你不翻译了???
神经网络的是我的毕业论文的一部分4.人工神经网络人的思维有逻辑性和直观性两种不同的基本方式。逻辑性的思维是指根据逻辑规则进行推理的过程;它先将信息化成概念,并用符号表示,然后,根据符号运算按串行模式进行逻辑推理。这一过程可以写成串行的指令,让计算机执行。然而,直观性的思维是将分布式存储的信息综合起来,结果是忽然间产生想法或解决问题的办法。这种思维方式的根本之点在于以下两点:1.信息是通过神经元上的兴奋模式分布在网络上;2.信息处理是通过神经元之间同时相互作用的动态过程来完成的。 人工神经网络就是模拟人思维的第二种方式。这是一个非线性动力学系统,其特色在于信息的分布式存储和并行协同处理。虽然单个神经元的结构极其简单,功能有限,但大量神经元构成的网络系统所能实现的行为却是极其丰富多彩的。人工神经网络学习的原理人工神经网络首先要以一定的学习准则进行学习,然后才能工作。现以人工神经网络对手写“A”、“B”两个字母的识别为例进行说明,规定当“A”输入网络时,应该输出“1”,而当输入为“B”时,输出为“0”。 所以网络学习的准则应该是:如果网络做出错误的判决,则通过网络的学习,应使得网络减少下次犯同样错误的可能性。首先,给网络的各连接权值赋予(0,1)区间内的随机值,将“A”所对应的图像模式输入给网络,网络将输入模式加权求和、与门限比较、再进行非线性运算,得到网络的输出。在此情况下,网络输出为“1”和“0”的概率各为50%,也就是说是完全随机的。这时如果输出为“1”(结果正确),则使连接权值增大,以便使网络再次遇到“A”模式输入时,仍然能做出正确的判断。 如果输出为“0”(即结果错误),则把网络连接权值朝着减小综合输入加权值的方向调整,其目的在于使网络下次再遇到“A”模式输入时,减小犯同样错误的可能性。如此操作调整,当给网络轮番输入若干个手写字母“A”、“B”后,经过网络按以上学习方法进行若干次学习后,网络判断的正确率将大大提高。这说明网络对这两个模式的学习已经获得了成功,它已将这两个模式分布地记忆在网络的各个连接权值上。当网络再次遇到其中任何一个模式时,能够做出迅速、准确的判断和识别。一般说来,网络中所含的神经元个数越多,则它能记忆、识别的模式也就越多。人工神经网络的优缺点人工神经网络由于模拟了大脑神经元的组织方式而具有了人脑功能的一些基本特征,为人工智能的研究开辟了新的途径,神经网络具有的优点在于:(1)并行分布性处理因为人工神经网络中的神经元排列并不是杂乱无章的,往往是分层或以一种有规律的序列排列,信号可以同时到达一批神经元的输入端,这种结构非常适合并行计算。同时如果将每一个神经元看作是一个小的处理单元,则整个系统可以是一个分布式计算系统,这样就避免了以往的“匹配冲突”,“组合爆炸”和“无穷递归”等题,推理速度快。(2)可学习性一个相对很小的人工神经网络可存储大量的专家知识,并且能根据学习算法,或者利用样本指导系统来模拟现实环境(称为有教师学习),或者对输入进行自适应学习(称为无教师学习),不断地自动学习,完善知识的存储。(3)鲁棒性和容错性由于采用大量的神经元及其相互连接,具有联想记忆与联想映射能力,可以增强专家系统的容错能力,人工神经网络中少量的神经元发生失效或错误,不会对系统整体功能带来严重的影响。而且克服了传统专家系统中存在的“知识窄台阶”问题。(4)泛化能力人工神经网络是一类大规模的非线形系统,这就提供了系统自组织和协同的潜力。它能充分逼近复杂的非线形关系。当输入发生较小变化,其输出能够与原输入产生的输出保持相当小的差距。(5)具有统一的内部知识表示形式,任何知识规则都可以通过对范例的学习存储于同一个神经网络的各连接权值中,便于知识库的组织管理,通用性强。虽然人工神经网络有很多优点,但基于其固有的内在机理,人工神经网络也不可避免的存在自己的弱点:(1)最严重的问题是没能力来解释自己的推理过程和推理依据。(2)神经网络不能向用户提出必要的询问,而且当数据不充分的时候,神经网络就无法进行工作。(3)神经网络把一切问题的特征都变为数字,把一切推理都变为数值计算,其结果势必是丢失信息。(4)神经网络的理论和学习算法还有待于进一步完善和提高。神经网络的发展趋势及在柴油机故障诊断中的可行性神经网络为现代复杂大系统的状态监测和故障诊断提供了全新的理论方法和技术实现手段。神经网络专家系统是一类新的知识表达体系,与传统专家系统的高层逻辑模型不同,它是一种低层数值模型,信息处理是通过大量的简单处理元件(结点) 之间的相互作用而进行的。由于它的分布式信息保持方式,为专家系统知识的获取与表达以及推理提供了全新的方式。它将逻辑推理与数值运算相结合,利用神经网络的学习功能、联想记忆功能、分布式并行信息处理功能,解决诊断系统中的不确定性知识表示、获取和并行推理等问题。通过对经验样本的学习,将专家知识以权值和阈值的形式存储在网络中,并且利用网络的信息保持性来完成不精确诊断推理,较好地模拟了专家凭经验、直觉而不是复杂的计算的推理过程。但是,该技术是一个多学科知识交叉应用的领域,是一个不十分成熟的学科。一方面,装备的故障相当复杂;另一方面,人工神经网络本身尚有诸多不足之处:(1)受限于脑科学的已有研究成果。由于生理实验的困难性,目前对于人脑思维与记忆机制的认识还很肤浅。(2)尚未建立起完整成熟的理论体系。目前已提出了众多的人工神经网络模型,归纳起来,这些模型一般都是一个由结点及其互连构成的有向拓扑网,结点间互连强度所构成的矩阵,可通过某种学习策略建立起来。但仅这一共性,不足以构成一个完整的体系。这些学习策略大多是各行其是而无法统一于一个完整的框架之中。(3)带有浓厚的策略色彩。这是在没有统一的基础理论支持下,为解决某些应用,而诱发出的自然结果。(4)与传统计算技术的接口不成熟。人工神经网络技术决不能全面替代传统计算技术,而只能在某些方面与之互补,从而需要进一步解决与传统计算技术的接口问题,才能获得自身的发展。虽然人工神经网络目前存在诸多不足,但是神经网络和传统专家系统相结合的智能故障诊断技术仍将是以后研究与应用的热点。它最大限度地发挥两者的优势。神经网络擅长数值计算,适合进行浅层次的经验推理;专家系统的特点是符号推理,适合进行深层次的逻辑推理。智能系统以并行工作方式运行,既扩大了状态监测和故障诊断的范围,又可满足状态监测和故障诊断的实时性要求。既强调符号推理,又注重数值计算,因此能适应当前故障诊断系统的基本特征和发展趋势。随着人工神经网络的不断发展与完善,它将在智能故障诊断中得到广泛的应用。根据神经网络上述的各类优缺点,目前有将神经网络与传统的专家系统结合起来的研究倾向,建造所谓的神经网络专家系统。理论分析与使用实践表明,神经网络专家系统较好地结合了两者的优点而得到更广泛的研究和应用。离心式制冷压缩机的构造和工作原理与离心式鼓风机极为相似。