首页

> 期刊论文知识库

首页 期刊论文知识库 问题

数据可视化研究生论文有哪些

发布时间:

数据可视化研究生论文有哪些

给你出个题目,数据可视化是下一个“印刷机”吗:数据可视化对信息技术的改变,可能就像当年的海德堡印刷机的发明一样,对人类的历史进程,产生巨大的推动作用。数据可视化的应用,不仅提高了分析效率,提升了图表质量和效果,更重要的是降低了数据分析和交互的技术门槛,使得数据分析和呈现不再是少数人的特权。当数据可视化软件普及成一种基本工具的时候,提升的是所有人的分析判断事物的能力。建议先去看看 麦克卢汉的理解媒介,再去看看洛根的字母表效应,另外,再找几本中国文字的书看看。看看能不能找到数据可视化可以给中国带来什么样的超车机遇,毕竟,汉字是最早的可视化信息传送方式

参看一下计算机科学与应用的文章吧

本论文主题是城市基础数据可视化,通过利用可查询的城市基础数据设计出一套利用网页电子地图展示城市基础数据的方案。

数据可视化论文研究方法

论文文献研究方法部分怎么写

论文文献研究方法部分怎么写,毕业论文对大学生是很重要的一项内容,如果毕业论文不通过就可能毕不了业了,论文的研究方法是很重要的,下面我和大家分享论文文献研究方法部分怎么写,一起来了解一下吧。

1、调查法

调查法是最为常用的方法之一,是指有目的、计划的搜集与论文主题有关的现实状况以及历史状况的资料,并对搜集过来的资料进行分析、比较与归纳。调查法会用到问卷调查法,分发给有关人员,然后加以回收整理出对论文有用的信息。

2、观察法

观察法是指研究者用自己的感官或者其他的辅助工具,直接观察被研究的对象,可以让人们的观察的过程中,可以拥有新的发现,还可以更好的启发人们的思维。

3、文献研究法

以一定的目标,来调查文献,从而获得关于论文的更加全面、正确地了解。文献研究法有助于形成对研究对象的一般印象,可以对相关资料进行分析与比较,从而获得事物的全貌。

论文研究方法最为典型的有调查法、观察法以及文献研究法,都是值得大家采用的方法。

论文写作中的研究方法与研究步骤

一、研究的循环思维方式

二、研究的路径

三、研究的分析方法

四、研究过程的设计与步骤

五、对传统研究思维模式的再思考

在我们指导研究生写论文的过程中,甚至于我们自己从事课题研究时,不禁让我们思考一系列有关研究的基本问题。例如,我们为什么要写论文?我们为什么要做研究?在我们探讨论文写作的过程中,我们是为了完成论文本身的写作,还是完成一个研究过程?写论文与做研究之间有什么联系与区别?如果论文写作应该反映一个研究过程,那么研究过程应该是什么样的?我们用什么样的方法进行研究?我们发现这些问题的解决,对指导研究生的论文写作有非常大的帮助。因此,本文就以我个人在从事教学课题研究和指导研究生完成论文中总结的一些有关研究方法与研究步骤的问题与大家交流共享。欢迎大家参与讨论。

世界上无论哪个领域都存在许多未知的事物,也存在着许多未知的规律。我们研究者的主要任务就是要不断地从大量的事实中总结规律,将之上升到可以指导实践的理论。然而理论也并不是绝对的真理,它也要在实践中不断地被修正,因此,就会有人对理论的前提和内容进行质疑,并提出新的猜想和新的思维。新的猜想和新的思维又要在实践中进行验证,从而发展和完善理论体系。我们探求未知事物及其规律就需要有研究的过程。这个过程,我们称之为研究的循环思维方式(Research Cycle)。用概念模型来表述就是[1]:

Facts —Theory—Speculation

事实——理论——猜想

上述从“事实”到“理论”,再进行“猜想”就构成了一般研究的思路。从事科学研究的人员既要侧重从事实到理论的研究过程,也同时在研究中要有质疑和猜想的勇气。而这一思路并不是一个终极过程,而是循环往复的过程。当猜想和质疑得到了事实的证明后,理论就会得到进一步的修正。

上述研究的循环思维方式就是我们通常说的理论与实践关系中理论来源于实践的过程。这个过程需要严密的逻辑思维过程(Thought Process)。通常被认为符合科学规律,而且是合理有效的逻辑思维方法为演绎法(Deduction)和归纳法(Induction)。这两种逻辑思维方式应该贯穿研究过程的始终。

另外,从知识管理角度看研究的过程,在某种意义上,研究的过程也可以被理解为,将实践中的带有经验性的隐性知识转化为可以让更多的人共享的系统规律性的显性知识。而显性知识的共享才能对具体的实践产生普遍的影响。研究者除了承担研究的过程和得出研究的结论之外,还要将这一研究的过程和结论用恰当的方式表述出来,让大家去分享。不能进行传播和与人分享的任何研究成果,对社会进步都是没有意义的。

我们认为,研究人员(包括研究生)撰写论文就是要反映上述研究过程,不断探索和总结未知事物及其规律,对实践产生影响。我们强调,论文的写作不是想法(idea)的说明,也不仅是过程的表述。论文的写作要遵循一定的研究方法和步骤,在一定的假设和前提下,去推理和/或验证某事物的一般规律。因此,对研究方法的掌握是写好论文的前提条件。

研究的路径(Approaches)是我们对某事物的规律进行研究的出发点或者角度。研究通常有两个路径(Approaches):实证研究和规范研究。

实证研究(Empirical Study)一般使用标准的度量方法,或者通过观察对现象进行描述,主要用来总结是什么情况(what is the case)。通常研究者用这种研究路径去提出理论假设,并验证理论。规范研究(Normative Study):是解决应该是什么(what should be)的问题。研究者通常是建立概念模型(Conceptual Model)和/或定量模型(Quantitative Model)来推论事物的发展规律。研究者也会用这种路径去建立理论规范。

我们认为,上述两种研究的路径不是彼此可以替代的关系。二者之间存在着彼此依存和相辅相成的关系。对于反映事物发展规律的理论而言,实证研究与规范研究二者缺一不可,前者为理论的创建提供支持和依据;后者为理论的创建提供了可以遵循的研究框架和研究思路。

针对上述两个路径,研究过程中都存在着分析(Analytical)过程,也就是解释为什么是这样的情况(Explaining why the case is as it is),而分析过程就需要具体的研究分析方法来支持。

[2]。然而,更多的学者倾向认为,定量与定性的方法问题更多的是从分析技术上来区别的[3]。因为,任何的研究过程都要涉及数据的收集,而数据有可能是定性的,也有可能是定量的。我们不能将定量分析与定性分析对立起来。在社会科学和商务的研究过程中既需要定量的研究分析方法,也需要定性的研究分析方法。针对不同的研究问题,以及研究过程的不同阶段,不同的分析方法各有优势。两者之间不存在孰优孰劣的问题。对于如何发挥各自优势,国外的一些学者也在探索将两者之间的有机结合[4]。

因此,定性分析方法是对用文字所表述的内容,或者其他非数量形式的数据进行分析和处理的方法。而定量分析方法则是对用数量所描述的内容,或者其他可以转化为数量形式的数据进行分析和处理的方法。一项研究中,往往要同时涉及到这两种分析方法[5]。定性分析是用来定义表述事物的基本特征或本质特点(the what),而定量分析是用来衡量程度或多少(the how much)。定性分析往往从定义、类推、模型或者比喻等角度来概括事物的特点;定量分析则假定概念的成立,并对其进行数值上衡量[6]。

定量分析的主要工具是统计方法,用以揭示所研究的问题的数量关系。基本描述性的统计方法包括:频数分布、百分比、方差分析、离散情况等。探索变量之间关系的方法包括交叉分析、相关度分析、多变量之间的多因素分析,以及统计检验等。定量研究之所以被研究者所强调,是因为定量分析的过程和定量结果具有某种程度的系统性(Systematic)和可控性(Controlled),不受研究者主观因素所影响。定量分析被认为是实证研究的主要方法。其优势是对理论进行验证(Theory Testing),而不是创建理论(Theory Generation)。当然,相对自然科学的研究,社会科学和商务研究由于人的因素存在,其各种变量的可控性被遭到质疑,因此,定量分析被认为是准试验法(Quasi-experimental approach)

定性研究有其吸引人的一面。因为文字作为最常见的定性研究数据是人类特有的,文字的.描述被认为具有“丰富”、“全面”和“真实”的特点。定性数据的收集也最直接的。因此,定性分析与人有最大的亲和力。恰恰也就是这一点,定性分析也具有了很大的主观性。如果用系统性和可控性来衡量研究过程的科学性。定性分析方法比定量分析方法更被遭到质疑[7]。然而,定性数据被认为在辅助和说明定量数据方面具有重要价值[8]。实际上,定性分析方法往往贯穿在研究过程的始终,包括在数据的收集之前,有关研究问题的形成、理论的假设形成,以及描述性分析框架的建立等都需要定性的分析过程,即对数据进行解释和描述等。如果遵循系统性和可控性的原则,那么定性分析方法在数据的收集过程中也有一些可利用的辅助工具,例如,摘要法、卡片法、聚类编码法等。在研究结论的做出和结论的描述方面,像矩阵图、概念模型图表、流程图、组织结构图、网络关系图等都是非常流行的定性分析工具。另外,从定性的数据中也可以通过简单的计算、规类等统计手段将定性分析与定量分析方法结合起来。

