首页

> 期刊论文知识库

首页 期刊论文知识库 问题

五年级数学小论文图文并茂

发布时间:

数学小论文五年级图文并茂

数学的色彩 清晨,鲜红的太阳露出半个笑脸,和谐的阳光洒满人间,我的心情真是好极了。突然接到爷爷的电话,叫我巧算九块五加九十九块五,我马上告诉爷爷:九加九十九,再加一,不就等于一百零九吗?爷爷说我的算法还不算巧,如果凑整减零头就好算得多。我马上打断爷爷的话,告诉他:10+100-1=109(元)。这时爷爷夸我,说我还算灵巧。这是早晨的数学题,我把数学定为红色。 上午,爸爸从银行交完电费回来,叫我计算电费。用电量是从1079-1279(度),每度电单价是元,我用心算整好200度,我把单价变为分数是38/100,列式:200×(38/100),先约分再乘,等于76元。爸爸说没错,和电脑算得一样。我很得意,这时已近中午,我把数学定为黄色。 下午,我和妹妹在家里切西瓜,把半个西瓜再均匀地切两刀,其中的两份就是2/3,我问妹妹这两份是整个西瓜的几分之几呢?妹妹开学才上一年级,当然不会算,我告诉她把西瓜整体看作1,第一分率是1/2,它的分率是2/3,相乘的结果就是这两份是整个西瓜的2/6,约分后就是1/3。这时我想爷爷曾说七色阳光为白色,那么,这个数学就定为白色吧。 夜晚在蓝色的星空下,我和妈妈在一起看电视,我怎么也弄不懂考古学家是怎样从腿骨的化石推算出大艾尔恐龙的身高呢?妈妈说这蓝色的数学等你长大了,本事大了自然就会了。 生活中的数学简直是太多了,真是绚丽多彩,它随时在你身边出现。我爱数学,我要学好数学。

关于“0” 0,可以说是人类最早接触的数了。我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”这样说显然是不正确的。我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。” “任何数除以0即为没有意义。”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少。一个整体无法分成0份,即“没有意义”。后来我才了解到a/0中的0可以表示以零为极限的变量(一个变量在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变量在变化过程中其绝对值永远大于任意大的已定正数)。从中得到关于0的又一个定理“以零为极限的变量,叫做无穷小”。 “105、203房间、2003年”中,虽都有0的出现,粗“看”差不多;彼此意思却不同。105、2003年中的0指数的空位,不可删去。203房间中的0是分隔“楼(2)”与“房门号(3)”的(即表示二楼八号房),可删去。0还表示…… 爱因斯坦曾说:“要探究一个人或者一切生物存在的意义和目的,宏观上看来,我始终认为是荒唐的。”我想研究一切“存在”的数字,不如先了解0这个“不存在”的数,不至于成为爱因斯坦说的“荒唐”的人。作为一个中学生,我的能力毕竟是有限的,对0的认识还不够透彻,今后望(包括行动)能在“知识的海洋”中发现“我的新大陆”。 写的不好,多多包涵!!

