太差的,图片内容太过类似的。爬虫最终收集160多张,自己拍照收集200张图片后,又用ps手动p了边缘图像,采用图像增强变换,大约有300*24张图片。原生unet网络的表现比较一般。在将unet普通的卷积层改为resnet后,网络的表达能力明显提升。在将resnet改为resnet101,此时,即使对于部分相融的图像,也能较好的分割了。但是unet的模型体积已经不能接受。                 在最后阶段,看到maskrcnn的实例分割。maskrcnn一路由rcnn,fasterrcnn发展过来。于是用maskrcnn来加入自己的训练数据和label图像进行训练。maskrcnn的结果表现并不令人满意,对于边缘的定位,相比于其他算法,略显粗糙。在产品应用中,明显还不合适。                         3.基于图的分割算法             基于深度学习的deepgrab,效果表现并不是十分理想。deepgrab的git作者backbone采用了deeplabv2的网络结构。并没有完全安装原论文来做。 论文原地址参考: 整体结构类似于encode和decoder。并没有太仔细的研究,因为基于resent101的结构,在模型体积,速度以及deeplab的分割精度上,都不能满足当前的需求。之前大致总结过计算机视觉的相关知识点,既然目前在讨论移动端模型,那后面就分模块总结下移动端模型的应用落地吧。 由于时间实在有限。这里并没有针对每个算法进行详细的讲解。后续我会从基础的机器学习算法开始总结。

本科毕业论文图像分割

毕业设计(论文)撰写规范毕业论文或设计说明书通常由标题、摘要、目录、前言、正文、结论、参考文献、附录、致谢等几部分构成,要求统一采用计算机打印。1.毕业论文的文稿结构与顺序题目:即标题,主要作用是概括整个论文的中心内容,因此,题目要确切、简短、精炼。摘要:简要介绍毕业设计(论文)的研究目的、方法、结果和结论,语言力求精炼。中文摘要一般在400字以内,字体为小四号宋体。英文摘要内容应与中文摘要相对应,字体为小四号Times New Roman;中英文摘要均要有关键词,一般为3—7个,各关键词之间要有分号。关键词的用语要规范。目录:应列出通篇文稿各组成部分的大小标题,并分清层次,逐项标注页码,包括参考文献、附录、图版、索引等附属部分的页次,以便读者查找。“目录”二字用三号字、黑体、居中书写,“目”与“录”之间空两格。目录的各章节应简明扼要,其中每章题目采用小三号宋体字,每节题目采用四号宋体字。要注明各章节起始页码,题目和页码间用“…………”相连。前言:文字以600字左右为宜。一般包括以下内容:①简单介绍本论文的研究领域。②对本论文研究主题范围内已有文献资料的评述。③说明本论文所要解决的问题及拟采用的研究手段和方法。正文:论文的正文是作者对自己的研究工作详细的表述。应包括以下内容:①理论分析部分。详细说明本课题的理论依据所使用的分析方法和计算方法等基本情况;指出所应用的分析方法、计算方法、实验方法等哪些是已有的,哪些是经过自己改进的,哪些是自己创造的。这一部分应以简练、明了的文字概略表述。②课题研究的方法与手段,分别以下面几种方法说明。如用实验方法研究课题,应具体说明实验用的装置、仪器、原材料等,并应对所有装置、仪器、原材料做出检验和标定。对实验的过程和操作方法,力求叙述得简明扼要,对实验结果的记录、分析,对人所共知的或细节性的内容不必过分详述。如用理论推导的手段和方法达到研究目的,这方面内容要精心组织,做到概念准确,判断推理符合客观事物的发展规律,要做到言之有序,言之有理,以论点为中枢,组织成完整而严谨的内容整体。如用调查研究的方法达到研究目的,调查目标、对象、范围、时间、地点、调查的过程和方法等内容的叙述要简练,对调查所提的样本、数据、新的发现等应详细说明,作为结论产生的依据。③在结果与讨论部分,应把那些必要而充分的数据、现象、样品、认识等作为分析的依据。在对结果做定性和定量分析时,应说明数据的处理方法以及误差分析,说明现象出现的条件,交代理论推导中认识的由来和发展,以使别人可以此为根据进行核实验证。对结果进行分析后所得到的结论和推论,也应说明其适用的条件和范围。结论:结论主要反映个人的研究工作,包括对整个研究工作进行归纳和综合而得出的总结;要写所得结果与已有结果的比较;要联系实际结果,指出它的学术意义或应用价值和在实际中推广应用的可能性;要写本课题研究中尚存在的问题,对进一步开展研究的见解与建议等。结论一般要写得概括、篇幅要短、要简单、明确,在措辞上要严密,易被人领会。参考文献:列出作者直接阅读过或在正文中被引用过的文献资料,本专业教科书不能作为参考文献。参考文献要另起一页,一律放在正文后,在文中要有引用标注。每篇文稿所查阅的文献数量必须在10篇以上。具体格式见模板。附录:在论文之后附上不便放进正文的重要数据、表格、公式、图纸、程序、译文等资料,供读者阅读论文时参考。致谢:对于毕业设计(论文)的指导教师,对毕业设计(论文)提过有益的建议或给予过帮助的老师、同学以及其他人,都应在论文的结尾部分书面致谢。2.毕业设计说明书的结构毕业设计的内容包括设计说明书和图纸两部分。毕业设计说明书是对毕业设计进行解释与说明的书面材料,在写法上应注意与论文的区别:(1)前言由设计的目的和意义、设计项目发展情况简介、设计原理及规模介绍三部分组成。(2)正文包括方案的论证和主要参数的计算。3.一些其它要求(1)工程设计类绘图量不少于折合图幅为0#号图纸张,工程技术研究类绘图量不少于折合图幅为0#号图纸1张;所绘图纸必须反映出设计的内容。绘图方式可自行选择,图纸绘制要符合国家标准。图纸经审核后审核人要签字。(2)外语文献译文字数2000~3000字,要求译文与原文相符并与论文内容相关。4.撰写毕业论文时应注意的其它相关问题(1)使用的文字要规范,不可滥用、误用简化字、异体字;中文的标点要准确,标点符号要写在行内。(2)论文标题一律采用三号加黑宋体字,正文采用小四号宋体,英文及数字采用小四号Times New Roman字体;。(3)文章标题层次及同级标题序码,必须段落分明前后一致。(4)实验结果如已用图表示过一般不再列表。表中内容不必在正文中再做说明。(5)图:图题采用中文,字体为五号宋体。引用图应在图题右上角标出文献来源。图号以章为单位顺序编号。(6)表格:应有相应的表题和表序号,表题应写在表格上方正中,表序写在表题左方,不加标点,空一格接写表题,表题末尾不加标点。表格按章顺序编号,表内必须按规定的符号标注单位。(7)公式:应另起一行写在稿纸中央。一行写不完的公式,最好在等号处转行,也可在数学符号(如“+”、“-”号)处转行,数学符号应写在转行后的行首。公式的编号用圆括号括起放在公式右边行末,在公式和编号之间不加虚线。重复引用的公式不再另编新序号;公式序号必须连续,不得重复或跳缺。(8)列举参考文献资料必须注意:①所列举的参考文献应是正式出版物,包括期刊、书籍、论文集和会议文集。②列举参考文献的格式为:序号、作者姓名、书或文章名称、出版单位、出版时间、章节与页码等。③应按论文参考或引证的文献资料的先后顺序,依次列出。④在论文中应用参考文献处,应注明该文献的序号。附件2毕业设计(论文)装订要求由学院统一设计封面,页面设置统一用A4纸打印,然后到校印刷厂装订。毕业设计(论文)必须按以下顺序装订: 1.封面(包括课题名称、学生姓名、学生所在院(系)及专业、指导教师姓名、职称); 2.毕业设计(论文)任务书; 3.毕业设计(论文)开题报告表; 4.毕业设计(论文)评阅表; 5.毕业设计(论文)成绩考核表(附表7); 6.中文摘要、关键词; 7.英文摘要、关键词; 8.目录; 9.前言; 10.正文; 11.结论; 12.参考文献; 13.附录(含外文资料及中文译文); 14.谢辞。附件3 毕业设计(论文)文稿模板(本行不显示)天津工业大学毕业设计(论文)题目:(三号宋体,加黑)姓 名 学 院 专 业 指导教师 职 称 年 月 日 摘□□要(“摘要”之间空两格,采用三号字、黑体、居中,与内容空一行)□□×××××××××(内容采用小四号宋体)关键词:×××××;×××××;×××××;×××××;×××××采用小四号、宋体、接排 小四号、黑体、顶格ABSTRACT(采用三号字、Times New Roman字体、加黑、居中、与内容空一行)□□×××××××××(内容采用小四号Times New Roman字体)Key words:×××××;×××××;×××××;×××××;×××××采用小四号、Times New Roman字体、接排 小四号、Times New Roman、加黑、顶格目 录(三号、黑体、居中、目录两字空两格、与正文空一行)第一章(空两格)☆☆☆(四号、宋体)……………………………×☆☆☆☆(小四号宋体)………………………………………………………×☆☆☆☆………………………………………………………………………×☆☆☆☆………………………………………………………………………×………………第四章(空两格)☆☆☆(四号、宋体)……………………………×☆☆☆☆………………………………………………………………………×☆☆☆☆………………………………………………………………………×………………参考文献(四号、宋体)………………………………………………×附录(四号、宋体)……………………………………………………×谢辞(四号、宋体)……………………………………………………×不标页码第一章□□☆☆☆☆☆(居中、小三号、黑体)☆☆☆(四号、黑体、顶格)☆☆☆(四号、黑体、顶格)□□☆☆☆☆☆☆☆☆☆正文(小四号、宋体) 宋体五号,居中,位于表上表1-3□□☆☆☆ ×××××× ××× ×××××× ××× (宋体五号,垂直居中) ×××××× ××× ×××(表与正文空一行)□□☆☆☆☆☆☆☆☆☆☆☆☆☆ (下一章另起一页) 第二章□□☆☆☆☆☆(居中、小三号、黑体)☆☆☆(四号、黑体、顶格)☆☆☆(四号、黑体、顶格)□□☆☆☆☆☆☆☆☆☆正文(小四号、宋体、空2格、用倍行间距)图2-5□□×××组织结构图 宋体五号居中,位于图下 图与下文空一行正文开始标注页码;位置:页面底端(页脚);对齐方式:居中 参考文献(四号、黑体、顶格)[1]□□王传昌.高分子化工的研究对象.天津大学学报,1997,53(3):1~7 作者姓名 论文题目 杂志名称 出版年份\页码(阿拉伯数码)[2]□□王连芬.层次分析法引论[M].北京:中国人民大学出版社,1990.作者姓名 书名 出版地 出版者 出版年 [3]□□Joe Tidd[×],陈劲译.创新管理----技术、市场与组织变革的集成.清华大学出版社,2002. 原著者姓名 国别 翻译者姓名 书名 出版者 出版年[4]□□姚光起.一种氧化锆材料的制备方法.中国专利,891056088,1980-07-03申请者 专利名 国家 专利号 授权日期[5]□□Pamela Lucas,et al,Evaluation of combustion by-products of MTBE as a component of reformulated gasoline [J], Chemosphere, 2001, 42:861-872 (以上,如果需要两行的,第二行文字要位于序号的后边,与第一行文字对齐。中文的用五号宋体,外文的用五号Times New Roman字体。)

