动力电池是电动汽车的关键技术之一.1881年特鲁夫(Gustave Trouve)制造出世界上第一辆电动三轮车时,使用的是铅酸电池.目前,仍有不少混合动力汽车和纯电动汽车采用新一代铅酸电池.近十多年来,锂离子动力电池在电动汽车生产中得到应用,越来越显示出其优越性.美国学者麦斯J.A.Mas通过大量实验提出电池充电可接受的电流定理:1)对于任何给定的放电电流,电池的充电接受电流与放出容量的平方根成正比;2)对于任何放电深度,一个电池的充电接受比与放电电流的对数成正比,可以通过提高放电电流来增大充电接受比;3)一个电池经几种放电率放电,其接受电流是各放电率接受电流之总和.也就是说,可以通过放电来提高蓄电池的充电可接受电流.在蓄电池充电接受能力下降时,可以在充电的过程中加入放电来提高接受能力.汽车动力电池的性能和寿命与很多因素有关,除了其自身的参数,如电池的极板质量、电解质的浓度等外;还有外部因素,如电池的充放电参数,包括充电方式、充电结束电压、充放电的电流、放电深度等等.这给电池管理系统BMS估计蓄电池的实际容量和SOC带来很多困难,需要考虑到很多的变量.WG6120HD~合动力电动汽车的电池管理系统是建立在SOC数值的管理上.SOC(state ofcharge)指的是电池内部参加反应的电荷参数的变化状态,反映蓄电池的剩余容量状况.这在国内外都已经形成统一认识.
你这篇中国知网也好,万方数据也好都有例子!甚至百度文库都有!英文原文最好用谷歌学术搜索!==================论文写作方法===========================论文网上没有免费的,与其花人民币,还不如自己写,万一碰到人的,就不上算了。写作论文的简单方法,首先大概确定自己的选题,然后在网上查找几份类似的文章,通读一遍,对这方面的内容有个大概的了解!参照论文的格式,列出提纲,补充内容,实在不会,把这几份论文综合一下,从每篇论文上复制一部分,组成一篇新的文章!然后把按自己的语言把每一部分换下句式或词,经过换词不换意的办法处理后,网上就查不到了,祝你顺利完成论文!
厢式汽车底盘改装设计【摘要】根据用户需求,使厢式汽车具有各种功能,必须对其底盘进行改造。文章在分析底盘改装设计内容和要求的基础上,对车架后悬的改装,千斤顶的安装,油箱的移位等提出改造设计方案,并提出了操作注意事项。【关键词】底盘;改装设计;注意事项0引言厢式汽车是具有独立的封闭结构车厢或与驾驶室联成一体的整体式封闭结构车厢,装备有专用设施,用于载运人员、货物或承担专门作业的专用汽车厢式汽车主要由二类汽车底盘、车厢,连接装置等组成。多数情况下,生产厢式汽车的专用汽车改装厂自己不生产底盘,而是从生产汽车的主机厂购买二类汽车底盘,回厂后根据需要对底盘进行改装设计。为了满足用户提出的要求,保证厢式车具有各种各样的功能,需要对底盘进行这样那样的改装设计总结笔者多年来的工作经验,底盘改装项目主要有车架后悬的改变、加装千斤顶、油箱移位、移动横梁、移动汽液管等。改装时,总的原则是不影响、不降低原二类底盘的性能,不允许随意改变底盘轴距、轮距,保证改装后底盘的强度性能。改装设计应使原来底盘的保养部位、润滑点、注油口、蓄电池和驾驶室翻转操纵机构易于接近,便于操作,不能损坏原底盘上为用户正确使用而设置的各种标识,不应使底盘的维修及保养变得困难[1]。1车架后悬的改造后悬改装设计车架后悬的改造有两种情况,1)后悬缩短。2)后悬加长。按照GB7258《机动车运行安全技术条件》[2]要求,客车及封闭式车厢的车辆后悬不得超过轴距的65%,最大不得超过。对于特殊改装汽车,除了满足上述条件外,为了保证车辆越野性,还要满足离去角要求,GJB219B《军用通信车通用规范》[3]中规定,底盘改装后离去角不得小于26°。一般情况下,车架后端至上装车厢后端的距离不得超过400 mm。当缩短车架后悬时,要保留后横梁或直接利用后横梁附近之前的横梁,同时注意不能损坏板簧后吊耳的连接。当加长车架后悬时,后横梁至前一横梁的距离不应大于1 200mm~1 400 mm,必要时在延长的空间内纵向增加辅助横梁。不论缩短还是加长车架后悬,改制后的后横梁在车架大梁前大约50mm左右(见图1)。后悬加长设计时,为了保证车架的强度,要采用与原车架纵横梁同型号、规格的材料,材料的性能、质量应符合相应标准的规定,一般车架都选用16MnL专用材料。后悬改装操作注意事项后悬改装时要移动后横梁或增加辅助横梁,横梁与纵梁上下翼联接最好采用铆接方式。铆接具有工艺简单、抗震、耐冲击和牢固可靠等优点。如果采用螺栓联接,要注意螺栓应采用强度等级不低于级的螺栓,螺母应采用自锁螺母,整体上要保证强度和防松要求。纵梁加长一般采用焊接方式,为了确保车架加长不出现质量问题,一般企业都制定了《车辆改装车架接长专用工艺规程》,其中规定了焊接人员、设备、材料、操作方法等,每批产品改装前都要做焊缝强度试验,试验合格后,才允许按照工艺要求进行施工。试样材料与被接长的纵梁一致,一般都是16MnL,按照下图制作两件(见图2)。两件对接立焊,采用J507或J502焊条,分两次焊完,底层采用!( mm焊条,顶层采用(!4 mm焊条,电流I=110~170A。焊缝要求如下(图3)。
学术堂整理了一份汽车系毕业论文范文,供大家进行参考:范文题目《浅谈混合动力汽车的检测与维修》摘要:目前已研制成功并投入使用的混合动力电动汽车主要是内燃机与蓄电池混合的混合动力电动汽车,它被称为油电混合动力汽车。首先,随着汽车电控化程度的提高,特别是未来混合动力汽车、纯电动汽车以及燃料电池汽车的发展,汽车的主要故障将出现在电路方面,面对复杂、纷乱的汽车电路时,只有具备了过硬的理论知识后才有可能将它们理清楚、弄明白,才有可能进一步的形成正确的诊断思路,找到正确的维修方法。我们知道不同的混合动力系统其结构和工作原理各不相同,这就使得不同的混合动力汽车其检测与维修的方法也会有很大的差异。关键词:混合动力汽车,检测,维修混合动力电动汽车的英文是“Hybrid Electric Vehicle”,简称“HEV”。根据国际机电委员会下属的电力机动车技术委员会的建议,混合动力电动汽车是指有两种或两种以上的储能器、能源或转换器作驱动能源,至少有一种能提供电能的车辆称为混合动力电动汽车。目前已研制成功并投入使用的混合动力电动汽车主要是内燃机与蓄电池混合的混合动力电动汽车,它被称为油电混合动力汽车。本论文所述的混合动力汽车也只局限于这类油电混合动力汽车。所谓油电混合动力电动汽车(以下简称混合动力汽车),是指采用传统的内燃机和电动机(电池) 做为动力源,通过使用热能和电力两套系统驱动汽车。混合动力汽车采用的内燃机既可是汽油机也可以是柴油机,而使用的电动系统包括高效强化的电动机、发电机和蓄电池。两套系统的联合使用使得内燃机、电动机都可在高效区经济内运行,输出功率相对稳定。燃油提供了车辆运行所需的大部分能量来源,而辅助动力单元即动力电池通过电机使车辆具有更好的动力性和经济性。一、混合动力汽车的检测与维修概述汽车维修工作主要分为保养、机械维修、电器及电控系统维修、钣金和喷漆这几个部分。对于混合动力汽车来说,它与传统的内燃机汽车的主要差别在于增加了一套电驱动系统,这套系统的增加使得原本就复杂的电控系统变得更加复杂,电器及电控系统的维修难度之大不言而喻。由于增加了一套电驱动系统并对原有内燃机汽车的结构作了相应的改造,这决定了混合动力汽车必将产生出新的特有的故障类型,原本适用于传统内燃机汽车的一些维修经验、诊断思路和检测方法在混合动力汽车上可能将不再适用,所以,作为一名维修人员如果墨守成规、依赖经验,不注重理论知识的学习和诊断思维的培养,将很快被淘汰。那么我们应该如何来面对接下来的挑战呢?首先,随着汽车电控化程度的提高,特别是未来混合动力汽车、纯电动汽车以及燃料电池汽车的发展,汽车的主要故障将出现在电路方面,面对复杂、纷乱的汽车电路时,只有具备了过硬的理论知识后才有可能将它们理清楚、弄明白,才有可能进一步的形成正确的诊断思路,找到正确的维修方法。其次,多观察、多比较。在掌握相关理论知识的基础上要回到实践当中来,多观察、多比较。仔细观察汽车的结构,认真的比较它与传统的内燃机汽车的异同点,将理论与实践紧密的连接起来。再次,勤总结。混合动力汽车必然会出现不同于现有传统内燃机汽车的特有的故障类型,应该在维修实践中将其详细的记录下来并认真的分析和总结,日积月累便能形成一套适合于混合动力汽车的行之有效的维修方法。二、混合动力汽车的检测与维修我们知道不同的混合动力系统其结构和工作原理各不相同,这就使得不同的混合动力汽车其检测与维修的方法也会有很大的差异。本文以丰田普锐斯混合动力汽车为例简单的介绍一下与混合动力汽车的检测与维修相关的问题。1、普锐斯混合动力汽车检测与维修注意事项普锐斯采用的是高压电路,动力电池组的额定电压为,发电机和电动机发出(或使用)的电压为500V。在普锐斯的电路系统中,高压电路的线束和连接器都为橙色,而且蓄电池等高压零件都贴有“高压”的警示标志,注意!不要触碰这些配线。论文格式。在检修过程中一定要严格按照正确的操作步骤操作。在检修过程中(如安装或拆卸零部件、对车辆进行检查等)必须注意以下几点:(1)对高压系统进行操作时首先应将车辆电源开关关闭;(2)穿好绝缘手套(戴绝缘手套前一定要先检查手套,不能有破损,哪怕针眼大的也不行,不能有裂纹,不能有老化的迹象,也不能是湿的);(3)将辅助蓄电池的负极电缆断开(在此之前应先查看故障码,有必要的化将故障码保存或记录下来,因为与传统内燃机汽车一样,断开蓄电池负极电缆故障码将被清除);(4)拆下检修塞,并将检修塞放在衣袋里妥善保管,这样可以避免其他人员误将检修塞装回原处,造成意外;(5)拆下检修塞后不要操作电源开关,否则可能损坏混合动力ECU;(6)拆下检修塞后至少将车辆放置5分钟后再进行其他操作,因为至少需要5分钟的时间对变频器内的高压电容器进行放电;(7)在进行高压系统的作业时,应在醒目的地方摆放警告标志,以提醒他人注意安全;(8)不要随身携带任何金属物体或其他导电体,以免不小心掉落引起线路短路;(9)拆下任何高压配线后应立刻用绝缘交代将其包好,保证其完全绝缘;(10)一定要按规定扭矩将高压螺钉端子拧紧。