首页

职称论文知识库

首页 职称论文知识库 问题

碳氢活化发表论文统计

发布时间:

碳氢活化发表论文统计

致活基团:-O负离子,-NR2,-NHR,-NH2,-OH,-OR,-OCOR-CH3致钝基团:-NR3阳离子,-NO2,-CF3,-CCL3,-CN,-COOH,-CO2R,-F等等是根据原由取代基影响第二基进入的难易定义的影响说了嘛,是根据原由取代基影响第二基进入的难易定义的既是致活基团让第二基更容易进入,同理可知致钝基团是让第二基更难进入而且致活基团都是邻对位定位基致钝基团除了卤素都是间位定位基,而卤素-F,-CL,-Br等等则是邻对位定位基本人兰大化学系.如果基团为双原子,设其为-XY, 若X活性大于Y,则为致活基,如-CH3,若X

在《会计研究》、《数量经济技术经济研究》、《中国工业经济》、《统计研究》等刊物发表论文百余篇。财务分析在企业重组中的应用,东北财经大学学报,2000.3论资本增量经营目标与预算,财经问题研究,2000.8独立董事:完善公司治理结构的关键,中国财经报,2001.5资本增值计算与评价理论及方法,财经问题研究,2002.3股票期权理论及在公司激励中的应用研究,会计研究,2002.7建立企业内部控制系统框架的探讨,财经问题研究,2003.11基于管理控制程序的管理控制系统,财务与会计,2003.11

泡利不相容原理使得含有多个电子与核子的大型系统占有大体积的空间,并且具有稳定性。对於这论题,埃伦费斯特曾经提出疑问,为什麼物质会这麼大块,尽管它的分子与原子被包装地那麼紧密?追根究柢,为什麼原子的尺寸会这麼庞大?举例而言,铅原子拥有82个质子与82个电子,铅原子核的吸引力应该很强,是氢原子核的82倍,但是只有少数电子的轨道离原子核很近,按照经典理论,在电子与电子之间的排斥力超过原子核的吸引力以前,应该可以有更多电子集中在原子核附近的轨道。但是,为什麼铅原子不会这样塌缩变小?埃伦费斯特猜想,这是因为泡利不相容原理所产生的效应;由於泡利不相容原理,原子的尺寸才会这麼庞大,物质才会这麼大块。後来,戴森发表论文表明,假若没有泡利不相容原理,不只单独原子会塌缩变小,物质也会同样的塌缩变小;任意两个大块物体混合在一起,就会释出像原子弹爆炸一般的能量!假设一个原子拥有N>2个电子,由於电子是费米子,这N个电子不能占有同样量子态,因此不会都塌陷至最低能量的量子态,电子排布不会是(1s)N;假若泡利不相容原理不成立,则所有电子都会塌陷至1s轨道,原子的尺寸会变得很小;除了与原子核的电荷平方成正比的电离能以外,元素与元素之间不会有甚麼显著差别;元素越重,化学反应越需要更多的能量;元素的性质不会出现周期性;化学与生物学都成为空论,更不会有任何地球生命!因此,用Pauli不相容原理来回答题主的疑问也是恰当的,先前的怼人打了自己的脸,老规矩,先问是不是,再问为什么。先摆答案:两个物理实体是可以占据相同空间的。再怼所有拿Pauli不相容原理说事的。Pauli不相容原理的内容是“在费米子组成的系统中,不能有两个或两个以上的粒子处于完全相同的状态。”注意两个个关键词“费米子”、“完全相同”。首先,Pauli不相容原理是针对费米子的,玻色子不受此限制,很多答主已经提到玻色爱因斯坦凝聚,是否定答主的结论的;其次,占据相同空间并不是“完全相同”的状态,且不说可能在空间的分布可能不一样;就算你指的是空间波函数完全一致,那么两个不同种类的费米子比如质子和电子(不考虑它们的相互作用)也是可以的;就算是同一种费米子比如两个电子,它们自旋为1/2,所以可以处于空间状态相同而自旋不同的状态(原子中一个亚层的电子对就近似处于这种状态)。因此,原理上讲,不管是费米子还是玻色子(已囊括世上所有粒子),都是可以处于完全相同的空间位置。回到题主所举的宏观的例子,我们两个人确实极其困难(如果不是不可能)同时占据同一个空间位置。原因就是上面没有考虑的相互作用,也就是力。我们宏观世界所能感受到的的力(除了引力),包括弹力、拉力、压力、摩擦力、支持力等等,全部都是电磁相互作用的剩余。两个人接触越紧,受到对方的排斥力就越大;从外界可以施加相应压力,让两个人紧密接触,比如一起压成肉泥这样的;但是紧密到一定程度,就有其他相互作用还是起作用,强相互作用和弱相互作用,这时我们又回到微观粒子的行为了。