写的不错,是不错,很好 ,可是有的地方写错了 ,我就不说出来了, 希望我进步 。

数学学习兴趣及其培养 内容摘要:学习兴趣是学习动机的一种最重要的成分,它对学生的学习起着重要的作用。 学习兴趣促进学生智力的发展,获得较大的成功;同时,这种愉快的精神感受又促进学生对 数学学习产生更大的兴趣,二者之间相互促进,使数学学习活动更加活跃、有效,学生的心理 素质得到更加和谐的发展。本文讨论了兴趣的特点、形成、发展规律及在教师教学中的应用 等,给出了米切尔关于兴趣的结构模型研究。影响兴趣的形成与发展的因素有个体需要、年 龄、性格和能力、他人、集体与地区的影响等。在数学教学中,如何培养和激发学生的学习 兴趣,是广大数学教师必须重视的一个问题。教师应将对学生学习兴趣的培养渗透到每个教 学环节,贯穿于数学教学的全过程。 关键词:学习兴趣 兴趣 认知 学习兴趣对数学学习具有一定的影响。兴趣是学习活动中的重要动力,是学习获得良好效果的必要条件。数学学习是学生根据数学教学计划、目的要求进行的,由获得数学知识经 验而引起的比较持久的行为变化过程。由于数学有其突出的特点,所以学生在获得数学知识 经验时也有其特殊性的表现和要求,如数学学习中的再创造性比其它学科要高,数学学习需 要较强的抽象概括能力等。这样学生在学习数学时保持浓厚的兴趣就犹为必要。 学习数学的兴趣产生于教学过程的趣味性和艺术性情感中,产生于学习过程中的成功与 愉快体验之中。当学生的精神处于兴奋状态展开数学学习活动时,学生就会产生强烈的求知 欲望,就会在追求与探讨中发展数学的思维能力,促进智力的发展,获得较大的成功;同时, 这种愉快的精神感受又促进学生对数学学习产生更大的兴趣,二者之间相互促进,使数学学 习活动更加活跃、有效,学生的心理素质得到更加和谐的发展。 1.学习兴趣及特点 学习兴趣 兴趣是人们爱好某种活动或力求认识某种事物的倾向,这种倾向和一定的情感联系着, 兴趣是在需要的基础上产生的,是在生活实践的过程中形成与发展起来的。学习兴趣是学生 基于自己的学习需要而表现出来的一种认识倾向。从表现形式上讲,学习兴趣是学生学习需 要的动态表现形式,是社会和教育对学生的客观要求在学生头脑中的反映;从系统上讲,学 习兴趣是学习动机系统中的一个子系统,它是学习动机中最现实、最活跃的成分,是力求认 识世界、渴望获得科学文化知识的带有情绪色彩的认识倾向。 教育心理学的研究表明,如果大脑中有关学习的神经细胞处于高度的兴奋状态,而无关 部分处于高度的抑制状态,有关学习的神经纤维通道便能高度畅通,学习时信息传输就会处 于最佳状态。学生一旦对数学知识产生兴趣,就会产生巨大的认识能力,能集中注意力学习, 使信息的传导达到最佳状态;反之,如果学生的学习存在着被迫、苦恼、烦躁、紧张,就会 使神经细胞中应当抑制的部分变为兴奋,而应当兴奋的部分受到抑制,从而影响学习效果。 兴趣的特点 兴趣是后天形成的,是在需要的基础上发展起来的。人们在实践活动中,通过对 某种事物反复接触和了解,随着有关知识经验的不断积累,逐渐形成和发展了对某事物的兴 趣。学习的兴趣是可以诱发和培养的。 兴趣具有指向性。任何一种兴趣都对一定事件或活动,为实现某种目的而产生的。 人对他感兴趣的事物总是心驰神往,积极地把注意指向并集中于该种活动。兴趣的指向性是 建立在需要的基础之上的。 兴趣具有情绪性。在许多心理学教材和工具书中给兴趣下定义时都指出兴趣带有 情绪性。生活实践也表明,人们从事感兴趣的活动时,总会处在愉快、满意、兴致淋漓的情 绪状态;一个人做没有兴趣的工作时总觉得在做苦差事。 兴趣具有动力性。兴趣的动力作用可以概括为:(1)对一个人所从事的活动起支 持、推动和促进作用。(2)为未来活动做准备。 兴趣具有衍生性。人们对事物的认识一般是在旧有的认知结构的基础上进行扩 展,而事物之间往往相互联系,所以从旧有的兴趣中往往会产生出新的兴趣。 兴趣具有稳定性。兴趣的稳定性是指下躯持续时间而言,按兴趣维持时间长短可 分为持久兴趣与短暂兴趣。直观兴趣是一种短暂兴趣,数学内容的有趣性和实用性、数学美 感引起的自觉兴趣和潜在兴趣则是持久兴趣。 2 影响兴趣形成与发展的因素 兴趣与需要的关系 皮亚杰指出:“兴趣,实际上,就是需要的延伸,它表现出对象与需要之间的关系,因 为我们之所以对一个对象发生兴趣,是由于它能满足我们的需要。”人的需要是多种多样的, 兴趣也随需要而异。研究表明,一般具有高认知需要的人更喜欢复杂任务;而具有低认知需 要的人则更喜欢简单的任务。 兴趣与年龄的关系 不同年龄的人有不同的兴趣。年龄的增长直接影响到人的兴趣的数量和质量,对认识兴 趣中具有中心意义的读书倾向变化的研究表明,不同年龄阶段的儿童的读书兴趣是有其各自 的特点的。9—13 岁的儿童是读书最盛的,进入青年期读书活动的比率逐渐减少。但年龄越 增长,选择力越强,感受性和理解力越敏锐,读书兴趣的质量在提高。 兴趣与性格和能力的关系 不同性格的人兴趣有所区别。如情绪稳定的人兴趣也较稳定。此外,兴趣受能力制约。 当自己感到问题的难度太大或太小时,个人对它就难于发生兴趣。 兴趣与他人、集体及地区的影响有关 学生的兴趣常常受教师兴趣 的影响。个人的兴趣也受集体、地区、集团的影响。 兴趣与性别的关系 从调查中可知兴趣有受性别影响的倾向。田中在苏州、无锡、镇江3 地区6 县市9 所学 校的初三县市中进行调查显示,对数学表现兴趣的是男生多于女生,声明对数学不感兴趣甚 至讨厌数学的也是男生多于女生。 3 兴趣的形成过程 儿童的兴趣在最初主要是与刺激联系在一起的。首先,刺激本身固有的一些特性都先于 经验而有引起人注意和兴趣的功能。其次,使人觉得有趣的活动和经验本身也将引起人们的 注意和兴趣。 要引起或培养一个人的兴趣要按以下两个步骤进行:(1)发现个人或团体目前感兴趣的 具体领域和现有水平;(2)把希望其从事的活动直接或通过中间的步骤与其目前的兴趣领域 连接起来。 章凯和张必隐提出了兴趣的“信息—目标”理论。该理论认为,个体心理的发展是以不 断从环境获得信息为基础的;个体在与环境相互作用时希望从中获得信息,以消除原有的或 新产生的心理不确定性,实现心理目标的形成、演化和发展的心理过程即兴趣。 4 兴趣的作用 兴趣在学生的学习活动中起着重要的作用。俄国大教育家乌申斯基指出:“没有丝毫兴 趣的强制性学习,将会扼杀学生探求真理的欲望。”教育实践证明,学生对学习本身、对学 习科目有兴趣,就可以激起他的学习积极性,推动他在学习中取得好成绩。 兴趣对未来活动具有准备作用,对正在进行的活动具有推动作用,对活动的创造性态度 具有促进作用。兴趣是推动认识活动的重要动力,是影响学习效果的重要因素。 兴趣作为人从事活动的内容或方向,并不是固定不变的。兴趣可以被培养,被“镶嵌” 于人的个性之中。由于兴趣—注意的指向性和集中性等特点,人的兴趣和认知的相互作用经 常会导致一种恒常而稳定的兴趣—认知倾向。当认知倾向在个体身上内化而恒常地表现出来 时,就表现为一种稳定的兴趣的个性倾向性。 5 兴趣的发展规律 兴趣发展逐步深化 人的兴趣的发展,一般要经过有趣—乐趣—志趣三个阶段。有趣是兴趣发展的低级水平, 它往往是由某些外在的新异现象所引起而产生的直接兴趣。它为时短暂,带有直观性、盲目 性和广泛性。 