首页

职称论文知识库

首页 职称论文知识库 问题

侯慧林又有新论文发表了吗

发布时间:

侯慧林又有新论文发表了吗

伊本·海赛木(约965~约1039年),中世纪阿拉伯学者。又译为阿尔哈曾,曾简译为海桑 。在光学、医学、天文学和数学方面都有重大贡献。11世纪初,埃及流行眼病,当时在开罗的天文中心工作的伊本·海赛木根据医师们的经验,特别是通过他自己的一些有关反射、折射、暗室视觉等实验,仔细研究了人的视觉。在其名著《光学宝鉴》中,他否定了人眼对外发光的旧视觉观念及提出由物体发出光线锥而引起视觉的观点;他所提出的人眼结构和眼球内的三种透明体的名称沿用至今 ;他明确入射光与反射光共面及球面反射成像原理;他还讨论了光之折射和玻璃球的放大像的作用。除《光学宝鉴》外,他还有几何学著作及一些保留下来的手稿,其他均已散失。

笛卡尔

勒奈·笛卡尔(1596~1650年),出生于法国,是法国数学家、科学家和哲学家。

笛卡尔不仅在哲学领域里开辟了一条新的道路,同时笛卡尔又是一勇于探索的科学家,在物理学、生理学等领域都有值得称道的创见,特别是在物理学方面做出了有益的贡献。从1619年读了约翰尼斯·开普勒的光学著作后,笛卡儿就一直关注着透镜理论,并从理论和实践两方面参与了对光的本质、反射与折射率以及磨制透镜的研究。他把光的理论视为整个知识体系中最重要的部分。

笛卡尔运用他的坐标几何学从事光学研究,在《屈光学》中第一次对折射定律提出了理论上的推证。他认为光是压力在以太中的传播,他从光的发射论的观点出发,用网球打在布面上的模型来计算光在两种媒质分界面上的反射、折射和全反射,从而首次在假定平行于界面的速度分量不变的条件下导出折射定律;不过他的假定条件是错误的,他的推证得出了光由光疏媒质进入光密媒质时速度增大的错误结论。他还对人眼进行光学分析,解释了视力失常的原因是晶状体变形,设计了矫正视力的透镜。

威里布里德·斯涅耳

威里布里德·斯涅耳(1591~1626年),荷兰莱顿人,数学家和物理学家,曾在莱顿大学担任过数学教授。斯涅尔最早发现了光的折射定律,从而使几何光学的精确计算成为了可能。斯涅耳的这一折射定律(也称斯涅耳定律)是从实验中得到的,未做任何的理论推导,虽然正确,但却从未正式公布过。只是后来惠更斯和伊萨克·沃斯两人在审查他遗留的手稿时,才看到这方面的记载。

首次把折射定律表述为今天的这种形式的是笛卡儿,他没做任何的实验,只是从一些假设出发,并从理论上推导出这个定律的。笛卡儿在他的《屈光学》(1637)一书中论述了这个问题。

折射定律是几何学的最重要基本定律之一。斯涅耳的发现为几何光学的发展奠定了理论基础,把光学的发展大大地推进了一步。

惠更斯

克里斯蒂安·惠更斯(1629~1695年)于1629年4月14 日出生于海牙,是荷兰著名的物理学家、天文学家、数学家、他是介于伽利略与牛顿之间一位重要的物理学先驱,是历史上最著名的物理学家之一,他对力学的发展和光学的研究都有杰出的贡献。

1645~1647年在莱顿大学学习法律与数学;1647~1649年转入布雷达学院深造。在阿基米德等人著作及笛卡儿等人直接影响下,致力于力学、光波学、天文学及数学的研究。他善于把科学实践和理论研究结合起来,透彻地解决问题。因此,在摆钟的发明、天文仪器的设计、弹性体碰撞和光的波动理论等方面都有突出成就。

惠更斯原理是近代光学的一个重要基本理论。但它虽然可以预料光的衍射现象的存在,却不能对这些现象做出解释 ,也就是它可以确定光波的传播方向,而不能确定沿不同方向传播的振动的振幅。因此,惠更斯原理是人类对光学现象的一个近似的认识。直到后来,菲涅耳对惠更斯的光学理论作了发展和补充,创立了“惠更斯—菲涅耳原理”,才较好地解释了衍射现象,完成了光的波动说的全部理论。

1678年,他在法国科学院的一次演讲中公开反对了牛顿的光的微粒说。他说,如果光是微粒性的,那么光在交叉时就会因发生碰撞而改变方向。可当时人们并没有发现这一现象,而且利用微粒说解释折射现象,将得到与实际相矛盾的结果。因此,惠更斯在1690年出版的《光论》一书中正式提出了光的波动说,建立了著名的惠更斯原理。在此原理基础上,他推导出了光的反射和折射定律,圆满地解释了光速在光密介质中减小的原因,同时还解释了光进入冰洲石所产生的双折射现象,认为这是由于冰洲石分子微粒为椭圆形所致。

菲涅耳

菲涅耳(1788~1827年)是法国物理学家和铁路工程师。 1788年5月10日生于布罗利耶,1806年毕业于巴黎工艺学院,1809年又毕业于巴黎桥梁与公路学校。1823年当选为法国科学院院士,1825年被选为英国皇家学会会员。1827年7月14日因肺病医治无效而逝世,终年仅39岁。

菲涅耳的科学成就主要有两个方面。一是衍射。他以惠更斯原理和干涉原理为基础,用新的定量形式建立了惠更斯—菲涅耳原理,完善了光的衍射理论。他的实验具有很强的直观性、敏锐性,很多现仍通行的实验和光学元件都冠有菲涅耳的姓氏,如:双面镜干涉、波带片、菲涅耳透镜、圆孔衍射等。另一成就是偏振。他与D.F.J.阿拉果一起研究了偏振光的干涉,确定了光是横波(1821);他发现了光的圆偏振和椭圆偏振现象(1823),用波动说解释了偏振面的旋转;他推出了反射定律和折射定律的定量规律,即菲涅耳公式;解释了马吕斯的反射光偏振现象和双折射现象,奠定了晶体光学的基础。

菲涅耳由于在物理光学研究中的重大成就,被誉为“物理光学的缔造者”。

伦琴

威尔姆·康拉德·伦琴(1845~1923年),德国物理学家,1845年3月27日生于莱纳普,三岁时全家迁居荷兰并入荷兰籍。1865年迁居瑞士苏黎世,伦琴进入苏黎世联邦工业大学机械工程系,1868年毕业。1869年获苏黎世大学博士学位,并担任了物理学教授A.孔脱的助手;1870年随同孔脱返回德国,1871年随他到维尔茨堡大学,1872年又随他到斯特拉斯堡大学工作。1894年任维尔茨堡大学校长,1900年任慕尼黑大学物理学教授和物理研究所主任。1923年2月10日在慕尼黑逝世。

伦琴一生在物理学许多领域中进行过实验研究工作,如对电介质在充电的电容器中运动时的磁效应、气体的比热容、晶体的导热性、热释电和压电现象、光的偏振面在气体中的旋转、光与电的关系、物质的弹性、毛细现象等方面的研究都作出了一定的贡献,由于他发现X射线而赢得了巨大的荣誉,以致这些贡献大多不为人所注意。

1895年11月8日,伦琴在进行阴极射线的实验时第一次注意到放在射线管附近的氰亚铂酸钡小屏上发出微光。经过几天废寝忘食的研究,他确定了荧光屏的发光是由于射线管中发出的某种射线所致。因为当时对于这种射线的本质和属性还了解得很少,所以他称它为X射线,表示未知的意思。同年12月28日,《维尔茨堡物理学医学学会会刊》发表了他关于这一发现的第一篇报告。他对这种射线继续进行研究,先后于1896年和1897年又发表了新的论文。1896年1月23日,伦琴在自己的研究所中作了第一次报告,报告结束时,用X射线拍摄了维尔茨堡大学著名解剖学教授克利克尔一只手的照片;克利克尔带头向伦琴欢呼三次,并建议将这种射线命名为伦琴射线。

