1973年3月2日,陈景润发表了著名论文《大偶数表为一个素数及一个不超过二个素数的乘积之和》,把几百年来人们未曾解决的哥德巴赫猜想的证明大大推进了一步,引起轰动,在国际上被命名为“陈氏定理”。
在遭受疾病折磨时,陈景润都没有停止过自己的追求,为数学事业的发展作出了重大贡献。他的事迹和拼搏献身的精神在全国各地广为传颂,成为一代又一代青少年心目中传奇式的人物和学习楷模。
主要成就
1957年,陈景润被调到中国科学院研究所工作,做为新的起点,他更加刻苦钻研。经过10多年的推算,在1966年5月,发表了他的论文《表大偶数为一个素数及一个不超过二个素数的乘积之和》。
论文的发表,受到世界数学界和著名数学家的高度重视和称赞。英国数学家哈伯斯坦和德国数学家黎希特把陈景润的论文写进数学书中,称为“陈氏定理”
陈景润生平
1933年5月22日,出生于福建省闽侯县(今福州市仓山区城门镇胪雷村)。1949年至1953年,他就读于厦门大学数学系。大学毕业后,由政府分配至北京市第四中学任教。1956年,发表《塔内问题》,改进了华罗庚先生在《堆垒素数论》中的结果。
1965年称自己已经证明(1+2),由师兄王元审查后于1966年6月在科学通报上发表。1974年被重病在身的周总理亲自推荐为四届人大代表,并被选为人大常委会委员。1979年完成论文《算术级数中的最小素数》,将最小素数从原有的80推进到16,受到国际数学界好评。
1988年被定为一级研究员。1996年3月19日下午1点10分,陈景润在北京医院去世,年仅63岁。他为科学事业做出的最后一次奉献是:捐赠遗体供医院解剖。
参考资料来源:百度百科-陈景润
参考资料来源:中新网-时代楷模-陈景润
陈景润(1933年5月22日-1996年3月19日),男,汉族,无党派人士,福建福州人,当代数学家。1949年至1953年就读于厦门大学数学系,1953年9月分配到北京四中任教。1955年2月由当时厦门大学的校长王亚南先生举荐,回母校厦门大学数学系任助教。
1957年10月,由于华罗庚教授的赏识,陈景润被调到中国科学院数学研究所。1973年发表了(1+2)的详细证明,被公认为是对哥德巴赫猜想研究的重大贡献。1981年3月当选为中国科学院学部委员(院士)。
扩展资料
陈景润1978年发表在《人民文学》当年第一期的报告文学《哥德巴赫猜想》,《人民日报》1978年2月17日进行了转载,立即在全国引起轰动。一篇轰动全中国的报告文学《哥德巴赫猜想》,使得数学奇才陈景润一夜之间街知巷闻、家喻户晓。
1973年,他发表的著名论文《大偶数表为一个素数与不超过两个素数乘积之和》(即“1+2”),把几百年来人们未曾解决的哥德巴赫猜想的证明大大推进了一步,引起轰动,在国际上被命名为“陈氏定理”。他的事迹和钻研精神在全国广为传颂。
参考资料来源:人民网-人民日报:只知道陈奕迅不知道陈景润的惆怅
参考资料来源:百度百科-陈景润
世界近代三大数学难题之一四色猜想 四色猜想的提出来自英国。1852年,毕业于伦敦大学的弗南西斯.格思里来到一家科研单位搞地图着色工作时,发现了一种有趣的现象:“看来,每幅地图都可以用四种颜色着色,使得有共同边界的国家着上不同的颜色。”这个结论能不能从数学上加以严格证明呢?他和在大学读书的弟弟格里斯决心试一试。兄弟二人为证明这一问题而使用的稿纸已经堆了一大叠,可是研究工作没有进展。 1852年10月23日,他的弟弟就这个问题的证明请教他的老师、著名数学家德.摩尔根,摩尔根也没有能找到解决这个问题的途径,于是写信向自己的好友、著名数学家哈密尔顿爵士请教。哈密尔顿接到摩尔根的信后,对四色问题进行论证。但直到1865年哈密尔顿逝世为止,问题也没有能够解决。 1872年,英国当时最著名的数学家凯利正式向伦敦数学学会提出了这个问题,于是四色 猜想成了世界数学界关注的问题。世界上许多一流的数学家都纷纷参加了四色猜想的大会战 。1878~1880年两年间,著名的律师兼数学家肯普和泰勒两人分别提交了证明四色猜想的论文,宣布证明了四色定理,大家都认为四色猜想从此也就解决了。 11年后,即1890年,数学家赫伍德以自己的精确计算指出肯普的证明是错误的。不久,泰勒的证明也被人们否定了。后来,越来越多的数学家虽然对此绞尽脑汁,但一无所获。于是,人们开始认识到,这个貌似容易的题目, 实是一个可与费马猜想相媲美的难题:先辈数学大师们的努力,为后世的数学家揭示四色猜想之谜铺平了道路。 进入20世纪以来,科学家们对四色猜想的证明基本上是按照肯普的想法在进行。1913年,伯克霍夫在肯普的基础上引进了一些新技巧,美国数学家富兰克林于1939年证明了22国以下的地图都可以用四色着色。1950年,有人从22国推进到35国。1960年,有人又证明了39国以下的地图可以只用四种颜色着色;随后又推进到了50国。看来这种推进仍然十分缓慢。电子计算机问世以后,由于演算速度迅速提高,加之人机对话的出现,大大加快了对四色猜想证明的进程。1976年,美国数学家阿佩尔与哈肯在美国伊利诺斯大学的两台不同的电子计算机上,用了1200个小时,作了100亿判断,终于完成了四色定理的证明。四色猜想的计算机证明,轰动了世界。它不仅解决了一个历时100多年的难题,而且有可能成为数学史上一系列新思维的起点。不过也有不少数学家并不满足于计算机取得的成就,他们还在寻找一种简捷明快的书面证明方法。 -------- 世界近代三大数学难题之一 费马最后定理 被公认执世界报纸牛耳地位地位的纽约时报於1993年6月24日在其一版头题刊登了一则有 关数学难题得以解决的消息,那则消息的标题是「在陈年数学困局中,终於有人呼叫『 我找到了』」。时报一版的开始文章中还附了一张留着长发、穿着中古世纪欧洲学袍的 男人照片。这个古意盎然的男人,就是法国的数学家费马(Pierre de Fermat)(费马 小传请参考附录)。费马是十七世纪最卓越的数学家之一,他在数学许多领域中都有极 大的贡献,因为他的本行是专业的律师,为了表彰他的数学造诣,世人冠以「业余王子 」之美称,在三百六十多年前的某一天,费马正在阅读一本古希腊数学家戴奥芬多斯的 数学书时,突然心血来潮在书页的空白处,写下一个看起来很简单的定理这个定理的内 容是有关一个方程式 x2 + y2 =z2的正整数解的问题,当n=2时就是我们所熟知的毕氏定 理(中国古代又称勾股弦定理):x2 + y2 =z2,此处z表一直角形之斜边而x、y为其之 两股,也就是一个直角三角形之斜边的平方等於它的两股的平方和,这个方程式当然有 整数解(其实有很多),例如:x=3、y=4、z=5;x=6、y=8、z=10;x=5、y=12、z=13… 等等。 费马声称当n>2时,就找不到满足xn +yn = zn的整数解,例如:方程式x3 +y3=z3就无法 找到整数解。 当时费马并没有说明原因,他只是留下这个叙述并且也说他已经发现这个定理的证明妙 法,只是书页的空白处不够无法写下。始作俑者的费马也因此留下了千古的难题,三百 多年来无数的数学家尝试要去解决这个难题却都徒劳无功。这个号称世纪难题的费马最 后定理也就成了数学界的心头大患,极欲解之而后快。 十九世纪时法国的法兰西斯数学院曾经在一八一五年和一八六0年两度悬赏金质奖章和 三百法郎给任何解决此一难题的人,可惜都没有人能够领到奖赏。德国的数学家佛尔夫 斯克尔(P?Wolfskehl)在1908年提供十万马克,给能够证明费马最后定理是正确的人, 有效期间为100年。其间由於经济大萧条的原因,此笔奖额已贬值至七千五百马克,虽然 如此仍然吸引不少的「数学痴」。 二十世纪电脑发展以后,许多数学家用电脑计算可以证明这个定理当n为很大时是成立的 ,1983年电脑专家斯洛文斯基借助电脑运行5782秒证明当n为286243-1时费马定理是正确 的(注286243-1为一天文数字,大约为25960位数)。 虽然如此,数学家还没有找到一个普遍性的证明。不过这个三百多年的数学悬案终於解 决了,这个数学难题是由英国的数学家威利斯(Andrew Wiles)所解决。其实威利斯是 利用二十世纪过去三十年来抽象数学发展的结果加以证明。 五0年代日本数学家谷山丰首先提出一个有关椭圆曲现的猜想,后来由另一位数学家志 村五郎加以发扬光大,当时没有人认为这个猜想与费马定理有任何关联。在八0年代德 国数学家佛列将谷山丰的猜想与费马定理扯在一起,而威利斯所做的正是根据这个关联 论证出一种形式的谷山丰猜想是正确的,进而推出费马最后定理也是正确的。这个结论 由威利斯在1993年的6月21日於美国剑桥大学牛顿数学研究所的研讨会正式发表,这个报 告马上震惊整个数学界,就是数学门墙外的社会大众也寄以无限的关注。不过威利斯的 证明马上被检验出有少许的瑕疵,於是威利斯与他的学生又花了十四个月的时间再加以 修正。1994年9月19日他们终於交出完整无瑕的解答,数学界的梦魇终於结束。1997年6 月,威利斯在德国哥庭根大学领取了佛尔夫斯克尔奖。当年的十万法克约为两百万美金 ,不过威利斯领到时,只值五万美金左右,但威利斯已经名列青史,永垂不朽了。 