扭矩过大或过小都有可能导致故障;(11)完成对高压系统的操作后,在重新安装检修赛前,应再次确认在工作平台周围没有遗留任何零件或工具,并确认高压端子已拧紧,连接器已插好。论文格式。2、普锐斯的基本检修程序(1)车辆进入车间。(2)分析各户所述的故障。(3)将智能诊断仪II连接到车辆的诊断插座上。(4)读取故障码和定格数据,并将其记录下来。如果出现与CAN通信系统有关的故障码则应首先检查并修复CAN通信。(5)清除故障码。(6)故障症状确认。若故障未出现则进行故障症状模拟;若故障出现则查看故障码及相关数据流以获取相关信息。(7)进行基本检查,查阅相关资料。(8)根据故障现象、故障码、相关数据流并结合其他的检测手段进行故障诊断,找出故障原因。(9)排除故障。(10)确认故障排除。3、普锐斯混合动力汽车混合动力控制系统的检测与维修(1)对混合动力汽车控制系统进行操作前必须弄清楚混合动力汽车控制系统的组成和工作原理并结合电路图和相关的维修资料严格按规范的操作步骤进行。(2)普锐斯混合动力系统的相关检查①检查变频器查看故障码;清除故障码;戴上绝缘手套;关闭电源开关;拆下检修塞;拆下变频器盖,断开端子A和B。将电源开关拨到IG位置,此时会产生互锁开关系统的故障码;在线束侧用电压表测电压,同时用欧姆表测电阻。②检查转换器(戴上绝缘手套操作)若混合动力系统警告灯、主警告灯和充电警告灯同时点亮,则检查故障码并进行相应的故障排除。③检查速度传感器用欧姆表测量端子间的电阻,其值应符合标准值,否则更换变速驱动桥总成。④检查温度传感器用欧姆表测量端子间的电阻,应符合标准值,否则更换变速驱动桥总成。⑤检查加速踏板位置信号将电源开关拨到IG位置;用电压表测量混合动力车辆控制ECU连接器B中相应端子的电压,应符合标准值,否则更换加速踏板连杆总成。4、普锐斯混合动力汽车电池系统的检测与维修普锐斯混合动力汽车电池系统主要由以下几部分组成:动力电池组、12V辅助电池、电池ECU、冷却系统、电流传感器、检修塞系统主继电器等组成。动力电池组:普锐斯采用的是镍-氢动力电池组,它具有高功率密度和常使用寿命的特点。该电池组由28个电池模块串联而成,每个模块由6个1V或2V的单节电池串联而成。所以整个电池组共168个单节电池,可以得到的高电压。论文格式。电池ECU:电池ECU的功能是用来检测电池组的充电状态(SOC)、温度、电压、电流以及是否漏电,并将这些信息发送到HV ECU(混合动力ECU)。电池ECU还负责控制冷却风扇的工作,确保电池组处于正常的温度范围内。电池组冷却系统:电池组冷却系统由冷却风扇,一个进气温度传感器和3个位于电池内的温度传感器以及通风管路组成。3个温度传感器和一个进气温度传感器随时检测蓄电池及进气口的进气温度,若温度升高到一定值,电池ECU将启动冷却风扇,直到温度下降到规定值,从而使电池组的温度始终保持在正常的范围内。检修塞:检修塞位于电池组第19模块和第20模块中间,在检查或维修前拆下检修塞便可以切断电池组中部的高压电路,可以保证维修期间的人员安全。系统主继电器(SMR):系统主继电器的作用是按照HV ECU的指令连接和断开到高压电路的动力。系统主继电器共由3个继电器组成,两个位于正极分别为SMR1、SMR2,一个位于负极SMR3。电路接通时,SMR1和SMR3工作,而后SMR2工作而SMR1关闭。辅助蓄电池:普锐斯采用的是12V的免维护电池,它与传统的汽车用蓄电池类似,负极也是通过车身接地的。该电池对高压很敏感,对其充电时应将它从车上拆下,用丰田专用的充电机充电,普通充电器没有专用的电压控制功能,有可能毁坏电池。参考文献[1] 陈清泉,孙逢春 编译. 混合电动车辆基础[M]. 北京:北京理工大学出版社,2001.[2] 张金柱. 混合动力汽车结构、原理与维修[M]. 北京:化学工业出版社,2008.[3] 耿新. 混合动力技术的原理和应用[J]. 汽车维修与保养,2008.[4] Jon Munson. 用于混合动力/电动汽车的可靠锂离子电池监视系统[J]. CompoTechChina,2008(10)[5] 陈宗璋,吴振军. 电动汽车动力源类型[J]. 大众英雄,2008,(3)
动力电池是电动汽车的关键技术之一.1881年特鲁夫(Gustave Trouve)制造出世界上第一辆电动三轮车时,使用的是铅酸电池.目前,仍有不少混合动力汽车和纯电动汽车采用新一代铅酸电池.近十多年来,锂离子动力电池在电动汽车生产中得到应用,越来越显示出其优越性.美国学者麦斯J.A.Mas通过大量实验提出电池充电可接受的电流定理:1)对于任何给定的放电电流,电池的充电接受电流与放出容量的平方根成正比;2)对于任何放电深度,一个电池的充电接受比与放电电流的对数成正比,可以通过提高放电电流来增大充电接受比;3)一个电池经几种放电率放电,其接受电流是各放电率接受电流之总和.也就是说,可以通过放电来提高蓄电池的充电可接受电流.在蓄电池充电接受能力下降时,可以在充电的过程中加入放电来提高接受能力.汽车动力电池的性能和寿命与很多因素有关,除了其自身的参数,如电池的极板质量、电解质的浓度等外;还有外部因素,如电池的充放电参数,包括充电方式、充电结束电压、充放电的电流、放电深度等等.这给电池管理系统BMS估计蓄电池的实际容量和SOC带来很多困难,需要考虑到很多的变量.WG6120HD~合动力电动汽车的电池管理系统是建立在SOC数值的管理上.SOC(state ofcharge)指的是电池内部参加反应的电荷参数的变化状态,反映蓄电池的剩余容量状况.这在国内外都已经形成统一认识.
我有,先给你下部分。。。绝对原创。。。。 以植物油为燃料的汽车 植物油也成为可代替石油的汽车新能源之一,如大豆油、玉米油及向日葵油等都可研制成作为原料的内燃机油。生物柴油也是一种以植物油为原料的燃料,它不含硫,不会对环境造成酸雨威胁,可作为柴油的替代品大量用于卡车和轮船。目前化学家们正在对植物油进行酯化加工,使之变成甲基酯化合物,燃烧起来更干净,发动机内残留物也较少。 太阳能汽车 太阳能汽车没有发动机、底盘、驱动、变速箱等构件,由电池板、储电器和电机组成,以控制流入电机的电流来操纵行驶。全车主要有3个技术环节,一是将太阳光转化为电能;二是将电能储存起来,三是将电能最大程度地发挥到动力上。因此,太阳能汽车实质上是一种电动汽车,使用太阳能电池直接将光能转化成电能来驱动汽车。由于太阳能汽车完全依赖可再生能源,零污染且无噪音,世界上许多国家在这一领域开展研究与竞赛活动。美国通用汽车公司生产的“日光”太阳能汽车,速度1OOkm/h以上,太阳能电池发电能力;日本本田公司开发了“梦想”号太阳能汽车最大车速可达120km/h,太阳能电池发电能力1KW。目前较新型的电池板太阳能转化率可以达到29%;美“波燕格”公司设计的一种用镓的砷化物制成的太阳能电池,在使用光线聚焦器的情况下转换效率可达37%。 纯电动汽车 电动汽车顾名思义就是主要采用电力驱动的汽车,大部分车辆直接采用电机驱动,有一部分车辆把电动机装在发动机舱内,也有一部分直接以车轮作为四台电动机的转子,其难点在于电力储存技术。本身不排放污染大气的有害气体,即使按所耗电量换算为发电厂的排放,除硫和微粒外,其它污染物也显著减少,由于电厂大多建于远离人口密集的城市,对人类伤害较少,而且电厂是固定不动的,集中的排放,清除各种有害排放物较容易,也已有了相关技术。由于电力可以从多种一次能源获得,如煤、核能、水力、风力、光、热等,解除人们对石油资源日见枯竭的担心。电动汽车还可以充分利用晚间用电低谷时富余的电力充电,使发电设备日夜都能充分利用,大大提高其经济效益。有关研究表明,同样的原油经过粗炼,送至电厂发电,经充入电池,再由电池驱动汽车,其能量利用效率比经过精炼变为汽油,再经汽油机驱动汽车高,因此有利于节约能源和减少二氧化碳的排量,正是这些优点,使电动汽车的研究和应用成为汽车工业的一个“热点”。有专家认为,对于电动车而言,目前最大的障碍就是基础设施建设以及价格影响了产业化的进程,与混合动力相比,电动车更需要基础设施的配套,而这不是一家企业能解决的,需要各企业联合起来与当地政府部门一起建设,才会有大规模推广的机会。 优点:技术相对简单成熟,只要有电力供应的地方都能够充电。 缺点: 目前蓄电池单位重量储存的能量太少,还因电动车的电池较贵,又没形成经济规模,故购买价格较贵,至于使用成本,有些试用结果比汽车贵,有些结果仅为汽车的1/3,这主要取决于电池的寿命及当地的油、电价格。 电动汽车 燃料电池汽车 燃料电池作为国家节能项目,综合效率为34%,是汽油驱动效率的3倍。氢燃料电池电动车是利用可再生的新能源载体--氢气为燃料的交通工具,氢气可以是从各种可再生能源,如:太阳能、水、电、风能、地热能等发电进行电解水制氢;也可以通过生物能制氢;还可以通过煤、天然气重整制氢。氢气是一种取之不尽、用之不竭的可再生能源载体,大力发展氢燃料电动车对发展我汽车工业有重大意义。与传统汽车相比,燃料电池汽车具有以下优点:1零排放或近似零排放。 2减少了机油泄露带来的水污染。 3降低了温室气体的排放。 4提高了燃油经济性。 5提高了发动机燃烧效率。 6运行平稳、无噪声。 混合动力汽车 近年来,全球混合动力汽车研发热潮日益高涨,各国汽车制造商们正在展开新一轮新型能源汽车研发的技术竞赛。 柴油混合动力和氢燃料混合动力,成为欧洲厂商的追捧对象。欧洲厂商的这一举动打破了日本企业独举混合动力大旗的局面,跨国公司全面掀起了新型能源汽车研发热潮。 