鸡兔同笼 问题是我国民间广为流传的数学趣题,最早出现在《孙子算经》中。下面我给你分享数学广角鸡兔同笼论文,欢迎阅读。
教学目标:1.使学生了解“鸡兔同笼”问题,掌握用尝试法、假设法替换法解决问题,初步形成解决此类问题一般性策略。
2.通过自主探索、合作交流,让学生经历用不同的方法解决“鸡兔同笼”问题的过程,在解决问题的过程中,培养学生的思维能力。
3.使学生感受古代数学问题的趣味性,体会到“鸡兔同笼”问题在生活中的广泛应用,提高学习数学的兴趣。
教学重点:用假设法解决“鸡兔同笼”问题。
教学具准备:电脑课件
一、问题引入,分配任务。(每人发一个信封,里面装有题卡和学具)
“有五元和二元两种面额的人民币一共10张,总计32元。两种人民币各有几张?”
二、合作探究,展现拔高。(抽一生上台一一替换,老师记录)
1.启发演示:/让学生先假设这10张全是二元的。于是动手拿出10张二元的(一共二十元,显然不合要求)//然后再一一替换,抽出1张二元的,换上1张五元的,就多了3元,变成了20+3=23元,///再抽出1张二元的,换上1张五元的,就又多了3元,变成了23+3=26////再抽出1张二元的,换上1张五元的,就又多了3元,变成了26+3=29/////再抽出1张二元的,换上1张五元的,就又多了3元,变成了29+3=32。
2.方法探究:32-20=12元,少12元正好换了4次,说明五元的有4张。5元换2元一张多了3元,12/3=4。换4张才能把少的12元换回。
同样方法演示全是5元的,再拿二元去替换也可以。
3.抽象算法(形成策略):
(32-2×10)/(5-2)=4张五元或(5×10-32)/(5-2)=6张二元。
三、类化巩固(自主练习)。
①出示问题2。“有五元和二元两种面额的人民币一共100张,总计365元,两种人民币各有几张?”
先由学生小组讨论,在抽生上台展示算法:
假设100张全是五元的,则一共有5×100=500元,多出了500-365=135元,拿多少个2元去换呢?一张2元换5元就少5-2=3元,135/3=45张2元。则5元有100-45=55张。
同样,假设100张全是二元的,则一共有2×100=200元,少了365-200=165元,拿多少个5元去换呢?一张5元换2元就多5-2=3元,165/3=55张5元。则2元有100-55=45张。
②自己出题,交换答案.
展示学生甲出的题:42人去划船,一共租了10只船。每只大船坐5人,每只小船坐3人。租有的大船和小船各有几只?
展示学生乙的分析过程:(提示:假设10条都租小船。10*3=30人,42-30=12人没坐上,则用大船替换,一只大船换一只小船就多5-3=2人,12/2=6只大船刚好换完。小船为:10-6=4只)或(5×10-42=8,8/(5-3)=4只小船)
四、归纳提高:
解决问题的策略:①制定解题计划,假设与替换(同时满足两个条件,假设满足了第一个条件入手) ②猜想与尝试.(在想的基础上去试一试)③反推.(验证假设是否正确).
五、知识拓展。
其实我们刚才研究的这类题,早在古代,就有很多的数学家也做了研究,你瞧。幻灯出示。
“鸡兔同笼问题”是我国古算术《孙子算经》中著名的数学问题,其内容是:“今有鸡兔同笼,上有三十五头,下有九十四足。问鸡兔各几何?”
六、 解决生活问题(达标测试):
1.必作题: ①我班派12名同学植树,男同学每人栽了3棵数,女同学每人载了两棵数,一共栽了32棵树,问男女同学各几人?(学生独立完成,教师巡视指导)指名板演。
②小明买了6角和8角的邮票共花5元,分别买了多少张?
2.选作题:
①有5元和2元的人民币100张,总计290元,各有几张2元,5元的?
②2个大盒,5个小盒装球100个,每个大盒比小盒多装8个,问大盒和小盒各装几个?
反思
《基础教育课程改革纲要(试行)》明确要求:教师在教学过程中应与学生积极互动,共同发展,要处理好传授知识与培养能力的关系,关注个体差异,满足不同学生的学习需要。
首先,我由问题引入,采用的是独学的方式让学生独立思考,在启发演示中抽一生上台一一替换,其余学生拿出信封里的演示币来换,再让学生小组讨论:在这个过程中什么没变,什么变了?(张数没变,钱多少变了).这一过程体现了小组学习合作探究的学习方式。实践证明:学生学得轻松,学得明白,也体现了高效课堂的途径--核心:自主、合作、探究。
在探究过程中我让学生当小老师,自己出题,交换答案,这样提高了学生的学习兴趣,让学生主动发展,满足不同需要。
在布置作业环节,我采取必作和选作,旨在使每个学生都能得到提高,体现了因材施教的教学原则.同时题的设计紧密结合实际,让学生学会在生活中解决问题,能解决生活中的数学问题,让数学不再孤立,不再陌生。
本堂课我力求做到了三动:身动、心动、神动.
随着教学形式的发展,打造高效课堂,教给学生正确的学习方法已势在必行。“授人以鱼不如授人以渔”,我认为应从以下几个方面来培养学生,打造高效课堂: 1.培养好的学习习惯。2.掌握高效学习方法:①预习。采用有效的预习方法。边预习边作好笔记,动笔练一练,做一做。重要的数学概念公式,不懂的作上记号,以便记忆和探讨。在老师讲解的时候认真听。②有效的复习。孔子曰:“学而时习之,不亦乐乎?”及时复习。分步记忆法:学习后的半天,一天,三天,七天,半月后,分步进行。阶段系统复习――从时间上有周复习,期中复习,期习等。可以先回忆再看书,先看题后做题,先复习后笔记。③学习中要举一反三。不要满足于也有答案,数学题,可用分步,就能用综合,用了方程,看算术是否更简单。④学会梳理知识点。
在“鸡兔同笼”问题的教学中,教师通常会将我国古代《孙子算经》的简单介绍附加到教学过程中,意图在于体现数学的历史发展,向学生渗透数学历史中的文化因素。这种想法固然好,但这种“附加”式的介绍对于实现这样的目的很难有实质性的作用。为了变“附加”为“融入”,让数学史中的知识与文化更好地发挥育人功能,教师就需要对数学史的相关内容做较为广泛、深入的了解。
“鸡兔同笼”问题在我国古代可以说源远流长,从问题的叙述到问题的算法都经历了不同形式的变化,了解这些内容对于课程内容的编制和教学设计会有所裨益。
一、 《孙子算经》中的“雉兔同笼”
“鸡兔同笼”问题始见于公元3~4世纪的《孙子算经》,该书作者不详。从清代的《子部集成?科学技术?数理化学?孙子算经?孙子算经(宋刻本)?卷下》中看,“鸡兔同笼”问题的叙述为:“今有雉兔同笼,上有三十五头,下有九十四足。问雉兔各几何。”[1](见图1)
其中的“雉”是“野鸡”的意思,“几何”是“多少”的意思。用现在的语言可以把这个问题叙述为:“鸡和兔在同一个笼子中,总头数为35,总足数为94。问鸡和兔各有多少只?”《孙子算经》中对这个问题的解法分为如下的四个步骤:
第一步:上置三十五头,下置九十四足
我国古代是用算筹进行计算的,所谓“算筹”就是用于计算的小棒,是古人用于计算的一种工具。这里所说的“上置三十五头,下置九十四足”,就是把题目中的头数“35”和足数“94”用小棒分别摆在上面的位置(上位)和下面的位置(下位)。(见图2)
古人用算筹表示数时,摆放方式分纵式和横式两种。通常用纵向小棒摆放个位数字,横向小棒摆放十位数字,以后依次纵横交替摆放。比如“35”就摆放成如图3形式。
如果横向摆放的数大于5,就用纵向小棒代表5,比如图2中的“”就表示5+4=9。
第二步:半其足得四十七
意思是求出下位总足数94的一半等于47。图2就变成了图4的形式。
图4中“”上面的横向小棒表示“5”,下面两条纵向小棒表示“2”,因此“”表示5+2=7。
第三步:上三除下三,上五除下五
这里的“除”是“除去”或“减少”的意思,“上三除下三”就是“从下位四十七中除去与上位相同的三十”,“上五除下五”就是“从下位四十七中除去与上位相同的五”。(见图5)
用现在的语言说,就是从47中减去35为12,得到兔子的只数。这一过程在《孙子算经》的“术”中叫做“以少减多再命之”(见图1),意思是以少减多之后,下位“总足数”的含义发生了改变,需要重新命名,也就是把“总足数”重新命名为“兔头数”。(见图5)
第四步:下有一除上一,下有二除上二即得
与前面类似,这句话的意思是用总只数35减去兔只数12就得到鸡的只数了。上位的“总头数”需要重新命名为“鸡头数”。(见图6)
以上算法的合理性并不难理解。总足数94取半成为47,此时相当于所有鸡都成为了金鸡独立的“独足鸡”,所有兔都站立起来成为了“双足兔”。此时每只鸡的头数和足数都是1,每只兔的头数是1,足数是2,所以用47减去总头数35就得到兔的只数是12。最后用总头数35减去12就得到鸡的只数。《孙子算经》中把这一算法概括为:“上置头,下置足,半其足,以头除足,以足除头即得。”不妨称此方法为“半足法”,右上的表格可以更加清晰地呈现这一过程。
二、 《算法统宗》中的“鸡兔同笼”
“鸡兔同笼”问题后来又收录于明代程大位(1533年~1606年)所著《算法统宗》第八卷的“少广章”。[2](见图7)
其中对问题的叙述把“雉”改为了“鸡”,因此“鸡兔同笼”的说法沿用至今。《算法统宗》中对问题给出了两种算法,这两种算法与《孙子算经》中的算法是不一样的,相当于现在所说的“假设法”。第一种算法的过程为:
第一步:“置总头倍之得七十”,意思是将总头数35加倍,也就是乘2,得到70。
第二步:“与总足内减七十余二四”,也就是从总足数94中减去70得到24。
第三步:“折半得一十二是兔”,将24折半(也就是24除以2),得到12,这就是兔的只数。
第四步:“以四足乘之得四十八足”,用每只兔的足数4乘12,得到兔的总足数48。
第五步:“总足减之余四十六足为鸡足”,用总足数94减去兔的总足数48得到46,就是鸡的总足数。
第六步:“折半得二十三”,将鸡的总足数46折半(46除以2),就得到鸡的只数为23。
另外一个算法是先求鸡的只数,与前面先求兔只数的程序基本相同,这一算法可以用下面表格的形式呈现出来。
《算法统宗》中关于“鸡兔同笼”问题的两个算法,在书中概括为两句话:“倍头减足折半是兔”和“四头减足折半是鸡”(见图7)。第一句话的意思是把求兔只数的过程分为了倍头、减足和折半三个步骤,“倍头”就是把总头数35加倍变成70;“减足”是用总头数94减去70得到24;“减半”就是取24的一半得到兔子的只数为12。这个过程写成如今的算式就是:
(94-35×2)÷2=12(只)
第二句话的意思是把求鸡只数的过程分为了四头、减足和折半三个步骤,“四头”就是用4乘总头数35得到140;“减足”是用140减去总足数94得到46;与求兔只数的过程类似,“折半”就是取46的一半得到鸡的只数23。写成算式就是:
(35×4-94)÷2=23(只)
这样的过程显然与《孙子算经》中的“半足法”不同,半足法首先将总足数减半。这里的第一步是用每只鸡或兔的足数(2或4)去乘总头数,因此不妨把这个方法叫做“倍头法”。不难发现,“倍头法”背后的道理其实就是现在所说的“假设法”。
《算法统宗》中的鸡兔同笼问题出现于该书第八卷中,实际上在之前的第五卷中就已经出现了与“鸡兔同笼”问题数量关系类似的“米麦问题”:“今有米麦五百石,共价银四百零五两七钱,只云米每石价八钱六分,麦每石价七钱二分五厘。问米麦各若干。”
【摘 要】中国传统数学名题是在时间长河里洗练出来的具有经典意义的数学问题,它具有自己的数学思想和背景文化。文章主要研究了中国传统数学名题―鸡兔同笼问题及其中渗透的数学思想,使大家在情感态度、思维能力与价值观等方面得以提升,增强数学文化素养。
【关键词】鸡兔同笼;解题思路;求解方法;数学思想
鸡兔同笼,这个问题,是我国古代著名趣题之一。大约在1500年前,《孙子算经》中就记载了这个有趣的问题。书中是这样叙述的:“今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?”这四句话的意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头;从下面数,有94只脚。求笼中各有几只鸡和兔?