乐趣是兴趣发展的中级水平,它是在有趣的基础上逐步定向而形成的。在这个阶段,学 生的兴趣会向专一的、深入的方向发展,即对某一客体产生了特殊爱好。乐趣已具有专一性、 自发性和坚持性的特点。 志趣则是兴趣发展的最高水平。它与崇高的理想和远大的奋斗目标相结合,是在乐趣的 基础上发展起来的。其特点是具有社会性、自觉性、方向性和更强的坚持性,甚至终身不变。 直接兴趣与间接兴趣的相互转化 兴趣一般分为直接兴趣和间接兴趣两类。直接兴趣是对事物本身感到需要而引起的兴 趣,间接兴趣只是对这种事物或活动的将来结果感到重要,而对事物本身并没有兴趣。间接 兴趣在一定条件下可以转化为直接兴趣。学生遇到稍微简单、容易和生动有趣的知识时,便 会产生直接兴趣;但一旦遇到复杂的、困难的和枯燥的知识时,便需要有间接兴趣来维持学 习。当学生通过顽强学习,克服了学习中的困难时,便又会对这种知识产生直接兴趣。 中心兴趣与广泛兴趣的相互促进 中心兴趣是指对某一方面的事物或活动有着极浓厚又稳定的兴趣;广泛兴趣是指对多方 面的事物或活动具有的兴趣。广泛兴趣是中心兴趣的基础。 好奇心、求知欲、兴趣密切联系,逐步发展 从横的方面来看,好奇心、求知欲和兴趣是相互促进、彼此强化的;从纵的方面看,三 者又是沿着好奇心—求知欲—兴趣的方向发展的。 好奇心是人们对新奇事物积极探求的一种心理倾向,它可以说是一种本能。好奇心儿童 期最为强烈。求知欲是人们积极探求新知识的一种欲望,它带有一定的感情色彩。青少年时 期是求知欲最旺盛的时期。某一方面的求知欲如果反复地表现出来,就形成了某一个人对某 事物或活动的兴趣。 兴趣与努力不可分割 兴趣与努力是可以相互促进的,而不是两个对立面。学生的学习活动既离不开学习兴趣, 也离不开勤奋努力,兴趣与努力不断相互促进,方能使学习达到最佳境地。 6 激发和培养学生学习数学的兴趣 数学的特点是抽象、严谨、应用广泛。徐德雄对江山中学、武汉中学、金陵中学、浦城 一中的高三毕业班学生的调查显示%的学生认为课业负担较重的科目是数学,% 的学生认为考试次数最多的是数学。因此,在数学教学中,如何培养和激发学生的学习兴趣, 是广大数学教师必须十分重视的一个问题,对于学习兴趣的培养应当渗透到每个教学环节, 贯穿于数学教学的全过程。 要求学生建立积极的心理准备状态 教师要教会学生在学习中遇到不懂的地方有积极的心理暗示,鼓励学生创造性地使用一 些方法,增加学习的趣味性。兴趣是可以自己培养的,关键是有积极的态度。 帮助学生形成正确的学习价值观 学习价值观使学生形成明确的学习需要,为兴趣的生成奠定基础。在教学中,教师要充 分挖掘教学内容的功利和精神价值,并及时准确地传递给学生,帮助学生形成正确的学习目 的,明确学习的价值和意义,以唤醒学生学习的内在冲动和激情,促进学习兴趣的生成。 学 习价值观激发学习动机和求知欲,为兴趣的深入发展注入动力。教师应善于从帮助学生确立 科学合理的学习价值观入手,以培养学生正确的学习理念和优秀的学习品质为切入点,将兴 趣根植于崇高的理想信仰和正确的价值观基础之上。只有这样,学生才能形成真实的、稳定 的、深入的、持久的学习兴趣,才能真正达到兴趣促进学习的目的。 提高教学水平引发学生学习兴趣 设悬激趣 创设悬念,是教师根据教材的数学内容,设置问题情境,使学生产生强烈的求知欲望,激发学习兴趣。如教学“正比例”知识时,教师向学生提出一个实际问题:谁能有办法测量 我们校内操场枫树的高度呢?同学们顿时兴趣大发,争论不休,却又想不出什么好办法。这 时教师对同学们说:“我倒有一个且很简单的测量办法,不用爬树也不用砍树便可以测出树 的高度”。同学们哗然,产生悬念:老师是用什么办法测量树高的呢?很自然地产生了求知 欲望,由此学生主动学习,兴趣盎然,从而达到了预期的教学目的。收到良好效果,悬念也 得到解决。 实践激趣 数学教学中,给学生设置创造思考问题的机会和条件,指导学生在实践中,观察的基础 上,动脑筋思考获得新知识。《数学课程标准》中指出:“学生能够认识到数学存在于现实生 活中,并被广泛应用于现实世界,才能切实体会到数学的应用价值。”学好数学知识,是为 了更好地为生活服务。把知识应用于生活,做到学以致用,让学生充分体验数学的应用价值, 同时让学生在解决实际生活中的数学问题时,体验到探索数学的无穷乐趣,从而形成长久的 兴趣。 竞争激趣 课堂教学中,教师要注重学生争胜好强的特点,发挥他们的学习积极性,给他们提供足 够的机会,鼓励他们竞争。 操作激趣 感知-表象—概念是儿童认识数学的过程,从具体到抽象,从感性到理性的过程。教学 时要注重学生的操作训练,激发学习兴趣,发展学生思维,把抽象的知识转变为具体的内容, 使学生的认识由感性的基础上升到理性知识。 评价激趣 教学中不管学生对知识的接受理解能力如何。教师都要以亲切的语言给予评价和诱导, 忌用简单、粗糙的语言挫伤学生的学习知识性: 第一、利用成功评价激趣。如学生通过自己学习实践得出圆周率时,教师评价学生说: “圆周率是我国古代数学家花了很长的时间,反复实验才计算出来,而今你们通过自己的实 践也成功地算出来了,真了不起。希望同学们从小就要这样认真学习,事业一定能成功。” 从而激发学生的学习兴趣。 第二、利用诱导语言激趣。个别同学在学习过程中遇到困难时,要及时给予点拨诱导, 让他们跳一下也能摘到果子。给予“试试看”、“再想想”等亲切的语言鼓励他们学习成功, 产生兴趣。 加强直观,引导动手操作 在课堂教学中,采用直观教具、投影仪等生动形象的教学手段,能使静态的数学知识动 态化,不但能激发学生学习的积极性,而且学生学到的知识也能印象深刻,永久不忘。动手 操作能有效地引发学生的学习兴趣。 建立平等和谐的师生关系 教育是心灵的艺术,应该体现出民主与平等的现代意识。学生对堂课的兴趣与积极性的 高低,常依赖于对教师的情感。由此可见,高尚纯洁的爱则是师生心灵的通道,是启发学生 心扉的钥匙,是引导学生前进的路标。教师除了要有人格魅力外,在教学中,要以一颗火热 的心爱护学生,真诚地对待学生。对学生要一视同仁,才能赢得学生的信赖。在生活上关心 他们,在学习上帮助他们,在课堂上注重多表扬少批评,经常走到他们中间,找他们谈心, 参加他们的活动,为他们服务,这样才能成为他们的知心朋友,尤其是对学习困难的学生更 应多给他们关爱,多找出其闪光点培养他们的自信心,只有这样,建立了平等和谐的师生关 系,学生才会亲其师、信其道、学其知,产生兴趣。 应用现代化教学手段培养学习兴趣 学生的认识能力是否会有长足的进步,常常取决于我们能否提供一个良好的外界条件。 在过去教学中,多数是填鸭式教学,教师只是讲讲、写写,学生只是听听、记记,对知识的 理解、认识的提高,很多都是抽象的、模糊的,很难真正搞清楚,而现代教学手段的应用恰 好弥补了这一不足。 随着科学技术的发展,现代媒介也逐渐走入课堂,广泛用于教学中。应用现代化教学手 段,诸如电影,电视,尤其是多媒体计算机辅助教学,代替了过去把黑板、粉笔作为教具的 教学模式,既可以提高学生的认识能力,还可以培养学生的学习兴趣,让学生把动画、图象、 立体声融合起来,真正做到“图文并茂”,把学生带入一种心旷神怡的境界,有身临其境之 感,觉得生动有趣,这样就能激发起学生的学习热情,从而收到良好的效果。