燃气汽车是指用压缩天然气(CNG)、液化石油气(LPG)和液化天然气(LNG)作为燃料的汽车。近年来,世界上各国政府都积极寻求解决这一难题,开始纷纷调整汽车燃料结构。燃气汽车由于其排放性能好,可调正汽车燃料结构,运行成本低、技术成熟、安全可靠,所以被世界各国公认为当前最理想的替代燃料汽车。 目前,燃气仍然是世界汽车代用燃料的主流,在我国代用燃料汽车中占到90%左右。美国的目标是,到2010年,公共汽车领域有7%的汽车使用天然气,50%的出租车和班车改为专用天然气的汽车;到2010年,德国天然气汽车数量将达到10万至40万辆,加气站将由目前的180座增加到至少300座。 业内专家指出,替代燃料的作用是减轻并最终消除由于石油供应紧张带来的各种压力以及对经济发展产生的负面影响。近期,中国仍将主要用压缩天然气、液化气、乙醇汽油作汽车的替代燃料。汽车代用燃料能否扩大应用,取决于中国替代燃料的资源、分布、可利用情况,替代燃料生产与应用技术的成熟程度以及减少对环境污染等;替代燃料的生产规模、投资、生产成本、价格决定着其与石油燃料的竞争力;汽车生产结构与设计改进必须与燃料相适应。 以燃气替代燃油将是中国乃至世界汽车发展的必然趋势。我国应尽快组织力量,制定出国家级燃气汽车政策。考虑到我国能源安全主要是石油的状况,发展包括燃气汽车在内的各种代用燃料汽车,已是刻不容缓的事,根据国情应该做到: 一是要限制燃气价格,使油、气价格之间保持合理的差价,如四川省、重庆市的油、气差价,即可保证燃气汽车适度发展; 二是鉴于加气站投资大,回收期长,政府适当给予一定补贴,在加气站售出的气价和汽车用户因用气节省的燃料费用之间,调节好利益分配; 三是对加气站的所得税,应参照高新技术产业开发区政策,采取免二减三的税收政策; 四是将加气站用电按照特殊工业用电对待,电价从优;另外,对加气站用地,能按重大项目和环保产业对待,特事特办,不要互相推诿、扯皮,积极采用国外先进建站标准,科学确定消防安全距离,节省土地资源。5.中国的能源生产能力有多少,能源制品到底有多少随着中国经济在下个世纪初继续持续、快速、健康地发展,能源工业要实现新的突破。西部能源基地将形成庞大的生产规模和完整的体系,海上石油开采也将有新的进展,用以弥补东部地区陆上石油的不足。但受到油气资源量的制约,石油和天然气产量的增长速度有限,国内一次能源供应量的增加仍将主要依靠发展煤炭、水电和核电。具测算,到2050年,中国能源生产总量可达到亿吨标准煤,其中,原煤亿吨,占;原油亿吨,占;天然气1500亿立方米,占,水电11540亿千瓦小时,占。在整个21世纪上半期,我国一次能源生产结构仍将以煤炭为主,有明显变化的是水电在能源生产总量中的比例将超过原油,水能资源的开发程度将接近60%,电力能源结构仍将以火电为主。 由于能源生产的增长不能满足能源需求的增长,我国国内能源供应的缺口量,在21世纪初期将超过1亿吨标准煤,2030年约为亿吨标准煤,到2050年约为亿吨标准煤,规模约占年能源需求量的十分之一。6.中国石油紧缺到什么程度,解决石油问题的出路何在在中国能源供需结构中,石油供应短缺问题最为突出。“八五”期间,全国石油消费量的年均增长率为,而石油生产量的年均增长率仅为。基于石油生产量的增加远低于石油消费量的增长,我国不得不减少石油出口,增加石油进口,1993年起从石油净出口国变成了石油净进口国。 在未来的几十年中,根据国民经济发展的需要,以及改善能源消费结构,减少环境污染的迫切要求,我国石油天然气的需求量将继续出现较快增长,石油需求年增加量将超过500万吨。而预计同期石油产量的年增加量只能达到100-200万吨,石油供需缺口量将从2000年的5000万吨增加到2030年的16000万吨。 解决石油问题的出路,简单地说有两条:一是通过贸易途径直接从国际市场购买石油;二是挖掘资源开发和节约潜力,采取替代石油进口的战略。近年来,国际石油市场发展的态势,为我们增加石油进口和储备提供了有利时机。但从战略角度考虑,应当采取替代石油进口的战略。它有利于国内主要产业和一系列相关产业的发展,有利于石油供应的安全可靠。这是解决中国石油供应短缺的最佳途径。替代石油进口战略的主要内容包括:增加国内石油和天然气产量;到国外投资开发石油;用煤炭、水电和新能源代替石油;节约用油。7.能源节约的作用到底有多大经过科学的预算分析,能源节约对我国实现跨世纪的经济和能源发展目标,将起到举足轻重的作用。我国每万元国内生产总值能耗,将由1995年吨标准煤,降低到2010年的吨标准煤,2030年的吨标准煤和2050年的吨标准煤。由于节约使用能源可以大幅度降低能源消耗,所以大力节能、提高能源利用的经济效益,是我国解决能源问题的突破口。节约能源可被视为在我国与煤炭、石油、天然气和电力同等重要的“第五能源”,而且可以大大节省能源开发投资。在未来的中国,以煤为主的能源结构基本格局不可能从根本上改变。能源利用效率提高、能源消耗量减少的直接效果就是煤炭运输量的减少和污物排放量的降低。因此,节能是今后相当长的一段时期内我国各行各业都必须重视的工作,它是我国经济持续、快速、健康发展的重要保证。8.中国重视新型能源清洁汽车的研制中国政府对汽车排放对环境造成的巨大压力非常关注,出于对能源安全、环保的考虑,积极支持发展洁净交通工具,控制汽车污染,实现中国能源结构的多样化,扭转目前以石油为主的能源利用格局。 中国清洁燃料汽车行动计划正围绕降低汽车排放,以高新技术的开发、应用、推广为基础,通过试点示范,综合治理,尽快从根本上遏制汽车污染日益加剧的势头,力争在3至5年内使主要城市的空气质量有明显的改善,实现"空气净化工程"的总体目标。 从长远观点看,电动汽车可以取代传统式内燃机汽车,为中国汽车业的发展创造了一次很好的机会,有利于中国汽车企业丢掉历史包袱,在官、产、学、民四位一体的全新研发体系下,有可能在世界汽车工业新一轮竞争中占领制高点,取得有利地位,提高中国汽车产品的国际竞争力,实现中国汽车工业的跨越式进步。 低碳减排、可替代能源、振兴民族汽车工业需要。新能源项目的实施是符合国家能源战略安全和环境保护需要的,在石油能源日益缺乏的今天,作为经济发展血脉的能源已经直接关系到国民经济的战略安全。目前,新能源产业已成为当今发达国家和发展中国家竞相争取的战略产业,是新世纪综合国力的重要标志产业之一。 低碳排放已成为全球的焦点,而汽车对社会环境造成的污染日益严重,成为减排温室效应气体的重要减排目标。目前,世界上汽车工业发达的国家,都已对单车二氧化碳的排放量作出明确的逐年降低排放的标准。由此可见,电动汽车替代现有的内燃机汽车对环境保护和降低传统能源消耗具有重大的作用,发展电动车生产已经是社会发展和经济安全的重大战略问题。要满足电动汽车的要求,作为动力车的核心,电池是关键。聚合物锂离子动力电池代表了目前高水平的电池技术,所以它的出现将是中国的动力汽车行业不可或缺的技术及产品。中国新能源汽车产业始于21世纪初。2001年,新能源汽车研究项目被列入国家“十五”期间的“863”重大科技课题,并规划了以汽油车为起点,向氢动力车目标挺进的战略。“十一五”以来,我国提出“节能和新能源汽车”战略,政府高度关注新能源汽车的研发和产业化。9.中国新能源产业前景乐观 作为全球两大碳排放国的中国和美国,在哥本哈根会议召开前夕,除了需要就限制温室气体排放问题达成某种一致外,从长远看,双方都需要寻求引领长期经济增长的新引擎,而新能源无疑是顺理成章的选择。考虑到新能源汽车是美国新能源企业准备进入中国市场的主要方向,未来双方在环保新能源方面的可合作领域十分广泛,中国的新能源产业发展前景乐观。10.新型能源轿车环保技术大盘点混合动力车 混合动力车技术对未来的汽车市场发展是一种很好的思维方式,它的真正意义在于:无论任何一种能源,都可以通过“混合的方式”使汽车的环保和节能效果得以实现——混合动力车的原始能源可能就是汽油或柴油,也可能是氢能或其他形式的能源;而混合方式则包括并联、混联、轻度混合、串联等多种形式。双燃料车 节能环保技术只有在普遍应用的前提下,才能真正对环境的改善产生积极影响。在传统汽油车的替代车型中,消费者还是比较偏爱双燃料车,主要是因为其技术成熟、而且车型相比混合动力车和柴油车多得多。以东风雪铁龙05款爱丽舍CNG双燃料为例,这款车不仅能有效降低80%污染物排放,比普通车更能实现60%的节油效果。更难能可贵的是,爱丽舍CNG双燃料车是“实用主义”的完美演绎者,国内CNG双燃料技术已经趋于成熟。 氢燃料电池车 从技术分析来看,柴油车、混合动力车、CNG双燃料车以及燃料电池车四大主流方向都具有节约能源和改善排放的优点。但是哪一种在环保性能上更突出呢?毫无疑问,氢燃料电池车是最理想化的环保汽车技术:真正实现了汽车“零排放”,唯一的排放物是水。正是这点的吸引,几乎所有的汽车企业巨头不惜花费巨额的资金来研制这种新型能源汽车。近几年,由于各大公司的共同努力,燃料电池汽车在技术上虽然取得了很多进展,但燃料电池的成本仍然很高,要实现真正的商业化,路途还很遥远。11.新能源汽车目前发展现状 从目前的发展趋势看,油电混合动力、纯电动和燃料电池是未来三大发展趋势。巴西采用了生物燃料汽车,不过这种技术可复制性很低,对于粮食稀缺的国家来说,可能因此而致使粮食价格抬高和居民粮食供应不足。油电混合技术指由传统的汽油机或者柴油机与电动力源结合做工的技术。通过在混合动力汽车上使用电机,使得动力系统可以按照整车的实际运行工况灵活调控,而发动机保持在综合性能最佳的区域内工作,从而降低油耗与排放。相较于纯电动和燃料电池,混合动力技术和成本相对容易控制,如本田思域、丰田普锐斯能达到40%以上的节油程度,因而被认为是纯电动车和燃料电池车时代来临前的过渡阶段。通常所说的纯电动汽车是指以蓄电池或燃料电池为动力行驶的用电动机驱动的汽车。