解题思路:先假设它们全是鸡,于是根据鸡兔的总数就可以算出在假设下共有几只脚,把这样得到的脚数与题中给出的脚数相比较,看看差多少,每差2只脚就说明有1只兔,将所差的脚数除以2,就可以算出共有多少只兔。概括起来,解鸡兔同笼题的基本关系式是:兔数=(实际脚数-每只鸡脚数×鸡兔总数)÷(每只兔子脚数-每只鸡脚数)。类似地,也可以假设全是兔子。
解:假设全是鸡:2×35=70(只) 比总脚数少的:94-70=24 (只) 它们腿的差:4-2=2(条) 24÷2=12 (只) ――兔35-12=23(只)――鸡
方程:
解:设兔有x只,则鸡有35-x只。 4x+2(35-x)=94 4x+70-2x=94 2x=24 x=12 35-x=35-12=23
答:兔有12只,鸡有23只。
我们也可以采用列方程的办法:设兔子的数量为X,鸡的数量为Y 那么:X+Y=35那么4X+2Y=94 这个算方程解出后得:兔子有12只,鸡有23只用假设法来解
对于这个问题,我们给出如下几种求解方法,并给出相应的公式;
解法1:(兔的脚数×总只数-总脚数)÷(兔的脚数-鸡的脚数)=鸡的只数 总只数-鸡的只数=兔的只数
解法2:( 总脚数-鸡的脚数×总只数)÷(兔的脚数-鸡的脚数)=兔的只数 总只数-兔的只数=鸡的只数
解法3:总脚数÷2-总头数=兔的只数 总只数-兔的只数=鸡的只数
解法4:兔的只数=总脚数÷2―总头数 总只数-兔的只数=鸡的只数
解法5(方程):X=( 总脚数-鸡的脚数×总只数)÷(兔的脚数-鸡的脚数)(X=兔的只数) 总只数-兔的只数=鸡的只数
解法6(方程):X=:(兔的脚数×总只数-总脚数)÷(兔的脚数-鸡的脚数)(X=鸡的只数) 总只数-鸡的只数=兔的只数
解法7 鸡的只数=(4×鸡兔总只数-鸡兔总脚数)÷2 兔的只数=鸡兔总只数-鸡的只数
解法8 兔总只数=(鸡兔总脚数-2×鸡兔总只数)÷2 鸡的只数=鸡兔总只数-兔总只数
解法9 总腿数/2-总头数=兔只数 总只数-兔只数=鸡的只数
“鸡兔同笼”中的数学思想方法
一、化归思想
化归是基本而典型的数学思想。化归是指将有待解决的问题,通过转化归结为一类已经解决或较易解决的问题中去,以求得解决。我们常常用到的如化未知为已知、化难为易、化繁为简、化曲为直等都是这一思想方法的运用。“鸡兔同笼”原题中的数据比较大,不利于首次接触该类问题的学生进行探究,根据化繁为简的思想,先安排数据较小的问题,如“笼子里有若干只鸡和兔。从上面数,有7个头,从下面数,有18只脚。鸡和兔各有几只?”(以下均以此题为例)待学生探索出解决此类问题的一般方法后,再应用于解决《孙子算经》中数据较大的原题,学生将易如反掌。“鸡兔同笼”问题在生活中有很多变式,比如“龟鹤问题”、“坐船问题”等,这些问题可以通过化归,归结为“鸡兔同笼”问题,再进一步求解,使学生感受“鸡兔同笼”问题的变式及其在生活中的广泛应用,体会“化归法”在解题中的魅力。
二、假设思想
假设是一种重要的数学思想方法。假设法是先假定一种情况或结果,然后通过推导、验证来解决问题的方法。合理运用假设法,往往可以使问题化难为易,使解题另辟蹊径,有利于培养学生灵活的解题技能,发展学生的逻辑推理能力。
用假设法解答上题有多种思路,可以先假设全部都是鸡或全部都是兔,再计算实际与假设情况下总脚数之差,最后推理出鸡和兔的只数。比如假设7只都是鸡,那么兔有(18-7×2)÷(4-2)=2(只),鸡有7-2=5(只)。运用假设法解题是教学的难点,教师可以先让学生用上述的“画图法”,学生会在直观操作活动中通过数形结合而建立思维的表象,再进一步抽象,这样有助于学生真正理解“假设法”,形成有序地、严密地思考问题的意识。教师也可以向学生介绍古人解决“鸡兔同笼”问题的“抬脚法”,其中也应用了“假设法”。
三、方程思想
方程是刻画现实世界的有效模型,通过把生活语言“翻译”成代数语言,根据问题中的已知数和未知数之间的等量关系,在已知数与未知数之间建立一个等式,这就是方程思想的由来。在“鸡兔同笼”的问题中,可以设鸡或兔中任意一种有X只,然后根据鸡、兔的只数与脚的总只数的关系列方程来解答。例如设兔有X只,则鸡有(7-X)只,可列方程:4X+2(7-X)=18,解得X=2,于是鸡有:7-2=5(只)。方程解法思路比较简单,且具有一般性,教学中要突出方程解法的优越性,不断渗透方程思想。
四、建模思想
弗赖登塔尔认为:学生与其学数学,不如学习数学化。在小学阶段,就是把数学研究对象的某些特征进行抽象,用数学语言、图形或模式表达出来,建立数学模型。在解决了“鸡兔同笼”问题后,可以引导学生观察、思考,概括提炼出解题模型:兔数=(实际的脚数-鸡兔总数×2)÷(4-2),鸡数=(鸡兔总数×4-实际的脚数)÷(4-2)。之后在应用中引导学生巩固、扩展这个模型,把“鸡”与“兔”换成乌龟和仙鹤等,变式为“龟鹤问题”、“坐船问题”、“植树问题”、“答题问题”等问题,沟通这些问题与“鸡兔同笼”问题的联系,使“鸡兔同笼”成为这些问题的模型,并应用模型解决问题,不断促进模型的内化。教学中教师要重视学生建模思想的培养,使数学建模成为学生思考问题与解决问题的一种思想和方法。
以上是“鸡兔同笼”问题的各种解法中蕴含的主要的数学思想方法,从上述讨论中看出一种解法中可以蕴含不同的数学思想,而不同解法中可以蕴含同一种数学思想。
参考文献:
例题:有若干只鸡兔同在一个笼子里,从上面数,有35个头;从下面数,有94只脚。求笼中各有几只鸡和兔? 1)假设全是鸡,则应该有脚: 2×35=70(只) 因为把有4只脚的兔当成了鸡,所以比总脚数会少一些比总脚数少的脚数: 94-70=24 (只)少了这么多脚是因为把有4只脚的兔当成了只有2只脚鸡,从而每只兔少算了脚: 4-2=2(只)有一只兔,就少算了1个2,2只兔少算了2个2……24里共有几个2,就是兔的只数: 24÷2=12(只)剩下的就是鸡的只数: 35-12=23(只) 2)假设全是兔,则应该有脚: 4×35=140(只) 因为把有2只脚的鸡当成了兔,所以比总脚数会多一些比总脚数多的脚数: 140-94=46(只)多了这么多脚是因为把有2只脚的鸡当成了有4只脚兔,从而每只鸡多算了脚: 4-2=2(只)有一只鸡,就多算了1个2,2只鸡多算了2个2……24里共有几个2,就是鸡的只数: 46÷2=23(只)剩下的就是兔的只数: 35-23=12(只) 补充题:班主任张老师带五年级(7)班50名同学栽树,张老师栽5棵,男生每人栽3棵,女生每人栽2棵,总共栽树120棵,问几名男生,几名女生?
童鞋们……那是数学论文……
什么是数学?有人说:“数学,不就是数的学问吗?” 这样的说法可不对。因为数学不光研究“数”,也研究“形”,大家都很熟悉的三角形、正方形,也都是数学研究的对象。 历史上,关于什么是数学的说法更是五花八门。有人说,数学就是关联;也有人说,数学就是逻辑,“逻辑是数学的青年时代,数学是逻辑的壮年时代。” 伟大的革命导师恩格斯,站在辩证唯物主义的理论高度,通过深刻分析数学的起源和本质,精辟地作出了一系列科学的论断。恩格斯指出:“数学是数量的科学”,“纯数学的对象是现实数学可以分成两大类,一类叫纯粹数学,一类叫应用 数学。 纯粹数学也叫基础数学,专门研究数学本身的内部规律。中小学课本里介绍的代数、几何、微积分、概率论知识,都属于纯粹数学。纯粹数学的一个显著特点,就是暂时撇开具体内容,以纯粹形式研究事物的数量关系和空间形式。例如研究梯形的面积计算公式,至于它是梯形稻田的面积,还是梯形机械零件的面积,都无关紧要,大家关心的只是蕴含在这种几何图形中的数量关系。 应用数学则是一个庞大的系统,有人说,它是我们的全部知识中,凡是能用数学语言来表示的那一部分。应用数学着限于说明自然现象,解决实际问题,是纯粹数学与科学技术之间的桥梁。大家常说现在是信息社会,专门研究信息的“信息论”,就是应用数学中一门重要的分支学科。各门科学的“数学化”,是现代科学发展的一大趋势
鸡兔同笼 问题是我国民间广为流传的数学趣题,最早出现在《孙子算经》中。下面我给你分享数学广角鸡兔同笼论文,欢迎阅读。
教学目标:1.使学生了解“鸡兔同笼”问题,掌握用尝试法、假设法替换法解决问题,初步形成解决此类问题一般性策略。
2.通过自主探索、合作交流,让学生经历用不同的方法解决“鸡兔同笼”问题的过程,在解决问题的过程中,培养学生的思维能力。
3.使学生感受古代数学问题的趣味性,体会到“鸡兔同笼”问题在生活中的广泛应用,提高学习数学的兴趣。
教学重点:用假设法解决“鸡兔同笼”问题。
教学具准备:电脑课件
一、问题引入,分配任务。(每人发一个信封,里面装有题卡和学具)
“有五元和二元两种面额的人民币一共10张,总计32元。两种人民币各有几张?”
二、合作探究,展现拔高。(抽一生上台一一替换,老师记录)
1.启发演示:/让学生先假设这10张全是二元的。于是动手拿出10张二元的(一共二十元,显然不合要求)//然后再一一替换,抽出1张二元的,换上1张五元的,就多了3元,变成了20+3=23元,///再抽出1张二元的,换上1张五元的,就又多了3元,变成了23+3=26////再抽出1张二元的,换上1张五元的,就又多了3元,变成了26+3=29/////再抽出1张二元的,换上1张五元的,就又多了3元,变成了29+3=32。
2.方法探究:32-20=12元,少12元正好换了4次,说明五元的有4张。5元换2元一张多了3元,12/3=4。换4张才能把少的12元换回。
同样方法演示全是5元的,再拿二元去替换也可以。
3.抽象算法(形成策略):
(32-2×10)/(5-2)=4张五元或(5×10-32)/(5-2)=6张二元。
三、类化巩固(自主练习)。
①出示问题2。“有五元和二元两种面额的人民币一共100张,总计365元,两种人民币各有几张?”
先由学生小组讨论,在抽生上台展示算法:
假设100张全是五元的,则一共有5×100=500元,多出了500-365=135元,拿多少个2元去换呢?一张2元换5元就少5-2=3元,135/3=45张2元。则5元有100-45=55张。
同样,假设100张全是二元的,则一共有2×100=200元,少了365-200=165元,拿多少个5元去换呢?一张5元换2元就多5-2=3元,165/3=55张5元。则2元有100-55=45张。
②自己出题,交换答案.
展示学生甲出的题:42人去划船,一共租了10只船。每只大船坐5人,每只小船坐3人。租有的大船和小船各有几只?
展示学生乙的分析过程:(提示:假设10条都租小船。10*3=30人,42-30=12人没坐上,则用大船替换,一只大船换一只小船就多5-3=2人,12/2=6只大船刚好换完。小船为:10-6=4只)或(5×10-42=8,8/(5-3)=4只小船)
四、归纳提高:
解决问题的策略:①制定解题计划,假设与替换(同时满足两个条件,假设满足了第一个条件入手) ②猜想与尝试.(在想的基础上去试一试)③反推.(验证假设是否正确).
五、知识拓展。
其实我们刚才研究的这类题,早在古代,就有很多的数学家也做了研究,你瞧。幻灯出示。
“鸡兔同笼问题”是我国古算术《孙子算经》中著名的数学问题,其内容是:“今有鸡兔同笼,上有三十五头,下有九十四足。问鸡兔各几何?”
六、 解决生活问题(达标测试):
1.必作题: ①我班派12名同学植树,男同学每人栽了3棵数,女同学每人载了两棵数,一共栽了32棵树,问男女同学各几人?(学生独立完成,教师巡视指导)指名板演。
②小明买了6角和8角的邮票共花5元,分别买了多少张?
2.选作题:
①有5元和2元的人民币100张,总计290元,各有几张2元,5元的?
②2个大盒,5个小盒装球100个,每个大盒比小盒多装8个,问大盒和小盒各装几个?
反思
《基础教育课程改革纲要(试行)》明确要求:教师在教学过程中应与学生积极互动,共同发展,要处理好传授知识与培养能力的关系,关注个体差异,满足不同学生的学习需要。
首先,我由问题引入,采用的是独学的方式让学生独立思考,在启发演示中抽一生上台一一替换,其余学生拿出信封里的演示币来换,再让学生小组讨论:在这个过程中什么没变,什么变了?(张数没变,钱多少变了).这一过程体现了小组学习合作探究的学习方式。实践证明:学生学得轻松,学得明白,也体现了高效课堂的途径--核心:自主、合作、探究。
在探究过程中我让学生当小老师,自己出题,交换答案,这样提高了学生的学习兴趣,让学生主动发展,满足不同需要。
在布置作业环节,我采取必作和选作,旨在使每个学生都能得到提高,体现了因材施教的教学原则.同时题的设计紧密结合实际,让学生学会在生活中解决问题,能解决生活中的数学问题,让数学不再孤立,不再陌生。
本堂课我力求做到了三动:身动、心动、神动.