1 基于形态学运算的星空图像分割 主要内容: 在获取星图像的过程中,由于某些因素的影响,获得的星图像存在噪声,而且星图像的背景经常是不均匀的,为星图像的分割造成了极大的困难。膨胀和腐蚀是形态学的两个基本运算。用形态学运算对星图像进行处理,补偿不均匀的星图像背景,然后进行星图像的阈值分割。 要求: 1> 图像预处理:对原始星空图像进行滤波去噪处理; 2> 对去噪后的图像进行形态学运算处理; 3> 选取自适应阈值对形态学运算处理后的图像进行二值化; 4> 显示每步处理后的图像; 5> 对经过形态学处理后再阈值的图像和未作形态学处理后再阈值的图像进行对比分析。 待分割图像 直接分割图像 处理后的分割图像 2 基于数字图像处理的印刷电路板智能检测方法 主要内容: 通过对由相机实时获取的印刷电路板图像进行焊盘识别,从而提高电子元件的贴片质量,有效提高电路板的印刷效率。 要求: 1> 图像预处理:将原始彩色印刷电路板图像转成灰度图像,对灰度图像进行背景平滑和滤波去噪; 2> 对去噪后的图像进行图像增强处理,增强边缘提取的效果。 3> 对增强后的图像进行边缘提取(至少两种以上的边缘提取算法); 4> 显示每步处理后的图像(原始电路板图像可自行查找); 5> 图像处理后要求能对每个焊盘进行边缘提取,边缘清晰。

我能帮你写的。要有全局观念,从整体出发去检查每一部分在论文中所占的地位和作用。看看各部分的比例分配是否恰当,篇幅的长短是否合适,每一部分能否为中心论点服务。比如有一篇论文论述企业深化改革与稳定是辩证统一的,作者以浙江××市某企业为例,说只要干部在改革中以身作则,与职工同甘共苦,可以取得多数职工的理解。从全局观念分折,我们就可以发现这里只讲了企业如何改革才能稳定,没有论述通过深化改革,转换企业经营机制,提高了企业经济效益,职工收入增加,最终达到社会稳定。(二)从中心论点出发,决定材料的取舍,把与主题无关或关系不大的材料毫不可惜地舍弃,尽管这些材料是煞费苦心费了不少劳动搜集来的。有所失,才能有所得。一块毛料寸寸宝贵,舍不得剪裁去,也就缝制不成合身的衣服。为了成衣,必须剪裁去不需要的部分。所以,我们必须时刻牢记材料只是为形成自己论文的论点服务的,离开了这一点,无论是多少好的材料都必须舍得抛弃。

图像分割检测论文

随着图像处理技术的迅速发展,图像识别技术的应用领域越来越广泛。我整理了图像识别技术论文,欢迎阅读!