五年级数学小论文图文并茂

《容易忽略的答案》 大千世界,无奇不有,在我们数学王国里也有许多有趣的事情。比如,在我现在的第九册的练习册中,有一题思考题是这样说的:“一辆客车从东城开向西城,每小时行45千米,行了小时后停下,这时刚好离东西两城的中点18千米,东西两城相距多少千米?王星与小英在解上面这道题时,计算的方法与结果都不一样。王星算出的千米数比小英算出的千米数少,但是许老师却说两人的结果都对。这是为什么呢?你想出来了没有?你也列式算一下他们两人的计算结果。”其实,这道题我们可以很快速地做出一种方法,就是:45×=(千米),=(千米),×2=261(千米),但仔细推敲看一下,就觉得不对劲。其实,在这里我们忽略了一个非常重要的条件,就是“这时刚好离东西城的中点18千米”这个条件中所说的“离”字,没说是还没到中点,还是超过了中点。如果是没到中点离中点18千米的话,列式就是前面的那一种,如果是超过中点18千米的话,列式应该就是45×=(千米),=(千米),×2=189(千米)。所以正确答案应该是:45×=(千米),=(千米),×2=261(千米)和45×=(千米),=(千米),×2=189(千米)。两个答案,也就是说王星的答案加上小英的答案才是全面的。 在日常学习中,往往有许多数学题目的答案是多个的,容易在练习或考试中被忽略,这就需要我们认真审题,唤醒生活经验,仔细推敲,全面正确理解题意。否则就容易忽略了另外的答案,犯以偏概全的错误。 这个?

你不拿货卖是ヾ(❀╹◡╹)ノ~ヾ(●´∇`●)ノ哇~哦利润空间锁困了就进入太用力酷我极速蜗牛太庸俗哦空

[专题介绍]最优化概念反映了人类实践活动中十分普遍的现象,即要在尽可能节省人力、物力和时间前提下,争取获得在可能范围内的最佳效果,因此,最优化问题成为现代数学的一个重要课题,涉及统筹、线性规划一排序不等式等内容。 最优化问题不仅具有趣味性,而且由于解题方法灵活,技巧性强,因此对于开拓解题思路,增强数学能力很有益处。但解决这类问题需要的基础知识相当广泛,很难做到一一列举。因此,主要是以例题的方式让大家体会解决这些问题的方法和经验。 [经典例题] 例1 :货轮上卸下若干只箱子,总重量为10吨,每只箱子的重量不超过1吨,为了保证能把这些箱子一次运走,问至少需要多少辆载重3吨的汽车?[分析] 因为每一只箱子的重量不超过1吨,所以每一辆汽车可运走的箱子重量不会少于2吨,否则可以再放一只箱子。所以,5辆汽车本是足够的,但是4辆汽车并不一定能把箱子全部运走。例如,设有13只箱子,,所以每辆汽车只能运走3只箱子,13只箱子用4辆汽车一次运不走。因此,为了保证能一次把箱子全部运走,至少需要5辆汽车。例2: 用10尺长的竹竿来截取3尺、4尺长的甲、乙两种短竹竿各100根,至少要用去原材料几根?怎样截法最合算?[分析] 一个10尺长的竹竿应有三种截法:(1) 3尺两根和4尺一根,最省;(2) 3尺三根,余一尺;(3) 4尺两根,余2尺。为了省材料,尽量使用方法(1),这样50根原材料,可截得100根3尺的竹竿和50根4尺的竹竿,还差50根4尺的,最好选择方法(3),这样所需原材料最少,只需25根即可,这样,至少需用去原材料75根。例3: 一个锐角三角形的三条边的长度分别是两位数,而且是三个连续偶数,它们个位数字的和是7的倍数,这个三角形的周长最长应是多少厘米?[分析] 因为三角形三边是三个连续偶数,所以它们的个位数字只能是0,2,4,6,8,并且它们的和也是偶数,又因为它们的个位数字的和是7的倍数,所以只能是14,三角形三条边最大可能是86,88,90,那么周长最长为86+88+90=264厘米。例4: 把25拆成若干个正整数的和,使它们的积最大。[分析] 先从较小数形开始实验,发现其规律:把6拆成3+3,其积为3×3=9最大;把7拆成3+2+2,其积为3×2×2=12最大;把8拆成3+3+2,其积为3×3×2=18最大;把9拆成3+3+3,其积为3×3×3=27最大;……这就是说,要想分拆后的数的乘积最大,应尽可能多的出现3,而当某一自然数可表示为若干个3与1的和时,要取出一个3与1重合在一起再分拆成两个2之和,因此25可以拆成3+3+3+3+3+3+3+2+2,其积37×22=8748为最大。例5: A、B两人要到沙漠中探险,他们每天向沙漠深处走20千米,已知每人最多可携带一个人24天的食物和水,如果不准将部分食物存放于途中,问其中一个人最远可以深入沙漠多少千米(要求最后两人返回出发点)?如果可以将部分食物存放于途中以备返回时取用呢?[分析] 设A走X天后返回,A留下自己返回时所需的食物,剩下的转给B,此时B共有(48-3X)天的食物,因为B最多携带24天的食物,所以X=8,剩下的24天食物,B只能再向前走8天,留下16天的食物供返回时用,所以B可以向沙漠深处走16天,因为每天走20千米,所以其中一人最多可以深入沙漠320千米。如果改变条件,则问题关键为A返回时留给B24天的食物,由于24天的食物可以使B单独深入沙漠12天的路程,而另外24天的食物要供A、B两人往返一段路,这段路为24÷4=6天的路程,所以B可以深入沙漠18天的路程,也就是说,其中一个人最远可以深入沙漠360千米。例6: 甲、乙两个服装厂每个工人和设备都能全力生产同一规格的西服,甲厂每月用的时间生产上衣, 的时间生产裤子,全月恰好生产900套西服;乙厂每月用 的时间生产上衣, 的时间生产裤子,全月恰好生产1200套西服,现在两厂联合生产,尽量发挥各自特长多生产西服,那么现在每月比过去多生产西服多少套?[分析] 根据已知条件,甲厂生产一条裤子与一件上衣的时间之比为2:3;因此在单位时间内甲厂生产的上衣与裤子的数量之比为2:3;同理可知,在单位时间内乙厂生产上衣与裤子的数量之比是3:4;,由于,所以甲厂善于生产裤子,乙厂善于生产上衣。两厂联合生产,尽量发挥各自特长,安排乙厂全力生产上衣,由于乙厂生产 月生产1200件上衣,那么乙厂全月可生产上衣1200÷ =2100件,同时,安排甲厂全力生产裤子,则甲厂全月可生产裤子900÷ =2250条。为了配套生产,甲厂先全力生产2100条裤子,这需要2100÷2250=月,然后甲厂再用月单独生产西服900×=60套,于是,现在联合生产每月比过去多生产西服(2100+60)-(900+1200)=60套例7 今有围棋子1400颗,甲、乙两人做取围棋子的游戏,甲先取,乙后取,两人轮流各取一次,规定每次只能取7P(P为1或不超过20的任一质数)颗棋子,谁最后取完为胜者,问甲、乙两人谁有必胜的策略?[分析] 因为1400=7×200,所以原题可以转化为:有围棋子200颗,甲、乙两人轮流每次取P颗,谁最后取完谁获胜。[解] 乙有必胜的策略。由于200=4×50,P或者是2或者可以表示为4k+1或4k+3的形式(k为零或正整数)。乙采取的策略为:若甲取2,4k+1,4k+3颗,则乙取2,3,1颗,使得余下的棋子仍是4的倍数。如此最后出现剩下数为不超过20的4的倍数,此时甲总不能取完,而乙可全部取完而获胜。[说明] (1)此题中,乙是“后发制人”,故先取者不一定存在必胜的策略,关键是看他们所面临的“情形”;(2)我们可以这样来分析这个问题的解法,将所有的情形--剩余棋子的颗数分成两类,第一类是4的倍数,第二类是其它。若某人在取棋时遇到的是第二类情形,那么他可以取1或2或3,使得剩下的是第一类情形,若取棋时面临第一类情形,则取棋后留给另一个人的一定是第二类情形。所以,谁先面临第二类情形谁就能获胜,在绝大部分双人比赛问题中,都可采用这种方法。例8 有一个80人的旅游团,其中男50人,女30人,他们住的旅馆有11人、7人和5人的三种房间,男、女分别住不同的房间,他们至少要住多少个房间?[分析] 为了使得所住房间数最少,安排时应尽量先安排11人房间,这样50人男的应安排3个11人间,2个5人间和1个7人间;30个女人应安排1个11人间,2个7人间和1个5人间,共有10个房间。