此时,发现X射线的新闻在全世界引起了巨大的震动。当时人们对这些射线的无限惊讶:几乎任何东西对它们来说都是透明的,用这些射线人们可以看见自己的骨骼。没有肉但是带有指环的手指,十分清楚,像嵌入体内的子弹一样。人们立即就领悟到它对医学的影响。1月23日,伦琴为物理医学学会作了关于他的发现的惟一的一次公开讲演。人们以暴风雨般的掌声向他致意。以那时的知识来说,伦琴关于X射线的工作是完全够格的了,但他没有理解X射线的性质。1895年伦琴的著名论文的最后,他写道:这些新射线不会是以太的纵振动吧?我必须承认在我的研究过程中我越来越相信了,因此对我来说应该宣布我的猜测,虽然我很清楚这种解释需要进一步的确证。这个“进一步的确证”始终没有得到,而且,花了整整十六年,依靠了马克斯·冯·劳厄和弗里德里希以及克尼平的工作才解决了关于X射线性质的争论。

在发现了X射线后的数月中,伦琴收到了来自世界各地的讲学邀请,但是除了一个例外他谢绝了所有的邀请,因为他要继续研究他的X射线。他给请他去演示新射线的同行们写了短信,表达他的歉意,说明他没有时间作任何报告或表演。惟一的例外是对皇帝,1896年1月13日,他给皇帝演示了他的X射线。要给皇帝表演这件事一直使伦琴感到紧张,“我希望我使用这个管子时将托皇帝之福,遇上好运气”,他说,“因为这些管子是非常易碎的,经常被损坏,抽空一根管子需要四天。”但是没有出什么事。伦琴收到的这样一种去宫廷的邀请,除了讲演和演示之外,还要与皇帝一同进餐,接受一枚勋章(二级王冠勋章)。离去时,为了表示对陛下的尊敬,还得退着走出来。关于这一点,理查德·威尔斯泰特,对叶绿素复杂机制作出解释的有机化学家说,他和氨的合成者弗里茨·哈贝尔,在取得了他们的发现后,也曾期待着皇帝的邀请。所以他们练习倒退着走路。威尔斯泰特是一位精制瓷器的收集者,在他们练习倒走的房间里有一只昂贵的瓷瓶,不出所料,他们的练习以这只瓷瓶被打碎而告终。虽然他们没有受到皇帝邀请,但他们所做的练习并不是徒劳无益的。后来两人都获得了诺贝尔奖。按照礼节,在他们从瑞典国王手中接过奖品之后必须倒退着走路。伦琴发现了X射线之后,物理学家和医学界人士赶紧研究这种新的射线,在1896年已有1000篇以上关于这个课题的论文。在1896至1897年间,伦琴自己只写了两篇关于X射线的文章。然后,他回到原先研究的课题上去,在以后的24年里写过7篇只引起短暂兴趣的文章,而把对X射线的研究让给了其他年轻的新生力量。对他这样的做法的理由,人们只能推测而已。1901年伦琴获得了第一个物理学诺贝尔奖。1900年他已搬到了慕尼黑,在那里,他成为实验物理研究所所长。1914年,他在著名的德国科学家表示他们与军国主义德国休戚相关的宣言上签了名,但后来他对此感到懊悔。在第一次世界大战期间和随后的通货膨胀中,他相当苦恼。1923年2月10日,伦琴在慕尼黑逝世,享年78岁。

阿尔伯特·亚伯拉罕·迈克尔逊

迈克尔逊(1852~1931年)因发明精密光学仪器和借助这些仪器在光谱学和度量学的研究工作中所做出的贡献,被授予了1907年度诺贝尔物理学奖。

迈克尔逊,1852 年12月19日出生于普鲁士斯特雷诺(现属波兰),童年随父母随居美国。受旧金山男子中学校长的引导,迈克尔逊对科学特别是光学和声学发生了兴趣,并展示了自己的实验才能。1869年被选拔到美国安纳波利斯海军学院学习。毕业后曾任该校物理和化学讲师。1880~1882年被批准到欧洲攻读研究生,先后到柏林大学、海德堡大学、法兰西学院学习。1883年任俄亥俄州克利夫兰市开斯应用科学学院物理学教授。1889年成为麻省伍斯特的克拉克大学的物理学教授,在这里着手进行计量学的一项宏伟计划。1892年改任芝加哥大学物理学教授,后任该校第一任物理系主任,在这里他培养了对天文光谱学的兴趣。1910~1911年担任美国科学促进会主席,1923~1927年担任美国科学院院长。1931年5月9日因脑溢血于加利福尼亚州的帕萨迪纳逝世,终年79岁。

迈克尔逊的名字是和迈克尔逊干涉仪及迈克尔逊—莫雷实验联系在一起的,实际上这也是迈克尔逊一生中最重要的贡献。在迈克尔逊的时代,人们认为光和一切电磁波必须借助绝对静止的“以太”进行传播,而“以太”是否存在以及是否具有静止的特性,在当时还是一个谜。有人试图测量地球对静止“以太”的运动所引起的“以太风”,来证明以太的存在和具有静止的特性,但由于仪器精度所限,遇到了困难。麦克斯韦曾于1879年写信给美国航海年历局的D.P.托德,建议用罗默的天文学方法研究这一问题。迈克尔逊知道这一情况后,决心设计出一种灵敏度提高到亿分之一的方法,测出有关的效应。

1881年他在柏林大学亥姆霍兹实验室工作,为此他发明了高精度的迈克尔逊干涉仪,进行了著名的以太漂移实验。他认为若地球绕太阳公转相对于以太运动时,其平行于地球运动方向和垂直地球运动方向上,光通过相等距离所需时间不同,因此在仪器转动90°时,前后两次所产生的干涉必有0.04条条纹移动。1881年迈克尔逊用最初建造的干涉仪进行实验,这台仪器的光学部分用蜡封在平台上,调节很不方便,测量一个数据往往要好几小时。实验得出了否定结果。1884年在访美的瑞利、开尔文等的鼓励下,他和化学家莫雷合作,提高干涉仪的灵敏度,得到的结果仍然是否定的。1887年他们继续改进仪器,光路增加到11米,花了整整5天时间,仔细地观察地球沿轨道与静止以太之间的相对运动,结果仍然是否定的。这一实验引起科学家的震惊和关注,与热辐射中的“紫外灾难”并称为“科学史上的两朵乌云”。随后有10多人前后重复这一实验,历时50年之久。对它的进一步研究,导致了物理学的新发展。

迈克尔逊的另一项重要贡献是对光速的测定。早在海军学院工作时,由于航海的实际需要,他对光速的测定开始感兴趣,1879年开始光速的测定工作。他是继菲佐、傅科、科纽之后,第四个在地面测定光速的。他得到了岳父的赠款和政府的资助,使他能够有条件改进实验装置。他用正八角钢质棱镜代替傅科实验中的旋转镜,由此使光路延长600米。返回光的位移达133毫米,提高了精度,改进了傅科的方法。他多次并持续进行光速的测定工作,其中最精确的测定值是在1924~1926年,在南加利福尼亚山间约35千米长的光路上进行的,其值为(299796±4)千米/秒。迈克尔逊从不满足已达到的精度,总是不断改进,反复实验,孜孜不倦,精益求精,整整花了半个世纪的时间,最后在一次精心设计的光速测定过程中,不幸因中风而去世,后来由他的同事发表了这次测量结果。他确实是用毕生的精力献身于光速的测定工作。

1920年迈克尔逊和天文学家F.G.皮斯合作,把一台20英尺(约6米)的干涉仪放在100英寸(约254米)反射望远镜后面,构成了恒星干涉仪,用它测量了恒星参宿四(即猎户座一等变光星)的直径,它的直径相当大,为2.50×108英里(1英里=1.6093千米),约为太阳直径的300倍。此方法后被用来测定其他恒星的直径。