但它的工作原理与活塞式压缩机有根本的区别,它不是利用汽缸容积减小的方式来提高汽体的压力,而是依靠动能的变化来提高汽体压力。离心式压缩机具有带叶片的工作轮,当工作轮转动时,叶片就带动汽体运动或者使汽体得到动能,然后使部分动能转化为压力能从而提高汽体的压力。这种压缩机由于它工作时不断地将制冷剂蒸汽吸入,又不断地沿半径方向被甩出去,所以称这种型式的压缩机为离心式压缩机。其中根据压缩机中安装的工作轮数量的多少,分为单级式和多级式。如果只有一个工作轮,就称为单级离心式压缩机,如果是由几个工作轮串联而组成,就称为多级离心式压缩机。在空调中,由于压力增高较少,所以一般都是采用单级,其它方面所用的离心式制冷压缩机大都是多级的。单级离心式制冷压缩机的构造主要由工作轮、扩压器和蜗壳等所组成。 压缩机工作时制冷剂蒸汽由吸汽口轴向进入吸汽室,并在吸汽室的导流作用引导由蒸发器(或中间冷却器)来的制冷剂蒸汽均匀地进入高速旋转的工作轮3(工作轮也称叶轮,它是离心式制冷压缩机的重要部件,因为只有通过工作轮才能将能量传给汽体)。汽体在叶片作用下,一边跟着工作轮作高速旋转,一边由于受离心力的作用,在叶片槽道中作扩压流动,从而使汽体的压力和速度都得到提高。由工作轮出来的汽体再进入截面积逐渐扩大的扩压器4(因为汽体从工作轮流出时具有较高的流速,扩压器便把动能部分地转化为压力能,从而提高汽体的压力)。汽体流过扩压器时速度减小,而压力则进一步提高。经扩压器后汽体汇集到蜗壳中,再经排气口引导至中间冷却器或冷凝器中。 二、离心式制冷压缩机的特点与特性 离心式制冷压缩机与活塞式制冷压缩机相比较,具有下列优点: (1)单机制冷量大,在制冷量相同时它的体积小,占地面积少,重量较活塞式轻5~8倍。 (2)由于它没有汽阀活塞环等易损部件,又没有曲柄连杆机构,因而工作可靠、运转平稳、噪音小、操作简单、维护费用低。 (3)工作轮和机壳之间没有摩擦,无需润滑。故制冷剂蒸汽与润滑油不接触,从而提高了蒸发器和冷凝器的传热性能。 (4)能经济方便的调节制冷量且调节的范围较大。 (5)对制冷剂的适应性差,一台结构一定的离心式制冷压缩机只能适应一种制冷剂。 (6)由于适宜采用分子量比较大的制冷剂,故只适用于大制冷量,一般都在25~30万大卡/时以上。如制冷量太少,则要求流量小,流道窄,从而使流动阻力大,效率低。但近年来经过不断改进,用于空调的离心式制冷压缩机,单机制冷量可以小到10万大卡/时左右。 制冷与冷凝温度、蒸发温度的关系。 由物理学可知,回转体的动量矩的变化等于外力矩,则 T=m(C2UR2-C1UR1) 两边都乘以角速度ω,得 Tω=m(C2UωR2-C1UωR1) 也就是说主轴上的外加功率N为: N=m(U2C2U-U1C1U) 上式两边同除以m则得叶轮给予单位质量制冷剂蒸汽的功即叶轮的理论能量头。 U2 C2 ω2 C2U R1 R2 ω1 C1 U1 C2r β 离心式制冷压缩机的特性是指理论能量头与流量之间变化关系,也可以表示成制冷 W=U2C2U-U1C1U≈U2C2U (因为进口C1U≈0) 又C2U=U2-C2rctgβ C2r=Vυ1/(A2υ2) 故有 W= U22(1- Vυ1 ctgβ) A2υ2U2 式中:V—叶轮吸入蒸汽的容积流量(m3/s) υ1υ2 ——分别为叶轮入口和出口处的蒸汽比容(m3/kg) A2、U2—叶轮外缘出口面积(m2)与圆周速度(m/s) β—叶片安装角 由上式可见,理论能量头W与压缩机结构、转速、冷凝温度、蒸发温度及叶轮吸入蒸汽容积流量有关。对于结构一定、转速一定的压缩机来说,U2、A2、β皆为常量,则理论能量头W仅与流量V、蒸发温度、冷凝温度有关。 按照离心式制冷压缩机的特性,宜采用分子量比较大的制冷剂,目前离心式制冷机所用的制冷剂有F—11、F—12、F—22、F—113和F—114等。我国目前在空调用离心式压缩机中应用得最广泛的是F—11和F—12,且通常是在蒸发温度不太低和大制冷量的情况下,选用离心式制冷压缩机。此外,在石油化学工业中离心式的制冷压缩机则采用丙烯、乙烯作为制冷剂,只有制冷量特别大的离心式压缩机才用氨作为制冷剂。 三、离心式制冷压缩机的调节 离心式制冷压缩机和其它制冷设备共同构成一个能量供给与消耗的统一系统。制冷机组在运行时,只有当通过压缩机的制冷剂的流量与通过设备的流量相等时,以及压缩机所产生的能量头与制冷设备的阻力相适应时,制冷系统的工况才能保持稳定。但是制冷机的负荷总是随外界条件与用户对冷量的使用情况而变化的,因此为了适应用户对冷负荷变化的需要和安全经济运行,就需要根据外界的变化对制冷机组进行调节,离心式制冷机组制冷量的调节有:1°改变压缩机的转速;2°采用可转动的进口导叶;3°改变冷凝器的进水量;4°进汽节流等几种方式,其中最常用的是转动进口导叶调节和进汽节流两种调节方法。所谓转动进口导叶调节,就是转动压缩机进口处的导流叶片以使进入到叶轮去的汽体产生旋绕,从而使工作轮加给汽体的动能发生变化来调节制冷量。所谓进汽节流调节,就是在压缩机前的进汽管道上安装一个调节阀,如要改变压缩机的工况时,就调节阀门的大小,通过节流使压缩机进口的压力降低,从而实现调节制冷量。离心式压缩机制冷量的调节最经济有效的方法就是改变进口导叶角度,以改变蒸汽进入叶轮的速度方向(C1U)和流量V。但流量V必须控制在稳定工作范围内,以免效率下降。
给楼主写资料吧,希望能帮到你退火算法神经网络原理这是一范文
论文中转 : ImageNet Classification with Deep Convolutional Neural Networks
自Le Net-5在1998年提出以后,时隔14年,AlexNet横空问世,在2012年ImageNet竞赛中以冠军的成绩笑傲群雄,也就是从那时起,更多更优秀的网络被相继提出。论文第一作者是来自多伦多大学的Alex Krizhevsky,因此网络称为Alex Net。
在论文中,作者训练了一个大而深(相比于之前)的卷积网络用于ImageNet比赛,将120万高分辨图像分为1000个类别。在测试集上,分别达到了的top-1错误率和的top-5错误率,超越了先前最好的网络。网络共有600万参数,65万个神经元,5个卷积层加3个全连接层,输出为1000类别。为了防止过拟合,作者采用了数据扩充和dropout正则法,实验结果表明此方法非常有效;为了加快训练速度,作者采用了两块并行的GPU同时对特征图进行运算。
由于采用了双GPU模式,所以结构图呈现的是上图的样子,下面引用一张博客作者 chenyuping666 文章的图片,可以详细的了解网络内部结构与实现细节。
从上图可以看到,输入为227×227×3的图像
在conv1中 ,卷积核大小为11×11,步长为4,通道数为96(每台GPU运算48个,下同),经过激活函数Relu激活后,采用最大池化(size=3×3,stride=2),标准化,输出为27×27×96。