随着教学形式的发展,打造高效课堂,教给学生正确的学习方法已势在必行。“授人以鱼不如授人以渔”,我认为应从以下几个方面来培养学生,打造高效课堂: 1.培养好的学习习惯。2.掌握高效学习方法:①预习。采用有效的预习方法。边预习边作好笔记,动笔练一练,做一做。重要的数学概念公式,不懂的作上记号,以便记忆和探讨。在老师讲解的时候认真听。②有效的复习。孔子曰:“学而时习之,不亦乐乎?”及时复习。分步记忆法:学习后的半天,一天,三天,七天,半月后,分步进行。阶段系统复习――从时间上有周复习,期中复习,期习等。可以先回忆再看书,先看题后做题,先复习后笔记。③学习中要举一反三。不要满足于也有答案,数学题,可用分步,就能用综合,用了方程,看算术是否更简单。④学会梳理知识点。
在“鸡兔同笼”问题的教学中,教师通常会将我国古代《孙子算经》的简单介绍附加到教学过程中,意图在于体现数学的历史发展,向学生渗透数学历史中的文化因素。这种想法固然好,但这种“附加”式的介绍对于实现这样的目的很难有实质性的作用。为了变“附加”为“融入”,让数学史中的知识与文化更好地发挥育人功能,教师就需要对数学史的相关内容做较为广泛、深入的了解。
“鸡兔同笼”问题在我国古代可以说源远流长,从问题的叙述到问题的算法都经历了不同形式的变化,了解这些内容对于课程内容的编制和教学设计会有所裨益。
一、 《孙子算经》中的“雉兔同笼”
“鸡兔同笼”问题始见于公元3~4世纪的《孙子算经》,该书作者不详。从清代的《子部集成?科学技术?数理化学?孙子算经?孙子算经(宋刻本)?卷下》中看,“鸡兔同笼”问题的叙述为:“今有雉兔同笼,上有三十五头,下有九十四足。问雉兔各几何。”[1](见图1)
其中的“雉”是“野鸡”的意思,“几何”是“多少”的意思。用现在的语言可以把这个问题叙述为:“鸡和兔在同一个笼子中,总头数为35,总足数为94。问鸡和兔各有多少只?”《孙子算经》中对这个问题的解法分为如下的四个步骤:
第一步:上置三十五头,下置九十四足
我国古代是用算筹进行计算的,所谓“算筹”就是用于计算的小棒,是古人用于计算的一种工具。这里所说的“上置三十五头,下置九十四足”,就是把题目中的头数“35”和足数“94”用小棒分别摆在上面的位置(上位)和下面的位置(下位)。(见图2)
古人用算筹表示数时,摆放方式分纵式和横式两种。通常用纵向小棒摆放个位数字,横向小棒摆放十位数字,以后依次纵横交替摆放。比如“35”就摆放成如图3形式。
如果横向摆放的数大于5,就用纵向小棒代表5,比如图2中的“”就表示5+4=9。
第二步:半其足得四十七
意思是求出下位总足数94的一半等于47。图2就变成了图4的形式。
图4中“”上面的横向小棒表示“5”,下面两条纵向小棒表示“2”,因此“”表示5+2=7。
第三步:上三除下三,上五除下五
这里的“除”是“除去”或“减少”的意思,“上三除下三”就是“从下位四十七中除去与上位相同的三十”,“上五除下五”就是“从下位四十七中除去与上位相同的五”。(见图5)
用现在的语言说,就是从47中减去35为12,得到兔子的只数。这一过程在《孙子算经》的“术”中叫做“以少减多再命之”(见图1),意思是以少减多之后,下位“总足数”的含义发生了改变,需要重新命名,也就是把“总足数”重新命名为“兔头数”。(见图5)
第四步:下有一除上一,下有二除上二即得
与前面类似,这句话的意思是用总只数35减去兔只数12就得到鸡的只数了。上位的“总头数”需要重新命名为“鸡头数”。(见图6)
以上算法的合理性并不难理解。总足数94取半成为47,此时相当于所有鸡都成为了金鸡独立的“独足鸡”,所有兔都站立起来成为了“双足兔”。此时每只鸡的头数和足数都是1,每只兔的头数是1,足数是2,所以用47减去总头数35就得到兔的只数是12。最后用总头数35减去12就得到鸡的只数。《孙子算经》中把这一算法概括为:“上置头,下置足,半其足,以头除足,以足除头即得。”不妨称此方法为“半足法”,右上的表格可以更加清晰地呈现这一过程。
二、 《算法统宗》中的“鸡兔同笼”
“鸡兔同笼”问题后来又收录于明代程大位(1533年~1606年)所著《算法统宗》第八卷的“少广章”。[2](见图7)
其中对问题的叙述把“雉”改为了“鸡”,因此“鸡兔同笼”的说法沿用至今。《算法统宗》中对问题给出了两种算法,这两种算法与《孙子算经》中的算法是不一样的,相当于现在所说的“假设法”。第一种算法的过程为:
第一步:“置总头倍之得七十”,意思是将总头数35加倍,也就是乘2,得到70。
第二步:“与总足内减七十余二四”,也就是从总足数94中减去70得到24。
第三步:“折半得一十二是兔”,将24折半(也就是24除以2),得到12,这就是兔的只数。
第四步:“以四足乘之得四十八足”,用每只兔的足数4乘12,得到兔的总足数48。
第五步:“总足减之余四十六足为鸡足”,用总足数94减去兔的总足数48得到46,就是鸡的总足数。
第六步:“折半得二十三”,将鸡的总足数46折半(46除以2),就得到鸡的只数为23。
另外一个算法是先求鸡的只数,与前面先求兔只数的程序基本相同,这一算法可以用下面表格的形式呈现出来。
《算法统宗》中关于“鸡兔同笼”问题的两个算法,在书中概括为两句话:“倍头减足折半是兔”和“四头减足折半是鸡”(见图7)。第一句话的意思是把求兔只数的过程分为了倍头、减足和折半三个步骤,“倍头”就是把总头数35加倍变成70;“减足”是用总头数94减去70得到24;“减半”就是取24的一半得到兔子的只数为12。这个过程写成如今的算式就是:
(94-35×2)÷2=12(只)
第二句话的意思是把求鸡只数的过程分为了四头、减足和折半三个步骤,“四头”就是用4乘总头数35得到140;“减足”是用140减去总足数94得到46;与求兔只数的过程类似,“折半”就是取46的一半得到鸡的只数23。写成算式就是:
(35×4-94)÷2=23(只)
这样的过程显然与《孙子算经》中的“半足法”不同,半足法首先将总足数减半。这里的第一步是用每只鸡或兔的足数(2或4)去乘总头数,因此不妨把这个方法叫做“倍头法”。不难发现,“倍头法”背后的道理其实就是现在所说的“假设法”。
《算法统宗》中的鸡兔同笼问题出现于该书第八卷中,实际上在之前的第五卷中就已经出现了与“鸡兔同笼”问题数量关系类似的“米麦问题”:“今有米麦五百石,共价银四百零五两七钱,只云米每石价八钱六分,麦每石价七钱二分五厘。问米麦各若干。”
【摘 要】中国传统数学名题是在时间长河里洗练出来的具有经典意义的数学问题,它具有自己的数学思想和背景文化。文章主要研究了中国传统数学名题―鸡兔同笼问题及其中渗透的数学思想,使大家在情感态度、思维能力与价值观等方面得以提升,增强数学文化素养。
【关键词】鸡兔同笼;解题思路;求解方法;数学思想
鸡兔同笼,这个问题,是我国古代著名趣题之一。大约在1500年前,《孙子算经》中就记载了这个有趣的问题。书中是这样叙述的:“今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?”这四句话的意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头;从下面数,有94只脚。求笼中各有几只鸡和兔?
解题思路:先假设它们全是鸡,于是根据鸡兔的总数就可以算出在假设下共有几只脚,把这样得到的脚数与题中给出的脚数相比较,看看差多少,每差2只脚就说明有1只兔,将所差的脚数除以2,就可以算出共有多少只兔。概括起来,解鸡兔同笼题的基本关系式是:兔数=(实际脚数-每只鸡脚数×鸡兔总数)÷(每只兔子脚数-每只鸡脚数)。类似地,也可以假设全是兔子。
解:假设全是鸡:2×35=70(只) 比总脚数少的:94-70=24 (只) 它们腿的差:4-2=2(条) 24÷2=12 (只) ――兔35-12=23(只)――鸡
方程:
解:设兔有x只,则鸡有35-x只。 4x+2(35-x)=94 4x+70-2x=94 2x=24 x=12 35-x=35-12=23
答:兔有12只,鸡有23只。
我们也可以采用列方程的办法:设兔子的数量为X,鸡的数量为Y 那么:X+Y=35那么4X+2Y=94 这个算方程解出后得:兔子有12只,鸡有23只用假设法来解
对于这个问题,我们给出如下几种求解方法,并给出相应的公式;
解法1:(兔的脚数×总只数-总脚数)÷(兔的脚数-鸡的脚数)=鸡的只数 总只数-鸡的只数=兔的只数
解法2:( 总脚数-鸡的脚数×总只数)÷(兔的脚数-鸡的脚数)=兔的只数 总只数-兔的只数=鸡的只数
解法3:总脚数÷2-总头数=兔的只数 总只数-兔的只数=鸡的只数
解法4:兔的只数=总脚数÷2―总头数 总只数-兔的只数=鸡的只数
解法5(方程):X=( 总脚数-鸡的脚数×总只数)÷(兔的脚数-鸡的脚数)(X=兔的只数) 总只数-兔的只数=鸡的只数
解法6(方程):X=:(兔的脚数×总只数-总脚数)÷(兔的脚数-鸡的脚数)(X=鸡的只数) 总只数-鸡的只数=兔的只数
解法7 鸡的只数=(4×鸡兔总只数-鸡兔总脚数)÷2 兔的只数=鸡兔总只数-鸡的只数
解法8 兔总只数=(鸡兔总脚数-2×鸡兔总只数)÷2 鸡的只数=鸡兔总只数-兔总只数
解法9 总腿数/2-总头数=兔只数 总只数-兔只数=鸡的只数
“鸡兔同笼”中的数学思想方法
一、化归思想
化归是基本而典型的数学思想。化归是指将有待解决的问题,通过转化归结为一类已经解决或较易解决的问题中去,以求得解决。我们常常用到的如化未知为已知、化难为易、化繁为简、化曲为直等都是这一思想方法的运用。“鸡兔同笼”原题中的数据比较大,不利于首次接触该类问题的学生进行探究,根据化繁为简的思想,先安排数据较小的问题,如“笼子里有若干只鸡和兔。从上面数,有7个头,从下面数,有18只脚。鸡和兔各有几只?”(以下均以此题为例)待学生探索出解决此类问题的一般方法后,再应用于解决《孙子算经》中数据较大的原题,学生将易如反掌。“鸡兔同笼”问题在生活中有很多变式,比如“龟鹤问题”、“坐船问题”等,这些问题可以通过化归,归结为“鸡兔同笼”问题,再进一步求解,使学生感受“鸡兔同笼”问题的变式及其在生活中的广泛应用,体会“化归法”在解题中的魅力。
二、假设思想
假设是一种重要的数学思想方法。假设法是先假定一种情况或结果,然后通过推导、验证来解决问题的方法。合理运用假设法,往往可以使问题化难为易,使解题另辟蹊径,有利于培养学生灵活的解题技能,发展学生的逻辑推理能力。
用假设法解答上题有多种思路,可以先假设全部都是鸡或全部都是兔,再计算实际与假设情况下总脚数之差,最后推理出鸡和兔的只数。比如假设7只都是鸡,那么兔有(18-7×2)÷(4-2)=2(只),鸡有7-2=5(只)。运用假设法解题是教学的难点,教师可以先让学生用上述的“画图法”,学生会在直观操作活动中通过数形结合而建立思维的表象,再进一步抽象,这样有助于学生真正理解“假设法”,形成有序地、严密地思考问题的意识。教师也可以向学生介绍古人解决“鸡兔同笼”问题的“抬脚法”,其中也应用了“假设法”。
三、方程思想
方程是刻画现实世界的有效模型,通过把生活语言“翻译”成代数语言,根据问题中的已知数和未知数之间的等量关系,在已知数与未知数之间建立一个等式,这就是方程思想的由来。在“鸡兔同笼”的问题中,可以设鸡或兔中任意一种有X只,然后根据鸡、兔的只数与脚的总只数的关系列方程来解答。例如设兔有X只,则鸡有(7-X)只,可列方程:4X+2(7-X)=18,解得X=2,于是鸡有:7-2=5(只)。方程解法思路比较简单,且具有一般性,教学中要突出方程解法的优越性,不断渗透方程思想。
四、建模思想
弗赖登塔尔认为:学生与其学数学,不如学习数学化。在小学阶段,就是把数学研究对象的某些特征进行抽象,用数学语言、图形或模式表达出来,建立数学模型。在解决了“鸡兔同笼”问题后,可以引导学生观察、思考,概括提炼出解题模型:兔数=(实际的脚数-鸡兔总数×2)÷(4-2),鸡数=(鸡兔总数×4-实际的脚数)÷(4-2)。之后在应用中引导学生巩固、扩展这个模型,把“鸡”与“兔”换成乌龟和仙鹤等,变式为“龟鹤问题”、“坐船问题”、“植树问题”、“答题问题”等问题,沟通这些问题与“鸡兔同笼”问题的联系,使“鸡兔同笼”成为这些问题的模型,并应用模型解决问题,不断促进模型的内化。教学中教师要重视学生建模思想的培养,使数学建模成为学生思考问题与解决问题的一种思想和方法。