迈克尔逊的第一个重要贡献是发明了迈克尔逊干涉仪,并用它完成了著名的迈克尔逊—莫雷实验。按照经典物理学理论,光乃至一切电磁波必须借助静止的以太来传播。地球的公转产生相对于以太的运动,因而在地球上两个垂直的方向上,光通过同一距离的时间应当不同,这一差异在迈克尔逊干涉仪上应产生0.04个干涉条纹移动。1881年,迈克耳逊在实验中未观察到这种条纹移动。1887年,迈克尔逊和著名化学家莫雷合作,改进了实验装置,但仍未发现条纹有任何移动。这次实验的结果暴露了以太理论的缺陷,动摇了经典物理学的基础,为狭义相对论的建立铺平了道路。

迈克尔逊是第一个倡导用光波的波长作为长度基准的科学家。1892年迈克尔逊利用特制的干涉仪,以法国的米原器为标准,在温度15℃、压力760毫米汞柱的条件下,测定了镉红线波长是6438.4696埃,于是,1米等于1553164倍镉红线波长。这是人类首次获得了一种永远不变且毁坏不了的长度基准。

在光谱学方面,迈克尔逊发现了氢光谱的精细结构以及水银和铊光谱的超精细结构,这一发现在现代原子理论中起了重大作用。迈克尔逊还运用自己发明的“可见度曲线法”对谱线形状与压力的关系、谱线展宽与分子自身运动的关系作了详细研究,其成果对现代分子物理学、原子光谱和激光光谱学等新兴学科都产生了重大影响。1898年,他发明了一种阶梯光栅来研究塞曼效应,其分辨本领远远高于普通的衍射光栅。

迈克尔逊是一位出色的实验物理学家,他所完成的实验都以设计精巧、精确度高而闻名,爱因斯坦曾赞誉他为“科学中的艺术家”。

李普曼

李普曼(1845~1921年)因发明基于干涉现象的彩色照相术,获得了1908年度诺贝尔物理学奖。

李普曼是法国著名的物理学家,1845年8月16日出生于卢森堡。父亲是洛林人,母亲是阿尔萨斯人。他俩都在卢森堡的贵族官府里当家庭教师,生活是优裕的。但是他们深感自己是法国人,理应使儿子在祖国的怀抱里教养成人。在李普曼三岁时,尽管主人再三挽留,他的父母还是辞职离开了卢森堡,回到法国,在巴黎文化气氛最浓厚的拉丁区安了家。

李普曼生在这样一个书香之家,父母又都是踏踏实实、谦虚谨慎、有教养的人。他们对待学问的态度是严肃认真、一丝不苟的。这对李普曼思想品德的形成起了潜移默化的作用。李普曼胸怀大志,又能埋头苦干。他在1868年考上了巴黎高等师范学校教育系,但是由于他对数理表现出很浓厚的兴趣,所以在第二年就转入物理系。在此后的10年里,他对物理学各方面都有所探究,特别是对实验物理学做出了很多贡献。1882年,他应聘当了巴黎大学数理教授,后来由于他在实验物理学方面取得了优异成绩而名扬国内外。1886年他被选为法国科学院院士。

1891年,李普曼发明了彩色照片的复制方法,即彩色照相干涉法。该法不用染料和颜料,而是利用各种不同波长的天然颜色。李普曼是这样描述他的彩色照相法的:“把带有灵敏照相胶片的平板放入一个装有水银的盒子中,在曝光期间,水银与该灵敏的胶片接触,形成了一个反射面。曝光后,按照普通方法把感光板进行处理,待该板干了以后,颜色就出现了。这种色彩可以通过反射看见,且永久不褪,这一结果是因为在灵敏胶片内部发生了干涉现象。在曝光期间,入射光与被反射面反射的光线发生干涉,从而在半个波长处形成了干涉条纹。正是这些条纹通过照相法记录在胶片中,从而留下了投射光线特征。当以后用白光照射观察底片时,由于选择反射的原因,底片上的每一点只把那些已记录在其上经过选择了的颜色反射到人们眼中,而其他颜色都通过干涉相消。因此,人们在照片上每一点都看到了像所呈现的颜色,而这仅仅是一种选择反射现象。照片本身是由没有彩色的物质构成的。”

由于这种彩色照相干涉法需要较长的曝光时间,而且产生的颜色不饱和,因而这一方法最终被麦克斯韦的三色照相法所取代,但仍是彩色摄影进展中的重要一步。

李普曼在物理学上造诣很深,研究的范围也很广,特别是电学、热学、光学和光电学的研究,成绩卓著,当时欧洲科学界公认他是权威。

1912年,李普曼被选为法国科学院院长。1921年,李普曼去加拿大和美国讲学,在国外生了病,返回途中于7月13日逝世。

拉曼

拉曼(1888~1970年),因光散射方面的研究工作和拉曼效应的发现,获得了1930年度的诺贝尔物理学奖。

拉曼是印度人,是第一位获得诺贝尔物理学奖的亚洲科学家。拉曼还是一位教育家,他从事研究生的培养工作,并将其中很多优秀人才输送到印度的许多重要岗位。

拉曼1888年11月7日出生于印度南部的特里奇诺波利。父亲是一位大学数学、物理教授,自幼对他进行科学启蒙教育,培养他对音乐和乐器的爱好。

拉曼天资出众,16岁大学毕业,以第一名获物理学金奖。19岁又以优异成绩获硕士学位。1906年,他仅18岁,就在英国著名科学杂志《自然》发表了论文,是关于光的衍射效应的。由于生病,拉曼失去了去英国某个著名大学作博士论文的机会。独立前的印度,如果没有取得英国的博士学位,就没有资格在科学文化界任职。但会计行业是惟一的例外,不需先到英国受训。于是拉曼就投考财政部以谋求职业,结果获得第一名,被授予总会计助理的职务。

拉曼在财政部工作很出色,担负的责任也越来越重,但他并不想沉浸在官场之中。他念念不忘自己的科学目标,把业余时间全部用于继续研究声学和乐器理论。加尔各答有一所学术机构,叫印度科学教育协会,里面有实验室,拉曼就在这里开展他的声学和光学研究。经过10年的努力,拉曼在没有高级科研人员指导的条件下,靠自己的努力作出了一系列成果,也发表了许多论文。

1917年,加尔各答大学破例邀请他担任物理学教授,使他从此能专心致力于科学研究。他在加尔各答大学任教16年期间,仍在印度科学教育协会进行实验,不断有学生、教师和访问学者到这里来向他学习、与他合作,逐渐形成了以他为核心的学术团体。许多人在他的榜样和成就的激励下,走上了科学研究的道路。其中有著名的物理学家沙哈和玻色。这时,加尔各答正在形成印度的科学研究中心,加尔各答大学和拉曼小组在这里面成了众望所归的核心。1921年,由拉曼代表加尔各答大学去英国讲学,说明了他们的成果已经得到了国际上的认同。

1934年,拉曼和其他学者一起创建了印度科学院,并亲任院长。1947年,又创建拉曼研究所。他在发展印度的科学事业上立下了丰功伟绩。拉曼抓住分子散射这一课题是很有眼力的。在他持续多年的努力中,显然贯穿着一个思想,这就是:针对理论的薄弱环节,坚持不懈地进行基础研究。拉曼很重视发掘人才,从印度科学教育协会到拉曼研究所,在他的周围总是不断涌现着一批批富有才华的学生和合作者。就以光散射这一课题统计,在30年中间,前后就有66名学者从他的实验室发表了377篇论文。他对学生淳淳善诱,深受学生敬仰和爱戴。拉曼爱好音乐,也很爱鲜花异石。他研究金刚石的结构,耗去了他所得奖金的大部分。晚年致力于对花卉进行光谱分析。在他80寿辰时,出版了他的专集:《视觉生理学》。拉曼喜爱玫瑰胜于一切,他拥有一座玫瑰花园。拉曼1970年逝世,享年82岁,按照他生前的意愿火葬于他的花园里。