这种技术的优点是彻底摆脱了对石油的依赖,零排放,目前的技术缺陷是电池容量不够,难以支撑长时间行驶。此外,电池的寿命、适应性、成本、污染性都是要克服的难题。燃料电池汽车被认为是清洁能源汽车的终极发展方面。燃料电池也分很多种,目前公认最佳的办法是质子交换膜燃料电池。这种技术的特点是以氢为燃料,通过电子的运动产生电能,储存并使用。氢是大自然中取之不竭的成分之一,每一滴水都是由氧气和氢气构成,与此同时,氢燃料电池汽车的排放仅仅为水,是真正的清洁能源。燃料电池目前最大的技术问题是成本居高不下。目前,全球混合动力车销量最大的国家为美国。2008年美国混合动力汽车销量万辆,同比下降,2007年为35万辆。虽然美国是混合动力车全球销量最大的国家,但混合动力车在美国的汽车销量占有比例相当低,2008年约占整体汽车销量的。12.新能源汽车离百姓多远 一辆新能源汽车使用,既可缓解油价涨跌带来的经济压力,又能增强公众使用洁净能源的意识,减少污染物排放。如何有效扶植、切实完善配套的市场措施,让新能源汽车开进寻常百姓家。从全国各地新能源汽车“试水”情况看,效果并不理想,这其中的原因有:新能源汽车高身价,国家正在实施新能源战略,作为高新领域的新能源汽车在研制、开发和生产过程中耗费巨额的研发成本,导致其销售价格过高。与传统动力汽车相比,新能源汽车虽然环保,但无论是性价比还是速度、动力、承负值等方面都相形见绌。新能源的市场配套服务环境不成熟,基础设施不健全,如没有类似于加油站的充电站,小区、商场等公众场所没有备置充电柱,同时也没有配套的维修网络跟进措施。再者,当前市场上流行的主流新能源技术分为3种:混合动力、纯电动、燃料电池。但究竟确立哪种标准,至今尚未有定论。破冰之举在于摸索出一条契合本地发展的道路。如政府的政策补贴。日本政府对购买混合动力汽车的消费者实行差价补贴,最高补贴额可达与传统车购置差价的50%。政府除通过财政补贴帮扶新能源汽车发展外,还应在政策层面提供系列扶植,如尽快出台新能源汽车的国家标准,规范市场,整合各方财力、物力、人力,成立国家新能源汽车公司,加强核心技术的攻关和突破;拟定全国性的新能源汽车推广规划,完善配套设施建设,确保新能源汽车有便捷的使用环境。新能源汽车的使用要突围仅赖消费者的环保责任是远远不够的,还需要政府给予财政补贴和一系列市场培育政策,如果市场环境不成熟,配套措施不及时跟进,新能源汽车就难进寻常百姓家。 总结:能源发展战略的总方针应是“坚持开发与节约并重,把节约放在首位”。在能源开发与能源节约的关系中,节能应放在第一位。这是经济增长方式由粗放型向集约型转变的重要途径。把节能放在首位,并不意味着忽视能源开发的重要性。中国能源发展应该走以提高能源利用经济效率为核心的发展道路,既要大力发展能源生产,又要在不断增加能源供应量的基础上厉行节约。这是一个长期的战略方针。能源开发应继续遵循“以电力为中心,以煤炭为基础,积极开发油气,重视开发新能源和可再生资源”的战略方针。这是根据中国国情和能源工业自身发展规律确定的。在21世纪,电力的战略地位将变得越来越重要。发展的主要措施是充分水能资源。发展核电,增加煤炭用于发电的比例。根据资源条件,我国电力工业发展要遵循“以火电为主,水火电并举,适度发展核电,同步发展电网,提高电力经济效益”的方针,而我国煤炭开发的指导思想是“在不断提高煤炭经济效率的前提下,加强煤炭工业的基础地位,增加产量、提高质量,多种经营,积极出口”。煤炭资源的开发要逐步实现从东部地区向中西部地区转移,应当充分发挥国有重点煤矿,地方国有煤矿和乡镇煤矿各自的优势,发展煤炭深加工,优化煤炭产品结构,积极勘探,开发和利用煤层气资源。新能源和可再生能源的开发将是下世纪大有可为的能源领域。其“因地制宜,多能互补,综合利用,讲究效益”的方针,在指导中国农村地区新能源和可再生能源的应用推广方面已经起了较大的作用。这一能源领域的突破口可选在风力发电和生物质能发电的研究和开发上。 、 参考文献:[1]康龙云.新能源汽车与电力电子技术. 北京:机械工业出版社 [2]边耀璋. 汽车新能源技术. 北京:人民交通出版社 [3]邵毅明. 压缩天然气汽车改装与维修. 北京:人民交通出版社 [4]蔡凤田. 汽车节能与环保实用技术. 北京:人民交通出版社 [5]崔胜民. 新能源汽车技术. 北京:北京大学出版社 [6]绍毅明. 汽车新能源与节能技术. 北京:人民交通出版社 [7]黄家诚. 汽车新能源技术. 北京:人民交通出版社
电动客车前围与后围设计
我知道有两本刊物(材料科学、材料化学前沿)上面的文献都是可以免费查阅的
随着石油供应的日趋紧缺和环境污染的日益加剧,电动车这种以电能为动力的交通工具凭借其节能、环保的优点日渐成为业界关注的焦点[1]。20世纪80年代以来, 许多发达国家纷纷投入巨资研发电动汽车,我国的“863 计划”也已明确将电动汽车作为重点攻关项目。目前,我国电动汽车的研发水平与发达国家基本上处在同一起跑线上,在某些方面甚至超过国外[2]。2005年,我国第一代混合动力商品车通过论证和验收[3]。 法国、日本、美国、德国等都经过试验和示范运行,开发出具有商品化水平的纯电动汽车,如法国PSA 公司的标志P106 和雪铁龙AX 电动轿车,日本丰田汽车公司的RAV-4EV 电动轿车,美国通用汽车公司的EV1 电动轿车等。我国也将电动汽车的研究开发列入“八五”、“九五”国家科技攻关项目,并于1996年6月建成广东汕头国家电动汽车试验示范基地。“十五”期间,国家科技部将电动汽车项目列入国家“863”重大专项。成了资助电池、电机及其控制系统、整车控制系统以外,重点资助北京市(北京理工大学牵头)进行纯电动大客车的研发和示范运行。2005 年6 月21日由国家发改委正式批准,14辆铅酸电池纯电动公交大客车在北京公交121 路线投入商业化运行。另一个课题资助天津清源动力公司(中国汽车技术研究中心)进行纯电动轿车的研究开发和示范运行。其中有5辆纯电动轿车于2005年初首次出口到美国[4]。 虽然电动汽车具有很多优点,但是它不能取代传统的燃气动力模式,而混合动力汽车是目前新型清洁动力汽车中最具有产业化和市场化前景的车型,其发展方向是真正零排放、无污染,不消耗燃油的燃料电池车辆。现在混合动力汽车在欧美国家及日本已形成产业化[3],而国内还处于起步阶段,没有形成产业化。 2.混合动力技术的分类及原理 混合动力电动汽车(HybridElectric Vehicle,简称HEV)是将电力驱动与辅助动力(APU)结合起来,充分发挥二者各自的优势及二者相结合产生优势的车辆。辅助动力可以采用燃烧某种燃料的原动机,如内燃机、燃气轮机等或其他动力发电机组。根据混合动力系统连接方式的不同,混合动力汽车主要可以分为三种结构形式,即串联、并联和混联,它们各有优势。 串联 串联式混合动力系统示意图如图1所示。串联结构的特征是以电力形式进行复合,发动机直接驱动发电机对储能装置和牵引电机供电,电动机用来驱动车轮,储能装置起着发动机输出和电动机需求之间的调节作用。其优点是发动机的运行独立于车速和道路条件,适用于车辆频繁起步、加速和低速运行。发动机在最佳工况点附近运转,避免了怠速和低速工况,从而提高了效率,提高了排放性能。但在机械能与电能的转化过程中有效率损失,很难达到明显降低油耗的目的,目前主要用于城市大客车,在轿车中很少见。 并联 并联式混合动力系统示意图如图2所示。并联结构的特征是以机械形式进行复合,发动机通过变速并联混合动力系统示意图装置和驱动桥直接相连,电机可同时用作电动机或发电机以平衡发动机所受的载荷,使其能在高效率区域工作。但是由于发动机和驱动桥机械连接,在城市工况时,发动机并不能运行在最佳工况点,车辆的燃油经济性比串联时要差。 其中转速复合装置类似于差速器,这种结构形式在实际中很难被采用,因为这种结构需要发动机和电动机的输出转矩时刻保持相等;单轴转矩复合式车辆驱动系中机械功率的联合是在发动机曲轴输出端处实现的,变速器为单轴输入,本田Insight属于这种形式;双轴转矩复合式的机械功率的联合是在变速器的输出轴处实现的,发动机和电机采用不同的变速系统,变速器为双端输入;华沙工业大学设计的混合动力系统属于这种形,这种结构也可以实现无级变速,但是不能实现发动机输出转矩和电机输出转矩的直接叠加。 在牵引力复合式系统中,机械功率的联合是在驱动轮处通过路面实现的,具有两套独立的驱动系,可以实现全轮驱动,主要适用于SUV,丰田的THS—C系统就属于这种形式。
动力电池是电动汽车的关键技术之一.1881年特鲁夫(Gustave Trouve)制造出世界上第一辆电动三轮车时,使用的是铅酸电池.目前,仍有不少混合动力汽车和纯电动汽车采用新一代铅酸电池.近十多年来,锂离子动力电池在电动汽车生产中得到应用,越来越显示出其优越性.美国学者麦斯J.A.Mas通过大量实验提出电池充电可接受的电流定理:1)对于任何给定的放电电流,电池的充电接受电流与放出容量的平方根成正比;2)对于任何放电深度,一个电池的充电接受比与放电电流的对数成正比,可以通过提高放电电流来增大充电接受比;3)一个电池经几种放电率放电,其接受电流是各放电率接受电流之总和.也就是说,可以通过放电来提高蓄电池的充电可接受电流.在蓄电池充电接受能力下降时,可以在充电的过程中加入放电来提高接受能力.汽车动力电池的性能和寿命与很多因素有关,除了其自身的参数,如电池的极板质量、电解质的浓度等外;还有外部因素,如电池的充放电参数,包括充电方式、充电结束电压、充放电的电流、放电深度等等.这给电池管理系统BMS估计蓄电池的实际容量和SOC带来很多困难,需要考虑到很多的变量.WG6120HD~合动力电动汽车的电池管理系统是建立在SOC数值的管理上.SOC(state ofcharge)指的是电池内部参加反应的电荷参数的变化状态,反映蓄电池的剩余容量状况.这在国内外都已经形成统一认识.