在conv2中 ,卷积核大小为5×5,步长为1,通道数256,先对输入特征图扩展像素为31×31(pad=2),然后卷积,激活,池化(size=3×3,stride=2),标准化,输出特征图为13×13×256。
在conv3,conv4中 ,卷积核大小都为3×3,步长为1,pad=1,通道数为384,经过激活后输出特征图为13×13×384。
在conv5中 ,卷积核大小都为3×3,步长为1,通道数为256,经过激活,池化后输出特征图为6×6×256。
在fcn6,fcn7中 ,共有4096个神经元,采用了dropout技术防止过拟合。
在fcn8 ,也就是最后一层,采用softmax输出1000个类别。
相比于之前的网络,AlexNet为何能取得比较好的结果呢,从作者的论文中可以发现以下几点:
非线性激活函数Relu 在之前一般使用tanh(x)或sigmoid作为激活函数,但这些饱和的线性函数在梯度的计算上非常缓慢,并且容易产生梯度消失问题。Relu的出现使这些问题得到了有效的解决。在基于cifar-10数据集的标准四层网络测试中,采用tanh和Relu作为激活函数使error rate达到所用的时间,Relu比tanh快大约6倍。
多个GPU 作者认为计算资源的大小限制了网络的大小,要想训练大的网络结构,必须拥有足够的计算资源。120万的数据集太大以至于单个GPU不足以匹配,因此作者将网络的计算任务分配到两个GPU上执行。目前GPU特别适合做并行化,因为一个GPU可以直接从另一个GPU读和写内容,而不需要经过主机内存。
局部响应归一化(LRN) 作者在文章中提出了Local Response Normalization的方法,分别将top-1和top-5错误率降低了和。作者在文中提到,如果训练样本产生一个正输入到Relu,网络只会在那个特定神经元上学习,但是引入局部响应正则化后,提高了网络的泛化能力。这种响应归一化会产生一种由某一神经元所激发的横向抑制,为由使用不同卷积核计算的神经元输出之中的“big activities”创造竞争。
重叠池化 一般的池化操作因为没有重叠,所以pool_size 和 stride是相等的。例如6×6的图像在size=2×2的池化后,输出为3×3,但是本文使用的size 卷积神经网络毕设难。根据查询相关资料信息显示,毕业设计对于每个学生而言都是一种十分痛苦的渡劫仪式,包括卷积神经网络。完成一个实现图像分类任务的卷积神经网络的项目,包括训练数量和用于识别后期还加了批量识别图片的需求两个部分。 计算机毕业设计 基于Python的SIFT和KCF的运动目标匹配与跟踪 毕业论文+项目源码 基于Python决策树算法的学生学习行为数据分析 设计报告+代码及数据 基于Sring+bootstrap+MySQL的住房公积金管理系统 课程报告+项目源码及数据库文件 基于C++的即时通信软件设计 毕业论文+项目源码 基于JavaWeb+MySQL的图书管理系统 课程报告+项目源码及数据库文件 基于Android Studio+Android SDK的手机通讯录管理软件设计 课程报告+项目源码 基于JSP+MySQL的校园网上订餐系统 毕业论文+项目源码及数据库文件 基于AndroidStudio的花艺分享平台APP设计 报告+源码及APK文件 基于Python的酒店评论情感分析 课程报告+答辩PPT+项目源码 基于QT的教务选课管理系统设计与实现 毕业论文+项目源码 基于Android+Springboot+Mybatis+Mysql的个人生活APP设计 说明书+项目源码 基于的Web3D宇宙空间数据可视化系统 设计报告+前后端源码及数据 基于java+android+SQLite的保健型果饮在线销售APP设计 毕业论文+源码数据库及APK文件 基于的高校综合资源发布分享社交二手平台 毕业论文+项目源码及数据库文件+演示视频 基于Delphi+MySQL的大学生竞赛发布及组队系统 设计报告+源码数据库及可执行文件+使用说明书 基于Android的名片信息管理系统设计与实现 毕业论文+任务书+外文翻译及原文+演示视频+项目源码 基于Python的电影数据可视化分析系统 设计报告+答辩PPT+项目源码 基于JavaWeb的企业公司管理系统设计与实现 毕业论文+答辩PPT+演示视频+项目源码 高校成绩管理数据库系统的设计与实现 毕业论文+项目源码 基于JavaWeb的家庭食谱管理系统设计与实现 毕业论文+项目源码及数据库文件 基于Python+SQLSERVER的快递业务管理系统的设计与实现 毕业论文+项目源码及数据库文件 基于Python的语音词频提取云平台 设计报告+设计源码 在推荐系统中引入 Serendipity 的算法研究 毕业论文+参考文献+项目源码 基于Html+Python+Django+Sqlite的机票预订系统 毕业论文+项目源码及数据库文件 基于Python的卷积神经网络的猫狗图像识别系统 课程报告+项目源码 基于C++的云安全主动防御系统客户端服务端设计 毕业论文+项目源码 基于JavaSSM的学生成绩管理APP系统设计与实现 毕业论文+答辩PPT+前后台源码及APK文件 基于JavaSwing+MySQL的清朝古代名人数据管理系统设计 毕业论文+任务书+项目源码及数据库文件 基于Python_Django的社会实践活动管理系统设计与实现 毕业论文 基于Servlet WebSocket MySQL实现的网络在线考试系统 毕业论文+项目源码 基于JavaWEB+MySQL的学生成绩综合管理系统 毕业论文+项目源码及数据库文件 基于SpringBoot+Vue和MySQL+Redis的网络课程平台设计与实现 毕业论文+任务书+开题报告+中期报告+初稿+前后台项目源码 基于Java的毕业设计题目收集系统 课程报告+项目源码 基于Java+Python+html的生产者与消费者算法模拟 毕业论文+任务书+项目源码 基于JavaWeb+MySQL的学院党费缴费系统 毕业论文+项目源码及数据库文件 基于Java+MySQL的学生成绩管理系统 毕业论文+任务书+答辩PPT+项目源码及数据库文件 基于Java+MySQL的学生和客户信息管理系统 课程报告+项目源码及数据库文件 基于Java的长整数加减法算法设计 毕业论文+项目源码 基于vue+MySQL的毕业设计网上选题系统 毕业论文+项目源码 基于背景建模和FasterR-CNN的视频前景和目标检测 毕业论文+答辩PPT+项目源码 基于Python的智能视频分析之人数统计的多种实现 毕业论文+答辩PPT+项目源码 基于C#+SQL server的校园卡消费信息管理系统 毕业论文+项目源码及数据库文件 基于Python的SIFT和KCF的运动目标匹配与跟踪 毕业论文+项目源码基于Python决策树算法的学生学习行为数据分析 设计报告+代码及数据基于Sring+bootstrap+MySQL的住房公积金管理系统 课程报告+项目源码及数据库文件基于C++的即时通信软件设计 毕业论文+项目源码 源码地址: 介绍: 利用遗传算法并行地优化BP网络的权值和阈值,从而避免了BP网络在优化权值和阈值时陷入局部最优的缺点 背景: 这个项目的背景为客运量和货运量的预测 文件介绍: 因为项目中用到了GAOT工具包中的函数,所以需要将GAOT工具包加入路径。 