每年发表论文变化统计

全世界每年的论比这个你怎么探讨的

通过论文集合网站webofscience查询某领域论文每年的发表数量。如果这个刊物同时被知网、万方、维普、龙源、超星收录,你可以登上其中任何一个数据库,查该刊物收录的文章篇数直接看刊物目录,同理,确定该刊物是某一个数据库收录,直接在该数据库查询即可。如果自己没办法登陆该期刊所在数据库,可以用刊物页码除以其中一篇文章的版面数,得出的结果只是一个大概的篇数。如果你只是想知道中国知网2014年更新的学术论文量,直接选择“从2014年到2014年”,截止今天,更新期刊2373640篇。

有多少 毕业生就有多少论文

氢化植物油国外论文发表

近日,电子 科技 大学材料与能源学院夏川教授以第一作者和共同通讯作者身份在国际著名期刊Nature Chemistry (《自然–化学》)上发表题为“General synthesis of single-atom catalysts with high metal loading using graphene quantum dots”的研究论文。该研究开发了一套高载量过渡金属单原子材料的普适性合成策略,实现了高达 40 wt.% 或 3.8 at.% 的高过渡金属原子负载,比目前报道的单原子负载量提升了几倍甚至数十倍。 该工作由电子 科技 大学、加拿大光源和美国莱斯大学三个单位共同合作完成。材料与能源学院的夏川教授为论文第一作者和通讯作者,美国莱斯大学的汪淏田教授和加拿大光源的胡永峰教授为论文通讯作者。该合作团队在电催化材料研究和电化学反应器设计领域建立了坚实的基础,并取得了丰硕的研究成果。 过渡金属单原子材料具有极高的原子利用率、独特的电子结构以及明晰且可调的配位结构,在各种电催化过程中展现出优异的活性。但常规单原子材料中金属原子密度较低(通常小于5 wt.%或1 at.%),大大限制了其整体催化性能及工业应用前景,因此发展出高载量过渡金属单原子材料普适性合成策略至关重要。现有“自上而下”和“自下而上”工艺对提高合成单原子材料的金属负载量有很大的局限(图1, a-b)。以碳材料负载的单原子为例,现有的“自上而下”方法通过在碳材料载体表面制造缺陷,然后通过缺陷稳定单原子。然而,无法精确调控缺陷尺寸导致缺陷位点的数目极大地受到限制,而且当金属负载量提高时,容易在大尺寸的缺陷位处形成团簇。“自下而上”方法则使用金属和有机物前驱体(如金属有机框架、金属-卟啉分子、金属-有机小分子)热解碳化的方式获得负载金属单原子的碳材料。在金属负载量过大时,金属原子之间将因为没有足够的隔离空间而导致热解过程中团簇或者颗粒的产生。 鉴于此,该团队发展了区别于现有“自上而下”和“自下而上”工艺的单原子催化材料制备方法(图1c),以突破单原子负载量的限制。该团队创新性地使用比表面大、热稳定性高的石墨烯量子点作为碳基底,对其进行-NH2基团修饰,使其对金属离子具有高配位活性。引入金属离子后可得到以金属离子作为节点、功能化石墨烯量子点作为结构单元的交联网络,最后热解即可得到高载量的金属单原子材料。相较于传统“自上而下”和“自下而上”的单原子催化剂合成方法,该研究报道的方法既保证了高含量金属离子初始锚定时的高分散性又能有效抑制后续热解过程基底烧结重构引起的金属原子团聚。 XAFS、HADDF-STEM等多种表征手段证明,由该法制得的负载型金属单原子催化材料在保证金属原子单分散的同时还能实现远超现有文献报道水平的金属载量。借助该方法,该团队成功制备出质量分数高达41.6%(原子分数为3.84%)的Ir单原子催化材料(图2),该负载量相较于文献报道的Ir单原子最高载量提升了数倍。 另外,该合成策略还具有普适性,能够用于制备其他贵金属或非贵金属的高载量金属单原子催化材料。例如,在碳基底材料上,Pt单原子的负载量最高可达32.3 wt.%,Ni单原子负载量可达15 wt.%(图3)。 夏川,电子 科技 大学材料与能源学院教授,国家青年人才。研究方向为基于新能源的电催化、电合成、电化学生物合成,致力于实现碳平衡的能量与物质循环。在“液体燃料与基础化学品现场合成”这一特色方向开展了深入、系统的研究,在反应器与催化剂设计领域均取得丰硕成果,共发表学术论文50余篇,授权美国专利3项,H因子34,引用5200余次。近五年来,以第一作者/通讯作者身份在Science、Nat. Energy、Nat. Catal.、Nat. Chem.等国内外高水平期刊共发表论文20余篇,其中ESI高被引论文9篇,热点论文2篇。