混合动力电动汽车(Hybrid Electric Vehicle)是传统燃油汽车和纯电动汽车相结合的新车型,具有燃油汽车的动力性能和较低的排放特性,是当前解决节能、环保问题切实可行的方案。 类菱形汽车是湖南大学自主开发的具有完全知识产权的新型汽车,该类型车在安全性与轻量化方面有其独到的优势。以此车为平台,本文围绕类菱形混合动力汽车的总体设计和控制进行了全方位的深入研究和探讨。 结合类菱形混合动力电动汽车的结构特点,采用了传统意义上的差速器即2K-H型锥齿轮负号机构、啮合方式为ZUWGW的轮系作为动力耦合器。为验证该方案的可行性,运用UG建立了新型动力耦合器的三维模型,并将其导入Adams软件中进行了仿真,确定了该耦合器三个输入输出端力矩与转速之间的运动学与动力学关系式。台架实验也验证了仿真结论的正确性。 在采用新型动力耦合器的基础上,设计了一种基于类菱形车平台的新型混合动力驱动链,并提出了一套基于CVT新型驱动链的混合动力汽车部件设计、选择与匹配的理论,对整车试制具有指导作用。这是混合动力汽车技术开发的核心和基础之一,是自主知识产权的重要体现,涉及企业的核心技术机密
立帜汽车制造网 随着世界能源危机和环保问题日益突出,汽车工业面临着严峻的挑战。一方面,石油资源短缺,汽车是油耗大户,且目前内燃机的热效率较低,燃料燃烧产生的热能大约只有35%—40%用于实际汽车行驶,节节攀升的汽车保有量加剧了这一矛盾;另一方面,汽车的大量使用加剧了环境污染,城市大气中CO的82%、NOx的48%、HC的58%和微粒的8%来自汽车尾气,此外,汽车排放的大量CO2加剧了温室效应,汽车噪声是环境噪声污染的主要内容之一。我国作为石油进口国和第二大石油消费大国,污染严重,世行认定的20个污染最严重的城市有16个在中国。国内汽车产品水平与国外差距很大,平均油耗高出10%—30%,排放约为15—20倍,汽车工业面临的压力更大。上个世纪末以来世界各国和各大汽车公司以及国内各大科研机构和高等院校纷纷致力于开发清洁节能汽车,新能源汽车获得了长足发展。汽油和柴油是传统内燃机汽车的能源,利用除此以外的能源提供汽动力的汽车均可称为新能源汽车。目前正在开发的新能源包括天然气、液化石油气、醇类、二甲醚、氢、合成燃料、生物气、空气以及电荷燃料电池等。本文介绍新能源汽车技术的发展概况,并对其发展前景提出看法。1 新能源汽车的种类及其特点 天然气汽车和液化石油气汽车天然气汽车又被称为“蓝色动力”汽车,主要以压缩天然气(CNG)、液化天然气(LNG)、吸附天然气(ANG)为燃料,常见的是压缩天然气汽车(CNGV)。液化石油气汽车(LPGV)是以液化石油气(LPG)为燃料。CNG和LPG是理想的点燃式发动机燃料,燃气成分单一、纯度高,与空气混合均匀,燃烧完全,CO和微粒的排放量较低,燃烧温度低因而NOx排放较少,稀燃特性优越,低温起动及低温运转性能好。其缺点是储运性能比液体燃料差、发动机的容积效率较低、着火延迟期较长。这两类汽车多采用双燃料系统,即一个汽油或柴油燃料系统和一个压缩天然气或液化石油气系统,汽车可由其中任意一个系统驱动,并能容易地由一个系统过渡到另一个系统。康明斯与美国能源部正合作开发名为“先进往复式发动机系统(ARES)”的新一代天然气发动机,根据开发目标,该发动机热效率达50%(热电联产时达到80%以上),NOx排放量低于/km,制造成本为400450美元/kW,维护费用低于美元/kwh,在满足这些目标的同时,发动机具有较高的可靠性。 醇类汽车醇类汽车就是以甲醇、乙醇等醇类物质为燃料的汽车,使用比较广泛的是乙醇,乙醇来源广泛,制取技术成熟,最新的一种利用纤维素原料生产乙醇的技术其可利用的原料几乎包括了所有的农林废弃物、城市生活有机垃圾和工业有机废弃物。目前醇类汽车多使用乙醇与汽油或柴油以任意比例掺和的灵活燃料驱动,既不需要改造发动机,又起到良好的节能、降污效果,但这种掺和燃料要获得与汽油或柴油相当的功率,必须加大燃油喷射量,当掺醇率大于15%—20%时,应改变发动机的压缩比和点火提前角。乙醇燃料理论空燃比低,对发动机进气系统要求不高,自燃性能差,辛烷值高,有较高的抗爆性,挥发性好,混合气分布均匀,热效率较高,汽车尾气污染可减少30%以上。这种汽车最早由福特公司在20世纪80年代中期开发,到2003年底,美国有230多万辆乙醇汽车,其中多数是道奇和克莱斯勒厢式车——2003年已卖出233466辆。 氢燃料汽车氢是清洁燃料,采用氢气作燃料,只需略加改动常规火花塞点火式发动机,其燃烧效率比汽油高,混合气可以较大程度地变稀,所需点火能量小,有利于节约燃料。氢气也可以加入其它燃料(如CNG)中,用于提高效率和减少N02排放。氢的质量能量密度是各种燃料中最高的一种,但体积能量密度最低,其最大的使用障碍是储存和安全问题。宝马公司一直致力于氢气发动机研制,开发了多款氢发动机汽车,其装有V12氢发动机的7系列轿车是世界上首批量产的氢发动机,该发动机可使用氢气和汽油两种燃料。 二甲醚汽车二甲醚(DME)是一种无色无味的气体,具有优良的燃烧性能,清洁、十六烷值高、动力性能好、污染少,稍加压即为液体,非常适合作为压燃式发动机的代用能源,使用该燃料的车辆可达到美国加州的超低排放标准。日本NKK公司成功地开发出用劣质煤生产二甲醚的设备,并且和住友金属工业公司于1998年完成了用二甲醚作为汽车燃料的试验,二甲醚汽车(DMEV)不会排放黑色气体污染环境,产生的NOX比柴油少20%。 气动汽车以压缩空气、液态空气、液氮等为介质,通过吸热膨胀做功供给驱动能量的汽车称为气动汽车,气动发动机不发生燃烧或其他化学反应,排放的是无污染物辐射的空气或氮气,真正实现了零污染。目前开发比较成功的是压缩空气动力汽车(APV),工作原理类似于传统内燃机汽车,只不过驱动活塞连杆机构的能量来源于高压空气。APV介质来源方便、清洁,社会基础设施建设费用不高,较容易建造。无燃料燃烧过程,对发动机材料要求低,结构简单,可借鉴现有内燃机技术因而研发周期短,设计和制造容易。但目前APV能量密度和能量转换率还不够高,续驶里程短。1991年法国工程师Guy Negre获得了压缩空气动力发动机的专利,并加盟MDI公司,2000年MDI公司推出的名为“进化”(evolution)的APV,质量仅700kg,其发动机质量仅为35kg,速度可达120km/h,一次充满压缩空气可行驶200km,充气费用仅为美元,在城市中约可行驶10h,在压缩空气站充气2min就可完成,用气泵充气3h可完成。 电动汽车世界上第一辆电动车(EV)由美国人在19世纪90年代制造。EV大致分为蓄电池电动汽车(BEV)、燃料电池电动汽车(FCEV)和混合动力电动汽车(HEV)。电动汽车的一个共同特点是汽车完全或部分由电力通过电机驱动,能够实现低排放和零排放。蓄电池电动汽车是最早出现的电动汽车。使用铅酸电池的汽车整车动力性、续驶里程与传统内燃机汽车有较大的差距,而使用高性能镍氢电池或者锂电池又会使成本大大增加。而JtBEV都需有一定充电时间及相应的充电设备,使用场合受到了限制。燃料电池具有近65%的能量利用率,能够实现零排放、低噪声,国外最新开发的高性能燃料电池已经能够实现几乎与传统内燃机汽车相当的动力性能,发展前景很好,但成本却是制约其产业化的瓶颈。在加拿大进行的示范试验表明,使用燃料电他的公共汽车制造成本为120万加元,而使用柴油机的公共汽车仅为万加元。混合动力汽车融合了传统内燃机汽车和电动汽车的优点,同时克服了两者的缺点,近年来获得了飞速发展,并已经实现了产业化和商业化,PRIUS和INSIGHT两款混合动力汽车的成功向人们展现了混合动力技术的魅力和巨大的市场潜力。 以植物油为燃料的汽车为了寻找可代替石油的新能源,科学家也将目光投向了植物油,正在研制以植物油如大豆油、玉米油及向日葵油为原料的内燃机油。科学家们还在研究生物柴油,这是一种以植物油为原料的燃料,将来可作为柴油的替代品大量用于卡车和轮船。生物柴油中不含硫,因此不会对环境造成酸雨威胁。为生产生物柴油,化学家们正在对植物油进行酯化加工,使之变成甲基酯化合物,燃烧起来更干净,发动机内残留物也较少。2 我国新能源汽车的发展概况我国天然气资源丰富,分布广泛,海南、北京、上海、重庆等省市被列为国家燃气汽车重点示范城市,各地均在燃油汽车基础上研制开发改装了压缩天然气汽车和液化石油气汽车,主要用于出租车、公交客车、大型车辆和工程设施等。一汽—大众公司开发了捷达LPG,上海交大研制成LPG轿车并和申沃客车联合开发成功改装型LPG城市bus,北京开发了CNG城市bus。山西是产煤大省,甲醇汽车项目已进行多年,目前已达到商业运行阶段,所用甲醇汽车采用灵活燃料系统,既可用甲醇,也可用汽油,将乙醇当作有氧燃料使用,现在在河北和黑龙江等地推广。同时国家制定了乙醇汽油燃料相关标准。我国云岗汽车公司大同汽车制造厂开发了甲醇中巴车。我国煤炭资源丰富,政府支持以煤炭为原料制造车用燃料项目。煤直接液化和间接液化制取车用燃料的项目正在积极进行。“十五”期间在云南和陕西建立了煤直接液化示范厂,以煤为原料合成石油或二甲醚等车用燃料。西安交通大学与中国科学院煤化工研究所经过5年协同攻关,于2000年研制出了“超低排放二甲醚汽车”,通过在TYll00单缸柴油机及装备有大连柴油机厂生产的CA498柴油机的面包车上燃用二甲醚的试验,发现发动机的功率可提高10%-15%,热效率提高2—3个百分点,噪声降低10%-15%。我国从事燃料电池研究的单位有20余家,质子交换膜(PEM)燃料电池技术已取得较大进展,但与国外还有不小差距,例如,国外将功率50—80kW的PEM燃料电池用于轿车,而我国最大的PEM燃料电池单堆功率为5kW,离轿车使用相距甚远。我国的金属燃料电池技术已经达到世界先进水平。我国的镍氢电池和锂电池技术水平也已经达到国际先进水平,比亚迪在2005年上海车展展出的E1电动车已经具备了很好的整车动力性能。目前国内对压缩空气动力汽车的研究报道最多的是浙江大学,他们已经开发出压缩空气动力摩托车研究平台,探索出不少有益的结论,正在进一步深入研究,此外重庆大学和同济大学也做过一些探索性研究。