以上是“鸡兔同笼”问题的各种解法中蕴含的主要的数学思想方法,从上述讨论中看出一种解法中可以蕴含不同的数学思想,而不同解法中可以蕴含同一种数学思想。
参考文献:
拔尖人才资料准备 论文发表 论文《通透数量关系 建构数学模型——例谈“鸡兔同笼”解法多样性培养数感及建模》在《教学与研究》杂志2020年第7期发表; 论文《真诚鼓励,一种向美而生的能力——临时生成的数学“班会”育人案例简述》发表于《中小学教育》2020年第12期刊; 论文《特殊时期,“未来学习”的催化剂——互联网+技术视角下的数学教育实践与初探》在《中学生学习报·教研周刊》2020年第11期发表; 论文《“互联网+”技术支持下的小学数学高效课堂构建策略探析》发表于《年轻人》杂志2020年4月刊期;省级荣誉 被聘为第26届江西省中小学幼儿园优秀教学资源展示活动系列课程资源评审专家; 被聘请为江西省第一批智慧作业微课评审专家; 获奖 国家级 作品《不马虎过生日——分数“比”的意义与应用》在新世纪小学数学第13届全国(网络)悦读活动“学习短视频”创作专场中获全国二等奖; 在全国新世纪小学数学第15届教学设计与课堂展示大赛中荣获全国二等奖; 省级 微课资源《作简单图形的三视图》荣获第一届“赣教云”微课征集活动一等奖; 智慧作业微课资源《列方程解含有一个未知数的应用题》获省级二等奖; 融合创新应用教学案例《让生命闪光——“积极抗疫、珍爱生命、健康成长”主题队会》荣获省级二等奖; 个人网络学习空间创建荣获江西省二等奖; 指导的成序列资源《北师大版小学数学四年级下试卷》荣获省级三等奖; 指导作品《人物专题:努力,成全生命之美(上)》荣获第四届全省中小学微视频征集展播活动三等奖; 指导作品《人物专题:努力,成全生命之美(中)》荣获第四届全省中小学微视频征集展播活动三等奖; 指导作品《情景剧:溺水而亡的痛》荣获第四届全省中小学微视频征集展播活动三等奖; 指导作品《课本剧:小英雄雨来》荣获第四届全省中小学微视频征集展播活动三等奖; 指导学生作品《人物专题:爱,伴我成长》荣获第四届全省中小学微视频征集展播活动三等奖; 在2020年春季“智慧作业”微课征集活动中有8节省级公开课被“赣教云”平台收录; 在2020年秋季“智慧作业”微课征集活动中有3节省级公开课被“赣教云”平台收录; 指导的成系列资源《北师大版小学数学四年级下试卷》被江西教育资源公共服务平台录用; 市级 论文《宅家抗疫“玩数学,练思维”益智微课综述》获景德镇市中小学教学论文评比一等奖; 融合创新应用教学案例《让生命闪光》获景德镇市级一等奖; 个人网络学习空间创建荣获江西省景德镇市一等奖; 战“疫”主题征文《只为赢得心中那份踏实》荣获景德镇市二等奖; 微课《让生命闪光》获景德镇市“珍爱生命”专题教育活动微课制作比赛二等奖; 电教论文《疫情,“未来学习”的催化剂》荣获景德镇市级二等奖; 信息技术与学科教学整合课例《看一看》荣获景德镇市级二等奖; 微课《奇数偶数拓展魔术课:隔掌认币——硬币翻转中的奇偶性》获景德镇市级二等奖; 指导的微课《可数名词单数变复数》获景德镇市级二等奖; 指导学生电子板报《复学防控我规划》荣获景德镇市级三等奖; 县级 论文《假设与推理——“鸡兔同笼”问题趣解及模型初建》获乐平市课题研究成果评选一等奖; 指导学生在第十五届青少年书信文化作文竞赛活动中荣获一等奖; 在2020年疫情防控期间线上教育教学课程录制工作中被评为“优秀先进个人”。 课题研究 全国教育科学“十三五”规划课题《互联网+技术在中小学教育教学中的应用研究》结题; 中央电化教育馆课题《专递课堂,名师课堂,名校网络课堂运行机制与考核激励研究》立项; 江西省教育科学规划课题《专递课堂运用与网络空间建设提高课堂教学效率的实践研究》立项。 江西省基础教育课题《整体把握单元教学促进深度学习实践研究——以分数教学为例》立项并被评为重点课题; 江西省基础教育课题《小学数学课堂教学与现代教育技术整合的研究》立项; 景德镇市课题《借助单元结构力量促进分数的深度学习实践研究》立项并评选为重点课题;
这学期我们学习了假设策略,由此我就想到一个非常著名的例题:鸡兔同笼。这个问题是我国古代著名趣题之一。大约在1500年前,《孙子算经》中记载的这个有趣的问题:“今有雏兔同笼,上有三十五头,下有九十四足,问雏兔各几何?”这四句的意思就是:有若干只鸡和兔在同一个笼子里,从上面数,有三十五个头;从下面数,有九十四只脚。求笼中各有几只鸡和兔?同学们,你会解答这个问题吗?你知道孙子是如何解答这个“鸡兔同笼“的问题吗?,原来孙子提出了大胆的设想。他假设砍去每只鸡、每只兔一半的脚,则每只鸡就变成了“独脚鸡”,而每只兔就变成了“双脚兔”。这样,“独脚鸡”和“双脚兔”的脚就由94只变成了47只;而每只“鸡”的头数与脚数之比变为1:1,每只“兔”的头数与脚数之比变为1:2。由此可知,有一只“双脚兔”,脚的数量就会比头的数量多1。所以,“独脚鸡”和“双脚兔”的脚的数量与他们的头的数量之差,就是兔子的只数,即:47-35=12(只);鸡的数量就是:35-12=23(只)。我们学习了假设策略,现在解答这道题就不难了,我有两种不同的解题方法,一,假设全是鸡,每只鸡有两只脚 那么35只鸡,就有35*2=70只脚,那么还少94-70=24只脚,每只兔比鸡多两只脚,24/2=12只,这就是兔子的只数,鸡的只数就是35-12=23只。二:假设全是兔子,每只兔子四只脚,那么35只兔子就是35*4=140只脚,多出了140-94=46只脚,每只鸡比兔少两只脚,那么46/2=23只,就是鸡的只数,那么兔子就是35-23=12只。这道题和大多数假设问题相似,其数量关系就是:总数相差量/个体相差量。通过学习,了解鸡兔同笼问题,感受古代数学问题的趣味性,激发了我学习数学的兴趣,同时通过多角度地思考,让我尝试用不同的方法去解决鸡兔同笼问题,培养我的逻辑推理能力。
鸡兔同笼是中国古代的数学名题之一。大约在1500年前,《孙子算经》中就记载了这个有趣的问题。书中是这样叙述的:“今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?”这四句话的意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头,从下面数,有94只脚。问笼中各有几只鸡和兔? 算这个有个最简单的算法。(总脚数-总头数×鸡的脚数)÷(兔的脚数-鸡的脚数)=兔的只数 (94-35乘以2)÷2=12(兔子数) 解释:让兔子和鸡同时抬起两只脚,这样笼子里的脚就减少了兔的头数×2只,由于鸡只有2只脚,所以笼子里只剩下兔子的两只脚,再÷2就是兔子数。 假设法 假设全是鸡:2×35=70(只)鸡脚比总脚数少:94-70=24 (只)兔:24÷(4-2)=12 (只)鸡:35-12=23(只)假设法(通俗)假设鸡和兔子都抬起一只脚,笼中站立的脚:94-35=59(只)然后再抬起一只脚,这时候鸡两只脚都抬起来就摔倒了,只剩下用两只脚站立的兔子,站立脚:59-35=24(只)兔:24÷2=12(只)鸡:35-12=23(只)假设全是兔:4×35=140(只)如果假设全是兔那么兔脚比总数多:140-94=46(只)鸡:46÷(4-2)=23(只)兔:35-23=12(只) 方程法一元一次方程解:设兔有x只,则鸡有(35-x)只。4x+2(35-x)=94解得x=12或 解:设鸡有x只,则兔有(35-x)只。2x+4(35-x)=94解得x=23答:兔子有12只,鸡有23只。通常设方程时,选择腿的只数多的动物,会在套用到其他类似鸡兔同笼的问题上,好算一些。二元一次方程解:设鸡有x只,兔有y只。x+y=35,2x+4y=94解得x=23,y=12答:兔子有12只,鸡有23只。 抬腿法 方法一:假如让鸡抬起一只脚,兔子抬起2只脚,还有94÷2=47(只)脚。笼子里的兔就比鸡的脚数多1,这时,脚与头的总数之差47-35=12,就是兔子的只数。
鸡免还是鸡兔?MDZZ,问问题还是让人猜问题
已知总头数和总脚数,问鸡兔各几只公式:兔子数=( 总脚数-鸡的脚数×总只数)÷(兔的脚数-鸡的脚数) 鸡数=(兔的脚数×总只数-总脚数)÷(兔的脚数-鸡的脚数)方法一: 设全部都是鸡总脚数将是2个总头数,多出来的实际脚数=实际脚数-2个总头数实际脚数多出来,就是因为有兔子,每多一只兔子,就多2只脚,兔子数=实际多出来的脚数有多少个2兔子数=实际总脚数的一半-总头数方法二:假设都是兔子,总脚数将=4个总头数,实际脚数比都是兔子少,因为有鸡,每只鸡比兔子少2只脚实际脚数比都是兔子少,少了多少个2,就是鸡数鸡数=2个总头数-实际总脚数的一半抬腿法方法一假如让鸡抬起一只脚,兔子抬起2只脚,还有总脚数一半(只)脚。笼子里的每只兔就比鸡的脚数多1,这时,脚与头的总头数之差=总脚数一半(只)脚-总头数=就是兔子的只数。方法二假如鸡与兔子都抬起两只脚,就是说鸡浮在空中没有脚,兔子只有2只脚,还剩下(总脚数-两个头数)只脚 , 这时地上只有兔子的脚,而且每只兔子有两只脚在地上,所以有兔子只数=(总脚数-两个头数)的一半=实际总脚数的一半-总头数。方法三我们可以先让兔子都抬起2只脚,那么就有2个总头数只脚,脚数和原来差总脚数-2个总头数只脚,这些都是每只兔子抬起2只脚,一共抬起(总脚数-2个总头数)只脚,得到兔子只数=(总脚数-2个总头数)的一半=实际总脚数的一半-总头数。方法四让所有兔子抬起两条前腿像鸡一样只有两条后腿着地,其实就是变成鸡一样的只有2只脚,就会有2个总数的脚,少的脚数=总脚数-2个总头数=2个兔子数兔子数=实际总脚数的一半-总头数方法五假设法(通俗)假设鸡和兔子都抬起一只脚,鸡成金鸡独立,兔子变成三脚兔,笼中站立的脚=实际总脚数-总头数(只)然后再抬起一只脚,这时候鸡两只脚都抬起来就摔倒了,是屁股坐在地,只剩下用两只脚站立的兔子,剩下脚数=实际总脚数-2个总头数(只),兔子数=(总脚数-2个总头数)的一半=实际总脚数的一半-总头数鸡下翅膀法让所有鸡把翅膀放下当成脚,其实就是变成兔子一样的4只脚,就会有4个总数的脚,多出来的脚=4个总头数-总脚数=2个鸡数鸡数=2个总头数-实际总脚数的一半三年级后公式:鸡数=2倍总头数-总脚数的一半,兔数=总脚数的一半-总头数鸡脚数=2倍鸡数兔数=总头数-鸡数兔脚数=4倍兔数=4倍(总头数-鸡数)=4倍总头数-4倍鸡数总脚数=鸡脚数+兔脚数=2倍鸡数+(4倍总头数-4倍鸡数)=4倍总头数-2倍鸡数2倍鸡数=4倍总头数-总脚数鸡数=2倍总头数-总脚数的一半兔数=总头数-鸡数=总头数-(2倍总头数-脚数的一半)=总脚数的一半-总头数方程法鸡数=2倍总头数-总脚数的一半兔数=总脚数的一半-总头数方法一假设其中的兔子数是x那么鸡数就是总头数-x总脚数=4x+2(总头数-x)总脚数=2x+2总头数2x=总脚数-2总头数x=(总脚数-2总头数)/2 x=总脚数/2-总头数方法二假设其中的鸡数是x那么兔子数就是总头数-x总脚数=2x+4(总头数-x)2x=4总头数-总脚数x=2总头数-总脚数/2