这里要指出的是,科学研究不能用想法(idea)本身来代替。科学研究需要有一个过程,而这个过程是用一定的方法来证明有价值的想法,并使之上升为理论;或者通过一定的方法来证明、创建或改进理论,从而对实践和决策产生影响。研究过程的科学性决定了研究成果是否会对实践和决策产生积极的影响效果[9]。

第五步、进行数据的处理和分析

数据的处理主要是保证数据的准确性,并将原始的数据进行分类,以便转化成可以进行进一步分析的形式。数据处理主要包括数据编辑、数据编码和数据录入三个步骤。数据编辑(Data Editing)就是要识别出数据的错误和遗漏,尽可能改正过来,以保证数据的准确性、一致性、完整性,便于进一步的编码和录入。数据编码(Data Coding)就是对所收集的第一手数据(例如对问卷开放式问题的回答)进行有限的分类,并赋予一个数字或其他符号。数据编码的主要目的是将许多的不同回答减少到对以后分析有意义的有限的分类。数据录入(Data Entry)是将所收集的第一手或者第二手数据录入到可以对数据进行观察和处理的计算机中,录入的设备包括计算机键盘、光电扫描仪、条形码识别器等。研究者可以用统计分析软件,例如SPSS等对所形成的数据库进行数据分析。对于少量的数据,也可以使用工作表(Spreadsheet)来录入和处理。

数据的分析就是运用上述所提到的定性或定量的分析方法来对数据进行分析。研究者要根据回答不同性质的问题,采取不同的统计方法和验证方法。对于有些研究,仅需要描述性的统计方法,对于另一些研究可能就需要对假设进行验证。在统计学中,假设的验证需要推论的统计方法(Inferential Statistics)。对于社会科学和商务的研究,一些研究是针对所获取的样本进行统计差异(Statistical Significance)的验证,最终得出结论是拒绝(Reject)还是不拒绝(Fail to Reject)所设定的假设条件。另一些研究则是进行关联度分析(Measures of Association),通常涉及相关分析(Correlation)和回归分析(Regression)。相关分析是通过计算来测度变量之间的关系程度;而回归分析则是为预测某一因变量的数值而创建一个数学公式。

值得注意的是,随着我们研究和分析的`问题越来越复杂,计算机和统计软件的发展使得多变量统计工具应用越来越广泛。如果多变量之间是从属关系,我们就需要从属关系的分析技巧(Dependency Techniques),如多元回归分析(Multiple Regression)、判别分析(Discriminant Analysis)、方差的多元分析(MANOVA,Multivariate Analysis of Variance)、典型相关分析(Canonical Analysis)、线性结构关系分析(LISREL,Linear Structural Relationships)、结合分析(Conjoint Analysis)等。如果多变量之间是相互依赖关系,我们就需要相互依赖关系的分析技巧(Interdependency Techniques),如因子分析(Factor Analysis)、聚类分析(Cluster Analysis)、多维尺度分析(Multidimensional Scaling)等。如果收集的数据有明显的时间顺序,我们不考虑变量之间的因果关系,而是重点考察变量在时间方面的发展变化规律,我们就需要时间序列分析(Time Series Analysis)。目前流行的统计软件,如SPSS对上述各种分析方法都提供非常好的支持。

第六步、得出结论,并完成论文

论文的撰写要结构合理、文字表达清楚确定,容易让人理解。形式上要尽量采取可视化的效果,例如多用图表来表现研究过程和研究结果。具体论文的撰写要考虑包含如下内容:摘要、研究介绍(包括背景、研究的问题、研究的目的)、研究的方法和步骤(样本选择、研究设计、数据收集、数据分析、研究的局限性)、研究的发现、结论(简要结论、建议、启示意义)、附录、参考文献。

针对社会科学和商务领域的问题研究,我们传统上所遵循的研究思维模式是:“提出问题、分析问题和解决问题”。我们承认这是一种创造性的思维过程。遵循这种思维方式可以帮助决策者快速找到问题,并解决问题。然而,用这一思维模式来指导研究的过程,容易使我们混淆研究者与决策者的地位,找不准研究者的定位。首先,这一研究思路和模式将问题的解决和问题的研究混在一起了。其次,没有突出,或者说掩盖了对研究方法的探讨和遵循。这种传统的思维方式是结果导向的思维方式。它忽略了问题的识别过程和研究方法的遵循过程。而从科学研究的角度看,问题的识别过程和研究方法的遵循过程是一项研究中非常重要的两个前提。问题的识别过程可以保证所研究的问题有很强的针对性,与理论和实践紧密联系,防止出现只做表面文章的情况,解决不了根本问题。研究方法的遵循过程可以保证研究结果的可靠性,使研究结果有说服力。当然,在此,我们并不是说明“提出问题、分析问题和解决问题”这一传统模式是错误的,也不否认研究的目的是指导实践。然而,我们觉得,这一传统研究思维模式太笼统,太注重结果导向,不足以说明科学的研究的一般方法和研究步骤。

在社会科学和商务研究中,运用这一传统的研究思路和模式来指导学生撰写论文,容易出现两个不良的倾向。一是使我们过于重视论文本身的写作过程,而忽略了论文写作背后的研究过程和研究方法。也就是只强调结果,不重视过程。在此情况下,论文的写作多半是进行资料的拼凑和整合。当然我们并不能低估资料的拼凑和整合的价值。可是,如果一味将论文的写作定位在这样的过程,显然有就事论事的嫌疑,无助于问题的澄清和问题的解决,也有悖于知识创造的初衷。特别是,既没有识别问题的过程,也没有形成研究问题和研究假设,甚至没有用任何可以遵循的研究分析方法,就泛泛对一个问题进行一般描述,进而提出感觉上的解决方案。这种研究结果是很难被接受的。第二个不良的倾向是上述传统的研究思路和模式使我们辨别不清我们是在做研究,还是在做决策。研究通常是在限定的一个范围内,在一定的假设前提下进行证明或推理,从而得出一定的结论。我们希望这个结论对决策者能产生影响。然而,决策者毕竟与研究者所处的地位是不一样的,考虑的问题与研究者或许一致,或许会很不一致。有价值的研究是要给处在不同地位的决策者(或者实践者)给予启示,并促其做出多赢的选择。因此,传统的研究思维模式缺乏研究的质量判定标准,缺乏系统性和可控性,也不具备可操作性,容易让研究者急功近利,盲目追求片面的终极的解决方案。

在指导对外经济贸易大学研究生的实践中,我们曾试图改变以往的传统思维模式,尝试让我们的研究生将论文的写作与研究过程结合起来,特别注重研究的过程和研究方法,并且要求在论文的写作中反映这些研究的方法与步骤。例如,2002届研究生万莲莲所写的《电子采购系统实施中的管理因素-摩托罗拉公司电子采购系统实施案例研究》硕士论文就是在这方面所做的最初探索。此论文的结构就分为综述、指导理论、方法论、数据分析,以及研究结论和启示等五个主要部分,运用了问卷调查和深度访谈等定性和定量的各种具体方法。其研究结论具有非常强的说服力,因为研究者并不限于第二手资料的收集、整理和加工,而是借鉴前人的理论研究框架,运用问卷定量调查等手段,遵循案例研究的方法,对第一手资料进行收集、处理和分析之后得出的结论,对实践具有较强的指导意义。相同的研究方法,我们又应用在其他研究生的论文写作过程中,例如2002届龚托所写的《对影响保险企业信息技术实施的主要因素的研究》、2003届王惟所写的《对中国铜套期保值现状的研究》,以及2003届马鸣锦所写的《中国银行业知识管理程度与网络银行发展程度的关系研究》等。通过论文写作,这些研究生的确掌握了一般研究的方法和研究的步骤。以上的研究结论对教学和实践直接有借鉴的意义。在教学和咨询过程中,其方法和结论都得到了肯定。据多方反馈,效果还是非常好的。

【注释】:

[1]这是笔者在美国芝加哥自然博物馆看恐龙展览时了解的美国科学家的基本研究思路而得到的启示。

[2] Robson, Colin (1993), Real World Research: A Resource for Social Scientists and Practitioner-Researcher. Blackwell Publishers, P303。

[3] Bryman, A. (1988), Quality and Quantity in Social Research. London: Unwin Hyman.我们发现许多文献资料将定量与定性分析方法称为定量与定性技术(techniques)

[4] Cook, . and Reichardt, . (1979) Qualitative and Quantitative Methods in Evaluation Research. Newbury Park and London: Sage. Ragin, C. C. (1987) The Comparative Method: moving beyond qualitative and quantitative strategies. Berkeley, Cal.: University of California Press.