要证明费马最后定理是正确的 (即xn + yn = zn 对n33 均无正整数解) 只需证 x4+ y4 = z4 和xp+ yp = zp (P为奇质数),都没有整数解。 ---------------- 世界近代三大数学难题之一 哥德巴赫猜想 哥德巴赫是德国一位中学教师,也是一位著名的数学家,生于1690年,1725年当选为俄国彼得堡科学院院士。1742年,哥德巴赫在教学中发现,每个不小于6的偶数都是两个素数(只能被和它本身整除的数)之和。如6=3+3,12=5+7等等。 1742年6月7日,哥德巴赫写信将这个问题告诉给意大利大数学家欧拉,并请他帮助作出证明。欧拉在6月30日给他的回信中说,他相信这个猜想是正确的,但他不能证明。叙述如此简单的问题,连欧拉这样首屈一指的数学家都不能证明,这个猜想便引起了许多数学家的注意。他们对一个个偶数开始进行验算,一直算到3.3亿,都表明猜想是正确的。但是对于更大的数目,猜想也应是对的,然而不能作出证明。欧拉一直到死也没有对此作出证明。从此,这道著名的数学难题引起了世界上成千上万数学家的注意。200年过去了,没有人证明它。哥德巴赫猜想由此成为数学皇冠上一颗可望不可及的“明珠”。到了20世纪20年代,才有人开始向它靠近。1920年、挪威数学家布爵用一种古老的筛选法证明,得出了一个结论:每一个比大的偶数都可以表示为(99)。这种缩小包围圈的办法很管用,科学家们于是从(9十9)开始,逐步减少每个数里所含质数因子的个数,直到最后使每个数里都是一个质数为止,这样就证明了“哥德巴赫”。 1924年,数学家拉德马哈尔证明了(7+7);1932年,数学家爱斯尔曼证明了(6+6);1938年,数学家布赫斯塔勃证明了(5十5),1940年,他又证明了(4+4);1956年,数学家维诺格拉多夫证明了(3+3);1958年,我国数学家王元证明了(2十3)。随后,我国年轻的数学家陈景润也投入到对哥德巴赫猜想的研究之中,经过10年的刻苦钻研,终于在前人研究的基础上取得重大的突破,率先证明了(l十2)。至此,哥德巴赫猜想只剩下最后一步(1+1)了。陈景润的论文于1973年发表在中国科学院的《科学通报》第17期上,这一成果受到国际数学界的重视,从而使中国的数论研究跃居世界领先地位,陈景润的有关理论被称为“陈氏定理”。1996年3月下旬,当陈景润即将摘下数学王冠上的这颗明珠,“在距离哥德巴赫猜想(1+1)的光辉顶峰只有飓尺之遥时,他却体力不支倒下去了……”在他身后,将会有更多的人去攀登这座高峰。
陈景润(1933年5月22日—1996年3月19日),汉族,籍贯福建省福州市。中国着名数学家,厦门大学数学系毕业。
1966年发表《表达偶数为一个素数及一个不超过两个素数的乘积之和》,成为哥德巴赫猜想研究上的里程碑。而他所发表的成果也被称之为陈氏定理。这项工作还使他与王元、潘承洞在1978年共同获得中国自然科学奖一等奖。
1984年4月陈景润从家中骑车到魏公村的新华书店买书,被一辆急行的自行车撞倒,后脑着地,当即昏迷,在治疗中被诊断患上了帕金森氏综合症。事隔几个月,陈景润乘公共汽车到友谊宾馆开会,车到站时被拥挤的人群从车上挤下,摔昏在地。从此,生活一直需要人护理。
1996年3月19日,因呼吸循环衰竭,经抢救无效于1996年3月19日13时10分逝世,享年62岁。
扩展资料:
人物成就
陈景润研究“哥德巴赫猜想”和其他数论问题的成就,至今仍然在世界上遥遥领先。世界级的数学大师、美国学者阿·威尔曾这样称赞他:“陈景润的每一项工作,都好像是在喜马拉雅山山巅上行走。”1978年和1982年,陈景润两次受到国际数学家大会作45分钟报告的最高规格的邀请。
此外,陈景润还在组合数学与现代经济管理、尖端技术和人类密切关系等方面进行了深入的研究和探讨。他先后在国内外报刊上发表了科学论文70余篇,并有《数学趣味谈》、《组合数学》等著作,曾获国家自然科学奖一等奖、何梁何利基金奖、华罗庚数学奖等多项奖励。
参考资料:百度百科-陈景润
陈景润(1933年5月22日~1996年3月19日),汉族,福建福州人。中国著名数学家,陈景润的生活(19张)厦门大学数学系毕业。1953年~1954年在北京四中任教,因口齿不清,被拒绝上讲台授课,只可批改作业。
后被“停职回乡养病”,调回厦门大学任资料员,同时研究数论,对组合数学与现代经济管理、科学实验、尖端技术、人类生活的密切关系等问题也作了研究。1956年调入中国科学院数学研究所。1980年当选中科院物理学数学部委员(现在的院士)。
他研究哥德巴赫猜想和其他数论问题的成就,至今仍然在世界上遥遥领先,被称为哥德巴赫猜想第一人。世界级的数学大师、美国学者安德烈·韦(André Weil)曾这样称赞他:“陈景润的每一项工作,都好像是在喜马拉雅山山巅上行走。”
历任中国科学院数学研究所研究员、所学术委员会委员兼贵阳民族学院、河南大学、青岛大学、华中工学院、福建师范大学等校教授,国家科委数学学科组成员,《数学季刊》主编等职。发表研究论文 25篇,并有《数学趣味谈》、《组合数学》等著作。
扩展资料
相关故事:
数学家陈景润在大学读书时,生活极为简朴,他始终穿着一件黑色的学生装.由于家境贫寒,他经常一天吃两顿饭,为的是把省下的钱用来买书.他说:“饭可以不吃,书不可以不念。”他平时不看电影,不随便和人闲聊,全身心地投入学习当中。
那时宿舍有按时熄灯的制度,他为了不影响别人休息,便把头埋在被窝里,打着手电筒看书。在进军“哥德巴赫猜想”时,他居住在6平方米的小屋里,演算全靠自己笔算。
他演算的手稿有几麻袋,就这样,日复一日,年复一年,整整十年过去了,陈景润在1966年终于攻克了“(1+2)”这个堡垒。英国数学家哈勃斯丹和西德数学家李希特把陈景润的发现誉为“陈氏定理”,说它是“筛法”的“光辉顶点”,一位英国数学家写信称赞他:“您,移动了群山!”
参考资料来源:百度百科-陈景润
15a44b*ddf44444444
世界近代三大数学难题之一四色猜想 四色猜想的提出来自英国。1852年,毕业于伦敦大学的弗南西斯.格思里来到一家科研单位搞地图着色工作时,发现了一种有趣的现象:“看来,每幅地图都可以用四种颜色着色,使得有共同边界的国家着上不同的颜色。”这个结论能不能从数学上加以严格证明呢?他和在大学读书的弟弟格里斯决心试一试。兄弟二人为证明这一问题而使用的稿纸已经堆了一大叠,可是研究工作没有进展。 1852年10月23日,他的弟弟就这个问题的证明请教他的老师、著名数学家德.摩尔根,摩尔根也没有能找到解决这个问题的途径,于是写信向自己的好友、著名数学家哈密尔顿爵士请教。哈密尔顿接到摩尔根的信后,对四色问题进行论证。但直到1865年哈密尔顿逝世为止,问题也没有能够解决。 1872年,英国当时最著名的数学家凯利正式向伦敦数学学会提出了这个问题,于是四色 猜想成了世界数学界关注的问题。世界上许多一流的数学家都纷纷参加了四色猜想的大会战 。1878~1880年两年间,著名的律师兼数学家肯普和泰勒两人分别提交了证明四色猜想的论文,宣布证明了四色定理,大家都认为四色猜想从此也就解决了。 11年后,即1890年,数学家赫伍德以自己的精确计算指出肯普的证明是错误的。不久,泰勒的证明也被人们否定了。后来,越来越多的数学家虽然对此绞尽脑汁,但一无所获。于是,人们开始认识到,这个貌似容易的题目, 实是一个可与费马猜想相媲美的难题:先辈数学大师们的努力,为后世的数学家揭示四色猜想之谜铺平了道路。 进入20世纪以来,科学家们对四色猜想的证明基本上是按照肯普的想法在进行。1913年,伯克霍夫在肯普的基础上引进了一些新技巧,美国数学家富兰克林于1939年证明了22国以下的地图都可以用四色着色。1950年,有人从22国推进到35国。1960年,有人又证明了39国以下的地图可以只用四种颜色着色;随后又推进到了50国。看来这种推进仍然十分缓慢。电子计算机问世以后,由于演算速度迅速提高,加之人机对话的出现,大大加快了对四色猜想证明的进程。1976年,美国数学家阿佩尔与哈肯在美国伊利诺斯大学的两台不同的电子计算机上,用了1200个小时,作了100亿判断,终于完成了四色定理的证明。四色猜想的计算机证明,轰动了世界。它不仅解决了一个历时100多年的难题,而且有可能成为数学史上一系列新思维的起点。不过也有不少数学家并不满足于计算机取得的成就,他们还在寻找一种简捷明快的书面证明方法。 -------- 世界近代三大数学难题之一 费马最后定理 被公认执世界报纸牛耳地位地位的纽约时报於1993年6月24日在其一版头题刊登了一则有 关数学难题得以解决的消息,那则消息的标题是「在陈年数学困局中,终於有人呼叫『 我找到了』」。时报一版的开始文章中还附了一张留着长发、穿着中古世纪欧洲学袍的 男人照片。这个古意盎然的男人,就是法国的数学家费马(Pierre de Fermat)(费马 小传请参考附录)。