鸡兔同笼是中国古代的数学名题之一。大约在1500年前,《孙子算经》中就记载了这个有趣的问题。书中是这样叙述的:“今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?”这四句话的意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头,从下面数,有94只脚。问笼中各有几只鸡和兔? 算这个有个最简单的算法。(总脚数-总头数×鸡的脚数)÷(兔的脚数-鸡的脚数)=兔的只数 (94-35乘以2)÷2=12(兔子数) 解释:让兔子和鸡同时抬起两只脚,这样笼子里的脚就减少了兔的头数×2只,由于鸡只有2只脚,所以笼子里只剩下兔子的两只脚,再÷2就是兔子数。 假设法 假设全是鸡:2×35=70(只)鸡脚比总脚数少:94-70=24 (只)兔:24÷(4-2)=12 (只)鸡:35-12=23(只)假设法(通俗)假设鸡和兔子都抬起一只脚,笼中站立的脚:94-35=59(只)然后再抬起一只脚,这时候鸡两只脚都抬起来就摔倒了,只剩下用两只脚站立的兔子,站立脚:59-35=24(只)兔:24÷2=12(只)鸡:35-12=23(只)假设全是兔:4×35=140(只)如果假设全是兔那么兔脚比总数多:140-94=46(只)鸡:46÷(4-2)=23(只)兔:35-23=12(只) 方程法一元一次方程解:设兔有x只,则鸡有(35-x)只。4x+2(35-x)=94解得x=12或 解:设鸡有x只,则兔有(35-x)只。2x+4(35-x)=94解得x=23答:兔子有12只,鸡有23只。通常设方程时,选择腿的只数多的动物,会在套用到其他类似鸡兔同笼的问题上,好算一些。二元一次方程解:设鸡有x只,兔有y只。x+y=35,2x+4y=94解得x=23,y=12答:兔子有12只,鸡有23只。 抬腿法 方法一:假如让鸡抬起一只脚,兔子抬起2只脚,还有94÷2=47(只)脚。笼子里的兔就比鸡的脚数多1,这时,脚与头的总数之差47-35=12,就是兔子的只数。
长期以来,对教师教学的要求强调领会教学大纲、驾驭教材较多,因此教师钻研教材多,研究教法多,而研究学生思维活动较少,因而选择适合学生认知过程的教法也少。实践证明忽视了“学”,“教”就失去了针对性。教学的高低,很大程度上取决于学生的学习态度和学习方法。特别是初一年级学生,在小学阶段学习科目少、知识内容浅,并多以教师教为主,学生所需要的学习方法简单。进入中学后,科目增加、内容拓宽、知识深化,尤其是数学从具体发展到抽象,从文字发展到符号,由静态发展到动态……学生认知结构发生根本变化。加之一 部分学生还未脱离教师的“哺乳”时期,没有自觉摄取的能力,致使有些学生因不会学习或学不得法而成绩逐渐下降,久而久之失去学习信心和兴趣,开始陷入厌学的困境。这也往往是初二阶段学生明显出现“两极分化”的原因。因此重视对初一学生数学学习方法的指导是非常必要的。这里仅对数学学习方法指导的内容及形式谈几点拙见。一、数学学习方法指导的内容根据学生学习的几个环节(预习、听课、复习巩固与作业、总结),从宏观上对学习方法分层次、分步骤指导。这种学习方法具有普遍性,可适用其它学科。1.预习方法的指导。初一学生往往不善于预习,也不知道预习起什么作用,预习仅是流于形式,草草看一遍,看不出问题和疑点。在指导学生预习时应要求学生做到:一粗读,先粗略浏览教材的有关内容,掌握本节知识的概貌。二细读,对重要概念、公式、法则、定理反复阅读、体会、思考,注意知识的形成过程,对难以理解的概念作出记号,以便带着疑问去听课。方法上可采用随课预习或单元预习。预习前教师先布置预习提纲,使学生有的放矢。实践证明,养成良好的预习习惯,能使学生变被动学习为主动学习,同时能逐渐培养学生的自学能力。2.听课方法的指导。在听课方法的指导方面要处理好“听”、“思”、“记”的关系。“听”是直接用感官接受知识,应指导学生在听的过程中注意:(1)听每节课的学习要求;(2)听知识引人及知识形成过程;(3)听懂重点、难点剖析(尤其是预习中的疑点);(4)听例题解法的思路和数学思想方法的体现;(5)听好课后小结。教师讲课要重点突出,层次分明,要注意防止“注入式”、“满堂灌”,一定掌握最佳讲授时间,使学生听之有效。“思”是指学生思维。没有思维,就发挥不了学生的主体作用。在思维方法指导时,应使学生注意:(1)多思、勤思,随听随思;(2)深思,即追根溯源地思考,善于大胆提出问题;(3)善思,由听和观察去联想、猜想、归纳;(4)树立批判意识,学会反思。可以说“听”是“思”的基储关键,“思”是“听”的深化,是学习方法的核心和本质的内容,会思维才会学习。“记”是指学生课堂笔记。初一学生一般不会合理记笔记,通常是教师黑板上写什么学生就抄什么,往往是用“记”代替“听”和“思”。有的笔记虽然记得很全,但收效甚微。因此在指导学生作笔记时应要求学生:(1)记笔记服从听讲,要掌握记录时机;(2)记要点、记疑问、记解题思路和方法;(3)记小结、记课后思考题。使学生明确“记”是为“听”和“思”服务的。掌握好这三者的关系,就能使课堂这一数学学习主要环节达到较完美的境界。课堂学习指导是学法中最重要的。同时还要结合不同的授课内容进行相应的学法指导。3.深后复习巩固及完成作业方法的指导。初一学生课后往往容易急于完成书面作业,忽视必要的巩固、记忆、复习。以致出现照例题模仿、套公式解题的现象,造成为交作业而做作业,起不到作业的练习巩固、深化理解知识的应有作用。为此在这个环节的学法指导上要求学生每天先阅读教材,结合笔记记录的重点、难点,回顾课堂讲授的知识、方法,同时记忆公式、定理(记忆方法有类比记忆、联想记忆、直观记忆等)。然后独立完成作业,解题后再反思。在作业书写方面也应注意“写法”指导,要求学生书写格式要规范、条理要清楚。初一学生做到这点很困难。指导时应教会学生(1)如何将文字语言转化为符号语言;(2)如何将推理思考过程用文字书写表达;(3)正确地由条件画出图形。这里教师的示范作用极为重要,开始可有意让学生模仿、训练,逐步使学生养成良好的书写习惯,这对今后的学习和工作都十分重要。4.小结或总结方法的指导。在进行单元小结或学期总结时,初一学生容易依赖老师,习惯教师带着复习总结。我认为从初一开始就应培养学生学会自己总结的方法。在具体指导时可给出复习总结的途径。要做到一看:看书、看笔记、看习题,通过看,回忆、熟悉所学内容;二列:列出相关的知识点,标出重点、难点,列出各知识点之间的关系,这相当于写出总结要点;三做:在此基础上有目的、有重点、有选择地解一 些各种档次、类型的习题,通过解题再反馈,发现问题、解决问题。最后归纳出体现所学知识的各种题型及解题方法。应该说学会总结是数学学习的最高层次。学生总结与教师总结应该结合,教师总结更应达到精炼、提高的目的,使学生水平向更高层发展。二、数学学习方法指导的形式1.讲授式。它包括课程式和讲座式。课程式是在初一新生入学的前几周内安排几次向学生介绍如何学习数学,提出数学学习常规要求的课。讲座式可分专题进行,可每月搞一至二次,如介绍“怎样听课”、“如何学习概念”、“解题思维训练”等。2.交流式。让学生相互交流,介绍各自的学习方法。可请本班、本年级或高年级的学生介绍数学学习方法、体会、经验。这种方式学生容易接受,气氛活跃,不求大而全,只求有一得,使交流真正起到相互学习促进的作用。3.辅导式。主要是针对个别学生的指导和咨询。任何一种学习方法都不是人人都适合的,这时就应该深入了解学生学习基础,研究学生认识水平的差异,对不同学生的学习方法作不同的指导或咨询。尤其是对后进生更应特别关注。许多后进生由于没有一个良好的学习习惯和学习方法,一般指导对他们作用甚微,因此必须对他们采取个别辅导,既辅导知识也辅导学法。因材施教,帮助每一个学生真正地去学习,真正地会学习,真正地学习好,这是面向全体学生,全面提高学生素质,全面提高教学质量的关键。数学学习方法的指导是长期艰巨的任务,初一年级是中学的起始阶段,抓好学法指导对今后的学习会起到至关重要的作用。
这学期我们学习了假设策略,由此我就想到一个非常著名的例题:鸡兔同笼。这个问题是我国古代著名趣题之一。大约在1500年前,《孙子算经》中记载的这个有趣的问题:“今有雏兔同笼,上有三十五头,下有九十四足,问雏兔各几何?”这四句的意思就是:有若干只鸡和兔在同一个笼子里,从上面数,有三十五个头;从下面数,有九十四只脚。求笼中各有几只鸡和兔?同学们,你会解答这个问题吗?你知道孙子是如何解答这个“鸡兔同笼“的问题吗?,原来孙子提出了大胆的设想。他假设砍去每只鸡、每只兔一半的脚,则每只鸡就变成了“独脚鸡”,而每只兔就变成了“双脚兔”。这样,“独脚鸡”和“双脚兔”的脚就由94只变成了47只;而每只“鸡”的头数与脚数之比变为1:1,每只“兔”的头数与脚数之比变为1:2。由此可知,有一只“双脚兔”,脚的数量就会比头的数量多1。所以,“独脚鸡”和“双脚兔”的脚的数量与他们的头的数量之差,就是兔子的只数,即:47-35=12(只);鸡的数量就是:35-12=23(只)。我们学习了假设策略,现在解答这道题就不难了,我有两种不同的解题方法,一,假设全是鸡,每只鸡有两只脚 那么35只鸡,就有35*2=70只脚,那么还少94-70=24只脚,每只兔比鸡多两只脚,24/2=12只,这就是兔子的只数,鸡的只数就是35-12=23只。二:假设全是兔子,每只兔子四只脚,那么35只兔子就是35*4=140只脚,多出了140-94=46只脚,每只鸡比兔少两只脚,那么46/2=23只,就是鸡的只数,那么兔子就是35-23=12只。这道题和大多数假设问题相似,其数量关系就是:总数相差量/个体相差量。通过学习,了解鸡兔同笼问题,感受古代数学问题的趣味性,激发了我学习数学的兴趣,同时通过多角度地思考,让我尝试用不同的方法去解决鸡兔同笼问题,培养我的逻辑推理能力。
鸡兔同笼 问题是我国民间广为流传的数学趣题,最早出现在《孙子算经》中。下面我给你分享数学广角鸡兔同笼论文,欢迎阅读。
教学目标:1.使学生了解“鸡兔同笼”问题,掌握用尝试法、假设法替换法解决问题,初步形成解决此类问题一般性策略。
2.通过自主探索、合作交流,让学生经历用不同的方法解决“鸡兔同笼”问题的过程,在解决问题的过程中,培养学生的思维能力。
3.使学生感受古代数学问题的趣味性,体会到“鸡兔同笼”问题在生活中的广泛应用,提高学习数学的兴趣。
教学重点:用假设法解决“鸡兔同笼”问题。
教学具准备:电脑课件
一、问题引入,分配任务。(每人发一个信封,里面装有题卡和学具)
“有五元和二元两种面额的人民币一共10张,总计32元。两种人民币各有几张?”
二、合作探究,展现拔高。(抽一生上台一一替换,老师记录)
1.启发演示:/让学生先假设这10张全是二元的。于是动手拿出10张二元的(一共二十元,显然不合要求)//然后再一一替换,抽出1张二元的,换上1张五元的,就多了3元,变成了20+3=23元,///再抽出1张二元的,换上1张五元的,就又多了3元,变成了23+3=26////再抽出1张二元的,换上1张五元的,就又多了3元,变成了26+3=29/////再抽出1张二元的,换上1张五元的,就又多了3元,变成了29+3=32。
2.方法探究:32-20=12元,少12元正好换了4次,说明五元的有4张。5元换2元一张多了3元,12/3=4。换4张才能把少的12元换回。
同样方法演示全是5元的,再拿二元去替换也可以。
3.抽象算法(形成策略):
(32-2×10)/(5-2)=4张五元或(5×10-32)/(5-2)=6张二元。
三、类化巩固(自主练习)。
①出示问题2。“有五元和二元两种面额的人民币一共100张,总计365元,两种人民币各有几张?”
先由学生小组讨论,在抽生上台展示算法:
假设100张全是五元的,则一共有5×100=500元,多出了500-365=135元,拿多少个2元去换呢?一张2元换5元就少5-2=3元,135/3=45张2元。则5元有100-45=55张。
同样,假设100张全是二元的,则一共有2×100=200元,少了365-200=165元,拿多少个5元去换呢?一张5元换2元就多5-2=3元,165/3=55张5元。则2元有100-55=45张。
②自己出题,交换答案.
展示学生甲出的题:42人去划船,一共租了10只船。每只大船坐5人,每只小船坐3人。租有的大船和小船各有几只?
展示学生乙的分析过程:(提示:假设10条都租小船。10*3=30人,42-30=12人没坐上,则用大船替换,一只大船换一只小船就多5-3=2人,12/2=6只大船刚好换完。小船为:10-6=4只)或(5×10-42=8,8/(5-3)=4只小船)
四、归纳提高:
解决问题的策略:①制定解题计划,假设与替换(同时满足两个条件,假设满足了第一个条件入手) ②猜想与尝试.(在想的基础上去试一试)③反推.(验证假设是否正确).
五、知识拓展。
其实我们刚才研究的这类题,早在古代,就有很多的数学家也做了研究,你瞧。幻灯出示。
“鸡兔同笼问题”是我国古算术《孙子算经》中著名的数学问题,其内容是:“今有鸡兔同笼,上有三十五头,下有九十四足。问鸡兔各几何?”