在X射线的康普顿效应发现以后,海森堡曾于1925年预言:可见光也会有类似的效应。1928年,拉曼在《一种新的辐射》一文中指出:当单色光定向地通过透明物质时,会有一些光受到散射。散射光的光谱,除了含有原来波长的一些光以外,还含有一些弱的光,其波长与原来光的波长相差一个恒定的数量。这种单色光被介质分子散射后频率发生改变的现象,称为并合散射效应,又称为拉曼效应。这一发现,很快就得到了公认。英国皇家学会正式称之为“20年代实验物理学中最卓越的三四个发现之一”。

拉曼效应为光的量子理论提供了新的证据。后人研究表明,拉曼效应对于研究分子结构和进行化学分析都是非常重要的。

在光的散射现象中有一特殊效应,和X射线散射的康普顿效应类似,光的频率在散射后会发生变化。频率的变化决定于散射物质的特性。这就是拉曼效应,是拉曼在研究光的散射过程中于1928年发现的。在拉曼和他的合作者宣布发现这一效应之后几个月,前苏联的兰兹伯格和曼德尔斯坦也独立地发现了这一效应,他们称之为联合散射。拉曼光谱是入射光子和分子相碰撞时,分子的振动能量或转动能量和光子能量叠加的结果,利用拉曼光谱可以把处于红外区的分子能谱转移到可见光区来观测。因此拉曼光谱作为红外光谱的补充,是研究分子结构的有力武器。

侯慧林又发表顶尖论文了

《中医诊断治疗学》与《现代疾病药物治疗学》。赵云志医师,擅长对胃肠病、肝胆病、心脑血管病及内科疑难杂病的诊断与治疗,参加编写了《中医诊断治疗学》与《现代疾病药物治疗学》等专著。赵云志,男,主治医师,本科学历,山东省中西医结合学会委员。

1:拉瓦锡(法) 从试验的角度验证并总结了质量守恒定律 描述了最重要的气体:氧、氮和氢的作用 关于燃烧的原理2:门捷列夫(俄) 元素周期律,元素周期表3:戴维(英) 制取多种元素,如钠,钾4:阿伏伽德罗(意) 阿伏伽德罗常数5:舍勒(瑞典) 发现氯气6:侯德榜 联合制碱法7:张青莲 测定原子量8:盖斯(俄) 盖斯定律9:凯库勒(德) 苯环结构10:道尔顿(英) 气体分压定律

国旭明有成为院士的潜力,但是否能成为院士取决于他的科研能力、学术水平以及对学术研究的贡献。 首先,国旭明是清华大学计算机科学与技术系的教授,他一直在从事计算机科学领域的研究,并取得了一些研究成果。他的研究方向主要包含计算机网络、分布式系统、云计算等方面,这些领域都是当前热门的研究方向。其次,国旭明在学术界也有一定的影响力。他曾在国际顶尖的计算机科学会议上发表多篇论文,并担任了一些国际学术期刊的编委。此外,他还是国家自然科学基金委员会的评审专家。这些都表明他在学术界具有一定的地位和影响力。 不过,成为院士不仅仅需要有一定的科研能力和学术水平,还需要对学术研究做出重要贡献。院士是我国科学技术界的最高荣誉,只有在国际上享有崇高声誉,具有领导地位,对我国科技事业做出杰出贡献的人才,才有可能被推荐为院士。因此,国旭明要成为院士,还需要在自己的研究方向上做出更为杰出的贡献,取得更高的学术成果和影响力。 综上所述,国旭明有成为院士的潜力,但是否能成为院士还需要进一步的努力和成就。