应当说APV在国内的发展才刚刚起步。3 代用燃料汽车的发展前景在各种汽车代用燃料中,LPG和CNG最方便投入使用,而且目前已经具有好的配套基础设施。在排放和经济性能要求较高而动力性能要求一般的公共交通领域具有很好的应用前景,美国近年来新型公交客车中天然气汽车就占据了较大比例。在中国这样的农业大国特别是一些农业大省,乙醇资源丰富,乙醇汽车有良好的应用前景。二甲醚等合成燃料具有很好的排放特性,也将具有很好的应用前景,特别是作为代用柴油应用于混合动力汽车。混合动力汽车毫无疑问是下一代汽车动力系统的主要形式。蓄电池电动汽车的使用性能不如混合动力汽车和燃料电池汽车,且成本高。氢燃料发动机的能量利用率不如氢氧燃料电池。因而蓄电池电动汽车和氢发动机汽车的发展前景不是十分乐观。当然随着太阳能电池技术的发展和突破,也许纯电动汽车能迎来一个不错的发展局面。压缩空气动力汽车虽然实现了零污染,但其整车性能与传统汽车相差太远,只能在较小的范围内应用于特定场合。燃料电池是目前技术条件下能量利用率最高的车用能源。燃料电池的比能量可达200—350Wh/kg,为锂离子电池的2—3倍;能量转换效率高达60%~80%,是汽油机或柴油机的~2倍,能实现超低污染甚至零污染,而且燃料电池使用的氢能源是可再生的。目前以甲醇燃料电池技术最为成熟。国外各大石油公司和汽车均在致力于燃料电池汽车的研发以抢占在未来汽车发展中的滩头。戴姆勒—奔驰汽车公司从1993年到2000年先后推出了NecarI—NecarⅣ和Nebas等系列FCEV,2001年5月Necar4在美国试车,功率55kW,最高车速145km/h,装载行程450km,最新推出的Necar V-FCEV采用甲醇燃料电池。1997年Ballard动力公司和福特汽车公司组建了Xcellsis公司开发燃料电池轿车,美国AR—CO、壳牌、德士古等石油公司和加州CARB先后加盟,组成世界上最强大的燃料电池车开发联盟。日本电力中央研究所正在开发一种全面使用耐热陶瓷的燃料电池,电池在发电效率非常高的1000℃的高温下工作,电解质的输出功率达到1W/cm2,相当于传统燃料电池的5倍。EvomR公司致力于开发铝和锌燃料电池,已具有相当水平。总之对代用燃料的综合评价应考虑以下因素:燃料成本;车辆成本;对进口石油的依赖程度;有效能源利用率;温室效应;排放污染;生产、储运、分销、加注设施;装载行驶里程和加注时间;安全性。基于这些因素,目前最容易投入使用的代用燃料是CNG和LPG。电、甲醇和乙醇的综合评价指数都低于汽油。可以预计LPG和CNG以及乙醇的市场份额将会不断增加。二甲醚和合成柴油在十年后其市场份额会快速稳定增长。混合动力汽车会进一步发展,迅速增加市场份额。而燃料电池汽车会在20年之后开始实现产业化逐渐增加市场份额。传统汽油机汽车的市场份额会在20年之后开始出现明显的下降,但柴油车会在重型车辆领域继续保持很高的市场份额。4 结束语在未来的20年内,汽油和柴油仍是汽车主要的能量来源,但汽油和柴油的质量要求越来越高,发动机技术将快速发展以提高能量利用率。代用燃料会得到迅速运用,天然气汽车和乙醇汽车会率先大规模投入使用,二甲醚和合成燃料会逐步扩大应用。混合动力系统会得到快速发展和应用,混合动力汽车将至少在30年内都是汽车工业最切实可行的解决能源问题和污染问题的途径。因此应当整合资源加速混合动力汽车的开发,抢占汽车技术发展的新高地。燃料电池是最有前途的车用能量,也是未来汽车的主要能量源,国内石油工业应该与汽车工业联手开发先进的燃料电池技术,抢占未来先进汽车技术的前沿阵地!
能能有点有用的东西呀~~~痛苦~~
我觉得最好的办法就是去找本(电气工程)这样的期刊~看下里面别人的论文题目都是什么~然后根据他们的论题找下灵感~肯定是可以的~加油
楼主您好。现在一般毕业论文现在大多是收费的,我建议你去浅论天下 看下,我的论文也是在那写的,或者你自己写,在这问,得不到论文的 。
电子信息工程大学毕业论文 (张清卓)从21世纪开始,无线传感器网络就开始引起了学术界,军事界和工业界的极大关注。美国和欧洲相继启动了许多关于无线传感器网络的研究计划。随着科学技术的迅猛发展,人类目前已经置身于信息时代,信息的获取是实现信息化的前提,获取物理家门口满怀欣喜的一种重要工具就是传感器。无线传感器网络是当前国际上备受关注的,由多学高度交叉的新兴研究热点领域⑴它综合了传感器技术,嵌入式计算技术及无线通信技术等三大技术,能够通过嵌入式系统对信息进行处理,并通过随机自组织无线通信网络以多跳中继方式所感知信息传送到用户终端。 无线传感器网络可以用于监控温度,湿度,压力,土壤构成,噪声,机械应力等多种环境条件,使用户可以深入的了解和把我周围的世界。无线传感器网络的随机布设,自组织,环境适应等特点使其在军事国防,环境监测,生物医疗,抢先去救灾以及商业应用等领域具有广阔的应用前景,和很高的应用价值⑵。当然,在空进搜索和灾难拯救等特殊领域,无线传感器网络也有其得天独厚的技术优势。
【摘要】固体氧化物燃料电池是一种可以直接将燃料的化学能转化为电能的电化学装置,固体氧化物电解池是固体氧化物燃料电池的逆过程,能够高温电解水/二氧化碳制氢气/一氧化碳。可逆电池将二者的功能合二为一。本论文主要进行了可逆电池的氧电极的复合改性研究。采用LSM(()δ),LSCF(δ)和SSC(δ))氧电极材料。采用丝网印刷工艺制备的LSM和LSCF氧电极材料用于高温电解池和可逆电池,长期运行后,LSM与电解质YSZ(氧化钇稳定的氧化锆)发生剥离,YSZ与GDC(δ)阻挡层剥离,导致电池性能衰减。浸渍工艺制备纳米LSM-YSZ,LSCF-YSZ和SSC-YSZ氧电极用于可逆电池,提高了氧电极的性能和催化活性。可逆循环测试或长期稳定性测试后,纳米离子发生团聚导致电池性能衰减。对SSC氧电极的研究发现氧电极SSC与YSZ分层,以及长期电解后氢电极Ni的团聚也是导致电池性能衰减的主要原因之一。最后,将纳米LSCF-YSZ氧电极用于H2O/CO2共电解,研究了共电解的影响因素和反应过程。综上,通过本论文研究为开发高活性和高稳定的氧电极材料奠定了基础。【作者】范慧;【导师】韩敏芳;PrabhakarSingh;【作者基本信息】中国矿业大学(北京),应用化学,2014,博士【关键词】固体氧化物燃料电池;电解池;氧电极;稳定性;【参考文献】[1]刘嘉.一个小型搜索引擎的设计与实现[J].河南科技学院学报(自然科学版),2014,06:46-50.[2]石华.制造业股权结构与企业非效率投资的关系研究[D].天津财经大学,会计学,2012,硕士.[3]朱贝贝.基于遗传算法的网格任务调度研究[D].山东大学,计算机软件与理论,2012,硕士.[4]万宇.2000—2013年我国部分高校硕博学位论文中残疾人体育研究述评[J].体育学刊,2014,04:66-70.[5]陈宁静.ACh诱导的脐带血管收缩效应及其机制研究[D].苏州大学,胚胎生理与围产基础医学,2014,硕士.[6]布伦.复方鳖甲软肝方对自发性高血压大鼠左室重构影响的实验研究[D].第四军医大学,内科学,2004,硕士.[7]封磊.20世纪三四十年代边政研究的学术转型[D].兰州大学,中国近现代史,2013,硕士.[8]贺浩.虚拟财产的刑法保护[D].山东大学,法律(专业学位),2013,硕士.[9]万德贵.分立半导体元器件焊点缺陷的研究[D].电子科技大学,集成电路工程(专业学位),2012,硕士.[10]高雷.预售商品房按揭法律问题研究[D].郑州大学,法律,2013,硕士.[11]侯志军,耿加加,窦亚飞,朱誉雅.中美高校年度报告比较分析及启示[J].现代教育管理,2014,05:119-124.[12]方贻洲.论当代中国威权政治的基础[D].山东大学,政治学理论,2013,硕士.[13]邵永星.基于热释电红外传感器的停车场智能灯控系统设计[D].河北科技大学,计算机应用技术,2013,硕士.[14]于世华.常微分方程法在结构影响线求解中的应用[D].吉林大学,桥梁与隧道工程,2014,硕士.[15]张文芳.医药流通企业信息系统的分析与设计[D].山东大学,软件工程(专业学位),2012,硕士.[16]杜国勇.移动Ad Hoc网络分簇算法的研究[D].安徽大学,计算机应用技术,2013,硕士.[17]白光,李文兴.铁路对少数民族地区经济的带动作用——以广西、青藏等铁路为例[J].广西民族研究,2014,01:139-145.[18]苏锦松.USP22和SIRT1蛋白在肾透明细胞癌中的表达及其作用[D].复旦大学,外科学,2013,博士.[19]唐爱莲.On Strategies of Raising Vocabulary Teaching Efficiency[D].安徽大学,英语语言文学,2003,硕士.[20]余雷.脉冲电磁场治疗骨质疏松的初步研究[D].第四军医大学,生物医学工程,2004,硕士.[21]李惠.老年糖尿病患者感染危险因素分析[D].吉林大学,护理学,2013,硕士.[22]黄大伟.电磁搅拌作用下轴承钢凝固组织形态演变的研究[D].东北大学,钢铁冶金,2011,硕士.[23]刘江波.企业新员工职业生涯规划研究[D].山东财经大学,企业管理,2012,硕士.[24]杨璐晟.国有企业核心竞争力培育策略研究[D].吉林大学,企业管理,2004,硕士.[25]单艺,马微,刘晓玲,王象欣,夏行昊,于力涛,魏雪冬,姜毓君.婴幼儿配方乳粉中微量碘测定方法的比较[J].食品工业科技.[26]温广辉.短时接触亲社会电子游戏对小学儿童亲社会行为的影响[D].浙江理工大学,应用心理学,2014,硕士.[27]华天海.基于DEA的水泥企业技术创新能力评价研究[D].安徽工程大学,管理科学与工程,2012,硕士.[28]王莉.论城市夜景照明的景观特性[D].南京艺术学院,2004,硕士.[29]伊朝接.基于新兴信息技术的智慧施工进度管理研究[D].哈尔滨工业大学,管理科学与工程,2014,硕士.