六、 解决生活问题(达标测试):
1.必作题: ①我班派12名同学植树,男同学每人栽了3棵数,女同学每人载了两棵数,一共栽了32棵树,问男女同学各几人?(学生独立完成,教师巡视指导)指名板演。
②小明买了6角和8角的邮票共花5元,分别买了多少张?
2.选作题:
①有5元和2元的人民币100张,总计290元,各有几张2元,5元的?
②2个大盒,5个小盒装球100个,每个大盒比小盒多装8个,问大盒和小盒各装几个?
反思
《基础教育课程改革纲要(试行)》明确要求:教师在教学过程中应与学生积极互动,共同发展,要处理好传授知识与培养能力的关系,关注个体差异,满足不同学生的学习需要。
首先,我由问题引入,采用的是独学的方式让学生独立思考,在启发演示中抽一生上台一一替换,其余学生拿出信封里的演示币来换,再让学生小组讨论:在这个过程中什么没变,什么变了?(张数没变,钱多少变了).这一过程体现了小组学习合作探究的学习方式。实践证明:学生学得轻松,学得明白,也体现了高效课堂的途径--核心:自主、合作、探究。
在探究过程中我让学生当小老师,自己出题,交换答案,这样提高了学生的学习兴趣,让学生主动发展,满足不同需要。
在布置作业环节,我采取必作和选作,旨在使每个学生都能得到提高,体现了因材施教的教学原则.同时题的设计紧密结合实际,让学生学会在生活中解决问题,能解决生活中的数学问题,让数学不再孤立,不再陌生。
本堂课我力求做到了三动:身动、心动、神动.
随着教学形式的发展,打造高效课堂,教给学生正确的学习方法已势在必行。“授人以鱼不如授人以渔”,我认为应从以下几个方面来培养学生,打造高效课堂: 1.培养好的学习习惯。2.掌握高效学习方法:①预习。采用有效的预习方法。边预习边作好笔记,动笔练一练,做一做。重要的数学概念公式,不懂的作上记号,以便记忆和探讨。在老师讲解的时候认真听。②有效的复习。孔子曰:“学而时习之,不亦乐乎?”及时复习。分步记忆法:学习后的半天,一天,三天,七天,半月后,分步进行。阶段系统复习――从时间上有周复习,期中复习,期习等。可以先回忆再看书,先看题后做题,先复习后笔记。③学习中要举一反三。不要满足于也有答案,数学题,可用分步,就能用综合,用了方程,看算术是否更简单。④学会梳理知识点。
在“鸡兔同笼”问题的教学中,教师通常会将我国古代《孙子算经》的简单介绍附加到教学过程中,意图在于体现数学的历史发展,向学生渗透数学历史中的文化因素。这种想法固然好,但这种“附加”式的介绍对于实现这样的目的很难有实质性的作用。为了变“附加”为“融入”,让数学史中的知识与文化更好地发挥育人功能,教师就需要对数学史的相关内容做较为广泛、深入的了解。
“鸡兔同笼”问题在我国古代可以说源远流长,从问题的叙述到问题的算法都经历了不同形式的变化,了解这些内容对于课程内容的编制和教学设计会有所裨益。
一、 《孙子算经》中的“雉兔同笼”
“鸡兔同笼”问题始见于公元3~4世纪的《孙子算经》,该书作者不详。从清代的《子部集成?科学技术?数理化学?孙子算经?孙子算经(宋刻本)?卷下》中看,“鸡兔同笼”问题的叙述为:“今有雉兔同笼,上有三十五头,下有九十四足。问雉兔各几何。”[1](见图1)
其中的“雉”是“野鸡”的意思,“几何”是“多少”的意思。用现在的语言可以把这个问题叙述为:“鸡和兔在同一个笼子中,总头数为35,总足数为94。问鸡和兔各有多少只?”《孙子算经》中对这个问题的解法分为如下的四个步骤:
第一步:上置三十五头,下置九十四足
我国古代是用算筹进行计算的,所谓“算筹”就是用于计算的小棒,是古人用于计算的一种工具。这里所说的“上置三十五头,下置九十四足”,就是把题目中的头数“35”和足数“94”用小棒分别摆在上面的位置(上位)和下面的位置(下位)。(见图2)
古人用算筹表示数时,摆放方式分纵式和横式两种。通常用纵向小棒摆放个位数字,横向小棒摆放十位数字,以后依次纵横交替摆放。比如“35”就摆放成如图3形式。
如果横向摆放的数大于5,就用纵向小棒代表5,比如图2中的“”就表示5+4=9。
第二步:半其足得四十七
意思是求出下位总足数94的一半等于47。图2就变成了图4的形式。
图4中“”上面的横向小棒表示“5”,下面两条纵向小棒表示“2”,因此“”表示5+2=7。
第三步:上三除下三,上五除下五
这里的“除”是“除去”或“减少”的意思,“上三除下三”就是“从下位四十七中除去与上位相同的三十”,“上五除下五”就是“从下位四十七中除去与上位相同的五”。(见图5)
用现在的语言说,就是从47中减去35为12,得到兔子的只数。这一过程在《孙子算经》的“术”中叫做“以少减多再命之”(见图1),意思是以少减多之后,下位“总足数”的含义发生了改变,需要重新命名,也就是把“总足数”重新命名为“兔头数”。(见图5)
第四步:下有一除上一,下有二除上二即得
与前面类似,这句话的意思是用总只数35减去兔只数12就得到鸡的只数了。上位的“总头数”需要重新命名为“鸡头数”。(见图6)
以上算法的合理性并不难理解。总足数94取半成为47,此时相当于所有鸡都成为了金鸡独立的“独足鸡”,所有兔都站立起来成为了“双足兔”。此时每只鸡的头数和足数都是1,每只兔的头数是1,足数是2,所以用47减去总头数35就得到兔的只数是12。最后用总头数35减去12就得到鸡的只数。《孙子算经》中把这一算法概括为:“上置头,下置足,半其足,以头除足,以足除头即得。”不妨称此方法为“半足法”,右上的表格可以更加清晰地呈现这一过程。
二、 《算法统宗》中的“鸡兔同笼”
“鸡兔同笼”问题后来又收录于明代程大位(1533年~1606年)所著《算法统宗》第八卷的“少广章”。[2](见图7)
其中对问题的叙述把“雉”改为了“鸡”,因此“鸡兔同笼”的说法沿用至今。《算法统宗》中对问题给出了两种算法,这两种算法与《孙子算经》中的算法是不一样的,相当于现在所说的“假设法”。第一种算法的过程为:
第一步:“置总头倍之得七十”,意思是将总头数35加倍,也就是乘2,得到70。
第二步:“与总足内减七十余二四”,也就是从总足数94中减去70得到24。
第三步:“折半得一十二是兔”,将24折半(也就是24除以2),得到12,这就是兔的只数。
第四步:“以四足乘之得四十八足”,用每只兔的足数4乘12,得到兔的总足数48。
第五步:“总足减之余四十六足为鸡足”,用总足数94减去兔的总足数48得到46,就是鸡的总足数。
第六步:“折半得二十三”,将鸡的总足数46折半(46除以2),就得到鸡的只数为23。
另外一个算法是先求鸡的只数,与前面先求兔只数的程序基本相同,这一算法可以用下面表格的形式呈现出来。
《算法统宗》中关于“鸡兔同笼”问题的两个算法,在书中概括为两句话:“倍头减足折半是兔”和“四头减足折半是鸡”(见图7)。第一句话的意思是把求兔只数的过程分为了倍头、减足和折半三个步骤,“倍头”就是把总头数35加倍变成70;“减足”是用总头数94减去70得到24;“减半”就是取24的一半得到兔子的只数为12。这个过程写成如今的算式就是:
(94-35×2)÷2=12(只)
第二句话的意思是把求鸡只数的过程分为了四头、减足和折半三个步骤,“四头”就是用4乘总头数35得到140;“减足”是用140减去总足数94得到46;与求兔只数的过程类似,“折半”就是取46的一半得到鸡的只数23。写成算式就是:
(35×4-94)÷2=23(只)
这样的过程显然与《孙子算经》中的“半足法”不同,半足法首先将总足数减半。这里的第一步是用每只鸡或兔的足数(2或4)去乘总头数,因此不妨把这个方法叫做“倍头法”。不难发现,“倍头法”背后的道理其实就是现在所说的“假设法”。
《算法统宗》中的鸡兔同笼问题出现于该书第八卷中,实际上在之前的第五卷中就已经出现了与“鸡兔同笼”问题数量关系类似的“米麦问题”:“今有米麦五百石,共价银四百零五两七钱,只云米每石价八钱六分,麦每石价七钱二分五厘。问米麦各若干。”
【摘 要】中国传统数学名题是在时间长河里洗练出来的具有经典意义的数学问题,它具有自己的数学思想和背景文化。文章主要研究了中国传统数学名题―鸡兔同笼问题及其中渗透的数学思想,使大家在情感态度、思维能力与价值观等方面得以提升,增强数学文化素养。
【关键词】鸡兔同笼;解题思路;求解方法;数学思想
鸡兔同笼,这个问题,是我国古代著名趣题之一。大约在1500年前,《孙子算经》中就记载了这个有趣的问题。书中是这样叙述的:“今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?”这四句话的意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头;从下面数,有94只脚。求笼中各有几只鸡和兔?
解题思路:先假设它们全是鸡,于是根据鸡兔的总数就可以算出在假设下共有几只脚,把这样得到的脚数与题中给出的脚数相比较,看看差多少,每差2只脚就说明有1只兔,将所差的脚数除以2,就可以算出共有多少只兔。概括起来,解鸡兔同笼题的基本关系式是:兔数=(实际脚数-每只鸡脚数×鸡兔总数)÷(每只兔子脚数-每只鸡脚数)。类似地,也可以假设全是兔子。
解:假设全是鸡:2×35=70(只) 比总脚数少的:94-70=24 (只) 它们腿的差:4-2=2(条) 24÷2=12 (只) ――兔35-12=23(只)――鸡
方程:
解:设兔有x只,则鸡有35-x只。 4x+2(35-x)=94 4x+70-2x=94 2x=24 x=12 35-x=35-12=23
答:兔有12只,鸡有23只。
我们也可以采用列方程的办法:设兔子的数量为X,鸡的数量为Y 那么:X+Y=35那么4X+2Y=94 这个算方程解出后得:兔子有12只,鸡有23只用假设法来解
对于这个问题,我们给出如下几种求解方法,并给出相应的公式;
解法1:(兔的脚数×总只数-总脚数)÷(兔的脚数-鸡的脚数)=鸡的只数 总只数-鸡的只数=兔的只数
解法2:( 总脚数-鸡的脚数×总只数)÷(兔的脚数-鸡的脚数)=兔的只数 总只数-兔的只数=鸡的只数
解法3:总脚数÷2-总头数=兔的只数 总只数-兔的只数=鸡的只数
解法4:兔的只数=总脚数÷2―总头数 总只数-兔的只数=鸡的只数
解法5(方程):X=( 总脚数-鸡的脚数×总只数)÷(兔的脚数-鸡的脚数)(X=兔的只数) 总只数-兔的只数=鸡的只数
解法6(方程):X=:(兔的脚数×总只数-总脚数)÷(兔的脚数-鸡的脚数)(X=鸡的只数) 总只数-鸡的只数=兔的只数
解法7 鸡的只数=(4×鸡兔总只数-鸡兔总脚数)÷2 兔的只数=鸡兔总只数-鸡的只数
解法8 兔总只数=(鸡兔总脚数-2×鸡兔总只数)÷2 鸡的只数=鸡兔总只数-兔总只数
解法9 总腿数/2-总头数=兔只数 总只数-兔只数=鸡的只数
“鸡兔同笼”中的数学思想方法
一、化归思想