门捷列夫(2004-02-06) 门捷列夫 (1834-1907)。在化学教科书中,都附有一张“元素周期表”。这张表揭示了物质世界的秘密,把一些看来似乎互不相关的元素统一起来,组成了一个完整的自然体系。它的发明,是近代化学史上的一个创举,对于促进化学的发展,起了巨大的作用。看到这张表,人们便会想到它的最早发明者——门捷列夫。 德米特里·伊万诺维奇·门捷列夫生于一八三四年二月七日俄国西伯利亚的托波尔斯克市。这个时代,正是欧洲资本主义迅速发展时期。生产的飞速发展,不断地对科学技术提出新的要求。化学也同其它科学一样,取得了惊人的进展。门捷列夫正是在这样一个时代,诞生到人间。门捷列夫从小就热爱劳动,热爱学习。他认为只有劳动,才能使人们得到快乐、美满的生活;只有学习,才能使人变得聪明。 门捷列夫在学校读书的时候,一位很有名的化学教师,经常给他们讲课。热情地向他们介绍当时由英国科学家道尔顿始创的新原子论。由于道尔顿新原于学说的问世,促进了化学的发展速度,一个一个的新元素被发现了。化学这一门科学正激动着人们的心。这位教师的讲授,使门捷列夫的思想更加开阔了,决心为化学这门科学献出一生。 门捷列夫在大学学习期间,表现出了坚韧、忘我的超人精神。疾病折磨着门捷列夫,由于丧失了无数血液,他一天一天的消瘦和苍白了。可是,在他贫血的手里总是握着一本化学教科书。那里面当时有很多没有弄明白的问题,缠绕着他的头脑,似乎在召呼他快去探索。他在用生命的代价,在科学的道路上攀登着。他说,我这样做“不是为了自己的光荣,而是为了俄国名字的光荣。”——过了一段时间以后,门捷列夫并没有死去,反而一天天好起来了。最后,才知道是医生诊断的错误,而他得的不过是气管出血症罢了。 由于门捷列夫学习刻苦和在学习期间进行了一些创造性的研究工作,一八五五年,他以优异成绩从学院毕业。毕业后,他先后到过辛菲罗波尔、敖德萨担任中学教师。这期间,他一边教书,一边在极其简陋的条件下进行研究,写出了《论比容》的论文。文中指出了根据比容进行化合物的自然分组的途径。一八五七年一月,他被批准为彼得堡大学化学教研室副教授,当时年仅二十三岁。 攀登科学高峰的路,是一条艰苦而又曲折的路。门捷列夫在这条路上,也是吃尽了苦头。当他担任化学副教授以后,负责讲授《化学基础》课。在理论化学里应该指出自然界到底有多少元素?元素之间有什么异同和存在什么内部联系?新的元素应该怎样去发现?这些问题,当时的化学界正处在探索阶段。近五十多年来,各国的化学家们,为了打开这秘密的大门,进行了顽强的努力。虽然有些化学家如德贝莱纳和纽兰兹在一定深度和不同角度客观地叙述了元素间的某些联系,但由于他们没有把所有元素作为整体来概括,所以没有找到元素的正确分类原则。年轻的学者门捷列夫也毫无畏惧地冲进了这个领域,开始了艰难的探索工作。 他不分昼夜地研究着,探求元素的化学特性和它们的一般的原子特性,然后将每个元素记在一张小纸卡上。他企图在元素全部的复杂的特性里,捕捉元素的共同性。一但他的研究,一次又一次地失败了。可他不屈服,不灰心,坚持干下去。 为了彻底解决这个问题,他又走出实验室,开始出外考察和整理收集资料。一八五九年,他去德国海德尔堡进行科学深造。两年中,他集中精力研究了物理化学,使他探索元素间内在联系的基础更扎实了。 一八六二年,他对巴库油田进行了考察,对液体进行了深入研究,重测了一些元素的原子量,使他对元素的特性有了深刻的了解。一八六七年,他借应邀参加在法国举行的世界工业展览俄罗斯陈列馆工作的机会,参观和考察了法国、德国、比利时的许多化工厂、实验室,大开眼界,丰富了知识。这些实践活动,不仅增长了他认识自然的才干,而且对他发现元素周期律,奠定了雄厚的基础。 门捷列夫又返回实验室,继续研究他的纸卡。他把重新测定过的原子量的元素,按照原子量的大小依次排列起来。他发现性质相似的元素,它们的原子量并不相近;相反,有些性质不同的元素,它们的原子量反而相近。他紧紧抓住元素的原子量与性质之间的相互关系,不停地研究着。他的脑子因过度紧张,而经常昏眩。但是,他的心血并没有白费,在一八六九年二月十九日,他终于发现了原素周期律。他的周期律说明:简单物体的性质,以及元素化合物的形式和性质,都和元素原子量的大小有周期性的依赖关系。门捷列夫在排列元素表的过程中,又大胆指出,当时一些公认的原子量不准确。如那时金的原子量公认为169.2,按此在元素表中,金应排在锇、铱、铂的前面,因为它们被公认的原子量分别为198.6、6.7、196.7,而门捷列夫坚定地认为金应排列在这三种元素的后面,原子量都应重新测定。大家重测的结果,锇为190.9、铱为193.1、铂为195.2,而金是197.2。实践证实了门捷列夫的论断,也证明了周期律的正确性。 在门捷列夫编制的周期表中,还留有很多空格,这些空格应由尚未发现的元素来填满。门捷列夫从理论上计算出这些尚未发现的元素的最重要性质,断定它们介于邻近元素的性质之间。例如,在锌与砷之间的两个空格中,他预言这两个未知元素的性质分别为类铝和类硅。就在他预言后的四年,法国化学家布阿勃朗用光谱分析法,从门锌矿中发现了镓。实验证明,镓的性质非常象铝,也就是门捷列夫预言的类铝。镓的发现,具有重大的意义,它充分说明元素周期律是自然界的一条客观规律;为以后元素的研究,新元素的探索,新物资、新材料的寻找,提供了一个可遵循的规律。元素周期律象重炮一样,在世界上空轰响了! 门捷列夫发现了元素周期律,在世界上留下了不朽的光荣,人们给他以很高的评价。恩格斯在《自然辩证法》一书中曾经指出。“门捷列夫不自觉地应用黑格尔的量转化为质的规律,完成了科学上的一个勋业,这个勋业可以和勒维烈计算尚未知道的行星海王星的轨道的勋业居于同等地位。” 由于时代的局限性,门捷列夫的元素周期律并不是完整无缺的。一八九四年,惰性气体氛的发现,对周期律是一次考验和补充。一九一三年,英国物理学家莫塞莱在研究各种元素的伦琴射线波长与原子序数的关系后,证实原子序数在数量上等于原子核所带的阳电荷,进而明确作为周期律的基础不是原子量而是原子序数。在周期律指导下产生的原于结构学说,不仅赋予元素周期律以新的说明,并且进一步阐明了周期律的本质,把周期律这一自然法则放在更严格更科学的基础上。元素周期律经过后人的不断完善和发展,在人们认识自然,改造自然,征服自然的斗争中,发挥着越来越大的作用。 门捷列夫除了完成周期律这个勋业外,还研究过气体定律、气象学、石油工业、农业化学、无烟火药、度量衡等。由于他总是日以继夜地顽强地劳动着,在他研究过的这些领域中,都在不同程度上取得了成就。 一九0七年二月二日,这位享有世界盛誉的科学家,因心肌梗塞与世长辞了。但他给世界留下的宝贵财产,永远存留在人类的史册上。 阿佛加德罗(2004-02-06) 在物理学和化学中,有一个重要的常数叫阿佛加德罗常数。NA=6.02205xl023/摩尔。它表示1摩尔的任何物质所含的分子数。 在物理学和化学中,还有一常见的定律叫阿佛加德罗定律。它的内容是在同一温度、同一压强下,体积相同的任何气体所含的分子数都相等,这一定律是意大利物理学家阿佛加德多于1811年提出的,在19世纪,当它没有被科学界所确认和得到科学实验的验证之前,人们通常把它称为阿佛加德罗的分子假说。假说得到科学的验证,被确认为科学的真理后,人们才称它为阿佛加德罗定律。在验证中,人们证实在温度、压强都相同的情况下,1摩尔的任何气体所占的体积都相等。例如在0℃、压强为760mmHg时,1摩尔任何气体的体积都接近于22.4升,人们由此换算出:1摩尔任何物质都含有6.02205 x l023个分子,这一常数被人们命名为阿佛加德罗常数,以纪念这位杰出的科学家。 阿佛加德罗在科学史上占据这样一个重要地位,那么他究竟是个什么样的人呢?让我们从分子论的提出说起。 就在英国化学家道尔顿正式发表科学原子论的第二年(1808年),法国化学家盖·吕萨克在研究各种气体在化学反应中体积变化的关系时发现,参加同一反应的各种气体,在同温同压下,其体积成简单的整数比。这就是著名的气体化合体积实验定律,常称为盖·吕萨克定律。盖吕萨克是很赞赏道尔顿的原子论的,于是将自己的化学实验结果与原子论相对照,他发现原子论认为化学反应中各种原子以简单数目相结合的观点可以由自己的实验而得到支持,于是他提出了一个新的假说:在同温同压下,相同体积的不同气体含有相同数目的原子。他自认为这一假说是对道尔顿原子论的支持和发展,并为此而高兴。 没料到,当道尔顿得知盖·吕萨克的这一假说后,立即公开表示反对。因为道尔顿在研究原子论的过程中,也曾作过这一假设后被他自己否定了。他认为不同元素的原子大小不会一样,其质量也不一样,因而相同体积的不同气体不可能含有相同数日的原子。更何况还有一体积氧气和一体积氮气化合生成两体积的一氧化氮的实验事实(O2 +N2 ——>2NO)。若按盖·吕萨克的假说,n个氧和2n个氮原子生成了2n个氧化氮复合原子,岂不成了一个氧化氮的复合原子由半个氧原子、半个氮原子结合而成?原子不能分,半个原子是不存在的,这是当时原子论的一个基本点。为此道尔顿当然要反对盖·吕萨克的假说,他甚至指责盖·吕萨克的实验有些靠不住。 盖·吕萨克认为自己的实验是精确的,不能接受道尔顿的指责,于是双方展开了学术争论。他们俩人都是当时欧洲颇有名气的化学家,对他们之间的争论其他化学家没敢轻易表态,就连当时已很有威望的瑞典化学家贝采里乌斯也在私下表示,看不出他们争论的是与非。 就在这时意大利一位名叫阿佛加德罗的物理学教授对这场争论发生了浓厚的兴趣。他仔细地考察了盖·吕萨克和道尔顿的气体实验和他们的争执,发现了矛盾的焦点。1811年他写了一篇题为:“原子相对质量的测定方法及原子进入化合物的数目比例的确定”的论文,在文中他首先声明自己的观点来源于盖·吕萨克的气体实验事实,接着他明确地提出了分子的概念,认为单质或化合物在游离状态下能独立存在的最小质点称作分子,单质分子由多个原子组成,他修正了盖·吕萨克的假说,提出:“在同温同压下,相同体积的不同气体具有相同数目的分子。”“原子”改为“分子”的一字之改,正是阿佛加德罗假说的奇妙之处。由此可见,对科学概念的理解必须一丝不苟。对此他解释说,之所以引进分子的概念是因为道尔顿的原子概念与实验事实发生了矛盾,必须用新的假说来解决这一矛盾。例如单质气体分子都是由偶数个原子组成这一假说恰好使道尔顿的原子论和气体化合体积实验定律统一起来。根据自己的假说,阿佛加德罗进一步指出,可以根据气体分子质量之比等于它们在等温等压下的密度之比来测定气态物质的分子量,也可以由化合反应中各种单质气体的体积之比来确定分子式。最后阿佛加德罗写道:“总之,读完这篇文章,我们就会注意到,我们的结果和道尔顿的结果之间有很多相同之点,道尔顿仅仅被一些不全面的看法所束缚。这样一致性证明我们的假说就是道尔顿体系,只不过我们所做的,是从它与盖·吕萨克所确定的一般事实之间的联系出发,补充了一些精确的方法而已。”这就是1811年阿佛加德罗提出分子假说的主要内容和基本观点。 现在,大家都认识到分子论和原子论是个有机联系的整体,它们都是关于物质结构理论的基本内容。然而在阿佛加德罗提出分子论后的50年里,人们的认识却不是这样。