费马是十七世纪最卓越的数学家之一,他在数学许多领域中都有极 大的贡献,因为他的本行是专业的律师,为了表彰他的数学造诣,世人冠以「业余王子 」之美称,在三百六十多年前的某一天,费马正在阅读一本古希腊数学家戴奥芬多斯的 数学书时,突然心血来潮在书页的空白处,写下一个看起来很简单的定理这个定理的内 容是有关一个方程式 x2 + y2 =z2的正整数解的问题,当n=2时就是我们所熟知的毕氏定 理(中国古代又称勾股弦定理):x2 + y2 =z2,此处z表一直角形之斜边而x、y为其之 两股,也就是一个直角三角形之斜边的平方等於它的两股的平方和,这个方程式当然有 整数解(其实有很多),例如:x=3、y=4、z=5;x=6、y=8、z=10;x=5、y=12、z=13… 等等。 费马声称当n>2时,就找不到满足xn +yn = zn的整数解,例如:方程式x3 +y3=z3就无法 找到整数解。 当时费马并没有说明原因,他只是留下这个叙述并且也说他已经发现这个定理的证明妙 法,只是书页的空白处不够无法写下。始作俑者的费马也因此留下了千古的难题,三百 多年来无数的数学家尝试要去解决这个难题却都徒劳无功。这个号称世纪难题的费马最 后定理也就成了数学界的心头大患,极欲解之而后快。 十九世纪时法国的法兰西斯数学院曾经在一八一五年和一八六0年两度悬赏金质奖章和 三百法郎给任何解决此一难题的人,可惜都没有人能够领到奖赏。德国的数学家佛尔夫 斯克尔(P?Wolfskehl)在1908年提供十万马克,给能够证明费马最后定理是正确的人, 有效期间为100年。其间由於经济大萧条的原因,此笔奖额已贬值至七千五百马克,虽然 如此仍然吸引不少的「数学痴」。 二十世纪电脑发展以后,许多数学家用电脑计算可以证明这个定理当n为很大时是成立的 ,1983年电脑专家斯洛文斯基借助电脑运行5782秒证明当n为286243-1时费马定理是正确 的(注286243-1为一天文数字,大约为25960位数)。 虽然如此,数学家还没有找到一个普遍性的证明。不过这个三百多年的数学悬案终於解 决了,这个数学难题是由英国的数学家威利斯(Andrew Wiles)所解决。其实威利斯是 利用二十世纪过去三十年来抽象数学发展的结果加以证明。 五0年代日本数学家谷山丰首先提出一个有关椭圆曲现的猜想,后来由另一位数学家志 村五郎加以发扬光大,当时没有人认为这个猜想与费马定理有任何关联。在八0年代德 国数学家佛列将谷山丰的猜想与费马定理扯在一起,而威利斯所做的正是根据这个关联 论证出一种形式的谷山丰猜想是正确的,进而推出费马最后定理也是正确的。这个结论 由威利斯在1993年的6月21日於美国剑桥大学牛顿数学研究所的研讨会正式发表,这个报 告马上震惊整个数学界,就是数学门墙外的社会大众也寄以无限的关注。不过威利斯的 证明马上被检验出有少许的瑕疵,於是威利斯与他的学生又花了十四个月的时间再加以 修正。1994年9月19日他们终於交出完整无瑕的解答,数学界的梦魇终於结束。1997年6 月,威利斯在德国哥庭根大学领取了佛尔夫斯克尔奖。当年的十万法克约为两百万美金 ,不过威利斯领到时,只值五万美金左右,但威利斯已经名列青史,永垂不朽了。 要证明费马最后定理是正确的 (即xn + yn = zn 对n33 均无正整数解) 只需证 x4+ y4 = z4 和xp+ yp = zp (P为奇质数),都没有整数解。 ---------------- 世界近代三大数学难题之一 哥德巴赫猜想 哥德巴赫是德国一位中学教师,也是一位著名的数学家,生于1690年,1725年当选为俄国彼得堡科学院院士。1742年,哥德巴赫在教学中发现,每个不小于6的偶数都是两个素数(只能被和它本身整除的数)之和。如6=3+3,12=5+7等等。 1742年6月7日,哥德巴赫写信将这个问题告诉给意大利大数学家欧拉,并请他帮助作出证明。欧拉在6月30日给他的回信中说,他相信这个猜想是正确的,但他不能证明。叙述如此简单的问题,连欧拉这样首屈一指的数学家都不能证明,这个猜想便引起了许多数学家的注意。他们对一个个偶数开始进行验算,一直算到3.3亿,都表明猜想是正确的。但是对于更大的数目,猜想也应是对的,然而不能作出证明。欧拉一直到死也没有对此作出证明。从此,这道著名的数学难题引起了世界上成千上万数学家的注意。200年过去了,没有人证明它。哥德巴赫猜想由此成为数学皇冠上一颗可望不可及的“明珠”。到了20世纪20年代,才有人开始向它靠近。1920年、挪威数学家布爵用一种古老的筛选法证明,得出了一个结论:每一个比大的偶数都可以表示为(99)。这种缩小包围圈的办法很管用,科学家们于是从(9十9)开始,逐步减少每个数里所含质数因子的个数,直到最后使每个数里都是一个质数为止,这样就证明了“哥德巴赫”。 1924年,数学家拉德马哈尔证明了(7+7);1932年,数学家爱斯尔曼证明了(6+6);1938年,数学家布赫斯塔勃证明了(5十5),1940年,他又证明了(4+4);1956年,数学家维诺格拉多夫证明了(3+3);1958年,我国数学家王元证明了(2十3)。随后,我国年轻的数学家陈景润也投入到对哥德巴赫猜想的研究之中,经过10年的刻苦钻研,终于在前人研究的基础上取得重大的突破,率先证明了(l十2)。至此,哥德巴赫猜想只剩下最后一步(1+1)了。陈景润的论文于1973年发表在中国科学院的《科学通报》第17期上,这一成果受到国际数学界的重视,从而使中国的数论研究跃居世界领先地位,陈景润的有关理论被称为“陈氏定理”。1996年3月下旬,当陈景润即将摘下数学王冠上的这颗明珠,“在距离哥德巴赫猜想(1+1)的光辉顶峰只有飓尺之遥时,他却体力不支倒下去了……”在他身后,将会有更多的人去攀登这座高峰。
不是所有的大于2的偶数,都可以表示为两个素数的呢? 这个问题是德国数学家哥德巴赫(C.Goldbach,1690-1764)于1742年6月7日在给大数学家欧拉的信中提出的,所以被称作哥德巴赫猜想。同年6月30日,欧拉在回信中认为这个猜想可能是真的,但他无法证明。从此,这道数学难题引起了几乎所有数学家的注意。哥德巴赫猜想由此成为数学皇冠上一颗可望不可及的“明珠”。“用当代语言来叙述,哥德巴赫猜想有两个内容,第一部分叫做奇数的猜想,第二部分叫做偶数的猜想。奇数的猜想指出,任何一个大于等于7的奇数都是三个素数的和。偶数的猜想是说,大于等于4的偶数一定是两个素数的和。”(引自《哥德巴赫猜想与潘承洞》) 哥德巴赫猜想貌似简单,要证明它却着实不易,成为数学中一个著名的难题。18、19世纪,所有的数论专家对这个猜想的证明都没有作出实质性的推进,直到20世纪才有所突破。直接证明哥德巴赫猜想不行,人们采取了“迂回战术”,就是先考虑把偶数表为两数之和,而每一个数又是若干素数之积。如果把命题"每一个大偶数可以表示成为一个素因子个数不超过a个的数与另一个素因子不超过b个的数之和"记作"a+b",那么哥氏猜想就是要证明"1+1"成立。 1900年,20世纪最伟大的数学家希尔伯特,在国际数学会议上把“哥德巴赫猜想”列为23个数学难题之一。此后,20世纪的数学家们在世界范围内“联手”进攻“哥德巴赫猜想”堡垒,终于取得了辉煌的成果。 到了20世纪20年代,有人开始向它靠近。1920年,挪威数学家布爵用一种古老的筛选法证明,得出了一个结论:每一个比6大的偶数都可以表示为(9+9)。这种缩小包围圈的办法很管用,科学家们于是从(9十9)开始,逐步减少每个数里所含质数因子的个数,直到最后使每个数里都是一个质数为止,这样就证明了“哥德巴赫猜想”。 20世纪的数学家们研究哥德巴赫猜想所采用的主要方法,是筛法、圆法、密率法和三角和法等等高深的数学方法。解决这个猜想的思路,就像“缩小包围圈”一样,逐步逼近最后的结果。 由于陈景润的贡献,人类距离哥德巴赫猜想的最后结果“1+1”仅有一步之遥了。但为了实现这最后的一步,也许还要历经一个漫长的探索过程。有许多数学家认为,要想证明“1+1”,必须通过创造新的数学方法,以往的路很可能都是走不通的。 1966年春,陈景润向世界宣告,他得出了关于哥德巴赫猜想的最好的结果(1+2),即任何一个充分大的偶数,都可以表示成为两个数之和,其中一个是素数,另一个为不超过两个素数的乘积。1966年,第17期《科学通报》上发表了陈景润的论文。 (原文200多页,不乏冗杂之处。) 1972年,陈景润改进了古老的筛法,完整优美地证明了哥德巴赫猜想中的(1+2),改进了1966年的论文。 1973年,《中国科学》杂志正式发表了陈景润的论文《大偶数表为一个素数及一个不超过两个素数的乘积之和》。该文和陈景润1966年6月发表在《科学通报》的论文题目是一样的,但内容焕然一新,文章简洁、清晰。 该论文的排版也颇费周折。由于论文中数学公式极多,符号极繁,且很多是多层嵌套,拼排十分困难。科学院印刷厂派资深排版师傅欧光弟操作,整整排了一星期。 所以只贴陈景润先生在论文之开始: 【命P_x(1,2)为适合下列条件的素数p的个数: x-p=p_1或x-p=(p_2)*(p_3) 其中p_1, p_2 , p_3都是素数。 用x表一充分大的偶数。 命Cx={∏p|x,p 2}(p-1)/(p-2){∏p 2}(1-1/(p-1)^2 ) 对于任意给定的偶数h及充分大的x,用xh(1,2)表示满足下面条件的素数p的个数: p≤x,p+h=p_1或h+p=(p_2)*(p_3), 其中p_1,p_2,p_3都是素数。 Goldbach猜想目前没有证明出来,最好的结果就是陈式定理。陈景润的证明很长,而且非数论专业的人一般不可能读懂。整理过的证明参看 潘承洞,潘承彪 著,《哥德巴赫猜想》,北京:科学出版社,1981。 此书较老,现应已绝版,可在较大的图书馆找到。 教育网中许多FTP都有。公网下载地址:
陈景润(1933年5月22日-1996年3月19日),福建福州人,中国著名数学家,厦门大学数学系毕业。1953年-1954年在北京四中任教,因口齿不清,被拒绝上讲台授课,只可批改作业,后被“停职回乡养病”。调回厦门大学任资料员,同时研究数论。1956年调入中国科学院数学研究所。1980年当选中科院物理学数学部委员。 陈景润主要研究解析数论,1966年发表《表达偶数为一个素数及一个不超过两个素数的乘积之和》(简称“1+2”),成为哥德巴赫猜想研究上的里程碑。而他所发表的成果也被称之为陈氏定理。这项工作还使他与王元、潘承洞在1978年共同获得中国自然科学奖一等奖。他研究哥德巴赫猜想和其他数论问题的成就,至今,仍然在世界上遥遥领先。 世界级的数学大师、美国学者安德烈·韦伊(André Weil)曾这样称赞他:“陈景润的每一项工作,都好像是在喜马拉雅山山巅上行走。” 著有《初等数论》等。 身高:1.71米 功绩:哥德巴赫猜想第一人 个人信息:于厦门大学数学系毕业。短期任中学教师后调回厦门大学任资料员,同时研究数论。1956年调入中国科学院数学研究所。1980年当选中科院物理学数学部委员。主要研究解析数论,1966年发表《大偶数为一个素数及一个不超过两个素数的乘积之和》(简称“1+2”),成为哥德巴赫猜想研究上的里程碑。著有《初等数论》等。 其他:1999年,中国发表纪念陈景润的邮票。另外亦有小行星以他为名。 陈景润在解析数论的研究领域取得多项重大成果,曾获国家自然科学奖一等奖、何梁何利基金奖、华罗庚数学奖等多项奖励。他是第四、五、六届全国人民代表大会代表。著有《数学趣味谈》、《组合数学》等。 1984年4月27日,陈景润在横过马路时,被一辆急驶而来的自行车撞倒,后脑着地,诱发帕金森氏综合症。 1996年3月19日,著名数学家陈景润因病住院,经抢救无效逝世,享年62岁。[编辑本段]【人生简评】 中国有一千个陈景润就了不得( 邓小平) 陈景润,数学家,中国科学院院士。 1933年5月22日生于福建福州。1953 年毕业于厦门大学数学系。1957 年进入中国科学院数学研究所并在华罗庚教授 指导下从事数论方面的研究。历任中国科学院 数学研究所研究员、所学术委员会委员兼贵阳民族学院、河南大学、青岛大学、华中工学院、 福建师范大学等校教授,国家科委数学学科组成员,《数学季刊》主编等职。主要从事解析数论方面的研究,并在哥德巴赫猜想研究方面取得国际领先的成果。这一成果国际上誉为“陈氏定理”,受到广泛应用。这项工作,使之与王元教授、潘承洞教授共同获得 1978 年国家自然科学奖一等奖。其后对上述定理又作了改进,并于1979年初完成论文《算术级数中的最小素数》,将最小素数从原有的80推进到16,受到国际数学界好评。对组合数学与现代经济管理、科学实验、尖端技术、人类生活密切关系等问题也作了研究。发表研究论文 70 余篇,并有《数学趣味谈》、《组合数学》等著作。[编辑本段]【他的婚姻】 徐迟的《哥德巴赫猜想》一文的发表,如旋风般震撼着人们的心灵,震撼着中外数学界。国内外评论说:“陈景润成了中国科学春天的一大盛景”。他被邀参加了全国科学大会,邓小平同志亲切地接见了他。当时陈景润身体不太好,小平同志关怀备至,会议结束后,陈景润被送入北京解放军309医院高干病房。他的到来,轰动了整个医院,院领导给予了盛情的接待,医生和护士无不崇敬这位世界上第一位数学圣人。1977年11月从武汉军区派到309医院进修的由昆,被同伴们拉去看中国这位名人,这真是缘分,过去陈景润连女人名字的边都不粘,连句话都不说的人,此次年近半百的陈景润见到由昆,眼睛一亮,亲切地和由昆打招呼,请她们进来坐下,话也多了。后来由昆被派到陈景润的病房当值班医生。这样,接触的机会多了,每次由昆一出现,陈景润都特别高兴。一天,陈景润关切地问由昆,家住在哪?有没有男朋友、有没有成家?由昆毫不设防,她便心直口快地说:“没有,没有,还早着呢。”以后,由昆也十分关心这位中国数学家,斗转星移,彼此产生了爱情,他们在组织的帮助下结婚了。从此这位被称为“痴人”和“怪人”的数字家陈景润有了一个温暖的家了。[编辑本段]【名人轶事】 陈景润不爱走公园,也不爱逛马路,就爱学习。学习起来,常常忘记了吃饭睡觉。 有一天,陈景润吃中饭的时候,摸摸脑袋,哎呀,头发太长了,应该快去理一理,要不,人家看见了,还当自己是个姑娘呢。于是,他放下饭碗,就跑到理发店去了。 理发店里人很多,大家挨着次序理发。陈景润拿的牌子是三十八号的小牌子。他想:轮到我还早着哩。时间是多么宝贵啊,我可不能白白浪费掉。他赶忙走出理发店,找了个安静的地方坐下来,然后从口袋里掏出个小本子,背起外文生字来。他背了一会,忽然想起上午读外文的时候,有个地方没看懂。不懂的东西,一定要把它弄懂,这是陈景润的脾气。他看了看手表,才十二点半。他想:先到图书馆去查一查,再回来理发还来得及,站起来就走了。谁知道,他走了不多久,就轮到他理发了。理发员叔叔大声地叫:“三十八号!谁是三十八号?快来理发!”你想想,陈景润正在图书馆里看书,他能听见理发员叔叔喊三十八号吗? 过了好些时间,陈景润在图书馆里,把不懂的东西弄懂了,这才高高兴兴地往理发店走去。可是他路过外文阅览室,有各式各样的新书,可好看啦。又跑进去看起书来了,一直看到太阳下山了,他才想起理发的事儿来。他一摸口袋,那张三十八号的小牌子还好好地躺着哩。但是他来到理发店还有啥用呢,这个号码早已过时了。 陈景润进了图书馆,真好比掉进了蜜糖罐,怎么也舍不得离开。可不,又有一天,陈景润吃了早饭,带上两个馒头,一块咸菜,到图书馆去了。 陈景润在图书馆里,找到了一个最安静的地方,认认真真地看起书来。他一直看到中午,觉得肚子有点饿了,就从口袋里掏出一只馒头来,一面啃着,一面还在看书。 “丁零零……”下班的铃声响了,管理员大声地喊:“下班了,请大家离开图书馆!”人家都走了,可是陈景润根本没听见,还是一个劲地在看书呐。 管理员以为大家都离开图书馆了,就把图书馆的大门锁上,回家去了。 时间悄悄地过去,天渐渐地黑下来。陈景润朝窗外一看,心里说:今天的天气真怪!一会儿阳光灿烂,一会儿天又阴啦。他拉了一下电灯的开关线,又坐下来看书。看着看着,忽然,他站了起来。原来,他看了一天书,开窍了。现在,他要赶回宿舍去,把昨天没做完的那道题目,继续做下去。 陈景润把书收拾好,就往外走去。图书馆里静悄悄的,没有一点儿声音。哎,管理员上哪儿去了呢?来看书的人怎么一个也没了呢?陈景润看了一下手表,啊,已经是晚上八点多钟了。他推推大门,大门锁着;他朝门外大声喊叫:“请开门!请开门!”可是没有人回答。 要是在平时,陈景润就会走回座位,继续看书,一直看到第二天早上。可是,今天不行啊!他要赶回宿舍,做那道没有做完的题目呢! 他走到电话机旁边,给办公室打电话。可是没人来接,只有嘟嘟的声音。他又拨了几次号码,还是没有人来接。怎么办呢?这时候,他想起了党委书记,马上给党委书记拨了电话。 “陈景润?”党委书记接到电话,感到很奇怪。他问清楚是怎么一回事,高兴得不得了,笑着说:“陈景润!陈景润!你辛苦了,你真是个好同志。” 党委书记马上派了几个同志,去找图书馆的管理员。图书馆的大门打开了,陈景润向管理员说:“对不起!对不起!谢谢,谢谢!”他一边说一边跑下楼梯,回到了自己的宿舍。 他打开灯,马上做起那道题目起来。
陈景润是我国现代著名数学家,中国科学院院士。在解析数论方面成果显著,在对世界著名的数学难题——哥德巴赫猜想的研究上取得了重大突破。
陈景润1935年出生在福建省福州市闽侯镇的一个邮电职员家庭。家中子女多,经济条件不好。小时候的陈景润长得十分弱小,性格十分内向,显得很不合群,因此遭到小伙伴们的嘲笑辱骂,甚至挨打。但他对数学却有着浓厚的兴趣,一进人数学的王国,就什么都不顾了。
后来,陈景润进入了福州市的英华中学学习。有一天,老师给同学们讲述了数论中的一道著名难题:1742年,德国数学家哥德巴赫发现,任意一个偶数都可以表示为两个素数的和。他对许多偶数进行了检验,结果都是正确的。但他无法对此给出证明,因此只能称之为猜想。他写信给当时有名的大数学家欧拉,请他帮助证明,但欧拉一直到逝世,也没有交给哥德巴赫想要的证明。二百多年来,许多数学家都试图证明它,但都没有成功。老师的话一说完,同学们便议论纷纷起来。老师接着说:“数论是数学的皇冠,而哥德巴赫猜想则是皇冠上的明珠,你们应该从小树立远大的理想,学好数学,长大以后去摘取数学皇冠上的明珠。”教室里立刻鸦雀无声,同学们陷入了沉思,仿佛在思考着什么。陈景润也低头陷入了沉思,这一切对他来说太神秘、太具有吸引力了。他暗暗下定决心,一定要努力学习,长大以后去摘取这颗明珠。