化归是基本而典型的数学思想。化归是指将有待解决的问题,通过转化归结为一类已经解决或较易解决的问题中去,以求得解决。我们常常用到的如化未知为已知、化难为易、化繁为简、化曲为直等都是这一思想方法的运用。“鸡兔同笼”原题中的数据比较大,不利于首次接触该类问题的学生进行探究,根据化繁为简的思想,先安排数据较小的问题,如“笼子里有若干只鸡和兔。从上面数,有7个头,从下面数,有18只脚。鸡和兔各有几只?”(以下均以此题为例)待学生探索出解决此类问题的一般方法后,再应用于解决《孙子算经》中数据较大的原题,学生将易如反掌。“鸡兔同笼”问题在生活中有很多变式,比如“龟鹤问题”、“坐船问题”等,这些问题可以通过化归,归结为“鸡兔同笼”问题,再进一步求解,使学生感受“鸡兔同笼”问题的变式及其在生活中的广泛应用,体会“化归法”在解题中的魅力。
二、假设思想
假设是一种重要的数学思想方法。假设法是先假定一种情况或结果,然后通过推导、验证来解决问题的方法。合理运用假设法,往往可以使问题化难为易,使解题另辟蹊径,有利于培养学生灵活的解题技能,发展学生的逻辑推理能力。
用假设法解答上题有多种思路,可以先假设全部都是鸡或全部都是兔,再计算实际与假设情况下总脚数之差,最后推理出鸡和兔的只数。比如假设7只都是鸡,那么兔有(18-7×2)÷(4-2)=2(只),鸡有7-2=5(只)。运用假设法解题是教学的难点,教师可以先让学生用上述的“画图法”,学生会在直观操作活动中通过数形结合而建立思维的表象,再进一步抽象,这样有助于学生真正理解“假设法”,形成有序地、严密地思考问题的意识。教师也可以向学生介绍古人解决“鸡兔同笼”问题的“抬脚法”,其中也应用了“假设法”。
三、方程思想
方程是刻画现实世界的有效模型,通过把生活语言“翻译”成代数语言,根据问题中的已知数和未知数之间的等量关系,在已知数与未知数之间建立一个等式,这就是方程思想的由来。在“鸡兔同笼”的问题中,可以设鸡或兔中任意一种有X只,然后根据鸡、兔的只数与脚的总只数的关系列方程来解答。例如设兔有X只,则鸡有(7-X)只,可列方程:4X+2(7-X)=18,解得X=2,于是鸡有:7-2=5(只)。方程解法思路比较简单,且具有一般性,教学中要突出方程解法的优越性,不断渗透方程思想。
四、建模思想
弗赖登塔尔认为:学生与其学数学,不如学习数学化。在小学阶段,就是把数学研究对象的某些特征进行抽象,用数学语言、图形或模式表达出来,建立数学模型。在解决了“鸡兔同笼”问题后,可以引导学生观察、思考,概括提炼出解题模型:兔数=(实际的脚数-鸡兔总数×2)÷(4-2),鸡数=(鸡兔总数×4-实际的脚数)÷(4-2)。之后在应用中引导学生巩固、扩展这个模型,把“鸡”与“兔”换成乌龟和仙鹤等,变式为“龟鹤问题”、“坐船问题”、“植树问题”、“答题问题”等问题,沟通这些问题与“鸡兔同笼”问题的联系,使“鸡兔同笼”成为这些问题的模型,并应用模型解决问题,不断促进模型的内化。教学中教师要重视学生建模思想的培养,使数学建模成为学生思考问题与解决问题的一种思想和方法。
以上是“鸡兔同笼”问题的各种解法中蕴含的主要的数学思想方法,从上述讨论中看出一种解法中可以蕴含不同的数学思想,而不同解法中可以蕴含同一种数学思想。
参考文献:
已知总头数和总脚数,问鸡兔各几只公式:兔子数=( 总脚数-鸡的脚数×总只数)÷(兔的脚数-鸡的脚数) 鸡数=(兔的脚数×总只数-总脚数)÷(兔的脚数-鸡的脚数)方法一: 设全部都是鸡总脚数将是2个总头数,多出来的实际脚数=实际脚数-2个总头数实际脚数多出来,就是因为有兔子,每多一只兔子,就多2只脚,兔子数=实际多出来的脚数有多少个2兔子数=实际总脚数的一半-总头数方法二:假设都是兔子,总脚数将=4个总头数,实际脚数比都是兔子少,因为有鸡,每只鸡比兔子少2只脚实际脚数比都是兔子少,少了多少个2,就是鸡数鸡数=2个总头数-实际总脚数的一半抬腿法方法一假如让鸡抬起一只脚,兔子抬起2只脚,还有总脚数一半(只)脚。笼子里的每只兔就比鸡的脚数多1,这时,脚与头的总头数之差=总脚数一半(只)脚-总头数=就是兔子的只数。方法二假如鸡与兔子都抬起两只脚,就是说鸡浮在空中没有脚,兔子只有2只脚,还剩下(总脚数-两个头数)只脚 , 这时地上只有兔子的脚,而且每只兔子有两只脚在地上,所以有兔子只数=(总脚数-两个头数)的一半=实际总脚数的一半-总头数。方法三我们可以先让兔子都抬起2只脚,那么就有2个总头数只脚,脚数和原来差总脚数-2个总头数只脚,这些都是每只兔子抬起2只脚,一共抬起(总脚数-2个总头数)只脚,得到兔子只数=(总脚数-2个总头数)的一半=实际总脚数的一半-总头数。方法四让所有兔子抬起两条前腿像鸡一样只有两条后腿着地,其实就是变成鸡一样的只有2只脚,就会有2个总数的脚,少的脚数=总脚数-2个总头数=2个兔子数兔子数=实际总脚数的一半-总头数方法五假设法(通俗)假设鸡和兔子都抬起一只脚,鸡成金鸡独立,兔子变成三脚兔,笼中站立的脚=实际总脚数-总头数(只)然后再抬起一只脚,这时候鸡两只脚都抬起来就摔倒了,是屁股坐在地,只剩下用两只脚站立的兔子,剩下脚数=实际总脚数-2个总头数(只),兔子数=(总脚数-2个总头数)的一半=实际总脚数的一半-总头数鸡下翅膀法让所有鸡把翅膀放下当成脚,其实就是变成兔子一样的4只脚,就会有4个总数的脚,多出来的脚=4个总头数-总脚数=2个鸡数鸡数=2个总头数-实际总脚数的一半三年级后公式:鸡数=2倍总头数-总脚数的一半,兔数=总脚数的一半-总头数鸡脚数=2倍鸡数兔数=总头数-鸡数兔脚数=4倍兔数=4倍(总头数-鸡数)=4倍总头数-4倍鸡数总脚数=鸡脚数+兔脚数=2倍鸡数+(4倍总头数-4倍鸡数)=4倍总头数-2倍鸡数2倍鸡数=4倍总头数-总脚数鸡数=2倍总头数-总脚数的一半兔数=总头数-鸡数=总头数-(2倍总头数-脚数的一半)=总脚数的一半-总头数方程法鸡数=2倍总头数-总脚数的一半兔数=总脚数的一半-总头数方法一假设其中的兔子数是x那么鸡数就是总头数-x总脚数=4x+2(总头数-x)总脚数=2x+2总头数2x=总脚数-2总头数x=(总脚数-2总头数)/2 x=总脚数/2-总头数方法二假设其中的鸡数是x那么兔子数就是总头数-x总脚数=2x+4(总头数-x)2x=4总头数-总脚数x=2总头数-总脚数/2
鸡兔同笼 问题是我国民间广为流传的数学趣题,最早出现在《孙子算经》中。下面我给你分享数学广角鸡兔同笼论文,欢迎阅读。
教学目标:1.使学生了解“鸡兔同笼”问题,掌握用尝试法、假设法替换法解决问题,初步形成解决此类问题一般性策略。
2.通过自主探索、合作交流,让学生经历用不同的方法解决“鸡兔同笼”问题的过程,在解决问题的过程中,培养学生的思维能力。
3.使学生感受古代数学问题的趣味性,体会到“鸡兔同笼”问题在生活中的广泛应用,提高学习数学的兴趣。
教学重点:用假设法解决“鸡兔同笼”问题。
教学具准备:电脑课件
一、问题引入,分配任务。(每人发一个信封,里面装有题卡和学具)
“有五元和二元两种面额的人民币一共10张,总计32元。两种人民币各有几张?”
二、合作探究,展现拔高。(抽一生上台一一替换,老师记录)
1.启发演示:/让学生先假设这10张全是二元的。于是动手拿出10张二元的(一共二十元,显然不合要求)//然后再一一替换,抽出1张二元的,换上1张五元的,就多了3元,变成了20+3=23元,///再抽出1张二元的,换上1张五元的,就又多了3元,变成了23+3=26////再抽出1张二元的,换上1张五元的,就又多了3元,变成了26+3=29/////再抽出1张二元的,换上1张五元的,就又多了3元,变成了29+3=32。
2.方法探究:32-20=12元,少12元正好换了4次,说明五元的有4张。5元换2元一张多了3元,12/3=4。换4张才能把少的12元换回。
同样方法演示全是5元的,再拿二元去替换也可以。
3.抽象算法(形成策略):
(32-2×10)/(5-2)=4张五元或(5×10-32)/(5-2)=6张二元。
三、类化巩固(自主练习)。
①出示问题2。“有五元和二元两种面额的人民币一共100张,总计365元,两种人民币各有几张?”
先由学生小组讨论,在抽生上台展示算法:
假设100张全是五元的,则一共有5×100=500元,多出了500-365=135元,拿多少个2元去换呢?一张2元换5元就少5-2=3元,135/3=45张2元。则5元有100-45=55张。
同样,假设100张全是二元的,则一共有2×100=200元,少了365-200=165元,拿多少个5元去换呢?一张5元换2元就多5-2=3元,165/3=55张5元。则2元有100-55=45张。
②自己出题,交换答案.
展示学生甲出的题:42人去划船,一共租了10只船。每只大船坐5人,每只小船坐3人。租有的大船和小船各有几只?
展示学生乙的分析过程:(提示:假设10条都租小船。10*3=30人,42-30=12人没坐上,则用大船替换,一只大船换一只小船就多5-3=2人,12/2=6只大船刚好换完。小船为:10-6=4只)或(5×10-42=8,8/(5-3)=4只小船)
四、归纳提高:
解决问题的策略:①制定解题计划,假设与替换(同时满足两个条件,假设满足了第一个条件入手) ②猜想与尝试.(在想的基础上去试一试)③反推.(验证假设是否正确).
五、知识拓展。
其实我们刚才研究的这类题,早在古代,就有很多的数学家也做了研究,你瞧。幻灯出示。
“鸡兔同笼问题”是我国古算术《孙子算经》中著名的数学问题,其内容是:“今有鸡兔同笼,上有三十五头,下有九十四足。问鸡兔各几何?”
六、 解决生活问题(达标测试):
1.必作题: ①我班派12名同学植树,男同学每人栽了3棵数,女同学每人载了两棵数,一共栽了32棵树,问男女同学各几人?(学生独立完成,教师巡视指导)指名板演。
②小明买了6角和8角的邮票共花5元,分别买了多少张?
2.选作题:
①有5元和2元的人民币100张,总计290元,各有几张2元,5元的?
②2个大盒,5个小盒装球100个,每个大盒比小盒多装8个,问大盒和小盒各装几个?
反思
《基础教育课程改革纲要(试行)》明确要求:教师在教学过程中应与学生积极互动,共同发展,要处理好传授知识与培养能力的关系,关注个体差异,满足不同学生的学习需要。
首先,我由问题引入,采用的是独学的方式让学生独立思考,在启发演示中抽一生上台一一替换,其余学生拿出信封里的演示币来换,再让学生小组讨论:在这个过程中什么没变,什么变了?(张数没变,钱多少变了).这一过程体现了小组学习合作探究的学习方式。实践证明:学生学得轻松,学得明白,也体现了高效课堂的途径--核心:自主、合作、探究。
在探究过程中我让学生当小老师,自己出题,交换答案,这样提高了学生的学习兴趣,让学生主动发展,满足不同需要。
在布置作业环节,我采取必作和选作,旨在使每个学生都能得到提高,体现了因材施教的教学原则.同时题的设计紧密结合实际,让学生学会在生活中解决问题,能解决生活中的数学问题,让数学不再孤立,不再陌生。
本堂课我力求做到了三动:身动、心动、神动.