图像识别技术研究综述

摘要:随着图像处理技术的迅速发展,图像识别技术的应用领域越来越广泛。图像识别是利用计算机对图像进行处理、分析和理解,由于图像在成像时受到外部环境的影响,使得图像具有特殊性,复杂性。基于图像处理技术进一步探讨图像识别技术及其应用前景。

关键词:图像处理;图像识别;成像

中图分类号:TP391 文献标识码:A 文章编号:1009-3044(2013)10-2446-02

图像是客观景物在人脑中形成的影像,是人类最重要的信息源,它是通过各种观测系统从客观世界中获得,具有直观性和易理解性。随着计算机技术、多媒体技术、人工智能技术的迅速发展,图像处理技术的应用也越来越广泛,并在科学研究、教育管理、医疗卫生、军事等领域已取得的一定的成绩。图像处理正显著地改变着人们的生活方式和生产手段,比如人们可以借助于图像处理技术欣赏月球的景色、交通管理中的车牌照识别系统、机器人领域中的计算机视觉等,在这些应用中,都离不开图像处理和识别技术。图像处理是指用计算机对图像进行处理,着重强调图像与图像之间进行的交换,主要目标是对图像进行加工以改善图像的视觉效果并为后期的图像识别大基础[1]。图像识别是利用计算机对图像进行处理、分析和理解,以识别各种不同模式的目标和对像的技术。但是由于获取的图像本事具有复杂性和特殊性,使得图像处理和识别技术成为研究热点。

1 图像处理技术

图像处理(image processing)利用计算机对图像进行分析,以达到所需的结果。图像处理可分为模拟图像处理和数字图像图像处理,而图像处理一般指数字图像处理。这种处理大多数是依赖于软件实现的。其目的是去除干扰、噪声,将原始图像编程适于计算机进行特征提取的形式,主要包括图像采样、图像增强、图像复原、图像编码与压缩和图像分割。

1)图像采集,图像采集是数字图像数据提取的主要方式。数字图像主要借助于数字摄像机、扫描仪、数码相机等设备经过采样数字化得到的图像,也包括一些动态图像,并可以将其转为数字图像,和文字、图形、声音一起存储在计算机内,显示在计算机的屏幕上。图像的提取是将一个图像变换为适合计算机处理的形式的第一步。

2)图像增强,图像在成像、采集、传输、复制等过程中图像的质量或多或少会造成一定的退化,数字化后的图像视觉效果不是十分满意。为了突出图像中感兴趣的部分,使图像的主体结构更加明确,必须对图像进行改善,即图像增强。通过图像增强,以减少图像中的图像的噪声,改变原来图像的亮度、色彩分布、对比度等参数。图像增强提高了图像的清晰度、图像的质量,使图像中的物体的轮廓更加清晰,细节更加明显。图像增强不考虑图像降质的原因,增强后的图像更加赏欣悦目,为后期的图像分析和图像理解奠定基础。

3)图像复原,图像复原也称图像恢复,由于在获取图像时环境噪声的影响、运动造成的图像模糊、光线的强弱等原因使得图像模糊,为了提取比较清晰的图像需要对图像进行恢复,图像恢复主要采用滤波方法,从降质的图像恢复原始图。图像复原的另一种特殊技术是图像重建,该技术是从物体横剖面的一组投影数据建立图像。

4)图像编码与压缩,数字图像的显著特点是数据量庞大,需要占用相当大的存储空间。但基于计算机的网络带宽和的大容量存储器无法进行数据图像的处理、存储、传输。为了能快速方便地在网络环境下传输图像或视频,那么必须对图像进行编码和压缩。目前,图像压缩编码已形成国际标准,如比较著名的静态图像压缩标准JPEG,该标准主要针对图像的分辨率、彩色图像和灰度图像,适用于网络传输的数码相片、彩色照片等方面。由于视频可以被看作是一幅幅不同的但有紧密相关的静态图像的时间序列,因此动态视频的单帧图像压缩可以应用静态图像的压缩标准。图像编码压缩技术可以减少图像的冗余数据量和存储器容量、提高图像传输速度、缩短处理时间。

5)图像分割技术,图像分割是把图像分成一些互不重叠而又具有各自特征的子区域,每一区域是像素的一个连续集,这里的特性可以是图像的颜色、形状、灰度和纹理等。图像分割根据目标与背景的先验知识将图像表示为物理上有意义的连通区域的集合。即对图像中的目标、背景进行标记、定位,然后把目标从背景中分离出来。目前,图像分割的方法主要有基于区域特征的分割方法、基于相关匹配的分割方法和基于边界特征的分割方法[2]。由于采集图像时会受到各种条件的影响会是图像变的模糊、噪声干扰,使得图像分割是会遇到困难。在实际的图像中需根据景物条件的不同选择适合的图像分割方法。图像分割为进一步的图像识别、分析和理解奠定了基础。

2 图像识别技术

图像识别是通过存储的信息(记忆中存储的信息)与当前的信息(当时进入感官的信息)进行比较实现对图像的识别[3]。前提是图像描述,描述是用数字或者符号表示图像或景物中各个目标的相关特征,甚至目标之间的关系,最终得到的是目标特征以及它们之间的关系的抽象表达。图像识别技术对图像中个性特征进行提取时,可以采用模板匹配模型。在某些具体的应用中,图像识别除了要给出被识别对象是什么物体外,还需要给出物体所处的位置和姿态以引导计算初工作。目前,图像识别技术已广泛应用于多个领域,如生物医学、卫星遥感、机器人视觉、货物检测、目标跟踪、自主车导航、公安、银行、交通、军事、电子商务和多媒体网络通信等。主要识别技术有:

指纹识别

指纹识别是生物识别技术中一种最实用、最可靠和价格便宜的识别手段,主要应用于身份验证。指纹识别是生物特征的一个部分,它具有不变性:一个人的指纹是终身不变的;唯一性:几乎没有两个完全相同的指纹[3]。一个指纹识别系统主要由指纹取像、预处理与特征提取、比对、数据库管理组成。目前,指纹识别技术与我们的现实生活紧密相关,如信用卡、医疗卡、考勤卡、储蓄卡、驾驶证、准考证等。