[5]Robson, Colin (1993), Real World Research: A Resource for Social Scientists and Practitioner-Researcher. Blackwell Publishers, P307。

[6] John Van Maanen, James M. Dabbs, Jr., and Robert R. Faulkner, Varieties of Qualitative Research (Beverly Hills: Calif.: Sage Publications, 1982), P32

[7] 这是因为社会科学和商务研究中包括了人的因素,而人本身作为分析者具有自身的缺陷。例如:数据的有限性、先入为主的印象、信息的可获得性、推论的倾向性、思维的连续性、数据来源可靠性、信息的不完善性、对信息价值判断误差、对比的倾向性、过度自信、并发事件与相关度的判断,以及统计数据的不一致性等。上述缺陷的总结与分析来源于Sadler, D. R. (1981) Intuitive Data Processing as a Potential Source of Bias in Educational Evaluation. Educational Evaluation and Policy Analysis, 3, P25-31。

[8] Robson, Colin (1993), Real World Research: A Resource for Social Scientists and Practitioner-Researcher. Blackwell Publishers, P371。

[9] Ronald R. Cooper, C. William Emory (1995, 5th ed) Business Research Methods, IRWIN, P352

将高维数据点以可视化的方式呈现出来是探索式数据分析的一个重要研究课题,例如对于多张64*64的像素图,将每张图转化为行向量后可以表示为4096维空间中的数据点,如果能将这些数据点可视化到平面视图中, 并在某种程度上保留数据点间的分布规律,就能以人类可感知的方式探索原始图像集背后隐藏的规律。各个学科领域采集的数据如全球气候数据、人类基因分布、金融统计等经常呈现出高维的特征,所以研究高维数据的可视化方法具有极大的现实意义。   由于人类肉眼仅限于感知二/三维空间中的几何图形,所以高维数据点只有以二/三维的视觉元素表达后才能使人直观的观测数据分布的规律。在二维平面上可视化超过两个维度的方法有很多,比如散点图矩阵,平行坐标,Andrew曲线,星形图等,这些方法面对高维数据时也会产生视觉混淆的问题。降维算法是利用线性或者非线性变换将高维观测空间中的数据投影到一个有意义的低维空间中,同时尽量保持数据的内在结构不被改变 ,进而获取数据集内在特征的低维表示。   针对不同目的所使用的降维方法有所不同,比如特征工程是利用专家的知识和经验进行特征抽取和组合以达到降低运算复杂度的目的,而针对可视化呈现效果我们对不同的降维技术又有不同的评估标准。   通常针对可视化的降维问题的形式化表述如下:   该映射要使在高维空间中相距较近的点在低维空间中也应较近,在高维空间中相距较远的点在低维空间中也应较远。使高维数据点集嵌入到低维空间后尽量还原其整体和局部的拓扑结构。根据映射 的性质,降维可分为线性的和非线性的。   线性降维方法将高维数据集通过线性映射到低维空间,最常见的线性降维算法有 PCA ( Principal Component Analysis ), MDS ( Classical Multidimensional Scaling ),等。   以 PCA 为例,通过寻找一组线性向量基,将数据映射到其均方误差失真最小的低维线性空间中并尽量保持高维数据集对方差贡献最大的特征。具地地,对于高维数据集 , PCA 通过将 (数据集 的方差矩阵)进行特征值分解,取前几个较大的特征值对应的特征向量组成的线性映射矩阵 ,也就是最大化 的线性映射矩阵 , 的行数就是最终低维空间的维度,通过这种映射方法,低维空间中的数据集将尽量保留最大的信息量(方差),从而达到压缩原始数据的维度的目的。   与 PCA 相似, MDS(Classical) 方法求取的映射也是线性的,不同的是 MDS(Classical) 算法是从数据点对之间的相似性矩阵出发来构造合适的低维空间中的点集,使得数据的内在线性结构在低维空间中得以保持,相似度一般用欧氏距离来衡量。   上述方法,由于映射方法是线性的,将高维空间中局部存在的线性结构可视化后还能还原其结构,但对相距较远的点之间非线性的关系映射到低维空间后则会失真。比如我们将 PCA 方法应用到两类不同的三维数据集。   图(c)和(d)揭示了对于高维空间中的低维流形,更重要的是将那些高维空间中紧密靠近的点集在低维空间中形成聚类效果,比如图c三维空间中所有蓝色的点,而对于蓝色和黄色的点在二维平面中则应该更加的分散。 PCA 方法显然将蓝色点与黄色点混淆在一起了,所有基于线性映射的方法都存在这样的缺陷。   为了克服线性降维算法的缺陷,涌现了一批非线性降维算法。在探讨这些算法之前,有必要引入讨论下流形学习的背景知识。   三维空间中的地球,我们只用两个维度(经度和纬度)就可以维一的定位地面上任意一点。如图所示三维空间中的面包卷结构上,我们将它锤平后可以近似看作几个二维平面拼接在一起,我们可以确认它的本征维度为2。现实生活中的高维数据其实大量存在低维流形结构。2000年,Seung等人在《Science》上发表的论文【8】首次从流形的角度解释了人类的视觉认知形式,提出了流形是人类认知的基础的观点,这种认知形式可以抽象成维数与神经元数目相当的抽象空间中的点。例如,虽然人脸的图像是由 像素点组成的高维数据点,但是图中只有头像的角度变化,理论上可以只用一个自由度去描述这几个头像图的变化,也就是 高维空间中的一维流形,而人类认知这个复杂人脸的变化可能只需要一个感知角度的神经元。现实中,一个图像中的人脸可能还加入明暗度,大小,表情变化等自由度,但其本征维度远低于 像素点的维度。更重要的是,随着分辨率的提高,维度急剧增加,流形的本征维度却没有变化。  图(a)中的红色虚线表示两点间的欧氏距离,蓝线表示实际距离。图(c)中的红色实线表示knn路径对实际距离的近似。   有了计算流形中两点相似度的方法后,在这之上就有了将高维空间中的低维流形嵌入低维空间中以表征其结构的降维方法,这被称为流形学习。 ISOMAP和LLE降维算法是流形学习的奠基之作,它们从算法层面印证了高维非线性数据确实存在低维流形结果,分别从全局特征构造和局部特征构造两个角度对高维非线性数据进行低维流形结构的还原。   ISOMAP算法是一种基于全局特征保持的流形学习算法。其算法的思路基本与MDS方法一致,也是根据点对相似度距阵不断迭代寻找各数据点在低维空间中放置的位置。不同的是ISOMAP通过knn计算点对相似度距阵,用测地距离替代MDS中的欧氏距离。最终代价函数为高维空间点距离与低维空间点距离差之和,这里可以看出优化目标是全局特征,然后对这个目标函数用梯度下降迭代求最优。   ISOMAP算法在可视化流形时主要存在两个问题:(1) “短路边”的存在会严重破坏低维空间中的可视化效果,在构建knn图时如果为每个数据点选择的领域过大或者输入样本中存在异常点,可能会导致流形上不相关的两个点间产生过近的距离。(2)对于非凸的高维数据集(有孔洞),如图(b), ISOMAP不能很好的处理。(3)邻域选取过小会导致图非连通   ISOMAP试图在低维空间从全局上还原所有点对间测地距离,而LLE则试图在低维空间还原点与邻近点的局部线性关系。具体来说,LLE根据相似度矩阵构造每个点与周围几个邻近点人线性关系,然后对这个线性系数矩阵做特征分解,求出在低位空间中的坐标。LLE算法在可视化流形时主要存在两个问题:(1)邻域选取过大有时会导致很大一部分非近邻点映射为近邻点。(2)不能处理首尾相接的闭环流形。(3)邻域选取过小又可能导致找不到点的局部线性关系。   前面提到过高维空间中的流形具有远低于所在空间的本征维度,而如何估计低维流形的本征维度也是流形学习中的一个重要问题。而且这也是可视化的重要问题。如果低维流形的本征维度远大于2度,那利用降维算法将这些数据点可视化到二维散点图中就会比较困难。一个比较明显的问题就是拥挤问题【11】, 对于10维空间中的一个点A,其以R为半径的邻域为 空间中的球形, 我们假设这个邻域中均匀分布着一系列点,现在我们将点A和所有邻域中的点映射到二维平面中,将会近似一个圆。在10维空间中邻域内离A较远的点远多于A附近的点, 而这些较远点的象在二维平面上将集中在圆周附近,随着原始维度的上升,这些圆周附近的点将会变得更加拥挤,从而导致原始拓扑结构的失真。在10维空间中我们至少能同时找到10个彼此距离相等的点,而在2维空间中我们只能找到3个。如果不能解决拥挤问题,那么以低于流形本征维度的方式可视化就有很大可能失真。   本征维度被定义为在不损失信息的前提下,用来描述数据的自由变量的最小数量。局部本征维度估计方法可以分为全局本征维度估计法和局部本征维度估计法【6】。    t-SNE 算法是 SNE 算法的改进, SNE 将点对间的相似度用条件概率表述,这样任一点周围的点分布可以用高斯分布表示,然后用KL散度衡量低维空间中的分布于高维空间分布间的近视度,SNE的最终目标就是对所有点最小化这个 KL散度 。    t-SNE 作出的改进就是用在低维空间中用t分布替代高斯分布,如图1所示,高斯分布对应高维空间, t -分布对应低维空间。对于高维空间中相距较近的点,为了满足 ,低维空间中的距离需要稍小一点;而对于高维空间中相距较远的点,为了满足 ,低维空间中的距离需要更远。这就使最终的可视化效果有更好的聚类表现。 t -分布的长尾效应某种程度上缓解了拥挤问题。 t-SNE 作者还在论文【11】中提到, t -分布只适合二维可视化,其他维度的可视化需要其他分布。   t-SNE相较于ISOMAP和LLE来说有更好的可视化效果,因为它同时兼顾了全局特征和局部特征。   图是t-SNE,ISOMAP,LLE在MINIST数据(手写体数字)上的可视化效果,可以看出t-SNE在不同的类簇间形成清晰的间隔,而ISOMAP和LLE不同类间存在重叠。   本文简述了从线性降维到非线性降维的发展历史,列举了几种经典的流行学习的算法在可视化方面的效果,包括当前最流行的t-SNE算法。当前的大量降维算法均是对这几种算法的改进或是基于类似的思想。本文所有讨论都只涉及了可视化效果这一角度,而没有分析各算法的时间空间复杂度。实际上,由于“维数灾难“问题和高维数据通常伴随大尺度的特征,降维算法的运算复杂度也是一个不容忽视的问题。   最后指出一点,这些可视化的方法只能用于理论的探索和猜测,而不能做为验证理论正确性的工具,t-SNE的作者曾指出,相当一部分学术论文使用t-SNE方法时犯了这样的错误。   [1]陈为,沈则潜,陶煜波.数据可视化[M].北京:电子工业出版社,2013   [2]詹宇斌.流形学习理论与方法及其应用研究[D].长沙:国防科学技术大学,2011   [3]石浩.基于等距特征映射的非线性降维及其应用研究[D].合服:中国科学技术大学,2017.   [4]Jolliffe I Component Analysis[M].New York:Springer-Verlag,1986   [5] 从SNE到t-SNE再到LargeVis   [6]Camastra dimensionality estimation methods:a survey[J].Pattern recognition,2003,36(12):2945-2954.   [7]Pettis K W,Bailey T A,Jain A K, et intrinsic dimensionality estimator from near-neighbor information[J].IEEE Transactions on pattern analysis and machine intelligence,1979,PAMI-1(1):25-37   [8]Seung,HS,Lee D manifold ways of perception[J].science,2000,290(5500):2268-2269.   [9]Tenenbaum J B,De Silva V,Langford J C. A global geometric framework for nonlinear dimensionality reduction[J].science, 2000,290(5500):2319-2323.   [10]Roweis S T,Saul L K. Nonlinear dimensionality reduction by locally linear embedding[J].science,2000,290(5500):2323-2326.   [11]Laurens V D,Geoffrey Hinton. Visualizing Data using t-SNE[J].Machine Learning Research 9(2008):2579-2605.