此后,陈景润更加努力地学习数学。他不仅努力完成数学老师留出的数学题,还自学大量的数学书籍。有一次,数学老师布置了33道题,让同学们选做10道。可陈景润不仅做完了33道题,而且每道题都给出了多种解答方法。他的数学成绩在班上一直保持在第一名。
到了高二时,因为家里太穷,陈景润被迫辍学。可令人惊奇的是,到了1950年,他竟以“同等学历”的资格考上了厦门大学。四年的大学数学系课程,陈景润只用三年就学完了。1953年,陈景润以高材生的身份提前毕业,并优先分配到北京某中学当教师。
可是,陈景润内向的性格根本就不适合当教师。他失败了,只得离开中学,来到福州的街口摆书摊度日。但他又是十分幸运的。厦门大学校长王亚南知道他的情况后,立即让陈景润回到厦门大学当了一名图书管理员。这样他就可以专心研究数学了。
来到厦门大学图书馆后,陈景润如鱼得水地在浩瀚的数学海洋中遨游。他认真研读了著名数学家华罗庚的《堆垒素数论》和《数论导引》,对于书中的每一个问题都进行仔细推敲,他发现,华罗庚的书中竟然存在一些细微的错误。于是他鼓起勇气,写了一封信给华罗庚教授,提出了自己的观点。
华罗庚收到陈景润的信后,对他的观点和才华极为欣赏。华罗庚肯定了陈景润的观点,并热情邀请他参加1956年的全国第一次数学研讨会,并在会上宣读了他的论文。会后,华罗庚又将他调到北京的中科院数学研究所工作。
少年时代的梦想陈景润一直没有忘记,他下定决心,一定要努力去摘取那颗明珠。在调到中科院数学研究所以后,他更加努力地工作。为了跟踪世界最新数学研究成果,他以惊人的速度在几年之内学会了俄、英、德、法四门语言。在向哥德巴赫猜想进军的过程中,他废寝忘食,潜心思考,进行了难以想象的大量计算,甚至被别人看成是“呆子”。有一次,他一边走路一边思考,竟撞在一棵大树上,还赶快向“对方”道歉。还有一次,他患肺结核住院,没有痊愈就从医院偷偷地跑了出来——他实在不能再呆下去了,不看数学书,不做数学题,简直是要了他的命。
二百多年来,无数的数学家曾向哥德巴赫猜想发起冲锋,直到1948年,匈牙利数学家恩易才有了较大的突破,他证明了每个大偶数都是一个素数和一个“素因子都不超过6个的”数之和即(1+6)。1962年,我国数学家潘承桐证明了(1+5)。同年,王元、潘承桐又证明了(1+4)。到1965年,布赫斯塔勃等三位外国数学家证明了(1+3)。
1966年,经过近十年艰苦的努力,陈景润在中国科学院的《科学通报》第17期上宣布他已把哥德巴赫猜想的证明推进到了(1+2)!外国科学家证明(1+3)用的是先进的计算机,而陈景润用的是笔和纸!
“文革”期间,陈景润未能幸免,受到了造反派的批判,被称为“吸血虫、伪科学”。然而他克服重重困难,继续进行研究。1973年,陈景润找到了简洁地证明哥德巴赫猜想的方法。他发表了《表大偶数为一个素数及一个不超过两个素数的乘积之和》的学术论文,引起了国内外数学界的巨大反响。我国著名数学家华罗庚、闵嗣鹤等都对此给予了高度评价。世界各国的数学家和权威数学刊物纷纷给予热情的赞扬和肯定,他们称陈景润的研究是“世界上运用‘筛法’的光辉顶点”。英国著名科学家哈勃斯丹和联邦德国数学家李希特看到陈景润的文章后,立即停止正在印刷的著作《筛法》,并推迟出版发行。他们决定把陈景润的论文要点作为全书的最后一章补写到书中,命名为“陈氏定理”。英国数学家赫胥黎给陈景润写信赞美道:“啊,你移动了群山!”直到今天,这一研究成果仍然保持着世界领先水平。
1996年3月19日,陈景润因长期劳累及没有规律的生活,病情加重而逝世。为他送行的一幅挽联,精辟概括出了陈景润不朽的精神和伟大的贡献:
景星有意顽强拼搏移动数学群山摘取明珠光寰宇;
润物无声奋力奉献攀登科技高峰掬捧丹心照汗青!
陈景润(1933年5月22日—1996年3月19日),汉族,籍贯福建省福州市。中国着名数学家,厦门大学数学系毕业。
1966年发表《表达偶数为一个素数及一个不超过两个素数的乘积之和》,成为哥德巴赫猜想研究上的里程碑。而他所发表的成果也被称之为陈氏定理。这项工作还使他与王元、潘承洞在1978年共同获得中国自然科学奖一等奖。
1984年4月陈景润从家中骑车到魏公村的新华书店买书,被一辆急行的自行车撞倒,后脑着地,当即昏迷,在治疗中被诊断患上了帕金森氏综合症。事隔几个月,陈景润乘公共汽车到友谊宾馆开会,车到站时被拥挤的人群从车上挤下,摔昏在地。从此,生活一直需要人护理。
1996年3月19日,因呼吸循环衰竭,经抢救无效于1996年3月19日13时10分逝世,享年62岁。
扩展资料:
人物成就
陈景润研究“哥德巴赫猜想”和其他数论问题的成就,至今仍然在世界上遥遥领先。世界级的数学大师、美国学者阿·威尔曾这样称赞他:“陈景润的每一项工作,都好像是在喜马拉雅山山巅上行走。”1978年和1982年,陈景润两次受到国际数学家大会作45分钟报告的最高规格的邀请。
此外,陈景润还在组合数学与现代经济管理、尖端技术和人类密切关系等方面进行了深入的研究和探讨。他先后在国内外报刊上发表了科学论文70余篇,并有《数学趣味谈》、《组合数学》等著作,曾获国家自然科学奖一等奖、何梁何利基金奖、华罗庚数学奖等多项奖励。
参考资料:百度百科-陈景润
名人之所以为名人,必定有他们的过人之处。下面和我一起来看看现代著名数学家陈景润的故事。希望对大家有所帮助。 陈景润出生在福建省福州市的闽侯镇,他的父亲陈元俊是一个邮电局的小职员。 陈景润到了上学的年龄,父母给他找了一所离家近的小学,送他去读书。在所有的学科中,他特别喜欢数学,只要遨游在代数、几何的题海中,他就能够忘却所有的烦恼。 陈景润平时少言寡语,但非常勤学好问,他总是主动向老师请教问题或借阅参考书。 一个中午,最后一节课下了,陈景润走出教室,回家吃饭。他从书包里拿出一本刚从老师那儿借来的教学书,边走边看。书上的内容像电影一样一幕幕地闪现,陈景润就像一个饥饿的人扑到面包上,大口大口地吞吃着精神的食粮。 他只顾专心致志地看书,不知不觉偏离了方向,朝着路边的小树走去。只听哎哟一声,他撞到了树上。 抗日战争爆发初期,陈景润刚刚升入初中,中学里的一位数学老师使陈景润的`人生之路发生了根本的改变。这位老师就是曾经任清华大学航空系主任的沈元老师。有一次,沈元老师向学生讲了个数学难题,叫哥德巴赫猜想,学生们叽叽喳喳地议论起来。 沈元老师最后又说了一句话:自然科学的皇后是数学,数学的皇冠是数论,而哥德巴赫猜想则是皇冠上的一颗明珠! 陈景润听了这句话后,内心不禁为之一震:哥德巴赫猜想、数学皇冠上的明珠,我能摘下这颗明珠吗? 1973年2月,陈景润的关于(1+2)简化证明的论文终于公开发表了!陈氏定理立即在世界数学界引起轰动,专家们给予他极高的评价。 攀登科学高峰,就像登山运动员攀登珠穆朗玛峰一样,要克服无数艰难险阻,懦夫和懒汉是不可能享受到胜利的喜悦的。
陈景润(1933年5月22日~1996年3月19日),汉族,福建福州人。中国著名数学家,陈景润的生活(19张)厦门大学数学系毕业。1953年~1954年在北京四中任教,因口齿不清,被拒绝上讲台授课,只可批改作业。
后被“停职回乡养病”,调回厦门大学任资料员,同时研究数论,对组合数学与现代经济管理、科学实验、尖端技术、人类生活的密切关系等问题也作了研究。1956年调入中国科学院数学研究所。1980年当选中科院物理学数学部委员(现在的院士)。
他研究哥德巴赫猜想和其他数论问题的成就,至今仍然在世界上遥遥领先,被称为哥德巴赫猜想第一人。世界级的数学大师、美国学者安德烈·韦(André Weil)曾这样称赞他:“陈景润的每一项工作,都好像是在喜马拉雅山山巅上行走。”
历任中国科学院数学研究所研究员、所学术委员会委员兼贵阳民族学院、河南大学、青岛大学、华中工学院、福建师范大学等校教授,国家科委数学学科组成员,《数学季刊》主编等职。发表研究论文 25篇,并有《数学趣味谈》、《组合数学》等著作。
扩展资料
相关故事:
数学家陈景润在大学读书时,生活极为简朴,他始终穿着一件黑色的学生装.由于家境贫寒,他经常一天吃两顿饭,为的是把省下的钱用来买书.他说:“饭可以不吃,书不可以不念。”他平时不看电影,不随便和人闲聊,全身心地投入学习当中。
那时宿舍有按时熄灯的制度,他为了不影响别人休息,便把头埋在被窝里,打着手电筒看书。在进军“哥德巴赫猜想”时,他居住在6平方米的小屋里,演算全靠自己笔算。
他演算的手稿有几麻袋,就这样,日复一日,年复一年,整整十年过去了,陈景润在1966年终于攻克了“(1+2)”这个堡垒。英国数学家哈勃斯丹和西德数学家李希特把陈景润的发现誉为“陈氏定理”,说它是“筛法”的“光辉顶点”,一位英国数学家写信称赞他:“您,移动了群山!”