人脸识别 目前大多数人脸识别系统使用可见光或红外图像进行人脸识别,可见光图像识别性能很容易受到光照变化的影响。在户外光照条件不均匀的情况下,其正确识别率会大大降低。而红外图像进行人脸识别时可以克服昏暗光照条件变化影响,但由于红外线不能穿透玻璃,如果待识别的对象戴有眼镜,那么在图像识别时,眼部信息全部丢失,将严重影响人脸识别的性能[4]。

文字识别

文字识别是将模式识别、文字处理、人工智能集与一体的新技术,可以自动地把文字和其他信息分离出来,通过智能识别后输入计算机,用于代替人工的输入。文字识别技术可以将纸质的文档转换为电子文档,如银行票据、文稿、各类公式和符号等自动录入,可以提供文字的处理效率,有助于查询、修改、保存和传播。文字识别方法主要有结构统计模式识别、结构模式识别和人工神经网络[5]。由于文字的数量庞大、结构复杂、字体字形变化多样,使得文字识别技术的研究遇到一定的阻碍。

3 结束语

人类在识别现实世界中的各种事物或复杂的环境是一件轻而易举的事,但对于计算机来讲进行复杂的图像识别是非常困难的[6]。在环境较为简单的情况下,图像识别技术取得了一定的成功,但在复杂的环境下,仍面临着许多问题:如在图像识别过程中的图像分割算法之间的性能优越性比较没有特定的标准,以及算法本身存在一定的局限性,这使得图像识别的最终结果不十分精确等。

参考文献:

[1] 胡爱明,周孝宽.车牌图像的快速匹配识别方法[J].计算机工程与应用,2003,39(7):90—91.

[2] 胡学龙.数字图像处理[M].北京:电子工业出版社,2011.

[3] 范立南,韩晓微,张广渊.图像处理与模式识别[M].北京:科学出版社,2007.

[4] 晓慧,刘志镜.基于脸部和步态特征融合的身份识别[J].计算机应用,2009,1(29):8.

[5] 陈良育,曾振柄,张问银.基于图形理解的汉子构型自动分析系统[J].计算机应用,2005,25(7):1629-1631.

[6] Sanderson C,Paliwal K Fusion and Person Verification Using Speech & Face Information[C].IDIAP-RR 02-33,Martigny,Swizerland,2002.

点击下页还有更多>>>图像识别技术论文

图像分割是图像处理与计算机视觉的基本问题之一,是图像处理图像分析的关键步骤。我整理了图像分割技术论文,欢迎阅读!

图像分割技术研究

摘要:图像分割是图像处理与计算机视觉的基本问题之一,是图像处理图像分析的关键步骤。本文介绍了基于阈值的分割方法和图像分割的图像分割性能的评价、应用现状;最后总结出图像分割的发展趋势。

关键词:图像分割、阈值、边缘检测、区域分割

中图分类号: 文献标识码: A

1引言

随着图像分割技术研究的深入,其应用日趋广泛。凡属需要对图像目标进行提取、测量的工作都离不开图像分割。图像分割是图像处理、模式识别和人工智能等多个领域中一个十分重要且又十分困难的问题,是计算机视觉技术中首要的、重要的关键步骤。图像分割结果的好坏直接影响对计算机视觉中的图像理解。现有的方法多是为特定应用设计的,有很大的针对性和局限性,到目前为止还不存在一个通用的方法,也不存在一个判断分割是否成功的客观标准。因此,对图像分割的研究目前还缺乏一个统一的理论体系,使得图像分割的研究仍然是一个极富有挑战性的课题。

2图像分割方法

图像分割(Image Segmentation),简单地说就是将一幅数字图像分割成不同的区域,在同一区域内具有在一定的准则下可认为是相同的性质,如灰度、颜色、纹理等。而任何相邻区域之间其性质具有明显的区别。

基于灰度特征的阈值分割方法

阈值分割技术是经典的、流行的图象分割方法之一,它是用一个或几个阈值将图像的灰度级分为几个部分,认为属于同一个部分的像素是同一个物体。

这类方法主要包括以下几种:

(1)单阈值法,用一个全局阈值区分背景和目标。当一幅图像的直方图具有明显的双峰时,选择两峰之间的谷底作为阈值。

(2)双阈值法,用两个阈值区分背景和目标。通过设置两个阈值,以防单阈值设置阈值过高或过低,把目标像素误归为背景像素,或把背景像素误归为目标像素。

(3)多阈值法,当存在照明不均,突发噪声等因素或背景灰度变化较大时,整幅图像不存在合适的单一阈值,单一阈值不能兼顾图像不同区域的具体情况,这时可将图像分块处理,对每一块设一个阈值。

边缘检测分割法

基于边缘检测技术可以按照处理的顺序分为并行边缘检测和串行边缘检测两大类。常见的边缘检测方法有:差分法、模板匹配法及统计方法等。由于边缘灰度变化规律一般体现为阶梯状或者脉冲状。边缘与差分值的关系可以归纳为两种情况,其一是边缘发生在差分最大值或者最小值处;其二是边缘发生在过零处。

基于区域的分割方法

基于区域的分割方法利用的是图像的空间性质。该方法认为分割出来的某一区域具有相似的性质。常用的方法有区域生长法和区域分裂合并法。该类方法对含有复杂场景或自然景物等先验知识不足的图像进行分割,效果较好。

区域生长方法是把一幅图像分成许多小区域开始的,这些初始的小区域可能是小的邻域甚至是单个像素,在每个区域中,通过计算能反映一个物体内像素一致性的特征,作为区域合并的判断标准。区域合并的第一步是赋给每个区域一组参数,即特征。接下来对相邻区域的所有边界进行考查,如果给定边界两侧的特征值差异明显,那么这个边界很强,反之则弱。强边界允许继续存在,而弱边界被消除,相邻区域被合并。没有可以消除的弱边界时,区域合并过程结束,图像分割也就完成。

结合特定工具的图像分割技术

20世纪80年代末以来,随着一些特殊理论的出现及其成熟,如数学形态学、分形理论、模糊数学、小波分析、模式识别、遗传算法等,大量学者致力于将新的概念、新的方法用于图像分割,有效地改善了分割效果。产生了不少新的分割算法。下面对这些算法做一些简单的概括。

基于数学形态学的分割算法

分水岭算法是一种经典的借鉴了数学形态理论的分割方法。该方法中,将一幅图像比为一个具有不同高度值的地形,高灰度值处被认为是山脊,底灰度值处被认为是山谷,将一滴水从任一点流下,它会朝地势底的地方流动,最终聚于某一局部最底点,最后所有的水滴会分聚在不同的吸引盆地,由此,相应的图像就被分割成若干部分。分水岭算法具有运算简单、性能优良,能够较好提取运动对象轮廓、准确得到运动物体边缘的优点。但分割时需要梯度信息,对噪声较敏感。