随着教学形式的发展,打造高效课堂,教给学生正确的学习方法已势在必行。“授人以鱼不如授人以渔”,我认为应从以下几个方面来培养学生,打造高效课堂: 1.培养好的学习习惯。2.掌握高效学习方法:①预习。采用有效的预习方法。边预习边作好笔记,动笔练一练,做一做。重要的数学概念公式,不懂的作上记号,以便记忆和探讨。在老师讲解的时候认真听。②有效的复习。孔子曰:“学而时习之,不亦乐乎?”及时复习。分步记忆法:学习后的半天,一天,三天,七天,半月后,分步进行。阶段系统复习――从时间上有周复习,期中复习,期习等。可以先回忆再看书,先看题后做题,先复习后笔记。③学习中要举一反三。不要满足于也有答案,数学题,可用分步,就能用综合,用了方程,看算术是否更简单。④学会梳理知识点。
在“鸡兔同笼”问题的教学中,教师通常会将我国古代《孙子算经》的简单介绍附加到教学过程中,意图在于体现数学的历史发展,向学生渗透数学历史中的文化因素。这种想法固然好,但这种“附加”式的介绍对于实现这样的目的很难有实质性的作用。为了变“附加”为“融入”,让数学史中的知识与文化更好地发挥育人功能,教师就需要对数学史的相关内容做较为广泛、深入的了解。
“鸡兔同笼”问题在我国古代可以说源远流长,从问题的叙述到问题的算法都经历了不同形式的变化,了解这些内容对于课程内容的编制和教学设计会有所裨益。
一、 《孙子算经》中的“雉兔同笼”
“鸡兔同笼”问题始见于公元3~4世纪的《孙子算经》,该书作者不详。从清代的《子部集成?科学技术?数理化学?孙子算经?孙子算经(宋刻本)?卷下》中看,“鸡兔同笼”问题的叙述为:“今有雉兔同笼,上有三十五头,下有九十四足。问雉兔各几何。”[1](见图1)
其中的“雉”是“野鸡”的意思,“几何”是“多少”的意思。用现在的语言可以把这个问题叙述为:“鸡和兔在同一个笼子中,总头数为35,总足数为94。问鸡和兔各有多少只?”《孙子算经》中对这个问题的解法分为如下的四个步骤:
第一步:上置三十五头,下置九十四足
我国古代是用算筹进行计算的,所谓“算筹”就是用于计算的小棒,是古人用于计算的一种工具。这里所说的“上置三十五头,下置九十四足”,就是把题目中的头数“35”和足数“94”用小棒分别摆在上面的位置(上位)和下面的位置(下位)。(见图2)
古人用算筹表示数时,摆放方式分纵式和横式两种。通常用纵向小棒摆放个位数字,横向小棒摆放十位数字,以后依次纵横交替摆放。比如“35”就摆放成如图3形式。
如果横向摆放的数大于5,就用纵向小棒代表5,比如图2中的“”就表示5+4=9。
第二步:半其足得四十七
意思是求出下位总足数94的一半等于47。图2就变成了图4的形式。
图4中“”上面的横向小棒表示“5”,下面两条纵向小棒表示“2”,因此“”表示5+2=7。
第三步:上三除下三,上五除下五
这里的“除”是“除去”或“减少”的意思,“上三除下三”就是“从下位四十七中除去与上位相同的三十”,“上五除下五”就是“从下位四十七中除去与上位相同的五”。(见图5)
用现在的语言说,就是从47中减去35为12,得到兔子的只数。这一过程在《孙子算经》的“术”中叫做“以少减多再命之”(见图1),意思是以少减多之后,下位“总足数”的含义发生了改变,需要重新命名,也就是把“总足数”重新命名为“兔头数”。(见图5)
第四步:下有一除上一,下有二除上二即得
与前面类似,这句话的意思是用总只数35减去兔只数12就得到鸡的只数了。上位的“总头数”需要重新命名为“鸡头数”。(见图6)
以上算法的合理性并不难理解。总足数94取半成为47,此时相当于所有鸡都成为了金鸡独立的“独足鸡”,所有兔都站立起来成为了“双足兔”。此时每只鸡的头数和足数都是1,每只兔的头数是1,足数是2,所以用47减去总头数35就得到兔的只数是12。最后用总头数35减去12就得到鸡的只数。《孙子算经》中把这一算法概括为:“上置头,下置足,半其足,以头除足,以足除头即得。”不妨称此方法为“半足法”,右上的表格可以更加清晰地呈现这一过程。
二、 《算法统宗》中的“鸡兔同笼”
“鸡兔同笼”问题后来又收录于明代程大位(1533年~1606年)所著《算法统宗》第八卷的“少广章”。[2](见图7)
其中对问题的叙述把“雉”改为了“鸡”,因此“鸡兔同笼”的说法沿用至今。《算法统宗》中对问题给出了两种算法,这两种算法与《孙子算经》中的算法是不一样的,相当于现在所说的“假设法”。第一种算法的过程为:
第一步:“置总头倍之得七十”,意思是将总头数35加倍,也就是乘2,得到70。
第二步:“与总足内减七十余二四”,也就是从总足数94中减去70得到24。
第三步:“折半得一十二是兔”,将24折半(也就是24除以2),得到12,这就是兔的只数。
第四步:“以四足乘之得四十八足”,用每只兔的足数4乘12,得到兔的总足数48。
第五步:“总足减之余四十六足为鸡足”,用总足数94减去兔的总足数48得到46,就是鸡的总足数。
第六步:“折半得二十三”,将鸡的总足数46折半(46除以2),就得到鸡的只数为23。
另外一个算法是先求鸡的只数,与前面先求兔只数的程序基本相同,这一算法可以用下面表格的形式呈现出来。
《算法统宗》中关于“鸡兔同笼”问题的两个算法,在书中概括为两句话:“倍头减足折半是兔”和“四头减足折半是鸡”(见图7)。第一句话的意思是把求兔只数的过程分为了倍头、减足和折半三个步骤,“倍头”就是把总头数35加倍变成70;“减足”是用总头数94减去70得到24;“减半”就是取24的一半得到兔子的只数为12。这个过程写成如今的算式就是:
(94-35×2)÷2=12(只)
第二句话的意思是把求鸡只数的过程分为了四头、减足和折半三个步骤,“四头”就是用4乘总头数35得到140;“减足”是用140减去总足数94得到46;与求兔只数的过程类似,“折半”就是取46的一半得到鸡的只数23。写成算式就是:
(35×4-94)÷2=23(只)
这样的过程显然与《孙子算经》中的“半足法”不同,半足法首先将总足数减半。这里的第一步是用每只鸡或兔的足数(2或4)去乘总头数,因此不妨把这个方法叫做“倍头法”。不难发现,“倍头法”背后的道理其实就是现在所说的“假设法”。
《算法统宗》中的鸡兔同笼问题出现于该书第八卷中,实际上在之前的第五卷中就已经出现了与“鸡兔同笼”问题数量关系类似的“米麦问题”:“今有米麦五百石,共价银四百零五两七钱,只云米每石价八钱六分,麦每石价七钱二分五厘。问米麦各若干。”
【摘 要】中国传统数学名题是在时间长河里洗练出来的具有经典意义的数学问题,它具有自己的数学思想和背景文化。文章主要研究了中国传统数学名题―鸡兔同笼问题及其中渗透的数学思想,使大家在情感态度、思维能力与价值观等方面得以提升,增强数学文化素养。
【关键词】鸡兔同笼;解题思路;求解方法;数学思想
鸡兔同笼,这个问题,是我国古代著名趣题之一。大约在1500年前,《孙子算经》中就记载了这个有趣的问题。书中是这样叙述的:“今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?”这四句话的意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头;从下面数,有94只脚。求笼中各有几只鸡和兔?
解题思路:先假设它们全是鸡,于是根据鸡兔的总数就可以算出在假设下共有几只脚,把这样得到的脚数与题中给出的脚数相比较,看看差多少,每差2只脚就说明有1只兔,将所差的脚数除以2,就可以算出共有多少只兔。概括起来,解鸡兔同笼题的基本关系式是:兔数=(实际脚数-每只鸡脚数×鸡兔总数)÷(每只兔子脚数-每只鸡脚数)。类似地,也可以假设全是兔子。
解:假设全是鸡:2×35=70(只) 比总脚数少的:94-70=24 (只) 它们腿的差:4-2=2(条) 24÷2=12 (只) ――兔35-12=23(只)――鸡
方程:
解:设兔有x只,则鸡有35-x只。 4x+2(35-x)=94 4x+70-2x=94 2x=24 x=12 35-x=35-12=23
答:兔有12只,鸡有23只。
我们也可以采用列方程的办法:设兔子的数量为X,鸡的数量为Y 那么:X+Y=35那么4X+2Y=94 这个算方程解出后得:兔子有12只,鸡有23只用假设法来解
对于这个问题,我们给出如下几种求解方法,并给出相应的公式;
解法1:(兔的脚数×总只数-总脚数)÷(兔的脚数-鸡的脚数)=鸡的只数 总只数-鸡的只数=兔的只数
解法2:( 总脚数-鸡的脚数×总只数)÷(兔的脚数-鸡的脚数)=兔的只数 总只数-兔的只数=鸡的只数
解法3:总脚数÷2-总头数=兔的只数 总只数-兔的只数=鸡的只数
解法4:兔的只数=总脚数÷2―总头数 总只数-兔的只数=鸡的只数
解法5(方程):X=( 总脚数-鸡的脚数×总只数)÷(兔的脚数-鸡的脚数)(X=兔的只数) 总只数-兔的只数=鸡的只数
解法6(方程):X=:(兔的脚数×总只数-总脚数)÷(兔的脚数-鸡的脚数)(X=鸡的只数) 总只数-鸡的只数=兔的只数
解法7 鸡的只数=(4×鸡兔总只数-鸡兔总脚数)÷2 兔的只数=鸡兔总只数-鸡的只数
解法8 兔总只数=(鸡兔总脚数-2×鸡兔总只数)÷2 鸡的只数=鸡兔总只数-兔总只数
解法9 总腿数/2-总头数=兔只数 总只数-兔只数=鸡的只数
“鸡兔同笼”中的数学思想方法
一、化归思想
化归是基本而典型的数学思想。化归是指将有待解决的问题,通过转化归结为一类已经解决或较易解决的问题中去,以求得解决。我们常常用到的如化未知为已知、化难为易、化繁为简、化曲为直等都是这一思想方法的运用。“鸡兔同笼”原题中的数据比较大,不利于首次接触该类问题的学生进行探究,根据化繁为简的思想,先安排数据较小的问题,如“笼子里有若干只鸡和兔。从上面数,有7个头,从下面数,有18只脚。鸡和兔各有几只?”(以下均以此题为例)待学生探索出解决此类问题的一般方法后,再应用于解决《孙子算经》中数据较大的原题,学生将易如反掌。“鸡兔同笼”问题在生活中有很多变式,比如“龟鹤问题”、“坐船问题”等,这些问题可以通过化归,归结为“鸡兔同笼”问题,再进一步求解,使学生感受“鸡兔同笼”问题的变式及其在生活中的广泛应用,体会“化归法”在解题中的魅力。
二、假设思想
假设是一种重要的数学思想方法。假设法是先假定一种情况或结果,然后通过推导、验证来解决问题的方法。合理运用假设法,往往可以使问题化难为易,使解题另辟蹊径,有利于培养学生灵活的解题技能,发展学生的逻辑推理能力。
用假设法解答上题有多种思路,可以先假设全部都是鸡或全部都是兔,再计算实际与假设情况下总脚数之差,最后推理出鸡和兔的只数。比如假设7只都是鸡,那么兔有(18-7×2)÷(4-2)=2(只),鸡有7-2=5(只)。运用假设法解题是教学的难点,教师可以先让学生用上述的“画图法”,学生会在直观操作活动中通过数形结合而建立思维的表象,再进一步抽象,这样有助于学生真正理解“假设法”,形成有序地、严密地思考问题的意识。教师也可以向学生介绍古人解决“鸡兔同笼”问题的“抬脚法”,其中也应用了“假设法”。
三、方程思想
方程是刻画现实世界的有效模型,通过把生活语言“翻译”成代数语言,根据问题中的已知数和未知数之间的等量关系,在已知数与未知数之间建立一个等式,这就是方程思想的由来。在“鸡兔同笼”的问题中,可以设鸡或兔中任意一种有X只,然后根据鸡、兔的只数与脚的总只数的关系列方程来解答。例如设兔有X只,则鸡有(7-X)只,可列方程:4X+2(7-X)=18,解得X=2,于是鸡有:7-2=5(只)。方程解法思路比较简单,且具有一般性,教学中要突出方程解法的优越性,不断渗透方程思想。
四、建模思想
弗赖登塔尔认为:学生与其学数学,不如学习数学化。在小学阶段,就是把数学研究对象的某些特征进行抽象,用数学语言、图形或模式表达出来,建立数学模型。在解决了“鸡兔同笼”问题后,可以引导学生观察、思考,概括提炼出解题模型:兔数=(实际的脚数-鸡兔总数×2)÷(4-2),鸡数=(鸡兔总数×4-实际的脚数)÷(4-2)。之后在应用中引导学生巩固、扩展这个模型,把“鸡”与“兔”换成乌龟和仙鹤等,变式为“龟鹤问题”、“坐船问题”、“植树问题”、“答题问题”等问题,沟通这些问题与“鸡兔同笼”问题的联系,使“鸡兔同笼”成为这些问题的模型,并应用模型解决问题,不断促进模型的内化。教学中教师要重视学生建模思想的培养,使数学建模成为学生思考问题与解决问题的一种思想和方法。
以上是“鸡兔同笼”问题的各种解法中蕴含的主要的数学思想方法,从上述讨论中看出一种解法中可以蕴含不同的数学思想,而不同解法中可以蕴含同一种数学思想。
参考文献:
这学期我们学习了假设策略,由此我就想到一个非常著名的例题:鸡兔同笼。这个问题是我国古代著名趣题之一。大约在1500年前,《孙子算经》中记载的这个有趣的问题:“今有雏兔同笼,上有三十五头,下有九十四足,问雏兔各几何?”这四句的意思就是:有若干只鸡和兔在同一个笼子里,从上面数,有三十五个头;从下面数,有九十四只脚。求笼中各有几只鸡和兔?同学们,你会解答这个问题吗?你知道孙子是如何解答这个“鸡兔同笼“的问题吗?,原来孙子提出了大胆的设想。他假设砍去每只鸡、每只兔一半的脚,则每只鸡就变成了“独脚鸡”,而每只兔就变成了“双脚兔”。这样,“独脚鸡”和“双脚兔”的脚就由94只变成了47只;而每只“鸡”的头数与脚数之比变为1:1,每只“兔”的头数与脚数之比变为1:2。由此可知,有一只“双脚兔”,脚的数量就会比头的数量多1。所以,“独脚鸡”和“双脚兔”的脚的数量与他们的头的数量之差,就是兔子的只数,即:47-35=12(只);鸡的数量就是:35-12=23(只)。我们学习了假设策略,现在解答这道题就不难了,我有两种不同的解题方法,一,假设全是鸡,每只鸡有两只脚 那么35只鸡,就有35*2=70只脚,那么还少94-70=24只脚,每只兔比鸡多两只脚,24/2=12只,这就是兔子的只数,鸡的只数就是35-12=23只。二:假设全是兔子,每只兔子四只脚,那么35只兔子就是35*4=140只脚,多出了140-94=46只脚,每只鸡比兔少两只脚,那么46/2=23只,就是鸡的只数,那么兔子就是35-23=12只。这道题和大多数假设问题相似,其数量关系就是:总数相差量/个体相差量。通过学习,了解鸡兔同笼问题,感受古代数学问题的趣味性,激发了我学习数学的兴趣,同时通过多角度地思考,让我尝试用不同的方法去解决鸡兔同笼问题,培养我的逻辑推理能力。