参考资料来源:百度百科-陈景润
【基本信息】姓名:陈景润 (1933—1996)身高:1.71米国家或地区:中国身份:数学家功绩:哥德巴赫猜想第一人曾系中国科学院院士【具体信息】■简历:1933年5月22日生于福建闽侯。家境贫寒,学习刻苦,他在中、小学读书时,就对数学情有独钟。一有时间就演算习题,在学校里成了个“小数学迷”。他不善言辞,为人真诚和善,从不计较个人得失,把毕生经历都献给了数学事业。高中没毕业就以同等学历考入厦门大学。1953年毕业于厦门大学数学系。1957年进入中国科学院数学研究所并在华罗庚教授指导下从事数论方面的研究。历任中国科学院数学研究所研究员、学术委员会委员兼贵阳民族学院、河南大学、青岛大学、华中工学院、福建师范大学等校教授,国家科委数学学科组成员,《数学季刊》主编等职。主要从事解析数论方面的研究,并在哥德巴赫猜想研究方面取得国际领先的成果。这一成果国际上誉为“陈氏定理”,受到广泛引用。■主要成果:1742年6月7日,德国数学家哥德巴赫提出一个未经证明的数学猜想“任何一个偶数均可表示两个素数之和”简称:“ 1+1”。这一猜想被称为“哥德巴赫猜想”。中国人运用新的方法,打开了“哥德巴赫猜想”的奥秘之门,摘取了此项桂冠,为世人所瞩目。这个人就是世界上攻克“哥德巴赫猜想”的第一个人——陈景润。陈景润除攻克这一难题外,又把组合数学与现代经济管理、尖端技术和人类密切关系等方面进行了深入的研究和探讨。他先后在国内外报刊上发明了科学论文70余篇,并有《数学趣味谈》、《组合数学》等著作。陈景润在解析数论的研究领域取得多项重大成果,曾获国家自然科学奖一等奖、何梁何利基金奖、华罗庚数学奖等多项奖励。他是第四、五、六届全国人民代表大会代表。著有《数学趣味谈》、《组合数学》等。■巨星的陨落 :1984年4月27日,陈景润在横过马路时,被一辆急驶而来的自行车撞倒,后脑着地,酿成意外的重伤。雪上加霜,身体本来就不大好的陈景润,受到了几乎致命的创伤。他从医院里出来,苍白的脸上,有时泛着让人忧郁的青灰色,不久,终于诱发了帕金森氏综合症。1996年3月19日,著名数学家陈景润因病长期住院,经抢救无效逝世,终年63岁。【他的婚姻】徐迟的《哥德巴赫猜想》一文的发表,如旋风般震撼着人们的心灵,震撼着中外数学界。国内外评论说:“陈景润成了中国科学春天的一大盛景”。他被邀参加了全国科学大会,邓小平同志亲切地接见了他。当时陈景润身体不太好,小平同志关怀备至,会议结束后,陈景润被送入北京解放军309医院高干病房。他的到来,轰动了整个医院,院领导给予了盛情的接待,医生和护士无不崇敬这位世界上第一位数学圣人。1977年11月从武汉军区派到309医院进修的由昆,被同伴们拉去看中国这位名人,这真是缘分,过去陈景润连女人名字的边都不粘,连句话都不说的人,此次年近半百的陈景润见到由昆,眼睛一亮,亲切地和由昆打招呼,请她们进来坐下,话也多了。后来由昆被派到陈景润的病房当值班医生。这样,接触的机会多了,每次由昆一出现,陈景润都特别高兴。一天,陈景润关切地问由昆,家住在哪?有没有成家、有没有男朋友?由昆毫不设防,她便心真口快地说:“没有,没有,还早着呢。”以后,由昆也十分关心这位中国数学家,斗转星移,彼此产生了爱情,他们在组织的帮助下结婚了。从此这位被称为“痴人”和“怪人”的数字家陈景润有了一个温暖的家了。【名人轶事】陈景润不爱玩公园,不爱逛马路,就爱学习。学习起来,常常忘记了吃饭睡觉。有一天,陈景润吃中饭的时候,摸摸脑袋,哎呀,头发太长了,应该快去理一理,要不,人家看见了,还当他是个姑娘呢。于是,他放下饭碗,就跑到理发店去了。理发店里人很多,大家挨着次序理发。陈景润拿的牌子是三十八号的小牌子。他想:轮到我还早着哩。时间是多么宝贵啊,我可不能白白浪费掉。他赶忙走出理发店,找了个安静的地方坐下来,然后从口袋里掏出个小本子,背起外文生字来。他背了一会,忽然想起上午读外文的时候,有个地方没看懂。不懂的东西,一定要把它弄懂,这是陈景润的脾气。他看了看手表,才十二点半。他想:先到图书馆去查一查,再回来理发还来得及,站起来就走了。谁知道,他走了不多久,就轮到他理发了。理发员叔叔大声地叫:“三十八号!谁是三十八号?快来理发!”你想想,陈景润正在图书馆里看书,他能听见理发员叔叔喊三十八号吗?过了好些时间,陈景润在图书馆里,把不懂的东西弄懂了,这才高高兴兴地往理发店走去。可是他路过外文阅览室,有各式各样的新书,可好看啦。又跑进去看起书来了,一直看到太阳下山了,他才想起理发的事儿来。他一摸口袋,那张三十八号的小牌子还好好地躺着哩。但是他来到理发店还有啥用呢,这个号码早已过时了。陈景润进了图书馆,真好比掉进了蜜糖罐,怎么也舍不得离开。可不,又有一天,陈景润吃了早饭,带上两个馒头,一块咸菜,到图书馆去了。陈景润在图书馆里,找到了一个最安静的地方,认认真真地看起书来。他一直看到中午,觉得肚子有点饿了,就从口袋里掏出一只馒头来,一面啃着,一面还在看书。“丁零零……”下班的铃声响了,管理员大声地喊:“下班了,请大家离开图书馆!”人家都走了,可是陈景润根本没听见,还是一个劲地在看书呐。管理员以为大家都离开图书馆了,就把图书馆的大门锁上,回家去了。时间悄悄地过去,天渐渐地黑下来。陈景润朝窗外一看,心里说:今天的天气真怪!一会儿阳光灿烂,一会儿天又阴啦。他拉了一下电灯的开关线,又坐下来看书。看着看着,忽然,他站了起来。原来,他看了一天书,开窍了。现在,他要赶回宿舍去,把昨天没做完的那道题目,继续做下去。陈景润把书收拾好,就往外走去。图书馆里静悄俏的,没有一点儿声音。哎,管理员上哪儿去了呢?来看书的人怎么一个也没了呢?陈景润看了一下手表,啊,已经是晚上八点多钟了。他推推大门,大门锁着;他朝门外大声喊叫:“请开门!请开门!”可是没有人回答。要是在平时,陈景润就会走回座位,继续看书,一直看到第二天早上。可是,今天不行啊!他要赶回宿舍,做那道没有做完的题目呢!他走到电话机旁边,给办公室打电话。可是没人来接,只有嘟嘟的声音。他又拨了几次号码,还是没有人来接。怎么办呢?这时候,他想起了党委书记,马上给党委书记拨了电话。“陈景润?”党委书记接到电话,感到很奇怪。他问清楚是怎么一回事,高兴得不得了,笑着说:“陈景润!陈景润!你辛苦了,你真是个好同志。”党委书记马上派了几个同志,去找图书馆的管理员。图书馆的大门打开了,陈景润向管理员说:“对不起!对不起!谢谢,谢谢!”他一边说一边跑下楼梯,回到了自己的宿舍。他打开灯,马上做起那道题目来。【陈景润与哥德巴赫猜想】陈景润在福州英华中学读书时,有幸聆听了清华大学调来一名很有学问的数学教师讲课。他给同学们讲了世界上一道数学难题:“大约在200年前,一位名叫哥德巴赫的德国数学家提出了‘任何一个偶数均可表示两个素数之和’,简称1+l。他一生没有证明出来,便给俄国圣彼得堡的数学家欧拉写信,请他帮助证明这道难题。欧拉接到信后,就着手计算。他费尽了脑筋,直到离开人世,也没有证明出来。之后,哥德巴赫带着一生的遗憾也离开了人世,却留下了这道数学难题。200多年来,这个哥德巴赫猜想之谜吸引了众多的数学家,但始终没有结果,成为世界数学界一大悬案”。老师讲到这里还打个形象的比喻,自然科学皇后是数学,“哥德巴赫猜想”则是皇后王冠上的明珠!这引人入胜的故事给陈景润留下了深刻的印象,“哥德巴赫猜想”像磁石一般吸引着陈景润。从此,陈景润开始了摘取皇冠上宝石的艰辛历程......1953年,陈景润毕业于厦门大学数学系,曾被留校,当了一名图书馆的资料员,除整理图书资料外,还担负着为数学系学生批改作业的工作,尽管时间紧张、工作繁忙,他仍然坚持不懈地钻研数学科学。陈景润对数学论有浓厚的兴趣,利用一切可以利用的时间系统地阅读了我国著名数学家华罗庚有关数学的专著。陈景润为了能直接阅读外国资料,掌握最新信息,在继续学习英语的同时,又攻读了俄语、德语、法语、日语、意大利语和西班牙语。学习这些个国家语言对一个数学家来说已是一个惊人突破了,但对陈景润来说只是万里长征迈出的第一步。为了使自己梦想成真,陈景润不管是酷暑还是严冬,在那不足6平米的斗室里,食不知味,夜不能眠,潜心钻研,光是计算的草纸就足足装了几麻袋。1957年,陈景润被调到中国科学院研究所工作,做为新的起点,他更加刻苦钻研。经过10多年的推算,在1965年5月,发表了他的论文《大偶数表示一个素数及一个不超过2个素数的乘积之和》。论文的发表,受到世界数学界和著名数学家的高度重视和称赞。英国数学家哈伯斯坦和德国数学家黎希特把陈景润的论文写进数学书中,称为“陈氏定理”,陈景润终于攻克了“哥德巴赫猜想”这一世界数学之谜,这一世界数学“悬案”终于被陈景润所破译,皇后王冠上的明珠终于被陈景润所摘取。可是这个世界数学领域的精英,在日常生活中却不知商品分类,有的商品名字都叫不出来,被称为“痴人”和“怪人”。作家徐迟在《哥德巴赫猜想》中这样描绘陈景润的内心世界:“我知道我的病早已严重起来。我是病入膏肓了。细菌在吞噬我的肺腑内脏。我的心力已到了衰竭的地步。我的身体确实是支持不了啦!唯独我的脑细胞是异常的活跃,所以我的工作停不下来。我不能停止。……”对于陈景润的贡献,中国的数学家们有过这样一句表述:陈景润是在挑战解析数论领域250年来全世界智力极限的总和。中国改革开放总设计师邓小平曾经这样意味深长地告诉人们:像陈景润这样的科学家,“中国有一千个就了不得”。