基于模糊数学的分割算法

目前,模糊技术在图像分割中应用的一个显著特点就是它能和现有的许多图像分割方法相结合,形成一系列的集成模糊分割技术,例如模糊聚类、模糊阈值、模糊边缘检测技术等。

这类方法主要有广义模糊算子与模糊阈值法两种分割算法。

(1)广义模糊算子在广义模糊集合的范围内对图像处理,使真正的边缘处于较低灰度级,但还有一些不是边缘的像素点的灰度也在较低灰度级中,虽然算法的计算简明,且边缘细腻,但得到的边缘图会出现断线问题。

(2)模糊阈值法引入灰度图像的模糊数学描述,通过计算图像的模糊熵来选取图像的分割阈值,后用阈值法处理图像得到边界。

基于遗传算法的分割方法

此算法是受生物进化论思想提出的一种优化问题的解决方法,它使用参数编码集而不是参数本身,通过模拟进化,以适者生存的策略搜索函数的解空间,它是在点群中而不是在单点进行寻优。遗传算法在求解过程中使用随机转换规则而不是确定性规则来工作,它唯一需要的信息是适应值,通过对群体进行简单的复制、杂交、变异作用完成搜索过程。由于此法能进行能量函数全局最小优化搜索,且可以降低搜索空间维数,降低算法对模板初始位置的敏感,计算时间也大为减少。其缺点是容易收敛于局部最优。

基于神经网络分割算法

人工神经网络具有自组织、自学习、自适应的性能和非常强的非线性映射能力,适合解决背景知识不清楚、推理规则不明确和比较复杂的分类问题,因而也适合解决比较复杂的图像分割问题。原则上讲,大部分分割方法都可用 ANN(attificial neural network)实现。ANN 用于分割的研究起步较晚,只有多层前馈NN,多层误差反传(BP)NN,自组织NN,Hopfield NN以及满足约束的NN(CSNN-Const raint Satisfaction Neurat Network)等得到了应用。使用一个多层前向神经网络用于图象分割,输入层神经元的数目取决于输入特征数,而输出层神经元的数目等同于分类的数目。

图像分割中的其他方法

前面介绍了4大类图像分割较常用的方法,有关图像分割方法和文献很多,新方法不断产生,这些方法有的只对特定的情形有效,有的综合了几种方法,放在一起统称为第5类。

(1)标号法(labeling)是一种基于统计学的方法,这种方法将图像欲分割成的几个区域各以一个不同的标号来表示,用一定的方式对图像中的每一个像素赋以标号,标号相同的像素就合并成该标号所代表的区域。

(2)基于Snak模型的分割方法,基于Snake模型的分割是通过对能量函数的动态优化来逼近图像目标的真实轮廓的

(3)纹理分割,由于新的数学工具的引入,纹理分割技术取得了一些进展,张蓬等人将小波分析应用于纹理基元提取。

(4)基于知识的图像分割方法,直接建立在先验知识的基础上,使分割更符合实际图像的特点。该方法的难度在于知识的正确合理的表示与利用。

3图像分割性能的评价

图像分割评价主要有两个方面的内容:一是研究各分割算法在不同情况下的表现,掌握如何选择和控制其参数设置,以适应不同需要。二是分析多个分割算法在分割同一图像时的性能,比较优劣,以便在实际应用中选取合适的算法。分割评价方法分为分析法和实验法两大类。分析法是直接分析分割算法本身的原理及性能,而实验法是通过对测试图像的分割结果来评价算法的。两种方法各有优劣,由于缺乏可靠理论依据,并非所有分割算法都能够通过分析法分析其性能。每种评价方法都是出于某种考虑而提出来的,不同的评价方法只能反映分割算法性能的某一性能。另一方面,每一种分割算法的性能是由多种因素决定的,因此,有可能需要多种准则来综合评价。

4图像分割技术的发展趋势

随着神经网络、遗传算法、统计学理论、小波理论以及分形理论等在图像分割中的广泛应用,图像分割技术呈现出以下的发展趋势:(1)多种特征的融合。(2)多种分割方法的结合。(3)新理论与新方法。

参考文献

[1] [美]RC冈萨雷斯.数字图像处理(第二版)[M].阮秋琦,等译.北京:电子工业出版社,2003

[2] 章毓晋.图像分割[M].北京:科学出版社,2001.

[3] 李弼程,彭天强,彭波等.智能图像处理技术[M].北京:电子工业出版社,2004.

[4] 杨晖,曲秀杰.图像分割方法综述[J].电脑开发与应用。2005,18(3):21-23.

点击下页还有更多>>>图像分割技术论文

图像分割与描述毕业论文

(一)选题毕业论文(设计)题目应符合本专业的培养目标和教学要求,具有综合性和创新性。本科生要根据自己的实际情况和专业特长,选择适当的论文题目,但所写论文要与本专业所学课程有关。(二)查阅资料、列出论文提纲题目选定后,要在指导教师指导下开展调研和进行实验,搜集、查阅有关资料,进行加工、提炼,然后列出详细的写作提纲。(三)完成初稿根据所列提纲,按指导教师的意见认真完成初稿。(四)定稿初稿须经指导教师审阅,并按其意见和要求进行修改,然后定稿。一般毕业论文题目的选择最好不要太泛,越具体越好,而且老师希望学生能结合自己学过的知识对问题进行分析和解决。不知道你是否确定了选题,确定选题了接下来你需要根据选题去查阅前辈们的相关论文,看看人家是怎么规划论文整体框架的;其次就是需要自己动手收集资料了,进而整理和分析资料得出自己的论文框架;最后就是按照框架去组织论文了。你如果需要什么参考资料和范文我可以提供给你。还有什么不了解的可以直接问我,希望可以帮到你,祝写作过程顺利毕业论文选题的方法:一、尽快确定毕业论文的选题方向 在毕业论文工作布置后,每个人都应遵循选题的基本原则,在较短的时间内把选题的方向确定下来。从毕业论文题目的性质来看,基本上可以分为两大类:一类是社会主义现代化建设实践中提出的理论和实际问题;另一类是专业学科本身发展中存在的基本范畴和基本理论问题。大学生应根据自己的志趣和爱好,尽快从上述两大类中确定一个方向。二、在初步调查研究的基础上选定毕业论文的具体题目在选题的方向确定以后,还要经过一定的调查和研究,来进一步确定选题的范围,以至最后选定具体题目。下面介绍两种常见的选题方法。 浏览捕捉法 :这种方法就是通过对占有的文献资料快速地、大量地阅读,在比较中来确定论文题目地方法。浏览,一般是在资料占有达到一定数量时集中一段时间进行,这样便于对资料作集中的比较和鉴别。浏览的目的是在咀嚼消化已有资料的过程中,提出问题,寻找自己的研究课题。这就需要对收集到的材料作一全面的阅读研究,主要的、次要的、不同角度的、不同观点的都应了解,不能看了一些资料,有了一点看法,就到此为止,急于动笔。也不能“先入为主”,以自己头脑中原有的观点或看了第一篇资料后得到的看法去决定取舍。而应冷静地、客观地对所有资料作认真的分析思考。在浩如烟海,内容丰富的资料中吸取营养,反复思考琢磨许多时候之后,必然会有所发现,这是搞科学研究的人时常会碰到的情形。 浏览捕捉法一般可按以下步骤进行:第一步,广泛地浏览资料。在浏览中要注意勤作笔录,随时记下资料的纲目,记下资料中对自己影响最深刻的观点、论据、论证方法等,记下脑海中涌现的点滴体会。当然,手抄笔录并不等于有言必录,有文必录,而是要做细心的选择,有目的、有重点地摘录,当详则详,当略则略,一些相同的或类似的观点和材料则不必重复摘录,只需记下资料来源及页码就行,以避免浪费时间和精力。第二步,是将阅读所得到的方方面面的内容,进行分类、排列、组合,从中寻找问题、发现问题,材料可按纲目分类,如分成: 系统介绍有关问题研究发展概况的资料; 对某一个问题研究情况的资料; 对同一问题几种不同观点的资料; 对某一问题研究最新的资料和成果等等。第三步,将自己在研究中的体会与资料分别加以比较,找出哪些体会在资料中没有或部分没有;哪些体会虽然资料已有,但自己对此有不同看法;哪些体会和资料是基本一致的;哪些体会是在资料基础上的深化和发挥等等。经过几番深思熟虑的思考过程,就容易萌生自己的想法。把这种想法及时捕捉住,再作进一步的思考,选题的目标也就会渐渐明确起来。希望可以帮到你,有什么不懂的可以问我