论文可视化分析的意思是用海量数据关联分析,辅助人工操作将数据进行关联分析,并做出完整的分析图表。

论文可视化分析是在论文查重系统在查重后呈现出的查重报告单,不同的报告单反馈着论文不同方面的数据信息,包括查重率、重合字数、疑似抄袭段落等等;把文中所有的重复部分都进行了标注和相似论文的内容和出处;对文中重复的部分进行标红,并且有引用文献列表。

论文可视化分析数据解读:

总文字复制比:即查重率,查重能不能通过的关键数据。

去除引用文献复制比:即去除文中引用文献后的查重率。

去除本人已发表文献:即去除本人已经发表收录的论文后的查重率。

单篇最大文字复制比:即与本论文相似度最高的论文的查重率。

论文研究的数据有哪些

收录学位论文的数据库有:中国知网博士学位论文全文数据库、中国知网硕士学位论文全文数据库、万方中国学位论文全文数据库等。

1、中国知网博士学位论文全文数据库。

该数据库是国内内容最全、质量最高、出版周期最短、数据最规范、最实用的博士学位论文全文数据库。内容覆盖基础科学、工程技术、农业、医学、哲学、人文、社会科学等各个领域。目前,收录1984年以来全国426家培养单位的博士学位论文290565篇。

2、中国知网硕士学位论文全文数据库。

该数据库重点收录985、211高校、中国科学院、社会科学院等重点院校高校的优秀硕士论文、重要特色学科如通信、军事学、中医药等专业的优秀硕士论文。出版内容覆盖基础科学、工程技术、农业、哲学、医学、哲学、人文、社会科学等各个领域。目前,收录来自699家培养单位的优秀硕士学位论文2671056篇。

3、万方中国学位论文全文数据库

该数据库收录的学位论文始于1980年,年增30万篇,并逐年回溯,与国内900余所高校、科研院所合作,占研究生学位授予单位85%以上,涵盖理、工、农、医、人文社科、交通运输、航空航天、环境科学等各学科。

4、华艺台湾学术文献数据库。

华艺为台湾最大的学术数据库公司,华艺-台湾学术文献数据库包含《台湾科学期刊数据库》及《台湾科学学位论文数据库》。《台湾科学学位论文全文数据库》为全台最大科学学位论文库,收录31所重点大学约50000篇全文(台湾大学为独家收录)。支持简繁体中文检索,PDF直接下载。是了解台湾学术研究资源最重要的电子全文数据库。

5、CADAL数字图书馆

收录内容:CADAL数字图书馆是全文型数据库,收录了CADAL共建单位的学位论文全文16万余篇,包括1900多篇民国学位论文和16万5千多篇当代学位论文。当代论文全文更新至2006年。检索功能:提供名称检索、作者检索、馆藏单位检索。提供学位论文按出版时间浏览。

6、ProQuest学位论文全文数据库

收录内容:ProQuest学位论文全文数据库是国外学位论文中国集团全文检索平台。收录了1743年至今的来自欧美、加拿大等60多个国家4000多所高校的优秀博士、硕士论文,涵盖文、理、工、农、医等高质量的学术研究领域。

该数据库的论文是由国内高校或机构图书馆经合作购买而形成的论文全文数据库。目前,中国集团全文检索平台可以共享访问的全文论文已超过80万篇。

检索功能:提供标题检索、摘要检索、作者检索、导师检索、学校检索、学科检索等检索功能。提供主题分类浏览和学校分类浏览导航功能。

7、ProQuest博硕士论文文摘索引数据库PQDT

收录内容:ProQuest博硕士论文文摘索引数据库是文摘型数据库。它收录主要来自欧美国家4000多所高校的500多万篇学位论文,是目前世界上最大和最广泛使用的学位论文数据库。该数据库每周更新,平均每年新增约20万篇条目,多数论文可以预览前24页原文。如只需检索学位论文,请选择数据库首页上方“学位论文”栏目。

研究生论文可以参考的数据库可以有:国内的知网、万方、维普、百度学术等,国外的Google Scholar、SCI-Hub、Web of Science等,这些数据库是每个专业写论文必备的数据库,当然,你还需要与你专业相关的专业数据库,一般在学校图书馆里的资源利用中会有。

论文常用数据分析方法

论文常用数据分析方法,对好的论文分析研究方法应该从哪些方面展开,如何表达才能显得自己对该论文真的有所理解,应该看哪些书呢?下面我整理了论文常用数据分析方法,一起了解看看吧!

论文常用数据分析方法分类总结

1、 基本描述统计

频数分析是用于分析定类数据的选择频数和百分比分布。

描述分析用于描述定量数据的集中趋势、波动程度和分布形状。如要计算数据的平均值、中位数等,可使用描述分析。

分类汇总用于交叉研究,展示两个或更多变量的交叉信息,可将不同组别下的`数据进行汇总统计。

2、 信度分析

信度分析的方法主要有以下三种:Cronbach α信度系数法、折半信度法、重测信度法。

Cronbach α信度系数法为最常使用的方法,即通过Cronbach α信度系数测量测验或量表的信度是否达标。

折半信度是将所有量表题项分为两半,计算两部分各自的信度以及相关系数,进而估计整个量表的信度的测量方法。可在信度分析中选择使用折半系数或是Cronbach α系数。

重测信度是指同一批样本,在不同时间点做了两次相同的问题,然后计算两次回答的相关系数,通过相关系数去研究信度水平。

3、 效度分析

效度有很多种,可分为四种类型:内容效度、结构效度、区分效度、聚合效度。具体区别如下表所示:

4、 差异关系研究

T检验可分析X为定类数据,Y为定量数据之间的关系情况,针对T检验,X只能为2个类别。

当组别多于2组,且数据类型为X为定类数据,Y为定量数据,可使用方差分析。

如果要分析定类数据和定类数据之间的关系情况,可使用交叉卡方分析。

如果研究定类数据与定量数据关系情况,且数据不正态或者方差不齐时,可使用非参数检验。

5、 影响关系研究

相关分析用于研究定量数据之间的关系情况,可以分析包括是否有关系,以及关系紧密程度等。分析时可以不区分XY,但分析数据均要为定量数据。

回归分析通常指的是线性回归分析,一般可在相关分析后进行,用于研究影响关系情况,其中X通常为定量数据(也可以是定类数据,需要设置成哑变量),Y一定为定量数据。

回归分析通常分析Y只有一个,如果想研究多个自变量与多个因变量的影响关系情况,可选择路径分析。

近几年,教育部对学生的学术问题十分关注,各种学术丑闻层出不穷,论文查重的意义对学生而言意义深远,对理解硕士论文数据库十分重要。 论文查重系统主要对硕士毕业论文查重系统可以进行信息数据库技术更新,并在原数据库的基础上发展增加了硕博论文大学生联合对比数据库对照库。 对毕业生来说,如果学生抄袭这些数据库中的论文,将被视为重复论文。因此,学生不应该冒险,在他们的论文中使用的参考数据没有用于参考他们的硕士论文。不言而喻,目前的论文查重系统,即查重研究生毕业论文进行系统,基本覆盖了中国国内企业大部分学生学术研究论文、期刊论文、专著、外文参考文献等数据,所以我们大家不要抱着侥幸心理,要多读一遍。 论文查重系统数据库的介绍仅仅是为了方便同学们对查重系统有更多的了解,怎样才能避免重复率过高的问题,本校可于其他的论文查重系统检测,对重复率进行修改后再交由校方审核,如:paperfree。