给孩子买小零食,发现好多知名品牌都有精炼植物油。比如现在手这的米多奇的香米饼。 以前自己吃零食,喜欢粗粮、坚果类,健康。但现在发现要想健康,还要仔细地看食品的成分。 但一看,多多少少地都难以让人信任。比如这个植物油。到底是什么?以前看过,觉得不够健康。现在一查,还是要小心些,尽量避开这些东东。 我们大家平常非常喜欢吃的奶油蛋糕、饼干、油酥饼、油炸干吃面、炸面包圈、薯片、巧克力、色拉酱、汉堡、炸薯条、炸鸡块、爆米花等美食,都含有精炼植物油。有的厂家会在包装上明确标出使用了精炼植物油,而很多厂家根本就不标明成分。要知道,精炼植物油里藏有许多反式脂肪酸,这对人体是非常不利的。 精炼会产生反式脂肪酸       美国麦当劳“薯条反式脂肪酸含量增加事件”发生后,反式脂肪酸对人体健康的危害已成为人们关注的焦点。过去人们曾认为饱和脂肪酸是身体健康的大敌,精炼植物油才能保障健康,其实食品中的反式脂肪酸比饱和脂肪酸的危害更大。       最新医学报告指出,反式脂肪酸和饱和脂肪酸一样,都会提高人体胆固醇含量,特别是低密度脂蛋白胆固醇含量。大量摄入可能会引发心血管疾病、胆囊疾病、Ⅱ型糖尿病、老年痴呆症、癌症(如结肠癌、前列腺癌、乳腺癌)等,还会抑制胎儿和幼儿的生长发育、危害男性生殖功能。而且反式脂肪不容易代谢,通常要50多天才能被代谢出体外。       反式脂肪酸是在植物油精炼加工过程中产生的。天然植物油如大豆油、菜籽油等,都是顺式结构的脂肪酸,因其不饱和程度较高,稳定性较差,容易发生氧化、酸败,不易长期保存和储存,故需进行部分氢化加工,以脱除植物油的异味及游离脂肪酸、醛、酮类等有害物质,以改善植物油的品质。但在精炼过程中,通常要在250℃以上高温处理,此过程会产生一定数量的反式脂肪酸。 另外,烹调时过高的油温或反复煎炸也会生成少量反式脂肪酸。         抵制口感的诱惑       氢化后的油脂呈固态或半固态,使食物口感更酥松,这也就是为什么人们普遍觉得一些酥化、松脆的食物特别香、特别可口的原因。人造黄油、煎炸油、起酥油等均属于氢化油脂,它们中的反式脂肪酸含量一般在5~45%之间,最高可达65%。据统计,美国人日常膳食用于烹饪和加工的植物油中80~90%的反式脂肪酸源于植物油的氢化。       要想真正减少反式脂肪酸对人们健康的损害,应该在膳食上减少反式脂肪酸的摄入量,特别是孕妇和乳母,其每天摄入量应低于2g。要避免和减少食用富含反式脂肪酸的各种奶油糕点、油炸小食等,尽量避免高温炒菜或是油炸烹调。       要呼吁人们少吃快餐及高油脂的甜点,尤其是那些经常给孩子买起酥面包、酥脆点心和洋快餐的家长,一定要警惕。           提醒:在超市选购食品时,不妨多留意以下标识: 凡成分中有精炼植物油、氢化植物油、半氢化植物油、人造黄(奶)油、鲜奶奶油、人造植物黄(奶)油、人造脂肪、起酥油或植脂末等字眼,就表示有反式脂肪酸,应尽量少选择这类产品。       