图像分割是图像处理与计算机视觉的基本问题之一,是图像处理图像分析的关键步骤。我整理了图像分割技术论文,欢迎阅读!

图像分割技术研究

摘要:图像分割是图像处理与计算机视觉的基本问题之一,是图像处理图像分析的关键步骤。本文介绍了基于阈值的分割方法和图像分割的图像分割性能的评价、应用现状;最后总结出图像分割的发展趋势。

关键词:图像分割、阈值、边缘检测、区域分割

中图分类号: 文献标识码: A

1引言

随着图像分割技术研究的深入,其应用日趋广泛。凡属需要对图像目标进行提取、测量的工作都离不开图像分割。图像分割是图像处理、模式识别和人工智能等多个领域中一个十分重要且又十分困难的问题,是计算机视觉技术中首要的、重要的关键步骤。图像分割结果的好坏直接影响对计算机视觉中的图像理解。现有的方法多是为特定应用设计的,有很大的针对性和局限性,到目前为止还不存在一个通用的方法,也不存在一个判断分割是否成功的客观标准。因此,对图像分割的研究目前还缺乏一个统一的理论体系,使得图像分割的研究仍然是一个极富有挑战性的课题。

2图像分割方法

图像分割(Image Segmentation),简单地说就是将一幅数字图像分割成不同的区域,在同一区域内具有在一定的准则下可认为是相同的性质,如灰度、颜色、纹理等。而任何相邻区域之间其性质具有明显的区别。

基于灰度特征的阈值分割方法

阈值分割技术是经典的、流行的图象分割方法之一,它是用一个或几个阈值将图像的灰度级分为几个部分,认为属于同一个部分的像素是同一个物体。

这类方法主要包括以下几种:

(1)单阈值法,用一个全局阈值区分背景和目标。当一幅图像的直方图具有明显的双峰时,选择两峰之间的谷底作为阈值。

(2)双阈值法,用两个阈值区分背景和目标。通过设置两个阈值,以防单阈值设置阈值过高或过低,把目标像素误归为背景像素,或把背景像素误归为目标像素。

(3)多阈值法,当存在照明不均,突发噪声等因素或背景灰度变化较大时,整幅图像不存在合适的单一阈值,单一阈值不能兼顾图像不同区域的具体情况,这时可将图像分块处理,对每一块设一个阈值。

边缘检测分割法

基于边缘检测技术可以按照处理的顺序分为并行边缘检测和串行边缘检测两大类。常见的边缘检测方法有:差分法、模板匹配法及统计方法等。由于边缘灰度变化规律一般体现为阶梯状或者脉冲状。边缘与差分值的关系可以归纳为两种情况,其一是边缘发生在差分最大值或者最小值处;其二是边缘发生在过零处。

基于区域的分割方法

基于区域的分割方法利用的是图像的空间性质。该方法认为分割出来的某一区域具有相似的性质。常用的方法有区域生长法和区域分裂合并法。该类方法对含有复杂场景或自然景物等先验知识不足的图像进行分割,效果较好。

区域生长方法是把一幅图像分成许多小区域开始的,这些初始的小区域可能是小的邻域甚至是单个像素,在每个区域中,通过计算能反映一个物体内像素一致性的特征,作为区域合并的判断标准。区域合并的第一步是赋给每个区域一组参数,即特征。接下来对相邻区域的所有边界进行考查,如果给定边界两侧的特征值差异明显,那么这个边界很强,反之则弱。强边界允许继续存在,而弱边界被消除,相邻区域被合并。没有可以消除的弱边界时,区域合并过程结束,图像分割也就完成。

结合特定工具的图像分割技术

20世纪80年代末以来,随着一些特殊理论的出现及其成熟,如数学形态学、分形理论、模糊数学、小波分析、模式识别、遗传算法等,大量学者致力于将新的概念、新的方法用于图像分割,有效地改善了分割效果。产生了不少新的分割算法。下面对这些算法做一些简单的概括。

基于数学形态学的分割算法

分水岭算法是一种经典的借鉴了数学形态理论的分割方法。该方法中,将一幅图像比为一个具有不同高度值的地形,高灰度值处被认为是山脊,底灰度值处被认为是山谷,将一滴水从任一点流下,它会朝地势底的地方流动,最终聚于某一局部最底点,最后所有的水滴会分聚在不同的吸引盆地,由此,相应的图像就被分割成若干部分。分水岭算法具有运算简单、性能优良,能够较好提取运动对象轮廓、准确得到运动物体边缘的优点。但分割时需要梯度信息,对噪声较敏感。

基于模糊数学的分割算法

目前,模糊技术在图像分割中应用的一个显著特点就是它能和现有的许多图像分割方法相结合,形成一系列的集成模糊分割技术,例如模糊聚类、模糊阈值、模糊边缘检测技术等。

这类方法主要有广义模糊算子与模糊阈值法两种分割算法。

(1)广义模糊算子在广义模糊集合的范围内对图像处理,使真正的边缘处于较低灰度级,但还有一些不是边缘的像素点的灰度也在较低灰度级中,虽然算法的计算简明,且边缘细腻,但得到的边缘图会出现断线问题。