大数据可视化方法的研究论文

在大数据环境下,计算机信息处理技术也面临新的挑战,要求计算机信息处理技术必须不断的更新发展,以能够对当前的计算机信息处理需求满足。下面是我给大家推荐的计算机与大数据的相关论文,希望大家喜欢!计算机与大数据的相关论文篇一 浅谈“大数据”时代的计算机信息处理技术 [摘 要]在大数据环境下,计算机信息处理技术也面临新的挑战,要求计算机信息处理技术必须不断的更新发展,以能够对当前的计算机信息处理需求满足。本文重点分析大数据时代的计算机信息处理技术。 [关键词]大数据时代;计算机;信息处理技术 在科学技术迅速发展的当前,大数据时代已经到来,大数据时代已经占领了整个环境,它对计算机的信息处理技术产生了很大的影响。计算机在短短的几年内,从稀少到普及,使人们的生活有了翻天覆地的变化,计算机的快速发展和应用使人们走进了大数据时代,这就要求对计算机信息处理技术应用时,则也就需要在之前基础上对技术实施创新,优化结构处理,从而让计算机数据更符合当前时代发展。 一、大数据时代信息及其传播特点 自从“大数据”时代的到来,人们的信息接收量有明显加大,在信息传播中也出现传播速度快、数据量大以及多样化等特点。其中数据量大是目前信息最显著的特点,随着时间的不断变化计算机信息处理量也有显著加大,只能够用海量还对当前信息数量之大形容;传播速度快也是当前信息的主要特点,计算机在信息传播中传播途径相当广泛,传播速度也相当惊人,1s内可以完成整个信息传播任务,具有较高传播效率。在传播信息过程中,还需要实施一定的信息处理,在此过程中则需要应用相应的信息处理工具,实现对信息的专门处理,随着目前信息处理任务的不断加强,信息处理工具也有不断的进行创新[1];信息多样化,则也就是目前数据具有多种类型,在庞大的数据库中,信息以不同的类型存在着,其中包括有文字、图片、视频等等。这些信息类型的格式也在不断发生着变化,从而进一步提高了计算机信息处理难度。目前计算机的处理能力、打印能力等各项能力均有显著提升,尤其是当前软件技术的迅速发展,进一步提高了计算机应用便利性。微电子技术的发展促进了微型计算机的应用发展,进一步强化了计算机应用管理条件。 大数据信息不但具有较大容量,同时相对于传统数据来讲进一步增强了信息间关联性,同时关联结构也越来越复杂,导致在进行信息处理中需要面临新的难度。在 网络技术 发展中重点集中在传输结构发展上,在这种情况下计算机必须要首先实现网络传输结构的开放性设定,从而打破之前计算机信息处理中,硬件所具有的限制作用。因为在当前计算机网络发展中还存在一定的不足,在完成云计算机网络构建之后,才能够在信息处理过程中,真正的实现收放自如[2]。 二、大数据时代的计算机信息处理技术 (一)数据收集和传播技术 现在人们通过电脑也就可以接收到不同的信息类型,但是在进行信息发布之前,工作人员必须要根据需要采用信息处理技术实施相应的信息处理。计算机采用信息处理技术实施信息处理,此过程具有一定复杂性,首先需要进行数据收集,在将相关有效信息收集之后首先对这些信息实施初步分析,完成信息的初级操作处理,总体上来说信息处理主要包括:分类、分析以及整理。只有将这三步操作全部都完成之后,才能够把这些信息完整的在计算机网络上进行传播,让用户依照自己的实际需求筛选满足自己需求的信息,借助于计算机传播特点将信息数据的阅读价值有效的实现。 (二)信息存储技术 在目前计算机网络中出现了很多视频和虚拟网页等内容,随着人们信息接收量的不断加大,对信息储存空间也有较大需求,这也就是对计算机信息存储技术提供了一个新的要求。在数据存储过程中,已经出现一系列存储空间无法满足当前存储要求,因此必须要对当前计算机存储技术实施创新发展。一般来讲计算机数据存储空间可以对当前用户关于不同信息的存储需求满足,但是也有一部分用户对于计算机存储具有较高要求,在这种情况下也就必须要提高计算机数据存储性能[3],从而为计算机存储效率提供有效保障。因此可以在大数据存储特点上完成计算机信息新存储方式,不但可以有效的满足用户信息存储需求,同时还可以有效的保障普通储存空间不会出现被大数据消耗问题。 (三)信息安全技术 大量数据信息在计算机技术发展过程中的出现,导致有一部分信息内容已经出现和之前信息形式的偏移,构建出一些新的计算机信息关联结构,同时具有非常强大的数据关联性,从而也就导致在计算机信息处理中出现了新的问题,一旦在信息处理过程中某个信息出现问题,也就会导致与之关联紧密的数据出现问题。在实施相应的计算机信息管理的时候,也不像之前一样直接在单一数据信息之上建立,必须要实现整个数据库中所有将数据的统一安全管理。从一些角度分析,这种模式可以对计算机信息处理技术水平有显著提升,并且也为计算机信息处理技术发展指明了方向,但是因为在计算机硬件中存在一定的性能不足,也就导致在大数据信息安全管理中具有一定难度。想要为数据安全提供有效保障,就必须要注重数据安全技术管理技术的发展。加强当前信息安全体系建设,另外也必须要对计算机信息管理人员专业水平进行培养,提高管理人员专业素质和专业能力,从而更好的满足当前网络信息管理体系发展需求,同时也要加强关于安全技术的全面深入研究工作[4]。目前在大数据时代下计算机信息安全管理技术发展还不够成熟,对于大量的信息还不能够实施全面的安全性检测,因此在未来计算机信息技术研究中安全管理属于重点方向。但是因为目前还没有构建完善的计算机安全信息管理体系,因此首先应该强化关于计算机重点信息的安全管理,这些信息一旦发生泄漏,就有可能会导致出现非常严重的损失。目前来看,这种 方法 具有一定可行性。 (四)信息加工、传输技术 在实施计算机信息数据处理和传输过程中,首先需要完成数据采集,同时还要实时监控数据信息源,在数据库中将采集来的各种信息数据进行存储,所有数据信息的第一步均是完成采集。其次才能够对这些采集来的信息进行加工处理,通常来说也就是各种分类及加工。最后把已经处理好的信息,通过数据传送系统完整的传输到客户端,为用户阅读提供便利。 结语: 在大数据时代下,计算机信息处理技术也存在一定的发展难度,从目前专业方面来看,还存在一些问题无法解决,但是这些难题均蕴含着信息技术发展的重要机遇。在当前计算机硬件中,想要完成计算机更新也存在一定的难度,但是目前计算机未来的发展方向依旧是云计算网络,把网络数据和计算机硬件数据两者分开,也就有助于实现云计算机网络的有效转化。随着科学技术的不断发展相信在未来的某一天定能够进入到计算机信息处理的高速发展阶段。 参考文献 [1] 冯潇婧.“大数据”时代背景下计算机信息处理技术的分析[J].计算机光盘软件与应用,2014,(05):105+107. [2] 詹少强.基于“大数据”时代剖析计算机信息处理技术[J].网络安全技术与应用,2014,(08):49-50. [3] 曹婷.在信息网络下计算机信息处理技术的安全性[J].民营科技,2014, (12):89CNKI [4] 申鹏.“大数据”时代的计算机信息处理技术初探[J].计算机光盘软件与应用,2014,(21):109-110 计算机与大数据的相关论文篇二 试谈计算机软件技术在大数据时代的应用 摘要:大数据的爆炸式增长在大容量、多样性和高增速方面,全面考验着现代企业的数据处理和分析能力;同时,也为企业带来了获取更丰富、更深入和更准确地洞察市场行为的大量机会。对企业而言,能够从大数据中获得全新价值的消息是令人振奋的。然而,如何从大数据中发掘出“真金白银”则是一个现实的挑战。这就要求采用一套全新的、对企业决策具有深远影响的解决方案。 关键词:计算机 大数据时代 容量 准确 价值 影响 方案 1 概述 自从计算机出现以后,传统的计算工作已经逐步被淘汰出去,为了在新的竞争与挑战中取得胜利,许多网络公司开始致力于数据存储与数据库的研究,为互联网用户提供各种服务。随着云时代的来临,大数据已经开始被人们广泛关注。一般来讲,大数据指的是这样的一种现象:互联网在不断运营过程中逐步壮大,产生的数据越来越多,甚至已经达到了10亿T。大数据时代的到来给计算机信息处理技术带来了更多的机遇和挑战,随着科技的发展,计算机信息处理技术一定会越来越完善,为我们提供更大的方便。 大数据是IT行业在云计算和物联网之后的又一次技术变革,在企业的管理、国家的治理和人们的生活方式等领域都造成了巨大的影响。大数据将网民与消费的界限和企业之间的界限变得模糊,在这里,数据才是最核心的资产,对于企业的运营模式、组织结构以及 文化 塑造中起着很大的作用。所有的企业在大数据时代都将面对战略、组织、文化、公共关系和人才培养等许多方面的挑战,但是也会迎来很大的机遇,因为只是作为一种共享的公共网络资源,其层次化和商业化不但会为其自身发展带来新的契机,而且良好的服务品质更会让其充分具有独创性和专用性的鲜明特点。所以,知识层次化和商业化势必会开启知识创造的崭新时代。可见,这是一个竞争与机遇并存的时代。 2 大数据时代的数据整合应用 自从2013年,大数据应用带来令人瞩目的成绩,不仅国内外的产业界与科技界,还有各国政府部门都在积极布局、制定战略规划。更多的机构和企业都准备好了迎接大数据时代的到来,大数据的内涵应是数据的资产化和服务化,而挖掘数据的内在价值是研究大数据技术的最终目标。在应用数据快速增长的背景下,为了降低成本获得更好的能效,越来越趋向专用化的系统架构和数据处理技术逐渐摆脱传统的通用技术体系。如何解决“通用”和“专用”体系和技术的取舍,以及如何解决数据资产化和价值挖掘问题。 企业数据的应用内容涵盖数据获取与清理、传输、存储、计算、挖掘、展现、开发平台与应用市场等方面,覆盖了数据生产的全生命周期。除了Hadoop版本系统YARN,以及Spark等新型系统架构介绍外,还将探讨研究流式计算(Storm,Samza,Puma,S4等)、实时计算(Dremel,Impala,Drill)、图计算(Pregel,Hama,Graphlab)、NoSQL、NewSQL和BigSQL等的最新进展。