结论:食品用油中的橄榄油、核桃油、葵花籽油、棕榈油或玉米油等及氢化程度较低的油中不含或少含反式脂肪酸,可放心食用。但用油量要控制,每天25克左右。 最后补充一点,你可能会在一些食物的配料表里发现有反式脂肪酸的面孔,但是在营养成分表里却写得反式脂肪酸含量为0,这时,你千万不要以为这个食物不含反式脂肪,因为不含反式脂肪酸的全氢化植物油或植脂末等,一定会在配料表里或显眼的位置就告诉你,它不含反式脂肪酸。而像我所说的那种情况是因为我国在2011年10月份发布了国标GB28050- 2011《预包装食品营养标签通则》,其中规定如果食品中的反式脂肪含量低于0.3g/100g的话,就可以标注为0。所以食物中“不含反式脂肪”和“反式脂肪酸的标注为0”,也要区分开来。 曾获得诺贝尔奖的反式脂肪酸到底是啥?为什么这么令人深恶痛绝?  2018-07-29 20:32 大家可能经常听到“反式脂肪酸”这个词,摄入过多脂肪肯定是不好的,“反式脂肪酸”近些年更是像毒药一样人人喊打。 2013年美国FDA将“不完全氢化植物油”(最常见的人造反式脂肪酸)移出“一般认为安全”。 2018年5月14日,世界卫生组织宣布,计划在未来5年在世界范围内,全面消除食物中的人造反式脂肪。 反式脂肪,又称为反式脂肪酸,天然的牛乳、人乳都含有这种成分。 不过我们最关注的是人造反式脂肪酸,它主要是脂肪酸经氢化过后的产物,多见于氢化植物油,如人造黄油、代可可脂等。 采用氢化植物油的食物口感更佳,保持期也更长,因此这一技术被广泛用于食品生产、加工过程。 你可能不知道的是,人造反式脂肪酸还有过一段“辉煌”的历史。 欧美人烹饪习惯偏向使用猪油、牛油等固体动物油脂。但后来随着一段时间的物价上涨,原本供应量就不大的动物油脂价格更是水涨船高。 为了寻找价格低廉的固体油脂,商人们把目光移向了大豆。大豆在很长一段时间都是美国主要蛋白质来源,而且 大豆还有个重要的产物——大豆油。 然而欧美人并不喜欢这种液体油脂,于是科学家研究出植物油加氢技术。 方法是在少量的镍、钯、铂或钴等触媒金属的帮助下,将氢加入植物油里产生氢化反应。从而 提高了饱和脂肪酸在植物油中的比重,让植物油可以像动物油一样在常温中变成固体。 而反式脂肪酸,便是这个氢化反应的副产物。 1890年,化学家保罗·萨巴捷率先发明了 氢化技术 ,并因此获得了诺贝尔化学奖。 到了1901年,德国化学家威廉·诺曼则首次发现氢化技术可以将液态的植物油变成固体。 直到1909年,日化巨头宝洁公司买下该专利的使用权,并且开始了疯狂的广告、电视节目轮番轰炸。 再后来其他看到氢化植物油商业价值的巨头们也纷纷加入竞争的行列。 到1957年,人造黄油的销量终于首次超越了天然黄油。 