操作步骤为:点击GAOT文件--->添加到路径--->选定文件夹和子文件夹 这样,工程中就可以调用GAOT工具包中的函数了 源码地址: 现如今,随着社会经济发展,机器人开始被广泛应用于各行各业中,替工人进行一些复杂、繁重的体力劳动,能减轻人们的工作负担。下面是由我整理的工业机器人技术论文 范文 ,希望能对大家有所帮助!工业机器人技术论文范文篇一:《浅谈工业机器人在工业生产中的应用》 工业机器人是面向工业领域的多关节机械手或多自由度的机器人。工业机器人是自动执行工作的机器装置,是靠自身动力和控制能力来实现各种功能的一种机器。它可以接受人类指挥,也可以按照预先编排的程序运行,现代的工业机器人还可以根据人工智能技术制定的原则纲领行动。就工业机器人在工业生产中的应用进行探讨。 关键词:工业机器人 应用 工业 1 引言 工业机器人最早应用于汽车制造工业,常用于焊接,喷漆,上、下料和搬运。工业机器人延伸和扩大了人的手、足和大脑功能,它可代替人从事危险、有害、有毒、低温和高热等恶劣环境中的工作;代替人完成繁重、单调的重复劳动,提高劳动生产率,保证产品质量。工业机器人与数控加工中心、自动搬运小车以及自动检测系统可组成柔性制造系统和计算机集成制造系统,实现生产自动化。 2 工业机器人的主要运用 (1)恶劣工作环境及危险工作军事领域及核工业领域有些作业是有害于人体健康并危及生命,或不安全因素很大而不宜由人去做的作业,用工业机器人去做最合适。例如核工厂设备的检验和维修机器人,核工业上沸腾水式反应堆燃料自动交换机。 (2)特殊作业场合和极限作业火山探险、深海探密和空间探索等领域对于人类来说是力所不能及的,只有机器人才能进行作业。如航天飞机上用来回收卫星的操作臂;用于海底采矿和打捞的遥控海洋作业机器人。 (3)自动化生产领域早期的工业机器人在生产上主要用于机床上、下料,点焊和喷漆。用得最多的制造工业包括电机制造、汽车制造、塑料成形、通用机械制造和金属加工等工业。随着柔性自动化的出现,机器人在自动化生产领域扮演了更重要的角色。下面主要针对工业机器人在自动化生产领域的应用进行简单介绍。 焊接机器人 点焊机器人工业机器人首先应用于汽车的点焊作业,点焊机器人广泛应用于焊接车体薄板件。装焊一台汽车车体一般大约需要完成3000~4000个焊点,其中60%是由点焊机器人来完成的。在有些大批量汽车生产线上,服役的点焊机器人数量甚至高达150多台。 点焊机器人主要性能要求:安装面积小,工件空间大;快速完成小节距的多点定位;定位精度高(土0 .25 mm ),以确保焊接质量;持重大(490~980N ) ,以便携带内装变压器的焊钳;示教简单,节省工时。 弧焊机器人 弧焊机器人应用于焊接金属连续结合的焊缝工艺,绝大多数可以完成自动送丝、熔化电极和气体保护下进行焊接工作。弧焊机器人应用范围很广,除汽车行业外,在通用机械、金属结构等许多行业中都有应用。弧焊机器人应是包括各种焊接附属装置在内的焊接系统,而不只是一台以规划的速度和姿态携带焊枪移动的单机。如图1所示为弧焊机器人的基本组成。适合机器人应用的弧焊 方法 主要有惰性握体保护焊、混合所体保护焊、埋弧焊和等离子弧焊接。 1-机器人控制柜2-焊接电源3-气瓶4-气体流量计5-气路6-焊丝轮7-柔性导管8-弧焊机器人9-送丝机器人10-焊枪11-工件电缆12-焊接电缆13-控制电缆 图1 弧焊机器人系统的基本组成 弧焊机器人的主要性能要求:在弧焊作业中,要求焊枪跟踪工件的焊道运动,并不断填充金属形成焊道。因此,运动过程中速度的稳定性和轨迹是两项重要指标,一般情况下,焊接速度约取5~50 mm/s ,轨迹精度约为.2 ~ ) mm;由于焊枪的姿态对焊缝质量也有一定影响,因此希望在跟踪焊道的同时,焊枪姿态的可调范围尽量大。此外,还有一些其他性能要求,这些要求包括:设定焊接条件(电流、电压、速度等)、抖动功能、坡口填充功能、焊接异常检测功能(断弧、工件熔化)及焊接传感器(起始焊点检测,焊道跟踪)的接口功能。 喷漆机器人 喷漆机器人广泛应用于汽车车体、家电产品和各种塑料制品的喷漆作业。喷漆机器人在使用环境和动作要求上有如下特点: (1)工作环境空气中含有易爆的喷漆剂蒸气; (2)沿轨迹高速运动,途经各点均为作业点; (3)多数被喷漆部件都搭载在传送带上,边移动边喷漆。如图2所示为关节式喷漆机器人。 搬运机器人 随着计算机集成制造技术、物流技术、自动仓储技术的发展,搬运机器人在现代制造业中的应用也越来越广泛。机器人可用于零件的加工过程中,物料、工辅量具的装卸和储运,可用来将零件从一个输送装置送到另一个输送装置,或从一台机床上将加工完的零件取下再安装到另一台机床上去。 装配机器人 装配在现代工业生产中占有十分重要的地位。有关资料统计表明,装配劳动量占产品生产劳动量的50%~60%,在有些场合,这一比例甚至更高。例如,在电子器件厂的芯片装配、电路板的生产中,装配劳动量占产品生产劳动量的70 %~80%。因此,用机器人来实现自动化装配作业是十分重要的。 机器人柔性装配系统 机器人正式进入装配作业领域是在“机器人普及元年”的1980年前后,引人装配作业的机器人在早期主要用来代替装配线上手工作业的工序,随后很快出现了以机器人为主体的装配线。装配机器人的应用极大地推动了装配生产自动化的进展。装配机器人建立的柔性自动装配系统能自动装配中小型、中等复杂程度的产品,如电机、水泵齿轮箱等,特别适应于中小批量生产的装配,可实现自动装卸、传送、检测、装配、监控、判断、决策等机能。 机器人柔性装配系统通常以机器人为中心,并有诸多周边设备,如零件供给装置、工件输送装置、夹具、涂抹器等与之配合,此外还常备有可换手等。但是如果零件的种类过多,整个系统将过于庞大,效率降低,这是不可取的。在机器人柔性装配系统中,机器人的数量可根据产量选定,而零件供给装置等周边设备则视零件和作业的种类而定。因此,和装配线比较,产量越少,机器人柔性装配系统的投资越大。 3 结束语 工业机器人是以机械、电子、电子计算机和自动控制等学科领域的技术为基础,融合而成的一种系统技术;也可说是一门知识、技术密集的,多学科交叉的综合化的高新技术。随着这些相关学科技术的进步和发展,工业机器人技术也一定会到迅速发展和提高。 