[30]刘畅.新事业单位财务规则下医院财务审计研究[D].河北大学,会计学,2014,硕士.[31]赵金才.坐标测量系统零件信息提取与位姿自动识别的研究[D].天津大学,2005.[32]李晓辉.TiO_2/WO_3/石墨烯复合光催化剂的结构和性能研究[D].青岛科技大学,2014.[33]强彩虹.适应滨海新区发展的高职院校专业建设[D].天津大学,工业工程,2013,硕士.[34]曾伟川.β-氨基酸酯的合成研究[D].华侨大学,生物学,2013,硕士.[35]马广栓.当年养成商品草鱼新技术[J].农村.农业.农民.2003(04)[36]李超玲.筒形件强力旋压过程的有限元数值模拟[D].西北工业大学,材料加工工程,2004,硕士.[37]邓松波.基于机器视觉的飞机蒙皮孔几何参数检测技术研究[D].哈尔滨工业大学,机械电子工程,2013,硕士.[38]郑开辉.含微电网的配电网自适应保护研究[D].北京交通大学,2012.[39]翟旭升,王海涛,谢寿生,苗卓广,吴勇.基于自适应遗传算法的多项式模型结构与参数的一体化辨识[J].控制与决策,2011,05:761-767.[40]李辉,彭海琳,刘忠范.拓扑绝缘体二维纳米结构与器件[J].物理化学学报,2012,10:2423-2435.[41]刘炳义.论中油集团技术创新战略[D].西南石油学院,2002.[42]韩京清.一类不确定对象的扩张状态观测器[J].控制与决策,1995,01:85-88.[43]张亚中,赵裕辉,鲁新便,刘哲生,叶建伟,宋伯虎.频谱分解技术在塔里木盆地北部TH地区碳酸盐岩缝洞型储层预测中的应用[J].石油地球物理勘探,2006,S1:16-20+24+142-143.[44]田永良.大型工程机械销售活动项目化管理应用研究[D].山东大学,项目管理(专业学位),2012,硕士.[45]张继允.文艺复兴时期尼德兰绘画风格对我的工笔画创作的影响[D].首都师范大学,美术学,2013,硕士.[46]缪纲.面向视频后处理芯片的FPGA原型流程的研究和实现[D].浙江大学,通讯与信息系统,2004,硕士.[47]邵吉光,冯国臣,付盛.极值与切线的运动学原理[J].高等数学研究,2014,03:4-7.[48]黄捍东,赵迪,任敦占,王玉梅.基于贝叶斯理论的薄层反演方法[J].石油地球物理勘探,2011,06:919-924+1012+832-833.[49]高天珍.小学高年级语文阅读分层教学实验研究[D].华中师范大学,教育管理,2014,硕士.[50]张筱玮.论国际信用评级机构的治理及问责机制[D].安徽大学,国际法学,2013,硕士.
沈万慈 李新禄 邹麟 康飞宇 郑永平
(清华大学材料科学与工程系,新型炭材料研究室,北京 100084)
摘要 中国具有丰富的天然石墨资源,对天然石墨进行改性处理以应用到高能锂离子电池中是中国石墨产业升级的有效途径之一。对高纯微晶石墨进行了整形和表面包覆碳膜的处理,首次循环效率提高至,循环稳定性也得到了明显改善。试验表明,表面包覆的微晶石墨是一种优良的锂离子二次电池复合负极材料。采用H2SO4-GIC石墨层间化合物技术对鳞片石墨进行预膨胀处理,在石墨颗粒内形成亚微米-纳米空隙,提高了石墨制品的放电容量、快速充放电能力及循环寿命,特别适用于高能锂离子电池的发展要求[1~11]。
关键词 天然石墨;表面包覆;预膨胀;负极材料;锂离子电池。
第一作者简介:沈万慈,清华大学材料科学与工程系教授,长期从事石墨和新碳材料的研究和开发。E-mail:。
一、前言
中国石墨产品可分为鳞片石墨和微晶石墨两大类,鳞片石墨是指石墨晶质大于1μm,层片结构发达,但原矿品位低,一般含碳量在10%以下;微晶石墨又称为无定形石墨、隐晶石墨、土状石墨,晶质小于1μm,其特点在于由小晶粒团聚而成为聚晶体,原矿品位高,一般含碳量在50%以上,郴州鲁塘矿矿石含碳量达到80%以上。
微晶石墨用作锂离子电池的负极材料具有较高的嵌锂容量和循环稳定性,并且资源丰富、价格低廉,对天然微晶石墨进行改性处理以应用到高能锂离子电池中是中国石墨产业升级的有效途径之一。同样,鳞片石墨也可以用于锂离子电池的负极材料,但是必须要解决石墨在储电过程中的胀缩问题,否则它会直接影响电池的使用寿命。
二、微晶石墨的整形
微晶石墨颗粒内部是由许许多多取向无序的晶粒组成的,因此在微晶石墨球形化的过程中,极易产生粉碎现象,大多数颗粒被粉碎成10μm以下的细小颗粒。这些细小颗粒对石墨的负极性能是不利的。锂离子电池用天然石墨要求比表面积小、振实密度高、颗粒均匀,以提高其负极性能,这就要求颗粒粒度分布窄、表面光洁、球形度高。天然石墨必须经过粉体深加工,使其达到锂离子电池的使用要求,然而,通过普通机械粉碎方式很难达到这些要求。本文以化学法提纯后的微晶石墨为原料(其纯度C≥),对搅拌磨系统的微晶石墨整形效果进行了研究。表1是本研究中使用的微晶石墨的碳含量和粒度。
表1 试验中使用的微晶石墨
搅拌磨为无锡市鑫达粉体机械有效公司生产的SX-8型小型搅拌球磨机。搅拌桶容积8L,标准处理量3L。
(一)天然微晶石墨的整形加工
采用湿法搅拌磨整形:球形氧化锆磨球,直径3mm;料浆浓度20%;球料比为20∶1(质量比);填充率为1/2;添加聚丙烯酸铵(或六偏磷酸钠)作为助磨剂,比例为(相对于石墨的质量)。实验采用不同的技术参数,如表2所示。
表2 天然微晶石墨球形化处理实验条件参数
表3 整形前后微晶石墨的比表面积和粒度
(二)整形实验结果
从表3中可以看到,研磨后的微晶石墨比表面积有所下降,这是经搅拌磨整形后,微晶石墨颗粒形状更接近于球形,在相同的情况下,球形颗粒的比表面积更小。同时经搅拌磨整形后的石墨颗粒粒径有所下降,这说明搅拌磨在整形过程中有一定的粉碎作用。
(三)电化学性能
将制备好的石墨分别与聚二氟乙烯(PVDF)(质量百分数10%)混合均匀后用二甲基吡咯烷酮(NMP)溶解调成糊状均匀涂覆在铜箔上,烘干轧制后得到100μm左右厚度的膜。取直径为12mm的膜作为实验电极。电极膜片经过150℃真空干燥24 h后,在氩气手套箱中组装成实验纽扣电池(型号2025)。电解液为1 mol/L—LiPF6/EC-DEC(1∶1)(Merck Co.),隔膜为Celgard#2500。以锂片为对电极,采用恒电流充放电方法测试电化学性能,采用从到1C不等的放电速度,放电截止电压为0V,充电截止电压为3V。电池测试系统为兰电 CT2001A。
搅拌磨整形后的微晶石墨首次嵌锂容量和可逆容量分别由370 mA·h/g、284 mA·h/g增加到386 mA·h/g、308 mA·h/g,首次效率提高到。由此可见,微晶石墨的可逆容量并不算高,较鳞片石墨平均320 mA·h/g略低,但是微晶石墨有各向异性的结构特征,在重复充放电过程中显示了良好的循环性能,因此微晶石墨作为锂离子二次电池将更有优势,关键是提高首次循环效率。
三、微晶石墨的表面包覆
从机理上说,表面修饰主要是减少了石墨表面的活性点,降低了SEI形成的库仑消耗,优化了SEI膜的性能,从而降低了不可逆容量损失。同时预先在石墨表面形成一层碳膜,有利于防止电解液在石墨表面的分解,提高石墨负极的稳定性。但是表面碳膜的致密程度直接影响到改性的效果,致密均匀的碳膜就能有效地阻挡溶剂化离子的共插入,同时在炭化的过程中还能生成一些纳米级的孔,为锂离子的插入提供了更多的通道。
(一)微晶石墨的表面包覆工艺
包覆石墨制备工艺采用浸渍法,即将球形鳞片石墨与酚醛树脂按一定的配比混合均匀,加入乙醇溶剂调节黏度,得到符合分散工艺要求的浆料。经搅拌、过滤、烘干等工序后在石墨颗粒表面包覆上一层酚醛树脂,包覆后仍然为分散的椭球或球形的颗粒。再经过高温炭化后,制备出树脂炭包覆鳞片石墨。
包覆用的酚醛树脂采用液态线性酚醛树脂,型号为917(北京福润达树脂厂),固含量。去除乙醇溶剂后做热失重分析(热重分析仪 STA 409C)。实验表明,在1000℃时,树脂失重为61%,得到39%的热解炭。包覆用的石墨为搅拌磨整形和PCS系统球形化后的天然微晶石墨。
表4 微晶石墨在不同包覆量下的循环性能比较
图1 微晶石墨在不同包覆量下的循环容量曲线
(二)表面包覆的实验结果与讨论
表4列出了不同包覆量的循环性能比较。可以看出,在微晶石墨表面包覆树脂并经1000℃炭化后,其首次循环效率有所提高,循环稳定性也得到了改善。
从图1可以看出,表面包覆是对微晶石墨的电化学性能的有效改性方法,不仅能够提高首次效率,同时包覆后的微晶石墨显示了更好的循环性能,说明表面包覆的微晶石墨是一种良好的锂离子二次电池复合负极材料。
图2 GICs处理后循环性能
四、鳞片石墨用于锂离子电池负极材料
项目组在研究将天然鳞片石墨用作负极材料时,发现天然石墨由于石墨化程度高,其充放电容量要比人工制造的中间相炭微球(MCMB)高。MCMB容量在300 mA·h左右,而鳞片石墨为340 mA·h左右。但考虑循环性能时,鳞片石墨负极要差,多次充放电后,容量损失大。究其原因,主要是充放电时石墨晶体有10% 左右的涨缩量,鳞片石墨集中在一个方向上的多次涨缩使得负极膜损坏,造成性能下降。针对这一问题,本研究提出用石墨层间化合物(GICs)原理处理,在石墨颗粒内形成微米-纳米空隙,预制晶格涨缩空间,以提高循环性能。此项技术的关键在于缓慢有序的脱插,使插入物气体的逸出只在石墨内造成微米-纳米级的孔隙,而不能发生明显的体积膨胀,通常采用H2SO4-GIC、MClx-GICs或其他受主型GICs,在100~300℃低温的条件下经12~72 h的缓和脱插处理,而后对脱插后的石墨微粉进行微粒表面改性,包覆处理,制成负极材料。这样制得的负极材料既有鳞片石墨的高容量,又具有良好的循环性能(图2)。目前产品在电池上已进行产品性能检测。
五、总结与展望
我国锂离子电池产业仍将保持年平均30%以上的增长速度,2005年国内小型锂离子电池全年产量超过10亿只,石墨负极材料年需求量为5000~10000 t,世界需求量在2×104t左右,而目前供应量缺口很大。随着电动汽车的迅速发展,锂电池负极材料的需求将更加旺盛。