(2)模糊阈值法引入灰度图像的模糊数学描述,通过计算图像的模糊熵来选取图像的分割阈值,后用阈值法处理图像得到边界。

基于遗传算法的分割方法

此算法是受生物进化论思想提出的一种优化问题的解决方法,它使用参数编码集而不是参数本身,通过模拟进化,以适者生存的策略搜索函数的解空间,它是在点群中而不是在单点进行寻优。遗传算法在求解过程中使用随机转换规则而不是确定性规则来工作,它唯一需要的信息是适应值,通过对群体进行简单的复制、杂交、变异作用完成搜索过程。由于此法能进行能量函数全局最小优化搜索,且可以降低搜索空间维数,降低算法对模板初始位置的敏感,计算时间也大为减少。其缺点是容易收敛于局部最优。

基于神经网络分割算法

人工神经网络具有自组织、自学习、自适应的性能和非常强的非线性映射能力,适合解决背景知识不清楚、推理规则不明确和比较复杂的分类问题,因而也适合解决比较复杂的图像分割问题。原则上讲,大部分分割方法都可用 ANN(attificial neural network)实现。ANN 用于分割的研究起步较晚,只有多层前馈NN,多层误差反传(BP)NN,自组织NN,Hopfield NN以及满足约束的NN(CSNN-Const raint Satisfaction Neurat Network)等得到了应用。使用一个多层前向神经网络用于图象分割,输入层神经元的数目取决于输入特征数,而输出层神经元的数目等同于分类的数目。

图像分割中的其他方法

前面介绍了4大类图像分割较常用的方法,有关图像分割方法和文献很多,新方法不断产生,这些方法有的只对特定的情形有效,有的综合了几种方法,放在一起统称为第5类。

(1)标号法(labeling)是一种基于统计学的方法,这种方法将图像欲分割成的几个区域各以一个不同的标号来表示,用一定的方式对图像中的每一个像素赋以标号,标号相同的像素就合并成该标号所代表的区域。

(2)基于Snak模型的分割方法,基于Snake模型的分割是通过对能量函数的动态优化来逼近图像目标的真实轮廓的

(3)纹理分割,由于新的数学工具的引入,纹理分割技术取得了一些进展,张蓬等人将小波分析应用于纹理基元提取。

(4)基于知识的图像分割方法,直接建立在先验知识的基础上,使分割更符合实际图像的特点。该方法的难度在于知识的正确合理的表示与利用。

3图像分割性能的评价

图像分割评价主要有两个方面的内容:一是研究各分割算法在不同情况下的表现,掌握如何选择和控制其参数设置,以适应不同需要。二是分析多个分割算法在分割同一图像时的性能,比较优劣,以便在实际应用中选取合适的算法。分割评价方法分为分析法和实验法两大类。分析法是直接分析分割算法本身的原理及性能,而实验法是通过对测试图像的分割结果来评价算法的。两种方法各有优劣,由于缺乏可靠理论依据,并非所有分割算法都能够通过分析法分析其性能。每种评价方法都是出于某种考虑而提出来的,不同的评价方法只能反映分割算法性能的某一性能。另一方面,每一种分割算法的性能是由多种因素决定的,因此,有可能需要多种准则来综合评价。

4图像分割技术的发展趋势

随着神经网络、遗传算法、统计学理论、小波理论以及分形理论等在图像分割中的广泛应用,图像分割技术呈现出以下的发展趋势:(1)多种特征的融合。(2)多种分割方法的结合。(3)新理论与新方法。

参考文献

[1] [美]RC冈萨雷斯.数字图像处理(第二版)[M].阮秋琦,等译.北京:电子工业出版社,2003

[2] 章毓晋.图像分割[M].北京:科学出版社,2001.

[3] 李弼程,彭天强,彭波等.智能图像处理技术[M].北京:电子工业出版社,2004.

[4] 杨晖,曲秀杰.图像分割方法综述[J].电脑开发与应用。2005,18(3):21-23.

点击下页还有更多>>>图像分割技术论文

随着图像处理技术的迅速发展,图像识别技术的应用领域越来越广泛。我整理了图像识别技术论文,欢迎阅读!

图像识别技术研究综述

摘要:随着图像处理技术的迅速发展,图像识别技术的应用领域越来越广泛。图像识别是利用计算机对图像进行处理、分析和理解,由于图像在成像时受到外部环境的影响,使得图像具有特殊性,复杂性。基于图像处理技术进一步探讨图像识别技术及其应用前景。

关键词:图像处理;图像识别;成像

中图分类号:TP391 文献标识码:A 文章编号:1009-3044(2013)10-2446-02

图像是客观景物在人脑中形成的影像,是人类最重要的信息源,它是通过各种观测系统从客观世界中获得,具有直观性和易理解性。随着计算机技术、多媒体技术、人工智能技术的迅速发展,图像处理技术的应用也越来越广泛,并在科学研究、教育管理、医疗卫生、军事等领域已取得的一定的成绩。图像处理正显著地改变着人们的生活方式和生产手段,比如人们可以借助于图像处理技术欣赏月球的景色、交通管理中的车牌照识别系统、机器人领域中的计算机视觉等,在这些应用中,都离不开图像处理和识别技术。图像处理是指用计算机对图像进行处理,着重强调图像与图像之间进行的交换,主要目标是对图像进行加工以改善图像的视觉效果并为后期的图像识别大基础[1]。图像识别是利用计算机对图像进行处理、分析和理解,以识别各种不同模式的目标和对像的技术。但是由于获取的图像本事具有复杂性和特殊性,使得图像处理和识别技术成为研究热点。

1 图像处理技术

图像处理(image processing)利用计算机对图像进行分析,以达到所需的结果。图像处理可分为模拟图像处理和数字图像图像处理,而图像处理一般指数字图像处理。这种处理大多数是依赖于软件实现的。其目的是去除干扰、噪声,将原始图像编程适于计算机进行特征提取的形式,主要包括图像采样、图像增强、图像复原、图像编码与压缩和图像分割。

1)图像采集,图像采集是数字图像数据提取的主要方式。数字图像主要借助于数字摄像机、扫描仪、数码相机等设备经过采样数字化得到的图像,也包括一些动态图像,并可以将其转为数字图像,和文字、图形、声音一起存储在计算机内,显示在计算机的屏幕上。图像的提取是将一个图像变换为适合计算机处理的形式的第一步。

2)图像增强,图像在成像、采集、传输、复制等过程中图像的质量或多或少会造成一定的退化,数字化后的图像视觉效果不是十分满意。为了突出图像中感兴趣的部分,使图像的主体结构更加明确,必须对图像进行改善,即图像增强。通过图像增强,以减少图像中的图像的噪声,改变原来图像的亮度、色彩分布、对比度等参数。图像增强提高了图像的清晰度、图像的质量,使图像中的物体的轮廓更加清晰,细节更加明显。图像增强不考虑图像降质的原因,增强后的图像更加赏欣悦目,为后期的图像分析和图像理解奠定基础。