关于数学的小论文:

以前,我一直以为学习”求最小公倍数”这种知识枯燥无味,整天与”求11和12的最小公倍数”类似这样的问题打交道,真是烦死人,总觉得学习这些知识在生活中没有什么用处。

然而,有一件事却改变了我的看法。

那是前不久的事了,爷爷和我一起乘坐公共汽车去青少年宫。我们爷俩坐的是3路车,快要出发的时候,1路车正好也和我们同时出发。

此时爷爷看着这两路车,突然笑着对我说:”小溦,爷爷出个问题考考你,好不好?”我胸有成竹地回答道:”行!””那你听好了,如果1路车每3分钟发车一次,3路车每5分钟发车一次。这两路车至少再过多少分钟后又能同时发车呢?”稍停片刻,我说:”爷爷你出的这道题不能解答。”爷爷疑惑地看着我:”哦,是吗?””这道题还缺一个条件:1路车和3路车的起点站是同一个地方。”

爷爷听了我的话,恍然大悟地拍了一下自个聪明秃顶的脑袋,笑着说:”我这个‘数学博士’也有糊涂的时候,出的题不够严密,还是小溦想得周全。”我和爷爷开心地哈哈地大笑起来。此时爷爷说:”那好,现在假设是同一个起点站,你说说用什么方法来解答?”我想了想,脱口而出:”再过15分钟。

因为3和5是互质数,求互质数的最小公倍数就等于这两个数的乘积(3х5=15),所以15就是它们的最小公倍数。也就是两路车至少再过15分钟能同时发车。”爷爷听了夸我:”答案正确!100分。””耶!”听了爷爷的话,我高兴地举起双手。从这件事中,我明白了一个道理:数学知识在现实生活中真是无处不在啊。

五年级数学小论文带图

0是一个神秘的数字,它像宇宙中的奥秘一样,让人捉摸不透。0也是一个重要的数字,如果你一不小心,多添了一个0或少加了一个0的话,那后果真是不堪设想。这次的数学考试,让我真正领略了0的重要性。当考卷发下来的时候,99分!我立即寻找错误点。结果令我目瞪口呆。原来是4500÷90这道题。“怎么可能这么简单的题我也会出错?”我心里嘀咕道。想起当时在口算45000÷90这道题时,我轻而易举地写下50,还十分自信,可到头来一计算原来得500,差了一个0。这是多少不应该的呀!不该错的也错了,想必0是多么重要呀!如果我以后当了公司的财务总经理,别人来提钱,本来要提10000元,我却多加了一个0--100000,在帐单上仍然记了10000元。那这90000元我向谁来要呀!这一切后果都得我承担啊。通过这件事,我明白了在工作上、学习上都要一丝不苟,要不然后果非常严重。