原子这一概念及其理论被多数化学家所接受,并被广泛地运用来推动化学的发展,然而关于分子的假说却遭到冷遇。阿佛加德罗发表的关于分子论的第一篇论文没有引起任何反响。3年后的1814年,他又发表了第二篇论文,继续阐述他的分子假说。也在这一年,法国物理学家安培,就是那个在电磁学发展中有重要贡献的安培也独立地提出了类似的分子假说,仍然没有引起化学界的重视。已清楚地认识到自己提出的分子假说在化学发展中的重要意义的阿佛加德罗很着急,在1821年他又发表了阐述分子假说的第三篇论文,在文中他写道:“我是第一个注意到盖·吕萨克气体实验定律可以用来测定分子量的人,而且也是第一个注意到它对道尔顿的原子论具有意义的人。沿着这种途径我得出了气体结构的假说,它在相当大程度上简化了盖,吕萨克定律的应用。”在他讲述了分子假说后,他感慨地写道:“在物理学家和化学家深入地研究原子论和分子假说之后,正如我所预言,它将要成为整个化学的基础和使化学这门科学日益完善的源泉。”尽管阿佛加德罗作了再三的努力,但是还是没有如愿,直到他1856年逝世,分子假说仍然没有被大多数化学家所承认。 道尔顿的原子论发表后,测定各元素的原子量成为化学家最热门的课题。尽管采用了多种方法,但因为不承认分子的存在,化合物的原子组成难以确定,原子量的测定和数据呈现一片混乱,难以统一。于是部分化学家怀疑到原子量到底能否测定,甚至原子论能否成立。不承认分子假说,在有机化学领域中同样产生极大的混乱。分子不存在,分类工作就难于进行下去,例如醋酸竟可以写出19个不同的化学式。当量有时等同于原子量,有时等同于复合原子量(即分子量),有些化学家干脆认为它们是同义词,从而进一步扩大了化学式、化学分析中的混乱。 无论是无机化学还是有机化学,化学家对这种混乱的局面都感到无法容忍了,强烈要求召开一次国际会议,力求通过讨论,在化学式、原子量等问题上取得统一的意见。于是1860年9月在德国卡尔斯鲁厄召开了国际化学会议。来自世界各国的140名化学家在会上争论很激烈,但役达成协议。这时意大利化学家康尼查罗散发了他所写的小册子,希望大家重视研究阿佛加德罗的学说。他回顾了50年来化学发展的历程,成功的经验,失败的教训都充分证实阿佛加德罗的分子假说是正确的,他论据充分,方法严谨,很有说服力。经过50年曲折经历的化学家此时已能冷静地研究和思考,终于承认阿佛加德罗的分子假说的确是扭转这一混乱局面的唯一钥匙。阿佛加德罗的分子论终于被确认,阿佛加德罗的伟大贡献终于被发现,可惜此时他已溘然长逝了。甚至没有为后人留下一一张照片或画像。现在唯一的画像还是在他死后,按照石膏面模临摹下来的。 阿佛加德罗出生在一个世代相袭的律师家庭。按照他父亲的愿望,他攻读法律,16岁时获得了法学学上学位,20岁时又获得宗教法博士学位。此后当了3年律师。蝶蝶不休的争吵和尔虞我诈的斗争使他对律师生活感到厌倦。1800年他开始研究数学、物理、化学和哲学,并发现这才是他的兴趣所在。1799年意大利物理学家伏打发明了伏打电堆,使阿佛加德罗把兴趣集中于窥视电的本性。1803年他和他兄弟费里斯联名向都灵科学院提交了一篇关于电的论文,受到了好评,第二年就被选为都灵科学院的通讯院士。这一荣誉使他下决心全力投入科学研究。1806年,阿佛加德罗被聘为都灵科学院附属学院的教师,开始了他一边教学、一边研究的新生活。 由于阿佛加德罗的才识,1809年他被聘为维切利皇家学院的数学物理教授,并一度担任过院长。在这里他度过了卓有成绩的10年。分子假说就是在这里研究和提出的。1819年,阿佛加德罗成为都灵科学院的正式院士,不久担任了都灵大学第一个数学物理讲座的第一任教授。1850年,阿佛加德罗从这一教职上退休。 自从1821年他发表的第三篇关于分子假说的论文仍然没有被重视和采纳后,他开始把主要精力转回到物理学方面。阿佛加德发表了很多著作,重要的著作是四大卷的《可度量物体物理学》。从历史观点来说,这是关于分子物理学最早的一部著作。 这些著作和论文是阿佛加德罗辛勤劳动的结晶。从一个律师成为一个科学家,他是作了很大的努力的。他精通法语、英语和德语,拉丁语和希腊语的造诣也很高。他那渊博的知识来源于勤奋的学习。他博览群书,所做的摘录多达75卷,每卷至少700页。最后一卷是1854年编成的,是他逝世前两年的学习记录,可谓活到老学到老。 阿佛加德罗生前非常谦逊,对名誉和地位从不计较。他没有到过国外,也没有获得任何荣誉称号,但是在他死后却赢得了人们的崇敬,1911年,为了纪念阿佛加德罗定律提出100周年,在纪念日颁发了纪念章,出版了阿佛加德罗选集,在都灵建成了阿佛加德罗的纪念像并举行了隆重的揭幕仪式。1956年,意大利科学院召开了纪念阿佛加德罗逝世100周年纪念大会。在会上意大利总统将首次颁发的阿佛加德罗大金质奖章授予两名著名的诺贝尔化学奖获得者:英国化学家邢歇伍德、美国化学家鲍林。他们在致词中一致赞颂了阿佛加德罗,指出“为人类科学发展作出突出贡献的阿佛加德罗永远为人们所崇敬”。 道尔顿(2004-02-06)道尔顿 (1766-1844)。 化学是在近代兴起的一门学科,无数的科学先驱者为这门学科奠定了理论基础,英国物理学家、化学家约翰·道尔顿就是其中的一位。道尔顿既具有敏锐的理论思维头脑,又具有卓越的实验才能,尤其是在对原子的研究方面取得了非凡的成果,因而被称为“近代化学之父”,成为近代化学的奠基人。 道尔顿出生在英国坎伯兰的一个贫困的乡村,他的父亲是一个纺织工人。当时正值第一次工业革命的初期,很多破产的农民沦为雇用工人。道尔顿一家的生活十分困顿,道尔顿的一个弟弟和一个妹妹都因为饥饿和疾病而夭折。道尔顿在童年根本没有读书的条件,只是勉强接受了一点点初等教育,十岁时,他就去给一个富有的教士当仆役。也许这也算是命运赐予他的一次机会吧,在教士家里他有读了一些书,增长了很多知识。于是两年后,他被推举为本村小学的教师。 1781年,年仅十五岁的道尔顿随哥哥到外地谋生。不久后,他就成为了肯达耳中学的教师。在教学之余,他一边系统的自学科学知识,一边进行气象观察。在这里他还结识了著名学者豪夫(Johann Hauf),他从豪夫那里学习了很多知识,教学水平迅速提高,四年以后,便成为了肯达耳中学的校长。1793年,在豪夫的推荐下,道尔顿又受聘于曼彻斯特的一所新学院。在这里他出版了自己的第一本科学著作 — 《气象观察与研究》。第二年,他在罗伯特·欧文的推荐下成为曼彻斯特文学哲学会的会员。 1799年,为了把大部分精力投入到科学研究中去,道尔顿离开了学院。他在几个富人家里做私人教师,每天教课时间不超过两小时。这样,既能谋生又保证了他的科研工作。现在,他越来越重视对气体和气体混合物的研究。道尔顿认为,要说明气体的特性就必须知道它的压力。他找到两种很容易分离的气体,分别测量了混合气体和各部分气体的压力。结果很有意思,装在容积一定的容器中的某种气体压力是不变的,引入第二种气体后压力增加,但它等于两种气体的分压之和,两种气体单独的压力没有改变。于是道尔顿得出结论:混合气体的总压等于组成它的各个气体的分压之和。道尔顿发现由此可以做出某些重要的结论,气体在容器中存在的状态与其他气体无关。用气体具有微粒结构来解释就是,一种气体的微粒或原子均匀的分布在另一种气体的原子之间,因而这种气体的微粒所表示出来的性质与容器中没有另一种气体一样。道尔顿开始更多的研究关于原子的问题,他顽强进行研究工作,寻找资料、动手实验、不断的思考…… 1803年9月6日,道尔顿在他笔记中写下了原子论的要点: (一) 原子是组成化学元素的、非常微小的、不可在分割的物质微粒。在化学反应中原子保持其本来的性质。 (二) 同一种元素的所有原子的质量以及其他性质完全相同。不同元素的原子具有不同的质量以及其他性质。原子的质量是每一种元素的原子的最根本特征。 (三) 有简单数值比的元素的原子结合时,原子之间就发生化学反应而生成化合物。化合物的原子称为复杂原子。 (四) 一种元素的原子与另一种元素的原子化合时,他们之间成简单的数值比。 同年10月21日,道尔顿报告了他的化学原子论,并且宣读了他的第二篇论文《第一张关于物体的最小质点的相对重量表》。道尔顿的理论引起了科学界的广泛重视。他应邀去伦敦讲学,几个月后又回到曼彻斯特继续进行测量原子量的工作。有些时候,道尔顿也遇到一些困难。有些物质被氧化后生成不同的氧化物,这是一种难解释的现象,当然前人已经进行了分析化验,为了进行计算,道尔顿就只能利用这些结果;有时他在原始文献中发现的结果只是由一位科学家侧得的,为了保证可靠性,道尔顿就再做一次分析。道尔顿所得出的原子量有很多是不准确的,但实际上他所计算出来的正是今天所谓的当量。例如他把氧的原子量确定为7而不是16。 1804年以后,道尔顿又对甲烷和乙烯的化学成分进行分析实验,他发现,甲烷中碳氢比是4.3:4;而乙烯中碳氢比是4.3:2。他由此推出碳氢化合的比例关系,并发现了倍比定律:相同的两种元素生成两种或两种以上的化合物时,若其中一种元素的质量不变,另一种元素在化合物中的相对重量成简单的整数比。道尔顿认为倍比定律既可以看作是原子论的一个推论,又可以看作是对原子论的一个证明。 1807年,汤姆逊在它的《化学体系》一书中详细的介绍了道尔顿的原子论。第二年道尔顿的主要化学著作《化学哲学的新体系》正式出版。书中详细记载了道尔顿的原子论的主要实验和主要理论。自此道尔顿的原子论才正式问世。 在科学理论上,道尔顿的原子论是继拉瓦锡的氧化学说之后理论化学的又一次重大进步,他揭示出了一切化学现象的本质都是原子运动,明确了化学的研究对象,对化学真正成为一门学科具有重要意义,此后,化学及其相关学科得到了蓬勃发展;在哲学思想上,原子论揭示了化学反应现象与本质的关系,继天体演化学说诞生以后,又一次冲击了当时僵化的自然观,为科学方法论的发展、辩证自然观的形成以及整个哲学认识论的发展具有重要意义。 原子论建立以后,道尔顿名震英国乃至整个欧洲,各种荣誉纷至沓来,1816年,道尔顿被选为法国科学院院士;1817年,道尔顿被选为曼彻斯特文学哲学会会长;1826年,英国政府授予他金质科学勋章;1828年,道尔顿被选为英国皇家学会会员;此后,他又相继被选为柏林科学院名誉院士、慕尼黑科学院名誉院士、莫斯科科学协会名誉会员,还得到了当时牛津大学授予科学家的最高荣誉 — 法学博士称号。在荣誉面前,道尔顿开始还是冷静的、谦虚的,但是后来荣誉越来越高,他逐渐改变了,变得骄傲、保守,最终走向了思想僵化、固步自封。 1808年,法国化学家吕萨克在原子论的影响下发现了气体反应的体积定律,实际上这一定律也是对道尔顿的原子论的一次论证,后来也得到了其他科学家的证实并应用于测量气体元素的原子量。但是吕萨克定律却遭到了道尔顿本人的拒绝和反对,他不仅怀疑吕萨克的实验基础和理论分析,还对他进行了严厉的抨击。1811年,意大利物理学家阿佛加德罗建立了分子论,使道尔顿的原子论与吕萨克定律在新的理论基础上统一起来。他也遭到了道尔顿无情的反驳。1813年,瑞典化学家贝齐力乌斯创立了用字母表示元素的新方法,这种易写易记的新方法被大多数科学家接受,而道尔顿一直到死都是新元素符号的反对派。 虽然道尔顿的后半生科学贡献不大、甚至阻挠别人的探索,人们还是给予了他深切的怀念。