陈景润(1933年5月22日-1996年3月19日),男,汉族,无党派人士,福建福州人,当代数学家。1949年至1953年就读于厦门大学数学系,1953年9月分配到北京四中任教。1955年2月由当时厦门大学的校长王亚南先生举荐,回母校厦门大学数学系任助教。
1957年10月,由于华罗庚教授的赏识,陈景润被调到中国科学院数学研究所。1973年发表了(1+2)的详细证明,被公认为是对哥德巴赫猜想研究的重大贡献。1981年3月当选为中国科学院学部委员(院士)。
扩展资料
陈景润1978年发表在《人民文学》当年第一期的报告文学《哥德巴赫猜想》,《人民日报》1978年2月17日进行了转载,立即在全国引起轰动。一篇轰动全中国的报告文学《哥德巴赫猜想》,使得数学奇才陈景润一夜之间街知巷闻、家喻户晓。
1973年,他发表的著名论文《大偶数表为一个素数与不超过两个素数乘积之和》(即“1+2”),把几百年来人们未曾解决的哥德巴赫猜想的证明大大推进了一步,引起轰动,在国际上被命名为“陈氏定理”。他的事迹和钻研精神在全国广为传颂。
参考资料来源:人民网-人民日报:只知道陈奕迅不知道陈景润的惆怅
参考资料来源:百度百科-陈景润
陈景润(1933年5月22日—1996年3月19日),汉族,籍贯福建省福州市。中国着名数学家,厦门大学数学系毕业。
1966年发表《表达偶数为一个素数及一个不超过两个素数的乘积之和》,成为哥德巴赫猜想研究上的里程碑。而他所发表的成果也被称之为陈氏定理。这项工作还使他与王元、潘承洞在1978年共同获得中国自然科学奖一等奖。
1984年4月陈景润从家中骑车到魏公村的新华书店买书,被一辆急行的自行车撞倒,后脑着地,当即昏迷,在治疗中被诊断患上了帕金森氏综合症。事隔几个月,陈景润乘公共汽车到友谊宾馆开会,车到站时被拥挤的人群从车上挤下,摔昏在地。从此,生活一直需要人护理。
1996年3月19日,因呼吸循环衰竭,经抢救无效于1996年3月19日13时10分逝世,享年62岁。
扩展资料:
人物成就
陈景润研究“哥德巴赫猜想”和其他数论问题的成就,至今仍然在世界上遥遥领先。世界级的数学大师、美国学者阿·威尔曾这样称赞他:“陈景润的每一项工作,都好像是在喜马拉雅山山巅上行走。”1978年和1982年,陈景润两次受到国际数学家大会作45分钟报告的最高规格的邀请。
此外,陈景润还在组合数学与现代经济管理、尖端技术和人类密切关系等方面进行了深入的研究和探讨。他先后在国内外报刊上发表了科学论文70余篇,并有《数学趣味谈》、《组合数学》等著作,曾获国家自然科学奖一等奖、何梁何利基金奖、华罗庚数学奖等多项奖励。
参考资料:百度百科-陈景润
1、霍奇猜想(Hodge conjecture):
二十世纪的数学家们发现了研究复杂对象的形状的强有力的办法。基本想法是问在怎样的程度上,我们可以把给定对象的形状通过把维数不断增加的简单几何营造块粘合在一起来形成。
这种技巧是变得如此有用,使得它可以用许多不同的方式来推广;最终导致一些强有力的工具,使数学家在对他们研究中所遇到的形形色色的对象进行分类时取得巨大的进展。
不幸的是,在这一推广中,程序的几何出发点变得模糊起来。在某种意义下,必须加上某些没有任何几何解释的部件。
霍奇猜想断言,对于所谓射影代数簇这种特别完美的空间类型来说,称作霍奇闭链的部件实际上是称作代数闭链的几何部件的(有理线性)组合。
2、庞加莱猜想(Poincaré conjecture):
如果我们伸缩围绕一个苹果表面的橡皮带,那么我们可以既不扯断它,也不让它离开表面,使它慢慢移动收缩为一个点。
另一方面,如果我们想象同样的橡皮带以适当的方向被伸缩在一个轮胎面上,那么不扯断橡皮带或者轮胎面,是没有办法把它收缩到一点的。
我们说,苹果表面是“单连通的”,而轮胎面不是。大约在一百年以前,法国数学家庞加莱已经知道,二维球面本质上可由单连通性来刻画,他提出三维球面的对应问题。这个问题立即变得无比困难,从那时起,数学家们就在为此奋斗。
3、黎曼假设:
有些数具有不能表示为两个更小的数的乘积的特殊性质,例如,2、3、5、7……等等。这样的数称为素数;它们在纯粹数学及应用数学中都起着重要作用。
在所有自然数中,素数分布似乎并不遵循任何有规则的模式;然而,德国数学家黎曼(1826~1866)观察到,素数的频率紧密相关于所谓的黎曼ζ函数。
黎曼假设断言,方程ζ(s)=0的非平凡零点的实部都是1/2,即位于直线1/2 + ti(“临界线”,critical line)上。这点已经对于开首的1,500,000,000个解验证过。证明它对于每一个有意义的解都成立,将为围绕素数分布的许多奥秘带来光明。
4、杨-米尔斯(Yang-Mills)存在性和质量缺口:
量子物理的定律是以经典力学的牛顿定律对宏观世界的方式对基本粒子世界成立的。大约半个世纪以前,杨振宁和罗伯特·米尔斯发现,量子物理揭示了在基本粒子物理与几何对象的数学之间的令人注目的关系。
基于杨-米尔斯方程的预言已经在如下的全世界范围内的实验室中所履行的高能实验中得到证实:布罗克哈文、斯坦福、欧洲粒子物理研究所和筑波。
尽管如此,他们的既描述重粒子、又在数学上严格的方程,并没有已知的解。特别是,被大多数物理学家所确认、并且在他们的对于“夸克”的不可见性的解释中应用的“质量缺口”假设,从来没有得到一个数学上令人满意的证实。
周氏猜测:
当2^(2^n)
周海中还据此作出推论:当p<2^(2^(n+1))时,Mp有2^(n+2)-n-2个是素数。
关于梅森素数的分布研究,英国数学家香克斯、德国数学家伯利哈特、印度数学家拉曼纽杨和美国数学家吉里斯等曾分别提出过猜测,但他们的猜测有一个共同点,就是都以近似表达式提出;而它们与实际情况的接近程度均难如人意。
唯有周氏猜测是以精确表达式提出,而且颇具数学美。这一猜测至今未被证明或反证,已成了著名的数学难题。
美籍挪威数论大师、菲尔茨奖和沃尔夫奖得主阿特勒·塞尔伯格认为:周氏猜测具有创新性,开创了富于启发性的新方法;其创新性还表现在揭示新的规律上。
百度百科--数学难题
世界近代三大数学难题之一四色猜想 四色猜想的提出来自英国。1852年,毕业于伦敦大学的弗南西斯.格思里来到一家科研单位搞地图着色工作时,发现了一种有趣的现象:“看来,每幅地图都可以用四种颜色着色,使得有共同边界的国家着上不同的颜色。”这个结论能不能从数学上加以严格证明呢?他和在大学读书的弟弟格里斯决心试一试。兄弟二人为证明这一问题而使用的稿纸已经堆了一大叠,可是研究工作没有进展。 1852年10月23日,他的弟弟就这个问题的证明请教他的老师、著名数学家德.摩尔根,摩尔根也没有能找到解决这个问题的途径,于是写信向自己的好友、著名数学家哈密尔顿爵士请教。哈密尔顿接到摩尔根的信后,对四色问题进行论证。但直到1865年哈密尔顿逝世为止,问题也没有能够解决。 1872年,英国当时最著名的数学家凯利正式向伦敦数学学会提出了这个问题,于是四色 猜想成了世界数学界关注的问题。世界上许多一流的数学家都纷纷参加了四色猜想的大会战 。1878~1880年两年间,著名的律师兼数学家肯普和泰勒两人分别提交了证明四色猜想的论文,宣布证明了四色定理,大家都认为四色猜想从此也就解决了。 11年后,即1890年,数学家赫伍德以自己的精确计算指出肯普的证明是错误的。不久,泰勒的证明也被人们否定了。后来,越来越多的数学家虽然对此绞尽脑汁,但一无所获。于是,人们开始认识到,这个貌似容易的题目, 实是一个可与费马猜想相媲美的难题:先辈数学大师们的努力,为后世的数学家揭示四色猜想之谜铺平了道路。 