12345678912345678900

数学的色彩 清晨,鲜红的太阳露出半个笑脸,和谐的阳光洒满人间,我的心情真是好极了。突然接到爷爷的电话,叫我巧算九块五加九十九块五,我马上告诉爷爷:九加九十九,再加一,不就等于一百零九吗?爷爷说我的算法还不算巧,如果凑整减零头就好算得多。我马上打断爷爷的话,告诉他:10+100-1=109(元)。这时爷爷夸我,说我还算灵巧。这是早晨的数学题,我把数学定为红色。 上午,爸爸从银行交完电费回来,叫我计算电费。用电量是从1079-1279(度),每度电单价是元,我用心算整好200度,我把单价变为分数是38/100,列式:200×(38/100),先约分再乘,等于76元。爸爸说没错,和电脑算得一样。我很得意,这时已近中午,我把数学定为黄色。 下午,我和妹妹在家里切西瓜,把半个西瓜再均匀地切两刀,其中的两份就是2/3,我问妹妹这两份是整个西瓜的几分之几呢?妹妹开学才上一年级,当然不会算,我告诉她把西瓜整体看作1,第一分率是1/2,它的分率是2/3,相乘的结果就是这两份是整个西瓜的2/6,约分后就是1/3。这时我想爷爷曾说七色阳光为白色,那么,这个数学就定为白色吧。 夜晚在蓝色的星空下,我和妈妈在一起看电视,我怎么也弄不懂考古学家是怎样从腿骨的化石推算出大艾尔恐龙的身高呢?妈妈说这蓝色的数学等你长大了,本事大了自然就会了。 生活中的数学简直是太多了,真是绚丽多彩,它随时在你身边出现。我爱数学,我要学好数学。

五年级第二学期以来,我们学的主要内容就是长方体、正方体的表面积、体积和分数乘法的等。在长方体、正方体表面积的单元里,有许多典型的题目,而这些题目通常会导致我们思维混乱从而做错。下面,我就来分析一道多次出错的题目。 题目是这样的: 一个长方体鱼缸,长6米、宽2米、深1米,制作这个鱼缸至少要多少平方米的玻璃? 我是这样做的: (6×2+2×1+6×1)×2-6×2 分析我的做法: 我先算出整个鱼缸6个面的总面积,再减去缺少的那个面(上面)的面积。因为鱼缸要养鱼,所以不可能是完全封闭的,往往都是上面作为缸口,所以要减去上面的面积。 方法多种多样,做这一道题还有另一种方法: (2×1+6×1)×2+6×2 分析这样的做法: 已知鱼缸共有5个面,其中前面、后面是一组,左面、右面是一组,可以先算出前、后、左、4个面的总面积,再加上下面的面积,就可以求出鱼缸5个面的面积,也就是鱼缸的表面积。 最容易出错的地方: 像这样类型的题目,往往容易出错的有2点。一是不联合实际想,把鱼缸的表面积当做6个面来计算;二是虽然知道鱼缸只有5个面,但却不知道少的面面积应当怎么算。 我的建议: 当你做到这种题目时,应该画一画图来帮助你,并在图形上标明长、宽、高对应的数目,这样题目就一目了然,做起来就会得心应手了。另外,还要注意单位是否一致! 以上就是我对“鱼缸问题”的分析与见解

数学小论文五年级图文结合

五年级第二学期以来,我们学的主要内容就是长方体、正方体的表面积、体积和分数乘法的等。在长方体、正方体表面积的单元里,有许多典型的题目,而这些题目通常会导致我们思维混乱从而做错。下面,我就来分析一道多次出错的题目。 题目是这样的: 一个长方体鱼缸,长6米、宽2米、深1米,制作这个鱼缸至少要多少平方米的玻璃? 我是这样做的: (6×2+2×1+6×1)×2-6×2 分析我的做法: 我先算出整个鱼缸6个面的总面积,再减去缺少的那个面(上面)的面积。因为鱼缸要养鱼,所以不可能是完全封闭的,往往都是上面作为缸口,所以要减去上面的面积。 方法多种多样,做这一道题还有另一种方法: (2×1+6×1)×2+6×2 分析这样的做法: 已知鱼缸共有5个面,其中前面、后面是一组,左面、右面是一组,可以先算出前、后、左、4个面的总面积,再加上下面的面积,就可以求出鱼缸5个面的面积,也就是鱼缸的表面积。 最容易出错的地方: 像这样类型的题目,往往容易出错的有2点。一是不联合实际想,把鱼缸的表面积当做6个面来计算;二是虽然知道鱼缸只有5个面,但却不知道少的面面积应当怎么算。 我的建议: 当你做到这种题目时,应该画一画图来帮助你,并在图形上标明长、宽、高对应的数目,这样题目就一目了然,做起来就会得心应手了。另外,还要注意单位是否一致! 以上就是我对“鱼缸问题”的分析与见解

1、生活中的数学 数学究竟是什么呢?我们说,数学是研究现实世界空间形式和数量关系的一门科学.它在现代生活和现代生产中的应用非常广泛,是学习和研究现代科学技术必不可少的基本工具,而生活也是缺不了数学的。 现实生活中,我们会看到用正多边形拼成的各种图案,例如,平时在家里、在商店里、在中心广场、进入宾馆、饭店等等许多地方会看到瓷砖。他们通常都是有不同的形状和颜色。其实,这里面就有数学问题。 在用瓷砖铺成的地面或墙面上,相邻的地砖或瓷砖平整地贴合在一起,整个地面或墙面没有一点空隙。这些形状的地砖或瓷砖为什么能铺满地面而不留一点空隙呢? 例如,三角形。三角形是由三条不在同一条直线上的线段首尾顺次连结组成的平面图形。我们知道,三角形的内角和是180度,外角和是360度。用6个正三角形就可以铺满地面。 再看正四边形,它可以分成2个三角形,内角和是360度,一个内角的度数是90度,外角和是360度。用4个正四边形就可以铺满地面。 正五边形呢?它可以分成3个三角形,内角和是540度,一个内角的度数是108度,外角和是360度。它不能铺满地面。 …… 由此,我们得出了。n边形,可以分成(n-2)个三角形,内角和是(n-2)*180度,一个内角的度数是(n-2)*180÷2度,外角和是360度。若(n-2)*180÷2能整除360,那么就能用它来铺满地面,若不能,则不能用其铺满地面。 瓷砖,这样一种平常的东西里都存在了这么有趣的数学奥秘,更何况生活中的其它呢? 至于文艺、体育,也无一不用到数学.我们从中央电视台的文艺大奖赛节目中看到,给一位演员计分时,往往先“去掉一个最高分”,再“去掉一个最低分”.然后就剩下的分数计算平均分,作为这位演员的得分.从统计学来说,“最高分”、“最低分”的可信度最低,因此把它们去掉.这一切都包含着数学道理. 正如华罗庚先生所说的:近100年来,数学发展突飞猛进,我们可以毫不夸张地在用:宇宙之大、粒子之微、火箭之速、化工之巧、地球之变、生物之谜、日用之繁等各个方面,用“无处不有数学”来概括数学的广泛应用.可以预见,科学越进步,应用数学的范围也就越大.一切科学研究在原则上都可以用数学来解决有关的问题. 可以断言:只有现在还不会应用数学的部门,却绝对找不到原则上不能应用数学的领域。 2、生活中的数学 千世界,无奇不有,在我们数学王国里也有许多有趣的事情。比如,在我现在的第九册的练习册中,有一题思考题是这样说的:“一辆客车从东城开向西城,每小时行45千米,行了小时后停下,这时刚好离东西两城的中点18千米,东西两城相距多少千米?王星与小英在解上面这道题时,计算的方法与结果都不一样。王星算出的千米数比小英算出的千米数少,但是许老师却说两人的结果都对。这是为什么呢?你想出来了没有?你也列式算一下他们两人的计算结果。”其实,这道题我们可以很快速地做出一种方法,就是:45×=(千米),=(千米),×2=261(千米),但仔细推敲看一下,就觉得不对劲。其实,在这里我们忽略了一个非常重要的条件,就是“这时刚好离东西城的中点18千米”这个条件中所说的“离”字,没说是还没到中点,还是超过了中点。如果是没到中点离中点18千米的话,列式就是前面的那一种,如果是超过中点18千米的话,列式应该就是45×=(千米),=(千米),×2=189(千米)。所以正确答案应该是:45×=(千米),=(千米),×2=261(千米)和45×=(千米),=(千米),×2=189(千米)。两个答案,也就是说王星的答案加上小英的答案才是全面的。
在日常学习中,往往有许多数学题目的答案是多个的,容易在练习或考试中被忽略,这就需要我们认真审题,唤醒生活经验,仔细推敲,全面正确理解题意。否则就容易忽略了另外的答案,犯以偏概全的错误。