高福又有论文发表了吗

李兰娟院士在这次我国二月份武汉爆发的新冠肺炎疫情的战场上,亲临一线,为抗击疫情做出了非常大的贡献,她值得提名。

因为李兰娟实至名归。在新冠肺炎抗疫战中,李兰娟院士不辱使命,出生入死,做出了更大的贡献。

5月28日,澳门城市大学殊荣博士研究生授予庆典暨2021/2022学年度毕业晚会在澳门塔石体育馆隆重召开。澳门城市大学为逾1,500名应届生授予学士学位证书,并各自为中国科学院工程院院士、中国疾病预防控制中心负责人高福,全国政协外事委员会办公室主任、察哈尔学会会生韩方明,现代作家、中国作家协会全国委员会委员会余华,澳门特别行政区立法会现任主席高开贤等四位优秀人员授于了不一样专业的殊荣博士研究生。

澳门城市大学周万雷副校诵读高福赞辞时表明,高福工程院院士是中国科学院生命科学和医学学部院士,在职中国疾病预防控制中心负责人。他是产品研发全世界第一个临床医学获准应用的新冠病毒中和抗体和第一个获准应用的重新组合新冠病毒蛋白亚企业疫苗的先锋者。

除此之外,高福为国家制订禽流感疫情防治现行政策带来了关键科学合理基本,并带领第一批中国疾病预防控制中心移动实验室检测队赴塞拉利昂抵御埃博拉,在国际援助行为中激发了主导作用。

中科院微生物研究所详细介绍,高福主要是针对微生物跨寄主散播、感柒体制与宿主细胞免役科学研究及其公共卫生服务现行政策与全世界身心健康对策科学研究。

高福依次在山西农业大学(1979-1983)和北京农业大学(1983-1986)得到学土和硕士,1995年在英国牛津大学得到博士研究生,陆续在英国牛津大学、加拿大卡尔加里大学、美国哈佛大学/哈佛医学院从业博士研究生科研工作中。2001-2004年在英国牛津大学任老师、实验室负责人、博导。2004-2008年任中国科学院微生物研究所优点。

高福于2005年得到国家优秀青年股票基金支助。曾依次组织多种国家重要科研课题,“973”新项目首席科学家,国家自然科学基金委员会“自主创新科学研究人群”项目经理。在sci国际性期刊上发布数篇毕业论文(包含cell、nature、science、lancet、nejm、nsmb、pnas、plospathogens、immunity等)。

以上澳门城市大学的荣誉博士是高福工程院院士最近得到的又一个殊荣。据中国科学院微生物研究所5月27日信息,2022年5月,英国皇家科学院(theroyalsociety)发布了新增加院士名单,中国科学院微生物研究所研究者高福当选这届英国皇家科学院外籍院士。本次新增加名册包含51名工程院院士、10名外籍院士和1名声誉工程院院士(honoraryfellow),以嘉奖她们在科学领域的巨大贡献。

高福现在已经是中国科学院工程院院士、美国国家科学院外籍院士、美国国家医学科学院外籍院士、发展中国家科学院院士、非洲科学院工程院院士和德国、巴西等国家科学院院士,中国生物工程学会董事长、中华预防医学会副理事长、国家自然科学基金委员会办公室主任、中国疾病预防控制中心负责人、中国科学院微生物研究所研究者、(英国)牛津大学浏览专家教授、香港大学殊荣专家教授、香港城市大学高端研究者。

澳门城市大学荣誉博士生授于庆典暨2021/2022学年毕业典礼在澳门塔石体育场馆隆重举行。高福院士两天内获得两项荣誉称号,关于他你了解多少?