工业机器人技术论文范文篇二:《探讨工业机器人的发展趋势》 摘 要 随着社会经济发展,机器人开始被广泛应用于各行各业中,替工人进行一些复杂、繁重的体力劳动。目前,机器人是一种制造业与自动化设备中的典型代表,这将会是人造机器的“终极”版。它的应用已经涉及信息化、自动化、智能化、传感器与知识化等多个学科和领域,这是目前,是我国乃至世界高新技术成果的最佳集成,因此,它的发展是与许多学科的发展有着密切的联系。以现在的发展趋势来看,工业机器人的应用范围越来越广泛,同时在技术操作中,他也变得越来越标准化、规范化,提高工业机器人的安全性。另一方面,工业机器人发展越来越微型化、智能化,在人类生活中应用越来越广泛。 关键词 工业机器人 智能化 应用领域 安全性 随着社会复杂的需求,工业机器人在应用领域中越来越广泛。一方面,工业机器人被广泛应用于工业生产中,代替工人危险、复杂、单调的长时间的作业,例如在机械加工、压力铸造、塑料制品成形及金属制品业等各种工序上,同时还应用于原子能工业等高危险的部门,这已经在发达国家中应用比较广泛。另一方面,工业机器人在其他的领域应用也比较多,随着科学技术的飞速发展,提高了工业机器人的使用性能和安全性能,其应用的范围越来越广泛,应用的范围已经突破了工业,尤其在医疗业中应用比较好。 一、工业机器人的发展历程 第一代机器人,一般指工业上大量使用的可编程机器人及遥控操作机。可编程机器人可根据操作人员所编程序完成一些简单重复性作业。遥控操作机制每一步动作都要靠操作人员发出。1982年,美国通用汽车公司在装配线上为机器人装备了视觉系统,从而宣告了第二代机器人―感知机器人的问世。这代机器人,带有外部传感器,可进行离线编程。能在传感系统支持下,具有不同程度感知环境并自行修正程序的功能。第三代机器人为自治机器人,正在各国研制和发展。它不但具有感知功能,还具有一定决策和规划能力。能根据人的命令或按照所处环境自行做出决策规划动作即按任务编程。 我国机器人研究工作起步较晚,从“七五”开始国家投入资金,对工业机器及其零部件进行攻关,完成了示教再现式工业机器人成套技术的开发和研制。1986 年国家高技术研究发展计划开始实施,智能机器人主题跟踪世界机器人技术的前沿,经过几年的研究,取得了一大批科研成果,成功地研制出了一批特种机器人。 我国工业机器人起步于70年代初期,经过30多年的发展,大致经历了3个阶段:70年代的萌芽期,80年代的开发期和90年代的适用化期。 上世纪70年代是世界科技发展的一个里程碑:人类登上了月球,实现了金星、火星的软着陆。我国也发射了人造卫星。世界上工业机器人应用掀起一个高潮,尤其在日本发展更为迅猛,它补充了日益短缺的劳动力。在这种背景下,我国于1972年开始研制自己的工业机器人。 进入80年代后,在高技术浪潮的冲击下,随着改革开放的不断深入,我国机器人技术的开发与研究得到了政府的重视与支持。“七五”期间,国家投入资金,对工业机器人及其零部件进行攻关,完成了示教再现式工业机器人成套技术的开发,研制出了喷涂、点焊、弧焊和搬运机器人。1986年国家高技术研究发展计划(863计划)开始实施,智能机器人主题跟踪世界机器人技术的前沿,经过几年的研究,取得了一大批科研成果,成功地研制出了一批特种机器人。 从90年代初期起,中国的国民经济进入实现两个根本转变时期,掀起了新一轮的经济体制改革和技术进步热潮,我国的工业机器人又在实践中迈进一大步,先后研制出了点焊、弧焊、装配、喷漆、切割、搬运、包装码垛等各种用途的工业机器人,并实施了一批机器人应用工程,形成了一批机器人产业化基地,为我国机器人产业的腾飞奠定了基础。 我国工业机器人经过“七五”攻关计划、“九五”攻关计划和863计划的支持已经取得了较大进展,工业机器人市场也已经成熟,应用上已经遍及各行各业。 我国未来工业机器人技术发展的重点有:第一,危险、恶劣环境作业机器人:主要有防暴、高压带电清扫、星球检测、油汽管道等机器人;第二,医用机器人:主要有脑外科手术辅助机器人,遥控操作辅助正骨等;第三,仿生机器人:主要有移动机器人,网络遥控操作机器人等。其发展趋势是智能化、低成本、高可靠性和易于集成。 二、工业机器人的发展趋势 机器人是先进制造技术和自动化装备的典型代表,是人造机器的“终极”形式。它涉及到机械、电子、自动控制、计算机、人工智能、传感器、通讯与网络等多个学科和领域,是多种高新技术发展成果的综合集成,因此它的发展与众多学科发展密切相关。当今工业机器人的发展趋势主要有:一是工业机器人性能不断提高(高速度、高精度、高可靠性、便于操作和维修),而单机价格不断下降。二是机械结构向模块化可重构化发展。例如关节模块中的伺服电机、减速机、检测系统三位一体化;有关节模块、连杆模块用重组方式构造机器人。三是工业机器人控制系统向基于 PC机的开放型控制器方向发展,便于标准化,网络化;器件集成度提高,控制柜日渐小巧,采用模块化结构,大大提高了系统的可靠性、易操作性和可维修性。四是机器人中的传感器作用日益重要,除采用传统的位置、速度、加速度等传感器外,视觉、力觉、声觉、触觉等多传感器的融合技术在产品化系统中已有成熟应用。五是机器人化机械开始兴起。从94年美国开发出“虚拟轴机床”以来这种新型装置已成为国际研究的 热点 之一,纷纷探索开拓其实际应用的领域。 总体趋势是,从狭义的机器人概念向广义的机器人技术概念转移,从工业机器人产业向解决方案业务的机器人技术产业发展。机器人技术的内涵已变为 灵活应用机器人技术的、具有实际动作功能的智能化系统。机器人结构越来越灵巧,控制系统愈来愈小,其智能也越来越高,并正朝着一体化方向发展。 三、我国工业机器人发展面临的挑战与前景 我国工业底子薄,工业机器人发展一直处于一个初步发展阶段,虽然我国从上个世纪70年代开始研发工业机器人,但是技术力量不足与西方国家的技术封锁,对此,在发展过程中,存在着比较多的问题。细分起来,有如下几点: 首先,我国基础零部件制造能力差。虽然我国在相关零部件方面有了一定的基础,但是无论从质量、产品系列全面,还是批量化供给方面都与国外存在较大的差距。特别是在高性能交流伺服电机和精密减速器方面的差距尤其明显,因此造成关键零部件的进口,影响了我国机器人的价格竞争力。 第二,我国的机器人还没有形成自己的品牌。虽然已经拥有一批企业从事机器人的开发,但是都没有形成较大的规模,缺乏市场的品牌认知度,在机器人市场方面一直面临国外机器人品牌的打压。国外机器人作为成熟的产业采用整机降价,吸引国内企业购买,而在后续的维护备件费用很高的策略,逐步占领中国市场。 第三,认识不到位,在鼓励工业机器人产品方面的政策少。工业机器人的制造及应用水平,代表了一个国家的制造业水平,我们必须从国家高度认识发展中国工业机器人产业的重要性,这是我国从制造大国向制造强国转变的重要手段和途径。□ 参考文献: [1]任俊.面向熔射快速制模的机器人辅助曲面自动抛光系统的研究.