写的不错,是不错,很好 ,可是有的地方写错了 ,我就不说出来了, 希望我进步 。

献血趣闻最近的电视上老是播放“血荒”,昆明、青岛、南京……看到那些亟待输血的病人,我突然想到去献血。于是在我的撺掇下,爸爸同意带我去献血。我们大清早便乘车来到县医院门口,正好献血车也在那里,说真的,看到车了我反而有点害怕了。爸爸看出了我的心思,问我:“怎么了?不想献血了吗?”我说出了心里话,爸爸笑了笑,说:“走吧,我们进去看看再说。”上了车,我感觉比进医院还要恐怖和紧张,心都提到嗓子眼了,不过一位穿白大褂的阿姨却笑容满面地对我说:“小朋友,你陪爸爸献血啊?”我说:“不是,我要献血。”阿姨说:“你可真懂事,但是小孩子是不能献血的。”她看到我沮丧的表情,对我说:“你可以等长大后再献血啊!现在阿姨有个关于血型的题目考考你?”我一听来了精神,说:“好啊!”又转过头对爸爸说:“你献血吧,我做题了。”只见阿姨拿的那张纸上写着:人的血型通常分为A型,B型,O型,AB型。子女的血型与其父母的血型关系如下表所示:父母的血型 子女可能的血型O,O OO,A A,OO,B B,OO,AB A,BA,A A,OA,B A,B,AB,OA,AB A,B,ABB,B B,OB,AB A,B,ABAB,AB A,B,AB现在三个分别穿红、黄、蓝上衣的孩子,他们的血型依次为O,A,B。每个孩子的父母戴同样颜色的帽子,帽子颜色也分红、黄、蓝三种,依次表示所具有的血型为AB,A,O。问穿红、黄,蓝上衣的孩子的父母各戴什么颜色的帽子?看到这个题目,我突然觉得非常熟悉,好像见过类似的题目。我的脑筋飞快的转动,猛然想起这不是我们前几天数学课上学过的解决问题的策略——一一列举吗?我只要把所有可能的情况列举出来就可以了。我对爸爸说:“你献血吧,我做题了。”忧郁父母帽子颜色相同,即每个孩子的父母都是统血型的,从而只要看列表中的四行(O,O;A,A;B,B;AB,AB)。从表中可见,孩子血型为O时,父母血型可能为O或A(父母血型不可能为B),故在孩子血型O与父母血型O,A间连2条线。同样,在孩子血型为A,与父母血型为A,AB的点间连2条线,在孩子血型为B与父母血型为AB的点间连1条线,这样共连了5条线。孩子 父母O ABA AB O由于孩子血型为B的点只连了一条线,所以血型为B的孩子的父母的血型是AB。血型为A的孩子的父母的血型必定为A。血型为O的孩子的父母的血型只能为O。大功告成,正好爸爸抽血也完成了,我告诉阿姨:“穿红上衣的孩子的父母戴蓝帽子;穿黄上衣的孩子的父母戴黄颜色的帽子,而穿蓝上衣的孩子的父母戴红帽子。”我一口气说完了,阿姨高兴的直夸我是个聪明的孩子。

五年级数学小论文关于图形

关于数学的小论文:

以前,我一直以为学习”求最小公倍数”这种知识枯燥无味,整天与”求11和12的最小公倍数”类似这样的问题打交道,真是烦死人,总觉得学习这些知识在生活中没有什么用处。

然而,有一件事却改变了我的看法。

那是前不久的事了,爷爷和我一起乘坐公共汽车去青少年宫。我们爷俩坐的是3路车,快要出发的时候,1路车正好也和我们同时出发。

此时爷爷看着这两路车,突然笑着对我说:”小溦,爷爷出个问题考考你,好不好?”我胸有成竹地回答道:”行!””那你听好了,如果1路车每3分钟发车一次,3路车每5分钟发车一次。这两路车至少再过多少分钟后又能同时发车呢?”稍停片刻,我说:”爷爷你出的这道题不能解答。”爷爷疑惑地看着我:”哦,是吗?””这道题还缺一个条件:1路车和3路车的起点站是同一个地方。”

爷爷听了我的话,恍然大悟地拍了一下自个聪明秃顶的脑袋,笑着说:”我这个‘数学博士’也有糊涂的时候,出的题不够严密,还是小溦想得周全。”我和爷爷开心地哈哈地大笑起来。此时爷爷说:”那好,现在假设是同一个起点站,你说说用什么方法来解答?”我想了想,脱口而出:”再过15分钟。