在大数据时代,借力计算机智能(MI)技术,通过更透明、更可用的数据,企业可以释放更多蕴含在数据中的价值。实时、有效的一线质量数据可以更好地帮助企业提高产品品质、降低生产成本。企业领导者也可根据真实可靠的数据制订正确战略经营决策,让企业真正实现高度的计算机智能决策办公,下面我们从通信和商业运营两个方面进行阐述。 通信行业:XO Communications通过使用IBM SPSS预测分析软件,减少了将近一半的客户流失率。XO现在可以预测客户的行为,发现行为趋势,并找出存在缺陷的环节,从而帮助公司及时采取 措施 ,保留客户。此外,IBM新的Netezza网络分析加速器,将通过提供单个端到端网络、服务、客户分析视图的可扩展平台,帮助通信企业制定更科学、合理决策。电信业者透过数以千万计的客户资料,能分析出多种使用者行为和趋势,卖给需要的企业,这是全新的资料经济。中国移动通过大数据分析,对 企业运营 的全业务进行针对性的监控、预警、跟踪。系统在第一时间自动捕捉市场变化,再以最快捷的方式推送给指定负责人,使他在最短时间内获知市场行情。 商业运营:辛辛那提动物园使用了Cognos,为iPad提供了单一视图查看管理即时访问的游客和商务信息的服务。借此,动物园可以获得新的收入来源和提高营收,并根据这些信息及时调整营销政策。数据收集和分析工具能够帮助银行设立最佳网点,确定最好的网点位置,帮助这个银行更好地运作业务,推动业务的成长。 3 企业信息解决方案在大数据时代的应用 企业信息管理软件广泛应用于解决欺诈侦测、雇员流动、客户获取与维持、网络销售、市场细分、风险分析、亲和性分析、客户满意度、破产预测和投资组合分析等多样化问题。根据大数据时代的企业挖掘的特征,提出了数据挖掘的SEMMA方法论――在SAS/EM环境中,数据挖掘过程被划分为Sample、Explore、Modify、Model、Assess这五个阶段,简记为SEMMA: Sample 抽取一些代表性的样本数据集(通常为训练集、验证集和测试集)。样本容量的选择标准为:包含足够的重要信息,同时也要便于分析操作。该步骤涉及的处理工具为:数据导入、合并、粘贴、过滤以及统计抽样方法。 Explore 通过考察关联性、趋势性以及异常值的方式来探索数据,增进对于数据的认识。该步骤涉及的工具为:统计 报告 、视图探索、变量选择以及变量聚类等方法。 Modify 以模型选择为目标,通过创建、选择以及转换变量的方式来修改数据集。该步骤涉及工具为:变量转换、缺失处理、重新编码以及数据分箱等。 Model 为了获得可靠的预测结果,我们需要借助于分析工具来训练统计模型或者机器学习模型。该步骤涉及技术为:线性及逻辑回归、决策树、神经网络、偏最小二乘法、LARS及LASSO、K近邻法以及其他用户(包括非SAS用户)的模型算法。 Assess 评估数据挖掘结果的有效性和可靠性。涉及技术为:比较模型及计算新的拟合统计量、临界分析、决策支持、报告生成、评分代码管理等。数据挖掘者可能不会使用全部SEMMA分析步骤。然而,在获得满意结果之前,可能需要多次重复其中部分或者全部步骤。 在完成SEMMA步骤后,可将从优选模型中获取的评分公式应用于(可能不含目标变量的)新数据。将优选公式应用于新数据,这是大多数数据挖掘问题的目标。此外,先进的可视化工具使得用户能在多维直方图中快速、轻松地查阅大量数据并以图形化方式比较模拟结果。SAS/EM包括了一些非同寻常的工具,比如:能用来产生数据挖掘流程图的完整评分代码(SAS、C以及Java代码)的工具,以及交换式进行新数据评分计算和考察执行结果的工具。 如果您将优选模型注册进入SAS元数据服务器,便可以让SAS/EG和SAS/DI Studio的用户分享您的模型,从而将优选模型的评分代码整合进入 工作报告 和生产流程之中。SAS模型管理系统,通过提供了开发、测试和生产系列环境的项目管理结构,进一步补充了数据挖掘过程,实现了与SAS/EM的无缝联接。 在SAS/EM环境中,您可以从SEMMA工具栏上拖放节点进入工作区的工艺流程图中,这种流程图驱动着整个数据挖掘过程。SAS/EM的图形用户界面(GUI)是按照这样的思路来设计的:一方面,掌握少量统计知识的商务分析者可以浏览数据挖掘过程的技术方法;另一方面,具备数量分析技术的专家可以用微调方式深入探索每一个分析节点。 4 结束语 在近十年时间里,数据采集、存储和数据分析技术飞速发展,大大降低了数据储存和处理的成本,一个大数据时代逐渐展现在我们的面前。大数据革新性地将海量数据处理变为可能,并且大幅降低了成本,使得越来越多跨专业学科的人投入到大数据的开发应用中来。 参考文献: [1]薛志文.浅析计算机网络技术及其发展趋势[J].信息与电脑,2009. [2]张帆,朱国仲.计算机网络技术发展综述[J].光盘技术,2007. [3]孙雅珍.计算机网络技术及其应用[J].东北水利水电,1994. [4]史萍.计算机网络技术的发展及展望[J].五邑大学学报,1999. [5]桑新民.步入信息时代的学习理论与实践[M].中央广播大学出版社,2000. [6]张浩,郭灿.数据可视化技术应用趋势与分类研究[J].软件导刊. [7]王丹.数字城市与城市地理信息产业化――机遇与挑战[J].遥感信息,2000(02). [8]杨凤霞.浅析 Excel 2000对数据的安全管理[J].湖北商业高等专科学校学报,2001(01). 计算机与大数据的相关论文篇三 浅谈利用大数据推进计算机审计的策略 [摘要]社会发展以及时代更新,在该种环境背景下大数据风潮席卷全球,尤其是在进入新时期之后数据方面处理技术更加成熟,各领域行业对此也给予了较高的关注,针对当前计算机审计(英文简称CAT)而言要想加速其发展脚步并将其质量拔高就需要结合大数据,依托于大数据实现长足发展,本文基于此就大数据于CAT影响进行着手分析,之后探讨依托于大数据良好推进CAT,以期为后续关于CAT方面研究提供理论上参考依据。 [关键词]大数据 计算机审计 影响 前言:相较于网络时代而言大数据风潮一方面提供了共享化以及开放化、深层次性资源,另一方面也促使信息管理具备精准性以及高效性,走进新时期CAT应该融合于大数据风潮中,相应CAT人员也需要积极应对大数据带了的机遇和挑战,正面CAT工作,进而促使CAT紧跟时代脚步。 一、初探大数据于CAT影响 影响之机遇 大数据于CAT影响体现在为CAT带来了较大发展机遇,具体来讲,信息技术的更新以及其质量的提升促使数据方面处理技术受到了众多领域行业的喜爱,当前在数据技术推广普及阶段中呈现三大变化趋势:其一是大众工作生活中涉及的数据开始由以往的样本数据实际转化为全数据。其二是全数据产生促使不同数据间具备复杂内部关系,而该种复杂关系从很大程度上也推动工作效率以及数据精准性日渐提升,尤其是数据间转化关系等更为清晰明了。其三是大众在当前处理数据环节中更加关注数据之间关系研究,相较于以往仅仅关注数据因果有了较大进步。基于上述三大变化趋势,也深刻的代表着大众对于数据处理的态度改变,尤其是在当下海量数据生成背景下,人工审计具备较强滞后性,只有依托于大数据并发挥其优势才能真正满足大众需求,而这也是大数据对CAT带来的重要发展机遇,更是促进CAT在新时期得以稳定发展重要手段。 影响之挑战 大数据于CAT影响还体现在为CAT带来一定挑战,具体来讲,审计评估实际工作质量优劣依托于其中数据质量,数据具备的高质量则集中在可靠真实以及内容详细和相应信息准确三方面,而在CAT实际工作环节中常常由于外界环境以及人为因素导致数据质量较低,如数据方面人为随意修改删除等等,而这些均是大数据环境背景下需要严格把控的重点工作内容。 二、探析依托于大数据良好推进CAT措施 数据质量的有效保障 依托于大数据良好推进CAT措施集中在数据质量有效保障上,对数据质量予以有效保障需要从两方面入手,其一是把控电子数据有效存储,简单来讲就是信息存储,对电子信息进行定期检查,监督数据实际传输,对信息系统予以有效确认以及评估和相应的测试等等,进而将不合理数据及时发现并找出信息系统不可靠不准确地方;其二是把控电子数据采集,通常电子数据具备多样化采集方式,如将审计单位相应数据库直接连接采集库进而实现数据采集,该种直接采集需要备份初始传输数据,避免数据采集之后相关人员随意修改,更加可以与审计单位进行数据采集真实性 承诺书 签订等等,最终通过电子数据方面采集以及存储两大内容把控促使数据质量更高,从而推动CAT发展。 公共数据平台的建立 依托于大数据良好推进CAT措施还集中在公共数据平台的建立,建立公共化分析平台一方面能够将所有采集的相关数据予以集中化管理存储,更能够予以多角度全方面有效分析;另一方面也能够推动CAT作业相关标准予以良好执行。如果将分析模型看作是CAT作业标准以及相应的核心技术,则公共分析平台则是标准执行和相应技术实现关键载体。依托于公共数据平台不仅能够将基础的CAT工作实现便捷化以及统一化,而且深层次的实质研究有利于CAT数据处理的高速性以及高效性,最终为推动CAT发展起到重要影响作用。 审计人员的强化培训 依托于大数据良好推进CAT措施除了集中在上述两方面之外,还集中在审计人员的强化培训上,具体来讲,培训重点关注审计工作于计算机上的具 体操 作以及操作重点难点,可以构建统一培训平台,在该培训平台中予以多元化资料的分享,聘请高技能丰富 经验 人士予以平台授课,提供专业技能知识沟通互动等等机会,最终通过强化培训提升审计人员综合素质,更加推动CAT未来发展。 三、结论 综上分析可知,当前大数据环境背景下CAT需要将日常工作予以不断调整,依托于大数据促使审计人员得以素质提升,并利用公共数据平台建立和相应的数据质量保障促使CAT工作更加高效,而本文对依托于大数据良好推进CAT进行研究旨在为未来CAT优化发展献出自己的一份研究力量。 猜你喜欢: 1. 人工智能与大数据论文 2. 大数据和人工智能论文 3. 计算机大数据论文参考 4. 计算机有关大数据的应用论文 5. 有关大数据应用的论文