华中科技大学,2006年. [2]钟新华,蔡自兴,邹小兵.移动机器人运动控制系统设计及控制算法研究.华中科技大学学报(自然科学版),2004年S1期. [3]张中英.基于遗传算法的机器人神经网络控制系统.太原理工大学,2005年. [4]李磊,叶涛,谭民,陈细军.移动机器人技术研究现状与未来.机器人,2002年05期. [5]杜玉红,李修仁.生产线组装单元气动搬运机械手的设计.液压与气动,2006年05期. [6]徐晓峰.基于串行通信技术的机器人实时控制研究.南京林业大学,2005年. 工业机器人技术论文范文篇三:《试论工业机器人机电一体化》 1机电一体化技术的应用现状 工业机器人。 工业机器人的出现在一定程度上可替代人的劳动,对于高辐射、高噪声污染、高浓度有害气体的工作场合来说,工业机器人是一个理想的选择。工业机器人的发展经历了三个阶段,第一代工业机器人智能化程度较低,只能通过预设的程序进行简单的重复动作,无法应对多变的工作环境和工作岗位。随着科技的发展,在第一代机器人的基础上通过各种传感器的应用使其可通过对环境信息的获取、分析、处理并反馈给动作单元,从而进行一些适应性的工作,这种机器人虽然智能化程度较低,但已经在一些特定的领域得以成功应用。在机电一体化技术相对成熟的今天,第三代机器人的智能化水平已经得到了较大的提升,其可以通过强大的传感原件收集信息数据,并根据实际情况作出类似于人脑的判断,因此可以在多种环境下进行独立作业,但成本较高,在一定程度上限制了实际应用。 分布式控制系统。 分布式控制系统是相对于集中式控制系统而言的,是通过一台中央计算机对负责现场测控的多台计算机进行控制和指挥,由于其强大的功能和安全性,使其成为当前大型机电一体化系统的主流技术。根据实际情况分布式控制系统的层级可分为两级、三级或更多级,通过中央计算机完成对现场生产过程的实时监控、管理和操作控制等,同时,随着测控技术的不断发展与创新,分布式控制系统还可以对生产过程实现实时调度、在线最优化、生产计划统计管理等功能,成为一种集测、控、管于一体的综合系统,具有功能丰富、可靠性高、操作方便、低故障率、便于维护和可扩展等优点,因此使系统的可靠性大幅提高。 2机电一体化技术的发展趋势 人工智能化。 人工智能就是使工业机器人或数控机床模拟人脑的智力,使其在生产过程中具备一定的推理判断、 逻辑思维 和自主决策的能力,可大幅提升工业生产过程的自动化程度,甚至实现真正的无人值守,对于降低人力成本,提高加工精度和工作效率具有十分重要的意义。目前,人工智能已经不只是停留在概念上,因此可预见机电一体化技术将向着人工智能化的方向发展。虽然以当前的科学技术水平不可能使机器人或数控机床完全具备人类的思维模式和智力特点,但在工业生产中,使这些机电一体化设备具备部分人类的职能是完全可以通过先进的技术达到的。 网络化。 网络技术 的发展给机电一体化设备远程监视和远程控制提供了便利条件,因此,将网络技术与机电一体化技术结合起来将是机电一体化技术发展的重点。在生产过程中,操作人员需要在车间内来回走动,对设备的状态进行掌握,并对机床的操作面板进行操作,通过在机电一体化设备与控制终端之间建立通信协议,并通过光纤等介质实现信息数据的传递,即可实现远程监视和操作,降低工人的劳动量,并且各种控制系统功能的实现,理论上来说都是建立在网络技术基础上的。 环保化。 在人类社会发展的最近几十年里,虽然经济得到了迅猛的发展,人们生活水平得到了显著的提高,然而以牺牲资源和环境为代价的发展模式使得人类赖以生存的环境遭到严重的污染,因此,在可持续发展战略提出的今天,发展任何技术都应当以对环境友好作为前提,否则就是没有前途的,故环保化是机电一体化技术发展的必然趋势。在机电一体化应用过程中,通过对资源的高效利用,并在制造过程中做到达标排放甚至零排放,产品在使用过程中对生态环境不造成影响,即便报废后也可对其进行有效回收利用,这就是机电一体化技术环保化的具体表现形式,符合可持续发展的要求。 模块化。 由于机电一体化装置的制造商较多,为降低系统升级改造的成本,并为维修提供便利,模块化将是一个非常有前途的研究方向。通过对功能单元进行模块化改造,可在需要增加或改变功能时直接将对应的功能模块进行组装或更换,即便出现故障,只需将损害的模块进行更换即可,工作效率极高,通用性的增强为企业节约了大量的成本。 自带能源化。 机电一体化对电力的要求较高,如果没有充足的电能供应就会影响生产效率,甚至由于停电造成数据的丢失等,因此通过设备自带动力能源系统可始终保持充足的电力供应,使系统运行更流畅。 3结语 综上所述,机电一体化技术的应用可使产品的生产效率和精度大幅提高,在当前工业生产中具有较大的技术优势,相信随着科技的发展,机电一体化技术水平也会不断提高,为工业生产做出更大贡献。 猜你喜欢: 1. 初三机器人科学论文2000字 2. 工业智能技术论文 3. 传感器技术论文范文 4. 机器人科技论文3000字 5. 初三智能机器人科技论文2000字 6. 人工智能机器人的相关论文 《人工智能与机器人研究》是一本关于人工智能的期刊,该期刊杂志上发表的文章包含这些领域:智能机器人、模式识别与智能系统、虚拟现实技术与应用、系统仿真技术与应用、工业过程建模与智能控制、智能计算与机器博弈、人工智能理论、语音识别与合成、机器翻译、图像处理与计算机视觉、计算机感知、计算机神经网络、知识发现与机器学习、建筑智能化技术与应用、人工智能其他学科等等。另外,这本期刊就是一本开源期刊,与传统期刊相比,采用了同行评审的方法审稿,具体开源期刊的特点可以百度了解更多;而且发表了的文章传播范围更广,受众更多,文章的影响力也更大。 是。tnnls是在美国电气和电子工程师协会(IEEE)人工智能及机器学习领域国际顶级期刊,旨在出版神经网络和学习系统方面的理论、设计和应用的技术文章,是属于顶尖期刊文章。 你不翻译了??? 针对径向基函数(Radial basis function,RBF)神经网络的结构设计问题,提出一种结构动态优化设计方法.利用敏感度法(Sensitivity analysis,SA)分析隐含层神经元的输出加权值对神经网络输出的影响,以此判断增加或删除RBF神经网络隐含层中的神经元,解决了RBF神经网络结构过大或过小的问题,并给出了神经网络结构动态变化过程中收敛性证明;利用梯度下降的参数修正算法保证了最终RBF网络的精度,实现了神经网络的结构和参数自校正.通过对非线性函数的逼近与污水处理过程中关键参数的建模结果,证明了该动态RBF具有良好的自适应能力和逼近能力,尤其是在泛化能力、最终网络结构等方面较之最小资源神经网络(Minimal resource allocation networks,MRAN)与增长和修剪RBF神经网络(Generalized growing and pruning radial basis function,GGAP-RBF)有较大提高.