因为3和5是互质数,求互质数的最小公倍数就等于这两个数的乘积(3х5=15),所以15就是它们的最小公倍数。也就是两路车至少再过15分钟能同时发车。”爷爷听了夸我:”答案正确!100分。””耶!”听了爷爷的话,我高兴地举起双手。从这件事中,我明白了一个道理:数学知识在现实生活中真是无处不在啊。

五年级数学小论文500字! 今天,我和妈妈在做数学题。妈妈问我:“阳阳,你会算组合图形的面积吗?”我自以为是地说:“当然会了,这么简单!”妈妈拿出8个完全相同小正方体,摆成一个正方形,问我:“总面积怎么算?”我用直尺量了量,一个正方形的一条边大约是3厘米,我说出算式:“一条边3厘米,那么一个正方形的一个面就是3×3=9(平方厘米),一个正方形有6个面,就是9×6=54(平方厘米),8个就是54×8=432(平方厘米)。”妈妈好像很沮丧,说:“你犯了一个致命的错误!既然是组合图形,有些面肯定会重合了!”我恍然大悟:“对哦。”我又重算了一下:重合了1、2、3、4、5……24个面,24×9=216(平方厘米),432-216=216(平方米)。现在对了吧? 过了一会,妈妈又摆出了另一种组合图形,这个图形上下8个,左右都是2个,前后都是4个,问我:“面积怎么算?”我说:“用 12×6=72(平方厘米)就是上面的面积,再用6×3=18(平方厘米)就是左边的面积,再用12×3=36(平方厘米)就是前面的面积,最后用(72+18+36)×2=252(平方厘米)。”妈妈说:“没有发现一些规律吗?”我看了看,真有嘞!“每个正方体它的上面是什么下面就是什么,左边是什么右边就是什么,前后也一样。”我有些感触。妈妈欣慰地笑了,说“我的女儿真聪明!” 哦,原来如此,组合图形的面积算好前面后面就不要算了,算好上面下面就不要算了,算好左边右边就不要算了。太好了,以后算组合图形的面积就很方便了,你们学会了吗

教材把认识平面图形的内容编排在《认识立体图形》之后,它通过立体图形和平面图形的关系引入教学。因为在现实生活中学生直接接触的大多是立体图形,随时随地都能看到物体的面。这样就可以根据学生已有的生活经验,通过丰富的学习活动帮助其直观认识常见的平面图形。在直观认识长方体、正方体、圆柱和三棱柱的基础上,让学生用摸一摸、找一找、画一画等方法,从物体上"分离"出面,研究面的形状,形成长方形、正方形、三角形和圆的表象,让学生体会到"面"在"体"上。这样安排既蕴含了面与体的关系,使学生在整体上直观认识这几种平面图形,也符合了低年级儿童的认知规律,有利于他们主动地认识平面图形。教材强调在活动中掌握知识,其设计的若干具有开放性的活动,既可以将学生所需掌握的知识蕴含在活动中,又满足不同特点学生的需要。通过学生亲自动手操作,有利于学生培养空间观念和解决问题的能力,发展学生的数学思维,又自然地完成学习过程。并且教材选取的题材符合儿童的年龄特征,生动有趣,有利于培养学生的学习兴趣。1、强调数学知识与现实生活的密切联系,激发学生兴趣通过"说说生活中在哪儿见过这些平面图形"这一问题情境,既引导学生回顾前面学习的立体图形,也自然地过渡到平面图形的认识;更密切了数学与生活的联系,调动了学生原有的生活经验,使学生觉得数学有用,数学就在自己的身边。课堂上学生始终乐此不疲,兴趣盎然。整个数学学习活动充满情趣,有的学生甚至忘了在上课,直接走到其他孩子旁边与他人做一些交流。2、共同操作,独立思考,学会初步合作与交流本节课是通过大量的动手操作来完成的,利用"摸"面、"找"面、"画"面、"说"面几个环节的学习活动,既注重让学生以自己内心的体验来学习数学,培养学生的观察能力、运用数学进行交流的意识,又使学生初步感知这些实物(模型)的表面,获得对平面图的感性认识,体会"面"由"体"的得和"面"与"体"之间的联系与区别。同时培养了学生观察能力、动手操作的能力、语言表达能力以及分析、比较、概括的能力,发展学生的空间观念。而在画一画这一环节上,学生通过合作操作,把任务完成得比较理想,也得到了比较令人满意的效果。并且在以上的学习过程中,学生对于合作与交流有了初步的感知,知道小组成员应该互帮互让。因为在老师让他们找出自己最喜欢的立体图形的时候,,是高高兴兴地拿起其他物体与同组小朋友进行交流,有个别学生与别的同学商量着互换手中的物体。3、初步渗透分类的思想在让学生操作得到平面图形之后,我没有把学生的作品放在实物投影上加以展示其画得如何的端正,而是直接要求学生把图形贴到黑板上各种图形所在的相应位置。在贴的时候有几个小孩把位置贴错了,给其他小孩多了一个重新分类的机会,这可真是一件好事。这样的安排既把学生的作品做了展示,又让学生把各种图形进行了分类,并且初步渗透了分类的思想,为下一部分内容的学习做了铺垫。

巧用平均数,同学们我们日常生活中都做过简单有趣的数学问题吧,今天我和大家来分享一题罢问题有¥6超重,鹅卵石他们的重量是千克6千克4千克4千克3千克2千克要求他们分别放在三个背包里,最要求,最终的一个背包尽可能近一点,请写出最终的背包的石头是多少千克,请同学们动手开始吧,接下来我来解答 6:00 +6+4+4+3+2 ( ÷3等于千克,这时三个背包的平均数,所以最终的肯定要超过千克,如果¥1中联部,不是整数体育课块平均数为整数,所以最小最重的背包重量只能是 千克10千克在这六个重量中,正好有6+46+4单千克与其余的¥5中做的另一块都不可能得到千克的重量最重的背包的证明,不可能是千克,那么悲观中就可能最小就是10千克,六个重量重正好有个是6+4等于10或4+4+4+2等于10 24+4+2等于10也就是说,可以取到10千克,剩下的石头中4+3+2等于9000客衣个背包中千克,所以这样这道题的正确答案是10千克,同学们你们明白了吗了吗?

相关百科

热门百科

首页
发表服务