大数据:分类型数据可视化方法研究报告数据可视化可以将海量数据通过图形、表格等形式直观反映给大众。降低数据读取门槛,可以让企业通过形象化方式对自身产品进行营销。一、数据可视化原理数据化可视原理是综合运用计算机图形学、图像、人机交互等技术,将采集或模拟的数据映射为可识别的图形、图像、视频或者动画,并允许用户对数据进行交互分析的理论方法和技术。数据可视化可以将不可见的现象转换为可见的图形符号,并从中发现规律从而获取知识。在实际应用中,它可以针对复杂和大规模的数据,还原增强数据中的全局结构和具体细节。二、 可视化方法1. 数据采集:数据是可视化对象,可以通过仪器采样,调查记录、模拟计算等方式采集。在可视化解决方案中,了解数据来源采集方法和数据属性,才能有的放矢解决问题。2. 数据处理和变换:原始数据含有噪音和误差同时数据模式和特征往往被隐藏。通过去噪、数据清洗、提取特征等变换为用户可理解模式。3. 可视化映射(核心):将数据的数值、空间坐标、不同位置数据间的联系等映射为可视化视觉通道的不同元素如标记、位置、形状、大小和颜色等。最终让用户通过可视化洞察数据和数据背后隐含的现象和规律。4. 用户感知:用户感知从数据可视化结果中提取信息、知识和灵感。数据可视化可用于从数据中探索新的假设,也可严重相关假设与数据是否吻合,还可帮助专家向公众展示数据中的信息。用户感知可以在任何时期反作用于数据的采集、处理变换以及映射过程中,如下图所示: 三、具体操作1. 将指标值图形化一个指标值就是一个数据,将数据的大小以图形的方式表现。比如用柱形图的长度或高度表现数据大小,这也是最常用的可视化形式。传统的柱形图、饼图有可能会带来审美疲劳,可尝试从图形的视觉样式上进行一些创新,常用的方法就是将图形与指标的含义关联起来。比如 Google Zeitgeist 在展现 top10 的搜索词时,展示的就是“搜索”形状的柱形,图形与指标的含义相吻合,同时也做了立体的视觉变化: 2. 将指标图形化一般用在与指标含义相近的 icon 来表现,使用场景也比较多,如下: 3. 将指标关系图形化当存在多个指标时,为了挖掘指标之间的关系并将其进行图形化表达,可提升图表的可视化深度。常见有以下两种方式:借助已有的场景来表现联想自然或社会中有无场景与指标关系类似,然后借助此场景来表现。 比如百度统计流量研究院操作系统的分布(上图),首先分为 windows、mac 还有其他操作系统, windows 又包含 xp、2003、7等多种子系统。宇宙星系中也有类似的关系:宇宙中有很多星系,我们最为熟悉的是太阳系,太阳系中又包括各个行星。根据这种关系联想,图表整体借用宇宙星系的场景,将熟知的Windows比喻成太阳系,将XP、Window7等系统比喻成太阳系中的行星,将Mac和其他系统比喻成其他星系。构建场景来表现指标之间往往具有一些关联特征,如从简单到复杂、从低级到高级、从前到后等等。如无法找到已存在的对应场景,也可构建场景。比如百度统计流量研究院中的学历分布:指标分别是小学、初中、高中、本科等等。 各个类目之间是一种阶梯式的关系,因此,平台就设计了一个阶梯式的图直观的反映出了数据呈阶梯式递进的趋势。再比如:支付宝年初出的个人年度账单中,在描述付款最多的三项时设计了一个类似颁奖台的样式也很出彩:(然而并没有觉得我在哪个类目买买买付款最多有什么骄傲的) 下方图示为供参考的线性化过程,实际可视化思考中,将哪类元素进行图形化或者图形化前后的顺序可能均有不同,需根据具体情况处理。 4. 将时间和空间可视化时间通过时间的维度来查看指标值的变化情况,一般通过增加时间轴的形式,也就是常见的趋势图。空间当图表存在地域信息并且需要突出表现的时候,可用地图将空间可视化,地图作为主背景呈现所有信息点。Google Zeitgeist 在 2010 和 2012 年的年度热门回顾中,都是以地图为主要载体(同时也结合了时间),来呈现热门事件: 5. 将数据进行概念转换先看下生活中的概念转换,当我们需要喝水时,通常会说给我来杯水而不是给我来500ml 的水。要注意来(一)杯水,是具象的,并不是用量化的数据来形容。在这里,500ml就是一个具体的数据,但是它难以被感知,所以用(一)杯的概念来转换。同样在数据可视化,有时需要对数据进行概念转换。这是为了加深用户对数据的感知,常用方法有对比和比喻。感知就是一个将数据由抽象转化为具象的过程。对比比如下图就是一个介绍中国烟民数量的图表。如果只看左半部分中国烟民的数量:32000000(个十百千万十万百万千万亿…)好吧数据量级很大,不论是数零还是数逗号都很容易数错,而且具体这个数字有多大仍然很难感知。让我们目光向右移动,来看右半部分:中国烟民数量超过了美国人口总和,太恐怖了。这样一对比,对数据的感知就加深了。 比喻下图是一个介绍雅虎邮箱处理数据量大小的图表,大概就是说它每小时处理的电子邮件有近,相当于644245094 张打印的纸。上面这个翻译很无聊是不是,但这并不是问题的重点,这个数它到底有多大呢?文案中用了一个比喻的手法:大意就是将这些邮件打印出来首尾相连可以绕地球4圈。嗯,比香飘飘奶瓶还多3圈。到这里,我相信大家肯定能初步感受到雅虎邮箱每天处理的数据量有多大了吧,而且还没有被打印出来,为地球节省了很多纸(假装环保)。 6.让图表“动”起来数据图形化完成后,可结合实际情况,将其变为动态化和可操控性的图表,用户在操控过程中能更好地感知数据的变化过程,提升体验。实现动态化通常以下两种方式: 交互和动画。交互交互包括鼠标浮动、点击、多图表时的联动响应等等。下面是百度统计流量研究院的时间分布图,该分布图采用左图右表的联动形式,左图中鼠标浮动则显示对应数据,点击则可以切换选择: 动画动画包括入场动画、交互过程的动画和播放动画等等。入场动画:即在页面载入后,给图表一个“生长”的过程,取代“数据载入中”这样的提示文字。交互动画:用户发生交互行为后,通过动画形式给以及时反馈。播放动画:通俗的来说就是提供播放功能,让用户能够完整看到数据随时间变化的过程。下图是 Gapminder 在描述多维数据时,提供随时间播放的功能,可以直观感受到所有数据的变化。