澳门城市大学周万雷副校朗读高福赞辞时说明,高福科学院院士是中科院生物科学和医药学学系工程院院士,在职人员我国疾病防治监测中心责任人。他是新产品开发全球第一个临床医学专业批准运用的新冠病毒中和抗体和第一个批准运用的重新排列新冠病毒蛋白质亚公司疫苗的先锋者。此外,高福为国家制定疫情预防政策产生了重要科学规范基本上,并领着第一批我国疾病防治监测中心挪动检验队赴塞拉利昂抵挡埃博拉,在国际援助个人行为中激起了主导地位。

中国科学院微生物菌种研究室详解,高福主要是对于微生物菌种跨宿主散布、感柒体系与宿主细胞免疫能力科研以及公共卫生管理政策与全球身体健康防范措施科研。高福先后在山西农业大学(1979-1983)和北京农业大学(1983-1986)获得学土和研究生,1995年在英国牛津大学获得博士生,相继在英国牛津大学、澳大利亚卡尔加里大学、哈佛大学/哈佛大学医学院从事博士生教学科研中。2001-2004年在英国牛津大学任老师、试验室责任人、博士生导师。2004-2008年任中科院微生物菌种研究室优势。

高福于2005年获得我国杰出青年股票型基金帮护。曾先后机构多种多样我国关键科研项目,“973”最新项目首席科学家,国家自然科学基金委员会“科技创新科研群体”工程项目经理。在sci国际刊物上公布数篇论文(包括cell、nature、science、lancet、nejm、nsmb、pnas、plospathogens、immunity等)。以上澳门城市大学的荣誉博士是高福科学院院士近期获得的又一个荣誉。据中科院微生物菌种研究室5月27日信息内容,2022年5月,英国皇室研究院(theroyalsociety)公布了新提升院士名单,中科院微生物菌种研究室学者高福入选本届英国皇室研究院外籍院士。此次新提升名单包括51名科学院院士、10名外籍院士和1名信誉科学院院士(honoraryfellow),以奖励他们在科学领域的卓越贡献。

高福如今已经是中科院科学院院士、国外我国研究院外籍院士、国外我国医学科学院外籍院士、发达国家科学院院士、非州研究院科学院院士和法国、墨西哥等我国科学院院士,中国生物工程学会老总、中华预防医学会副会长、国家自然科学基金委员会纪检书记、我国疾病防治监测中心责任人、中科院微生物菌种研究室学者、(美国)剑桥大学访问权威专家、港大荣誉权威专家、香港城市大学高档学者。

论文发表又涨价了吗

确实贵了,不瞒你说,刚发表了一篇,好几千块的费用,真心肉疼。这还是好的,据说,现在审核也比较严格。我发表的是普刊,还是找淘淘论文这种代理机构发表的,审核比较快,3-4天就给结果了,但是大修了一次才通过。现在好像不光发表论文难,所有跟出版沾边的都难,所有费用就贵了。

知网涨价肯定伤害了科研环境。

伴随中国在全球化进程中的速度加快,中国学者的视野更加放眼全球,而不仅仅局限于国内,因此,众多的科研人员尤其是自然科学工作者,他们更加依赖于国际学术资源。

当然,最核心的质疑,恐怕是针对中文学术期刊质量,而这是中国知网的主要内容来源。

中国众多期刊正是在与数据库的合作中繁荣起来的。期刊不仅通过发表学术论文赚取版面费,还可通过为数据库提供资源赚取知识费用。

然而,学术考评往往以提供知网检索作为重要依据,尤其是当下兴起的学术检测,知网数据库更是重要的查重比对数据库。

这样高额的查重检测,美其名曰科研诚信管理,实际上却给毕业学子造成了重大的经济负担,一篇十万字的博士论文,每查一次耗去数百元。

学术检测影响到全国众多高校毕业生,而最终受益的却是几个数据库检测商。

学术界的论文,最荒谬的一点就是,大部分写论文的人其实并没有向杂志方或知网要版权费,甚至为了发表这篇文章还要付版面费,但是这篇文章发表后却被知网用来高价出售赚钱。很多时候,你去知网看自己写的文章,都要付费。

所以,这种现象早就应该有所改变了。

我觉得这种涨价实在是太不正常了,有种被割韭菜的感觉。现在一次论文查重要几十块钱,别人查重的时候又不是只查一次重,修改之后还要继续查重,后续不断查重过程中所损耗的价格实在是太高了。学生的钱也不是轻易就可以得来的,尤其是那些家境比较贫寒的学生更是支付不起这样高额的查重费用。但是不查重就会使论文的重复率太高致使自己毕不了业。现在的教育行业都盯上了论文查重这块肥肉,更多的资本正在进入。

论文查重越来越贵其实有三个原因:第一点就是现在的论文查的主要的还是知网里的论文,而知网里的信息是不对外公开的,所以想要查重,必须在知网中进行,这就造成了知网一家独大的局面,价格可以由自己调控。第二点就是查重的数量,现在中国的大学生越来越多了,到了快毕业的季节,大批的论文需要查重发表,此时的对查重的需求更是供不应求,即使也有一些外部的网站帮忙查重,但是最为权威的还是知网,供不应求导致的结果一定是价格的上升。所以现在论文查重的费用会暴涨了十倍。第三点就是关于查重技术的费用和维护的费用,想要做到论文查重需要先制作一个查重系统,而且查重系统会随着时间的推移不断的更新,知网里的论文只会越来越多,查重系统的工作量会越来越大,因此查重的难度增大,成本自然提升,所以说查重费暴涨。

很多人都有疑惑,以前的论文是不需要查重的,那么为什么现在的论文越来越重视查重了呢?其实还是和当前环境有关。以前论文发表的数量很少,而且当时也没有相关的技术支持,所以说是没有查重这一说的。现在的论文数量众多,所以如果不用到查重系统的话,很容易让一些学术不端的学生靠抄袭别人的论文从而蒙混过关。这对那些认真写论文,认真做研究的学生来说,非常的不公平。所以现在的论文在发表之前一定会查重。

其实对于论文查重这件事,我是很支持的,因为这样是在支持原创,为了中国更好的学术环境。但我觉得国家应该设立一个网站专门给学生查重用,并且稳定查重的价格,以免查重的价格失控,给学生带来不必要的经济负担。

这属于正常涨价。因为现在的很多论文出现了抄袭的情况,而且论文水平不是非常的高,而且人们对这方面也比较重视,所以就出现了涨价的情况,也是根据供需关系所涨价的。

论文又发表了

谢尔顿的论文写的非常好,前期被推翻是因为评委意见不一致,后续经过讨论同意通过,所以又发表了。

这里的内刊,是指没有国内统一的CN刊号,只有省内连续性内刊批号的杂志。如果有论文已经在有CN刊号的杂志上发表,又在这样的刊物上发表算不算一稿多投呢?因为多数内刊在其征稿启示中,没有明确要求论文需要未曾发表,所以这个问题也是众说纷纭。 目前这个问题有三种看法: 第一种,不算是一稿多投。持这种看法的人居绝大多数,甚至包括了很多内刊杂志主办者的看法。例如,成都职业技术学院在其网站上发布的科研成果中,就将这种一篇论文在两本刊物发表的情况统计其中。在人大经济论坛上,多数网友认为不算一稿多投。 第二种,算一稿多投。认为既然已经有内刊刊号,也就是正规合法期刊的一员了。重复发表论文当然属于一稿多投。 第三种,认为应首先在内刊上发表,然后再投给其他杂志,这样是可以允许的,反过来则不行,算一稿多投行为。 我的看法是,这样重复发表确有一稿多投的嫌疑。最好事先给杂志社打个电话,将这个问题搞清楚。

相关百科

热门百科

首页
发表服务