3)图像复原,图像复原也称图像恢复,由于在获取图像时环境噪声的影响、运动造成的图像模糊、光线的强弱等原因使得图像模糊,为了提取比较清晰的图像需要对图像进行恢复,图像恢复主要采用滤波方法,从降质的图像恢复原始图。图像复原的另一种特殊技术是图像重建,该技术是从物体横剖面的一组投影数据建立图像。

4)图像编码与压缩,数字图像的显著特点是数据量庞大,需要占用相当大的存储空间。但基于计算机的网络带宽和的大容量存储器无法进行数据图像的处理、存储、传输。为了能快速方便地在网络环境下传输图像或视频,那么必须对图像进行编码和压缩。目前,图像压缩编码已形成国际标准,如比较著名的静态图像压缩标准JPEG,该标准主要针对图像的分辨率、彩色图像和灰度图像,适用于网络传输的数码相片、彩色照片等方面。由于视频可以被看作是一幅幅不同的但有紧密相关的静态图像的时间序列,因此动态视频的单帧图像压缩可以应用静态图像的压缩标准。图像编码压缩技术可以减少图像的冗余数据量和存储器容量、提高图像传输速度、缩短处理时间。

5)图像分割技术,图像分割是把图像分成一些互不重叠而又具有各自特征的子区域,每一区域是像素的一个连续集,这里的特性可以是图像的颜色、形状、灰度和纹理等。图像分割根据目标与背景的先验知识将图像表示为物理上有意义的连通区域的集合。即对图像中的目标、背景进行标记、定位,然后把目标从背景中分离出来。目前,图像分割的方法主要有基于区域特征的分割方法、基于相关匹配的分割方法和基于边界特征的分割方法[2]。由于采集图像时会受到各种条件的影响会是图像变的模糊、噪声干扰,使得图像分割是会遇到困难。在实际的图像中需根据景物条件的不同选择适合的图像分割方法。图像分割为进一步的图像识别、分析和理解奠定了基础。

2 图像识别技术

图像识别是通过存储的信息(记忆中存储的信息)与当前的信息(当时进入感官的信息)进行比较实现对图像的识别[3]。前提是图像描述,描述是用数字或者符号表示图像或景物中各个目标的相关特征,甚至目标之间的关系,最终得到的是目标特征以及它们之间的关系的抽象表达。图像识别技术对图像中个性特征进行提取时,可以采用模板匹配模型。在某些具体的应用中,图像识别除了要给出被识别对象是什么物体外,还需要给出物体所处的位置和姿态以引导计算初工作。目前,图像识别技术已广泛应用于多个领域,如生物医学、卫星遥感、机器人视觉、货物检测、目标跟踪、自主车导航、公安、银行、交通、军事、电子商务和多媒体网络通信等。主要识别技术有:

指纹识别

指纹识别是生物识别技术中一种最实用、最可靠和价格便宜的识别手段,主要应用于身份验证。指纹识别是生物特征的一个部分,它具有不变性:一个人的指纹是终身不变的;唯一性:几乎没有两个完全相同的指纹[3]。一个指纹识别系统主要由指纹取像、预处理与特征提取、比对、数据库管理组成。目前,指纹识别技术与我们的现实生活紧密相关,如信用卡、医疗卡、考勤卡、储蓄卡、驾驶证、准考证等。

人脸识别 目前大多数人脸识别系统使用可见光或红外图像进行人脸识别,可见光图像识别性能很容易受到光照变化的影响。在户外光照条件不均匀的情况下,其正确识别率会大大降低。而红外图像进行人脸识别时可以克服昏暗光照条件变化影响,但由于红外线不能穿透玻璃,如果待识别的对象戴有眼镜,那么在图像识别时,眼部信息全部丢失,将严重影响人脸识别的性能[4]。

文字识别

文字识别是将模式识别、文字处理、人工智能集与一体的新技术,可以自动地把文字和其他信息分离出来,通过智能识别后输入计算机,用于代替人工的输入。文字识别技术可以将纸质的文档转换为电子文档,如银行票据、文稿、各类公式和符号等自动录入,可以提供文字的处理效率,有助于查询、修改、保存和传播。文字识别方法主要有结构统计模式识别、结构模式识别和人工神经网络[5]。由于文字的数量庞大、结构复杂、字体字形变化多样,使得文字识别技术的研究遇到一定的阻碍。

3 结束语

人类在识别现实世界中的各种事物或复杂的环境是一件轻而易举的事,但对于计算机来讲进行复杂的图像识别是非常困难的[6]。在环境较为简单的情况下,图像识别技术取得了一定的成功,但在复杂的环境下,仍面临着许多问题:如在图像识别过程中的图像分割算法之间的性能优越性比较没有特定的标准,以及算法本身存在一定的局限性,这使得图像识别的最终结果不十分精确等。

参考文献:

[1] 胡爱明,周孝宽.车牌图像的快速匹配识别方法[J].计算机工程与应用,2003,39(7):90—91.

[2] 胡学龙.数字图像处理[M].北京:电子工业出版社,2011.

[3] 范立南,韩晓微,张广渊.图像处理与模式识别[M].北京:科学出版社,2007.

[4] 晓慧,刘志镜.基于脸部和步态特征融合的身份识别[J].计算机应用,2009,1(29):8.

[5] 陈良育,曾振柄,张问银.基于图形理解的汉子构型自动分析系统[J].计算机应用,2005,25(7):1629-1631.

[6] Sanderson C,Paliwal K Fusion and Person Verification Using Speech & Face Information[C].IDIAP-RR 02-33,Martigny,Swizerland,2002.

点击下页还有更多>>>图像识别技术论文

图像处理是利用计算机对图像信息进行加工以满足人的视觉心理或者应用需求的行为,应用广泛,多用于测绘学、大气科学、天文学、美图、使图像提高辨识等。学术堂在这里为大家整理了一些图像处理本科毕业论文题目,希望对你有用。1、基于模糊分析的图像处理方法及其在无损检测中的应用研究2、数字图像处理与识别系统的开发3、关于数字图像处理在运动目标检测和医学检验中若干应用的研究4、基于ARM和DSP的嵌入式实时图像处理系统设计与研究5、基于图像处理技术的齿轮参数测量研究6、图像处理技术在玻璃缺陷检测中的应用研究7、图像处理技术在机械零件检测系统中的应用8、基于MATLAB的X光图像处理方法9、基于图像处理技术的自动报靶系统研究10、多小波变换及其在数字图像处理中的应用11、基于图像处理的检测系统的研究与设计12、基于DSP的图像处理系统的设计13、医学超声图像处理研究14、基于DSP的视频图像处理系统设计15、基于FPGA的图像处理算法的研究与硬件设计

相关百科

热门百科

首页
发表服务