[1] 朱文莉. 一类具有时滞的神经网络的稳定性分析[J]. 电子科技大学学报. 2000(05)[2] 廖晓昕,傅予力,高健,赵新泉. 具有反应扩散的Hopfield神经网络的稳定性[J]. 电子学报. 2000(01)[3] 张菊亮,章祥荪. 一个新的解线性规划的神经网络(英文)[J]. 运筹学学报. 2001(02)[4] 罗公亮. 从神经网络到支撑矢量机(上)[J]. 冶金自动化. 2001(05)[5] 蒋德云,张弓. 谷物识别中对神经网络的优化(英文)[J]. 农业工程学报. 2002(05)[6] 王芳荣,周德义,郑咏梅,王鼎,张铁强. 生物表面光谱特性识别的神经网络方法[J]. 吉林大学学报(信息科学版). 2002(03)[7] 宋光雄,何胜锋,曹辉,张峥,钟群鹏. 基于Hopfield神经网络的腐蚀失效模式识别[J]. 金属热处理学报. 2003(01)[8] 王学武,谭得健. 神经网络的应用与发展趋势[J]. 计算机工程与应用. 2003(03)[9] 刘斌,刘新芝,廖晓昕. 脉冲Hopfield神经网络的鲁棒H-稳定性及其脉冲控制器设计(英文)[J]. 控制理论与应用. 2003(02)[10] 刘国良,强文义,麻亮,陈兴林. 基于粗神经网络的仿人智能机器人的语音融合算法研究[J]. 控制与决策. 2003(03) 神经网络的是我的毕业论文的一部分4.人工神经网络人的思维有逻辑性和直观性两种不同的基本方式。逻辑性的思维是指根据逻辑规则进行推理的过程;它先将信息化成概念,并用符号表示,然后,根据符号运算按串行模式进行逻辑推理。这一过程可以写成串行的指令,让计算机执行。然而,直观性的思维是将分布式存储的信息综合起来,结果是忽然间产生想法或解决问题的办法。这种思维方式的根本之点在于以下两点:1.信息是通过神经元上的兴奋模式分布在网络上;2.信息处理是通过神经元之间同时相互作用的动态过程来完成的。 人工神经网络就是模拟人思维的第二种方式。这是一个非线性动力学系统,其特色在于信息的分布式存储和并行协同处理。虽然单个神经元的结构极其简单,功能有限,但大量神经元构成的网络系统所能实现的行为却是极其丰富多彩的。人工神经网络学习的原理人工神经网络首先要以一定的学习准则进行学习,然后才能工作。现以人工神经网络对手写“A”、“B”两个字母的识别为例进行说明,规定当“A”输入网络时,应该输出“1”,而当输入为“B”时,输出为“0”。 所以网络学习的准则应该是:如果网络做出错误的判决,则通过网络的学习,应使得网络减少下次犯同样错误的可能性。首先,给网络的各连接权值赋予(0,1)区间内的随机值,将“A”所对应的图像模式输入给网络,网络将输入模式加权求和、与门限比较、再进行非线性运算,得到网络的输出。在此情况下,网络输出为“1”和“0”的概率各为50%,也就是说是完全随机的。这时如果输出为“1”(结果正确),则使连接权值增大,以便使网络再次遇到“A”模式输入时,仍然能做出正确的判断。 如果输出为“0”(即结果错误),则把网络连接权值朝着减小综合输入加权值的方向调整,其目的在于使网络下次再遇到“A”模式输入时,减小犯同样错误的可能性。如此操作调整,当给网络轮番输入若干个手写字母“A”、“B”后,经过网络按以上学习方法进行若干次学习后,网络判断的正确率将大大提高。这说明网络对这两个模式的学习已经获得了成功,它已将这两个模式分布地记忆在网络的各个连接权值上。当网络再次遇到其中任何一个模式时,能够做出迅速、准确的判断和识别。一般说来,网络中所含的神经元个数越多,则它能记忆、识别的模式也就越多。人工神经网络的优缺点人工神经网络由于模拟了大脑神经元的组织方式而具有了人脑功能的一些基本特征,为人工智能的研究开辟了新的途径,神经网络具有的优点在于:(1)并行分布性处理因为人工神经网络中的神经元排列并不是杂乱无章的,往往是分层或以一种有规律的序列排列,信号可以同时到达一批神经元的输入端,这种结构非常适合并行计算。同时如果将每一个神经元看作是一个小的处理单元,则整个系统可以是一个分布式计算系统,这样就避免了以往的“匹配冲突”,“组合爆炸”和“无穷递归”等题,推理速度快。(2)可学习性一个相对很小的人工神经网络可存储大量的专家知识,并且能根据学习算法,或者利用样本指导系统来模拟现实环境(称为有教师学习),或者对输入进行自适应学习(称为无教师学习),不断地自动学习,完善知识的存储。(3)鲁棒性和容错性由于采用大量的神经元及其相互连接,具有联想记忆与联想映射能力,可以增强专家系统的容错能力,人工神经网络中少量的神经元发生失效或错误,不会对系统整体功能带来严重的影响。而且克服了传统专家系统中存在的“知识窄台阶”问题。(4)泛化能力人工神经网络是一类大规模的非线形系统,这就提供了系统自组织和协同的潜力。它能充分逼近复杂的非线形关系。当输入发生较小变化,其输出能够与原输入产生的输出保持相当小的差距。(5)具有统一的内部知识表示形式,任何知识规则都可以通过对范例的学习存储于同一个神经网络的各连接权值中,便于知识库的组织管理,通用性强。虽然人工神经网络有很多优点,但基于其固有的内在机理,人工神经网络也不可避免的存在自己的弱点:(1)最严重的问题是没能力来解释自己的推理过程和推理依据。(2)神经网络不能向用户提出必要的询问,而且当数据不充分的时候,神经网络就无法进行工作。(3)神经网络把一切问题的特征都变为数字,把一切推理都变为数值计算,其结果势必是丢失信息。(4)神经网络的理论和学习算法还有待于进一步完善和提高。神经网络的发展趋势及在柴油机故障诊断中的可行性神经网络为现代复杂大系统的状态监测和故障诊断提供了全新的理论方法和技术实现手段。神经网络专家系统是一类新的知识表达体系,与传统专家系统的高层逻辑模型不同,它是一种低层数值模型,信息处理是通过大量的简单处理元件(结点) 之间的相互作用而进行的。由于它的分布式信息保持方式,为专家系统知识的获取与表达以及推理提供了全新的方式。它将逻辑推理与数值运算相结合,利用神经网络的学习功能、联想记忆功能、分布式并行信息处理功能,解决诊断系统中的不确定性知识表示、获取和并行推理等问题。通过对经验样本的学习,将专家知识以权值和阈值的形式存储在网络中,并且利用网络的信息保持性来完成不精确诊断推理,较好地模拟了专家凭经验、直觉而不是复杂的计算的推理过程。但是,该技术是一个多学科知识交叉应用的领域,是一个不十分成熟的学科。一方面,装备的故障相当复杂;另一方面,人工神经网络本身尚有诸多不足之处:(1)受限于脑科学的已有研究成果。由于生理实验的困难性,目前对于人脑思维与记忆机制的认识还很肤浅。(2)尚未建立起完整成熟的理论体系。