鉴于天然石墨资源丰富、价格低廉,并且具有较高的嵌锂容量,对天然微晶石墨进行改性处理以应用到高能锂离子电池中是国内石墨产业升级的有效途径之一。综合考虑造价和性能,在锂离子电池负极材料中天然石墨最具发展潜力,但是石墨存在着一些有待解决的问题,如首次循环的不可逆容量损失、循环稳定性等问题。天然石墨改性技术的不断发展,包括球形化处理、表面包覆树脂、插层/脱插的微膨化处理等,提高了石墨制品的放电容量、快速充放电能力、循环寿命等,改性天然石墨将成为高能锂离子电池负极的首选材料。
参考文献和资料
[1]何明,盖国胜,沈万慈,等.制粉工艺对天然微晶石墨锂离子阳极材料结构与性能的影响.电池,2002,32(4):197-200
[2]何明,陈湘彪,康飞宇,等.树脂炭包覆微晶石墨的制备及其电化学性能.电池,2003,33(5):281-284
[3]陈湘彪,刘旋,沈万慈.包覆鳞片石墨嵌锂行为的研究.电池,2004,34(6):394-396
[4]张静,郑永平,沈万慈,等.GICs技术改性天然石墨作为锂离子电池负极材料的研究.电池,2006,36(4):257-259
[5]沈万慈,等.一种锂离子电池石墨阳极膜制品及其制备方法和应用.专利号:ZL 97 1
[6]沈万慈,等.炭包覆石墨微粉的制备方法.专利号:ZL
[7]Andersson A M,Abraham D P,Haasch R,et characterization of electrodes from high power lithium-ion .,2002,149(10):A1358-1369
[8]Broussely developments on lithium ion batteries at Sources,1999,81/82:140-143
[9]张万红,岳敏.锂离子动力电池及其负极材料的研究现状及发展方向.新材料产业,2006,9:54-59
[10]张世超.锂离子电池关键材料产业技术现状与发展趋势新材料产业.新材料产业,2006,3:32-36
[11]董建,周伟,刘旋,等.微晶石墨作为阳极材料对二次锂离子电池电化学性能的影响.炭素技术,1999,(1):1-6
An Investigation on Natural Graphite Used as an Anode Materials for Lithium-ion Batteries
Shen Wanci,Li Xinlu,Zou Lin,Kang Feiyu,Zheng Yongping
(The Laboratory of New Carbon Materials,Department of Material Science and Engineering,Tsinghua University,Beijing 100084,China)
Abstract:The resource of natural graphite is rich in will be an effective way to upgrade national graphite industry if natural graphite after modification may be used in lithium ion the research,microcrystalline graphite with high purity was sphericalized and coated with a carbon film on the initial cycle efficiency was improved to be and the cycle stability was remarkably experi ments proved that microcrystalline graphite with carbon coating was an excellent anode material for lithium-ion addition,H2SO4-GIC technique was used to prepare the natural flake graphite powder with was found that sub-micro and nano pores formed in the graphite samples,that improved the reversible capacity,rate capacity and cycle product meet well the requirement of lithium-ion battery.
Key word:natural graphite,surface coating,mild-exfoliation,anode material,lithium-ion battery.
[1-1] 师宇腾.太阳能光伏阵列模拟器综述.电源技术.[1-2] 董振利.基于DSP与dsPIC的数字式太阳能电池阵列模拟器研究[D].合肥:合肥工业大学,2007[1-3] 刘志强.10kW光伏并网逆变器的研制[D].北京:北方工业大学,2011[1-4] 赵玉文.太阳能光伏技术的发展概况.第五届全国光伏技术学术研讨会论文集.1998 [1-5] BennerJP,KazmerskiL. Photovoltaicsgaininggreatervisibility. SPeetrum,(9):34-42 [1-6] 余蜜.光伏发电并网与并联关键技术研究:[博士学位论文].武汉:华中科技大学,2009[1-7] 许颇.基于源型逆变器的光伏并网发电系统的研究:[博士学位论文].合肥:合肥工业大学,2006[1-8] 林安中,王斯成.国内外太阳电池和光伏发电的进展与前景.太阳能学报,增刊. 1999:68-74[1-9] 汪海宁.光伏并网功率调节系统及其控制的研究:[博士学位论文].合肥:合肥工业大学,2005[1-10] 周德佳.太阳能光伏发电技术现状及其发展,电气应用. 2007[1-11] 曹伟.基于DSP的数字光伏模拟器研究[D].合肥:合肥工业大学,2009.[1-12] 韩珏.太阳能电池阵列模拟器的研究和设计[D].杭州:浙江大学,2006.[1-13] OLILLA J. A medium power PV-arraysimulator with a robust control strategy. Tampere,Finland: Tampere Universityof Technology, 1995, IEEE: 40. [1-14] 韩朋乐.数字式光伏电池阵列模拟器的研究与设计[D].成都:电子科技大学,2009.[2-1] 董密.太阳能光伏并网发电系统的优化设计与控制策略研究:[博士学位论文]. 长沙:中南大学,2007.[2-2] 吴忠军,刘国海,廖志凌.硅太阳电池工程用数学模型参数的优化设计.电源技术. 2007.[2-3] 苏建徽,余世杰,赵为.硅太阳电池工程用数学模型.太阳能学报. 2001.[2-4] 裴云庆.开关稳压电源的设计和应用[M].北京:机械工业出版社,2010.[2-5] 孙孝金.太阳能电池阵列模拟器的研究与设计[D].济南:山东大学,2009.[2-6] 朱丽.一个光伏阵列模拟器的设计[D].合肥:合肥工业大学,2007.[2-7] 刘万明.数字式太阳能阵列模拟器的研究[D].成都:电子科技大学,2009.[2-8] 谢文涛.新型光伏阵列模拟器的研究与设计[D].杭州:浙江大学,2007.[2-9] 李欣.数字式光伏阵列模拟器的研制[D].杭州:浙江大学,2007.[2-10] 杜柯.基于DSP的光伏电池数字模拟系统研究[D].武汉:华中科技大学,2006.[2-11] 陈亚爱.开关变换器控制技术综述[J].电器应用,2008,27(4):4-10.[3-1] Cho J G,Sabate J A,Zero-voltageZero-current Switching Full-bridge PWM converter for High Power Applications,IEEETrans 0n Power Electronics,1996 [3-2] Cho J G,Jeong C Y,Lee FC,Zero-voltage and Zero-current switching Full—bridge PWM Convener UsingSecondary Active Clamp,IEEE Trans 0n Power Electronics,l998 [3-3] Kim E S,Joe K Y,Park S G,An ImprovedSoft Switching PWM FB DC/DC Converter Using the Modified Energy Recovery Snubber,IEEE AppliedPower Electronics Conference and exposition,2000 [3-4] Ruan XB,Yall Y G,An Improved Phaseshifted Zero-voltage Zero-current Switching PWM Converter,IEEE Applied PowerElectronics Conference and exposition,1998 [3-5] Cho J G, Back J W, Jeong C Y, NovelZero-voltage and zero-current-switching(ZVZCS) Full Bridge PWM Converter Usinga Simple Auxiliary Circuit,IEEE Applied Power Electronics Conference andexposition,l998