"大数据"是一个体量特别大,数据类别特别大的数据集,并且这样的数据集无法用传统数据库工具对其内容进行抓取、管理和处理。 "大数据"首先是指数据体量(volumes)?大,指代大型数据集,一般在10TB?规模左右,但在实际应用中,很多企业用户把多个数据集放在一起,已经形成了PB级的数据量;其次是指数据类别(variety)大,数据来自多种数据源,数据种类和格式日渐丰富,已冲破了以前所限定的结构化数据范畴,囊括了半结构化和非结构化数据。接着是数据处理速度(Velocity)快,在数据量非常庞大的情况下,也能够做到数据的实时处理。最后一个特点是指数据真实性(Veracity)高,随着社交数据、企业内容、交易与应用数据等新数据源的兴趣,传统数据源的局限被打破,企业愈发需要有效的信息之力以确保其真实性及安全性。从所周知,大数据已经不简简单单是数据大的事实了,而最重要的现实是对大数据进行分析,只有通过分析才能获取很多智能的,深入的,有价值的信息。那么越来越多的应用涉及到大数据,而这些大数据的属性,包括数量,速度,多样性等等都是呈现了大数据不断增长的复杂性,所以大数据的分析方法在大数据领域就显得尤为重要,可以说是决定最终信息是否有价值的决定性因素。基于如此的认识,大数据分析普遍存在的方法理论有哪些呢?大数据分析的使用者有大数据分析专家,同时还有普通用户,但是他们二者对于大数据分析最基本的要求就是可视化分析,因为可视化分析能够直观的呈现大数据特点,同时能够非常容易被读者所接受,就如同看图说话一样简单明了。大数据分析的理论核心就是数据挖掘算法,各种数据挖掘的算法基于不同的数据类型和格式才能更加科学的呈现出数据本身具备的特点,也正是因为这些被全世界统计学家所公认的各种统计方法(可以称之为真理)才能深入数据内部,挖掘出公认的价值。另外一个方面也是因为有这些数据挖掘的算法才能更快速的处理大数据,如果一个算法得花上好几年才能得出结论,那大数据的价值也就无从说起了。大数据分析最终要的应用领域之一就是预测性分析,从大数据中挖掘出特点,通过科学的建立模型,之后便可以通过模型带入新的数据,从而预测未来的数据。大数据分析广泛应用于网络数据挖掘,可从用户的搜索关键词、标签关键词、或其他输入语义,分析,判断用户需求,从而实现更好的用户体验和广告匹配。大数据分析离不开数据质量和数据管理,高质量的数据和有效的数据管理,无论是在学术研究还是在商业应用领域,都能够保证分析结果的真实和有价值。 大数据分析的基础就是以上五个方面,当然更加深入大数据分析的话,还有很多很多更加有特点的、更加深入的、更加专业的大数据分析方法。当下我国大数据研发建设应在以下四个方面着力一是建立一套运行机制。大数据建设是一项有序的、动态的、可持续发展的系统工程,必须建立良好的运行机制,以促进建设过程中各个环节的正规有序,实现统合,搞好顶层设计。二是规范一套建设标准。没有标准就没有系统。应建立面向不同主题、覆盖各个领域、不断动态更新的大数据建设标准,为实现各级各类信息系统的网络互连、信息互通、资源共享奠定基础。三是搭建一个共享平台。数据只有不断流动和充分共享,才有生命力。应在各专用数据库建设的基础上,通过数据集成,实现各级各类指挥信息系统的数据交换和数据共享。四是培养一支专业队伍。大数据建设的每个环节都需要依靠专业人员完成,因此,必须培养和造就一支懂指挥、懂技术、懂管理的大数据建设专业队伍。

论文研究方法数据研究方法有哪些

毕业论文采用的研究方法有哪些

毕业论文采用的研究方法有哪些,在写论文的时候需要用到研究方法,研究的方法有很多种,不同的研究方法使用的方式也是不一样的,以下就是我为大家整理的一些关于毕业论文采用的研究方法有哪些的资料,大家一起来看看吧!

1、调查法

调查法是现在用户在撰写论文过程中使用最多的研究方法,调查法主要是通过用户系统化的搜集有关研究课题的现在状况或者历史状况进行综合分析得到研究成果的方式。

2、观察法

观察法,顾名思义就是用户借助自己的感官和一些其它的辅助工具对研究对象进行直接的观察,记录数据内容,以此来获得研究论文课题的方式,很多大型的科研机构等都是采用这种方法进行课题研究。

3、实验法

实验法相信只有接触过化学课程的用户都是可以理解的,实验法主要是通过控制实验对象的各方面要素来明确研究对象间的关系,这是现在很多用来发现研究对象间关系的方法之一。

4、文献法

文献法主要是通过不断的搜集该课题相关的'文献资料,进行系统全面的分析,以此来得到研究数据的方法,但是用户一定要知道挑选的论文文献资料一定要全面,这样才能全面的分析研究成果。

1、归纳方法与演绎方法 :归纳就是从个别事实中概括出一般性的结论原理;演绎则是从一般性原理、概念引出个别结论。归纳是从个别到一般的方法;演绎是从一般到个别的方法。

门捷列夫使用归纳法,在人们认识大量个别元素的基础上,概括出了化学元素周期律。后来他又从元素周期律预言当时尚未发现的若干个元素的化学性质,使用的就是演绎法。

2、分析方法与综合方法 :分析就是把客观对象的整体分为各个部分、方面、特征和因素而加以认识。它是把整体分为部分,把复杂的事物分解为简单的要素分别加以研究的一种思维方法。

分析是达到对事物本质认识的一个必经步骤和必要手段。分析的任务不仅仅是把整体分解为它的组成部分,而且更重要的是透过现象,抓住本质,通过偶然性把握必然性。

3、因果分析法 :就是分析现象之间的因果关系,认识问题的产生原因和引起结果的辩证思维方法。使用这种方法一定要注意到真正的内因与结果,而不是似是而非的因果关系。

要注意结果与原因的逆关系,一方面包括“用原因来证明结果”,同时也包括“用结果来推论原因”。不同的事物,一般都一身二任,既是原因,又是结果,而且一个结果往往有不同层次的几个原因。因此,在研究过程中,对所分析的问题必须寻根究底。

论文研究方法有以下几种:

1、实证研究法

实证研究法是认识客观现象,向人们提供实在、有用、确定、精确的知识研究方法,其重点是研究现象本身“是什么”的问题。

2、调查法

调查法一般是在自然的过程中进行,通过访问、开调查会、发调查问卷、测验等方式去搜集反映研究现象的材料。

3、案例分析法

案例分析法是指把实际工作中出现的问题作为案例,交给受训学员研究分析,培养学员们的分析能力、判断能力、解决问题及执行业务能力的培训方法。

4、比较分析法

亦称对比分析法、指标对比法。是依据客观事物间的相互联系和发展变化,通过同一数据的不同比较,借以对一定项目作出评价的方法。

5、思维方法

思维方法又称思想方法、认识方法是人们正确进行思维和准确表达思想的重要工具,在科学研究中常用的科学思维方法包括归纳演绎、类比推理、抽象概括、思辩想象、分析综合等。

6、内容分析法

内容分析法是一种对于传播内容进行客观,系统和定量的描述的研究方法。内容分析的过程是层层推理的过程。

7、文献分析法

文献分析法主要指搜集、鉴别、整理文献,并通过对文献的研究,形成对事实科学认识的方法。一般用于收集工作的原始信息,编制任务清单初稿。

写论文常用的研究方法介绍如下:

(1)调查法:

调查法是科学研究中最常用的方法之一。它是有目的、有计划、有系统地搜集有关研究对象现实状况或历史状况的材料的方法。一般是通过书面或口头回答问题的方式获得大量数据,进而对调查中收集的大量数据进行分析、比较、总结归纳,为人们提供规律性的知识。

(2)观察法:

观察法是指人们有目的、有计划地通过感官和辅助仪器,对处于自然状态下的客观事物进行系统考察,从而获取经验事实的一种科学研究方法。

(3)实验法:

实验法是指经过精心设计,在高度控制的条件下,通过操纵某些因素,从而发现变量间因果关系以验证预定假设的研究方法。核心在于对所要研究的对象在条件方面加以适当的控制,排除自然状态下无关因素的干扰。

(4)定量分析法:

定量分析是对事物或事物的各个组成部分进行数量分析的一种研究方法。依据统计数据,建立数学模型,并用数学模型计算出研究对象的各项指标及其数值。常见的定量分析法包括比率分析法、趋势分析法、数学模型法等等。

(5)定性分析法:

定性分析法是对研究对象进行“质”的方面的分析。运用归纳和演绎、分析与综合以及抽象与概括等方法,对获得的各种材料进行思维加工,揭示事物运行的内在规律,包括因果分析法、比较分析法、矛盾分析法等。

相关百科

热门百科

首页
发表服务