目前已提出了众多的人工神经网络模型,归纳起来,这些模型一般都是一个由结点及其互连构成的有向拓扑网,结点间互连强度所构成的矩阵,可通过某种学习策略建立起来。但仅这一共性,不足以构成一个完整的体系。这些学习策略大多是各行其是而无法统一于一个完整的框架之中。(3)带有浓厚的策略色彩。这是在没有统一的基础理论支持下,为解决某些应用,而诱发出的自然结果。(4)与传统计算技术的接口不成熟。人工神经网络技术决不能全面替代传统计算技术,而只能在某些方面与之互补,从而需要进一步解决与传统计算技术的接口问题,才能获得自身的发展。虽然人工神经网络目前存在诸多不足,但是神经网络和传统专家系统相结合的智能故障诊断技术仍将是以后研究与应用的热点。它最大限度地发挥两者的优势。神经网络擅长数值计算,适合进行浅层次的经验推理;专家系统的特点是符号推理,适合进行深层次的逻辑推理。智能系统以并行工作方式运行,既扩大了状态监测和故障诊断的范围,又可满足状态监测和故障诊断的实时性要求。既强调符号推理,又注重数值计算,因此能适应当前故障诊断系统的基本特征和发展趋势。随着人工神经网络的不断发展与完善,它将在智能故障诊断中得到广泛的应用。根据神经网络上述的各类优缺点,目前有将神经网络与传统的专家系统结合起来的研究倾向,建造所谓的神经网络专家系统。理论分析与使用实践表明,神经网络专家系统较好地结合了两者的优点而得到更广泛的研究和应用。离心式制冷压缩机的构造和工作原理与离心式鼓风机极为相似。但它的工作原理与活塞式压缩机有根本的区别,它不是利用汽缸容积减小的方式来提高汽体的压力,而是依靠动能的变化来提高汽体压力。离心式压缩机具有带叶片的工作轮,当工作轮转动时,叶片就带动汽体运动或者使汽体得到动能,然后使部分动能转化为压力能从而提高汽体的压力。这种压缩机由于它工作时不断地将制冷剂蒸汽吸入,又不断地沿半径方向被甩出去,所以称这种型式的压缩机为离心式压缩机。其中根据压缩机中安装的工作轮数量的多少,分为单级式和多级式。如果只有一个工作轮,就称为单级离心式压缩机,如果是由几个工作轮串联而组成,就称为多级离心式压缩机。在空调中,由于压力增高较少,所以一般都是采用单级,其它方面所用的离心式制冷压缩机大都是多级的。单级离心式制冷压缩机的构造主要由工作轮、扩压器和蜗壳等所组成。 压缩机工作时制冷剂蒸汽由吸汽口轴向进入吸汽室,并在吸汽室的导流作用引导由蒸发器(或中间冷却器)来的制冷剂蒸汽均匀地进入高速旋转的工作轮3(工作轮也称叶轮,它是离心式制冷压缩机的重要部件,因为只有通过工作轮才能将能量传给汽体)。汽体在叶片作用下,一边跟着工作轮作高速旋转,一边由于受离心力的作用,在叶片槽道中作扩压流动,从而使汽体的压力和速度都得到提高。由工作轮出来的汽体再进入截面积逐渐扩大的扩压器4(因为汽体从工作轮流出时具有较高的流速,扩压器便把动能部分地转化为压力能,从而提高汽体的压力)。汽体流过扩压器时速度减小,而压力则进一步提高。经扩压器后汽体汇集到蜗壳中,再经排气口引导至中间冷却器或冷凝器中。 二、离心式制冷压缩机的特点与特性 离心式制冷压缩机与活塞式制冷压缩机相比较,具有下列优点: (1)单机制冷量大,在制冷量相同时它的体积小,占地面积少,重量较活塞式轻5~8倍。 (2)由于它没有汽阀活塞环等易损部件,又没有曲柄连杆机构,因而工作可靠、运转平稳、噪音小、操作简单、维护费用低。 (3)工作轮和机壳之间没有摩擦,无需润滑。故制冷剂蒸汽与润滑油不接触,从而提高了蒸发器和冷凝器的传热性能。 (4)能经济方便的调节制冷量且调节的范围较大。 (5)对制冷剂的适应性差,一台结构一定的离心式制冷压缩机只能适应一种制冷剂。 (6)由于适宜采用分子量比较大的制冷剂,故只适用于大制冷量,一般都在25~30万大卡/时以上。如制冷量太少,则要求流量小,流道窄,从而使流动阻力大,效率低。但近年来经过不断改进,用于空调的离心式制冷压缩机,单机制冷量可以小到10万大卡/时左右。 制冷与冷凝温度、蒸发温度的关系。 由物理学可知,回转体的动量矩的变化等于外力矩,则 T=m(C2UR2-C1UR1) 两边都乘以角速度ω,得 Tω=m(C2UωR2-C1UωR1) 也就是说主轴上的外加功率N为: N=m(U2C2U-U1C1U) 上式两边同除以m则得叶轮给予单位质量制冷剂蒸汽的功即叶轮的理论能量头。 U2 C2 ω2 C2U R1 R2 ω1 C1 U1 C2r β 离心式制冷压缩机的特性是指理论能量头与流量之间变化关系,也可以表示成制冷 W=U2C2U-U1C1U≈U2C2U (因为进口C1U≈0) 又C2U=U2-C2rctgβ C2r=Vυ1/(A2υ2) 故有 W= U22(1- Vυ1 ctgβ) A2υ2U2 式中:V—叶轮吸入蒸汽的容积流量(m3/s) υ1υ2 ——分别为叶轮入口和出口处的蒸汽比容(m3/kg) A2、U2—叶轮外缘出口面积(m2)与圆周速度(m/s) β—叶片安装角 由上式可见,理论能量头W与压缩机结构、转速、冷凝温度、蒸发温度及叶轮吸入蒸汽容积流量有关。对于结构一定、转速一定的压缩机来说,U2、A2、β皆为常量,则理论能量头W仅与流量V、蒸发温度、冷凝温度有关。 按照离心式制冷压缩机的特性,宜采用分子量比较大的制冷剂,目前离心式制冷机所用的制冷剂有F—11、F—12、F—22、F—113和F—114等。我国目前在空调用离心式压缩机中应用得最广泛的是F—11和F—12,且通常是在蒸发温度不太低和大制冷量的情况下,选用离心式制冷压缩机。此外,在石油化学工业中离心式的制冷压缩机则采用丙烯、乙烯作为制冷剂,只有制冷量特别大的离心式压缩机才用氨作为制冷剂。 三、离心式制冷压缩机的调节 离心式制冷压缩机和其它制冷设备共同构成一个能量供给与消耗的统一系统。制冷机组在运行时,只有当通过压缩机的制冷剂的流量与通过设备的流量相等时,以及压缩机所产生的能量头与制冷设备的阻力相适应时,制冷系统的工况才能保持稳定。但是制冷机的负荷总是随外界条件与用户对冷量的使用情况而变化的,因此为了适应用户对冷负荷变化的需要和安全经济运行,就需要根据外界的变化对制冷机组进行调节,离心式制冷机组制冷量的调节有:1°改变压缩机的转速;2°采用可转动的进口导叶;3°改变冷凝器的进水量;4°进汽节流等几种方式,其中最常用的是转动进口导叶调节和进汽节流两种调节方法。所谓转动进口导叶调节,就是转动压缩机进口处的导流叶片以使进入到叶轮去的汽体产生旋绕,从而使工作轮加给汽体的动能发生变化来调节制冷量。所谓进汽节流调节,就是在压缩机前的进汽管道上安装一个调节阀,如要改变压缩机的工况时,就调节阀门的大小,通过节流使压缩机进口的压力降低,从而实现调节制冷量。离心式压缩机制冷量的调节最经济有效的方法就是改变进口导叶角度,以改变蒸汽进入叶轮的速度方向(C1U)和流量V。但流量V必须控制在稳定工作范围内,以免效率下降。基于遗传算法的神经网络毕业论文
神经网络期刊
毕业论文进化神经网络