进入20世纪以来,科学家们对四色猜想的证明基本上是按照肯普的想法在进行。1913年,伯克霍夫在肯普的基础上引进了一些新技巧,美国数学家富兰克林于1939年证明了22国以下的地图都可以用四色着色。1950年,有人从22国推进到35国。1960年,有人又证明了39国以下的地图可以只用四种颜色着色;随后又推进到了50国。看来这种推进仍然十分缓慢。电子计算机问世以后,由于演算速度迅速提高,加之人机对话的出现,大大加快了对四色猜想证明的进程。1976年,美国数学家阿佩尔与哈肯在美国伊利诺斯大学的两台不同的电子计算机上,用了1200个小时,作了100亿判断,终于完成了四色定理的证明。四色猜想的计算机证明,轰动了世界。它不仅解决了一个历时100多年的难题,而且有可能成为数学史上一系列新思维的起点。不过也有不少数学家并不满足于计算机取得的成就,他们还在寻找一种简捷明快的书面证明方法。 -------- 世界近代三大数学难题之一 费马最后定理 被公认执世界报纸牛耳地位地位的纽约时报於1993年6月24日在其一版头题刊登了一则有 关数学难题得以解决的消息,那则消息的标题是「在陈年数学困局中,终於有人呼叫『 我找到了』」。时报一版的开始文章中还附了一张留着长发、穿着中古世纪欧洲学袍的 男人照片。这个古意盎然的男人,就是法国的数学家费马(Pierre de Fermat)(费马 小传请参考附录)。费马是十七世纪最卓越的数学家之一,他在数学许多领域中都有极 大的贡献,因为他的本行是专业的律师,为了表彰他的数学造诣,世人冠以「业余王子 」之美称,在三百六十多年前的某一天,费马正在阅读一本古希腊数学家戴奥芬多斯的 数学书时,突然心血来潮在书页的空白处,写下一个看起来很简单的定理这个定理的内 容是有关一个方程式 x2 + y2 =z2的正整数解的问题,当n=2时就是我们所熟知的毕氏定 理(中国古代又称勾股弦定理):x2 + y2 =z2,此处z表一直角形之斜边而x、y为其之 两股,也就是一个直角三角形之斜边的平方等於它的两股的平方和,这个方程式当然有 整数解(其实有很多),例如:x=3、y=4、z=5;x=6、y=8、z=10;x=5、y=12、z=13… 等等。 费马声称当n>2时,就找不到满足xn +yn = zn的整数解,例如:方程式x3 +y3=z3就无法 找到整数解。 当时费马并没有说明原因,他只是留下这个叙述并且也说他已经发现这个定理的证明妙 法,只是书页的空白处不够无法写下。始作俑者的费马也因此留下了千古的难题,三百 多年来无数的数学家尝试要去解决这个难题却都徒劳无功。这个号称世纪难题的费马最 后定理也就成了数学界的心头大患,极欲解之而后快。 十九世纪时法国的法兰西斯数学院曾经在一八一五年和一八六0年两度悬赏金质奖章和 三百法郎给任何解决此一难题的人,可惜都没有人能够领到奖赏。德国的数学家佛尔夫 斯克尔(P?Wolfskehl)在1908年提供十万马克,给能够证明费马最后定理是正确的人, 有效期间为100年。其间由於经济大萧条的原因,此笔奖额已贬值至七千五百马克,虽然 如此仍然吸引不少的「数学痴」。 二十世纪电脑发展以后,许多数学家用电脑计算可以证明这个定理当n为很大时是成立的 ,1983年电脑专家斯洛文斯基借助电脑运行5782秒证明当n为286243-1时费马定理是正确 的(注286243-1为一天文数字,大约为25960位数)。 虽然如此,数学家还没有找到一个普遍性的证明。不过这个三百多年的数学悬案终於解 决了,这个数学难题是由英国的数学家威利斯(Andrew Wiles)所解决。其实威利斯是 利用二十世纪过去三十年来抽象数学发展的结果加以证明。 五0年代日本数学家谷山丰首先提出一个有关椭圆曲现的猜想,后来由另一位数学家志 村五郎加以发扬光大,当时没有人认为这个猜想与费马定理有任何关联。在八0年代德 国数学家佛列将谷山丰的猜想与费马定理扯在一起,而威利斯所做的正是根据这个关联 论证出一种形式的谷山丰猜想是正确的,进而推出费马最后定理也是正确的。这个结论 由威利斯在1993年的6月21日於美国剑桥大学牛顿数学研究所的研讨会正式发表,这个报 告马上震惊整个数学界,就是数学门墙外的社会大众也寄以无限的关注。不过威利斯的 证明马上被检验出有少许的瑕疵,於是威利斯与他的学生又花了十四个月的时间再加以 修正。1994年9月19日他们终於交出完整无瑕的解答,数学界的梦魇终於结束。1997年6 月,威利斯在德国哥庭根大学领取了佛尔夫斯克尔奖。当年的十万法克约为两百万美金 ,不过威利斯领到时,只值五万美金左右,但威利斯已经名列青史,永垂不朽了。 要证明费马最后定理是正确的 (即xn + yn = zn 对n33 均无正整数解) 只需证 x4+ y4 = z4 和xp+ yp = zp (P为奇质数),都没有整数解。 ---------------- 世界近代三大数学难题之一 哥德巴赫猜想 哥德巴赫是德国一位中学教师,也是一位著名的数学家,生于1690年,1725年当选为俄国彼得堡科学院院士。1742年,哥德巴赫在教学中发现,每个不小于6的偶数都是两个素数(只能被和它本身整除的数)之和。如6=3+3,12=5+7等等。 1742年6月7日,哥德巴赫写信将这个问题告诉给意大利大数学家欧拉,并请他帮助作出证明。欧拉在6月30日给他的回信中说,他相信这个猜想是正确的,但他不能证明。叙述如此简单的问题,连欧拉这样首屈一指的数学家都不能证明,这个猜想便引起了许多数学家的注意。他们对一个个偶数开始进行验算,一直算到3.3亿,都表明猜想是正确的。但是对于更大的数目,猜想也应是对的,然而不能作出证明。欧拉一直到死也没有对此作出证明。从此,这道著名的数学难题引起了世界上成千上万数学家的注意。200年过去了,没有人证明它。哥德巴赫猜想由此成为数学皇冠上一颗可望不可及的“明珠”。到了20世纪20年代,才有人开始向它靠近。1920年、挪威数学家布爵用一种古老的筛选法证明,得出了一个结论:每一个比大的偶数都可以表示为(99)。这种缩小包围圈的办法很管用,科学家们于是从(9十9)开始,逐步减少每个数里所含质数因子的个数,直到最后使每个数里都是一个质数为止,这样就证明了“哥德巴赫”。 1924年,数学家拉德马哈尔证明了(7+7);1932年,数学家爱斯尔曼证明了(6+6);1938年,数学家布赫斯塔勃证明了(5十5),1940年,他又证明了(4+4);1956年,数学家维诺格拉多夫证明了(3+3);1958年,我国数学家王元证明了(2十3)。随后,我国年轻的数学家陈景润也投入到对哥德巴赫猜想的研究之中,经过10年的刻苦钻研,终于在前人研究的基础上取得重大的突破,率先证明了(l十2)。至此,哥德巴赫猜想只剩下最后一步(1+1)了。陈景润的论文于1973年发表在中国科学院的《科学通报》第17期上,这一成果受到国际数学界的重视,从而使中国的数论研究跃居世界领先地位,陈景润的有关理论被称为“陈氏定理”。1996年3月下旬,当陈景润即将摘下数学王冠上的这颗明珠,“在距离哥德巴赫猜想(1+1)的光辉顶峰只有飓尺之遥时,他却体力不支倒下去了……”在他身后,将会有更多的人去攀登这座高峰。 。。。。。。先做这三道
陈景润(1933年5月22日-1996年3月19日),男,汉族,无党派人士,福建福州人,当代数学家。1949年至1953年就读于厦门大学数学系,1953年9月分配到北京四中任教。1955年2月由当时厦门大学的校长王亚南先生举荐,回母校厦门大学数学系任助教。
1957年10月,由于华罗庚教授的赏识,陈景润被调到中国科学院数学研究所。1973年发表了(1+2)的详细证明,被公认为是对哥德巴赫猜想研究的重大贡献。1981年3月当选为中国科学院学部委员(院士)。
扩展资料
陈景润1978年发表在《人民文学》当年第一期的报告文学《哥德巴赫猜想》,《人民日报》1978年2月17日进行了转载,立即在全国引起轰动。一篇轰动全中国的报告文学《哥德巴赫猜想》,使得数学奇才陈景润一夜之间街知巷闻、家喻户晓。
1973年,他发表的著名论文《大偶数表为一个素数与不超过两个素数乘积之和》(即“1+2”),把几百年来人们未曾解决的哥德巴赫猜想的证明大大推进了一步,引起轰动,在国际上被命名为“陈氏定理”。他的事迹和钻研精神在全国广为传颂。
参考资料来源:人民网-人民日报:只知道陈奕迅不知道陈景润的惆怅
参考资料来源:百度百科-陈景润
1 + 1 =2?