从此这种廉价的固体的植物油真正走进千家万户,成了颠覆传统食品行业概念的产品。 更加如有神助的是当欧美的商人都在疯狂推销人造黄油的时候,美国的心血管疾病发病率逐年上升。 经过美国心脏协会等权威机构认定,动物脂肪中大量的饱和脂肪酸是罪魁祸首。 于是作为不饱和脂肪酸一员的氢化植物油顺理成章的免费加上了一个“健康”的标签。 原来广告中吹牛的“植物更健康”竟然出乎意料的有了权威认定。 本来只是“废物利用”的人造黄油竟然还比天然黄油更健康了。 于是1958年,美国国会也通过了《食品添加剂法案》。 “不完全氢化植物油”也被列入 “一般认为安全” 的清单。 这个“一般认为安全”的概念就是日常饮食中可以放心添加,基本不会危害健康。 食品加工业对于不完全氢化植物油的添加量甚至不需要经过审查。 但幸运的是始终有科学家对反之脂肪酸的安全性抱有怀疑。 一名叫费雷德·库默罗的心血管疾病专家,怀疑 造成血栓、动脉硬化的罪魁祸首,是人工生产出来的反式脂肪酸,而不是普通脂肪。 在几年的小鼠实验中,他就发现喂食人造反式脂肪的老鼠会发生了动脉粥样硬化。 而停止喂食人造反式脂肪一段时间后,动脉粥样硬化便又会消失。 于是早在1957年,他便发表了相关研究论文指出,氢化植物油会导致人体内的胆固醇升高,可能会导致冠心病。可惜当时并没有引起重视。 直到20世界80年代,才出现了对反式脂肪酸引起心血管疾病的“实锤”。 哈佛大学的威利特等,花了8 年的时间,调查饮食中的反式脂肪对10 万名妇女健康的影响。 他们发现, 反式脂肪可以让冠状动脉疾病风险增加50%。 2006年,更有一篇论文汇总分析了目前所有有关反式脂肪酸的研究。 得出“反式脂肪在膳食总能量中的比例每上升2%(相当于每天吃4克),会显著增加冠心病的风险”的结论。 再后来越来越多的研究成果证实了反式脂肪酸对健康的危害。 到了2008年,美国已经基本全面禁止餐饮业添加任何反式脂肪酸。 不过幸运的是由于中国的饮食习惯,反式脂肪酸摄入量远低于欧美国家。毕竟一般的家庭很少见使用固体油脂的习惯。 但要注意的是, 虽然平均摄入量少,但每个人的饮食习惯不同。有很多人都偏好含有反式脂肪酸的食物。 例如 “植脂末”、“奶精”、“植物奶油”、“人造奶油”、“代可可脂” 等等成分都需要引起注意。 此外,我国对反式脂肪含量的管理标准是:100克或100毫升食物中反式脂肪含量低于0.3克即可标示为“0”。 也就是说, 市面上一些标注着“零反式脂肪”的食物也不是完全可以放心大胆的吃。 学会认识一些食品成分表,是避免踩入狡猾商家陷阱的第一步。表 1 :常见植物油中的反式脂肪酸含量( g/100g ) 油脂种类及品牌 食品名称 反式脂肪酸含量(g/100g)* 大豆油 1号**精炼一级大豆油1.94 2号一级大豆油0.37 玉米油 1号植物甾醇玉米油1.10 2号压榨玉米油1.06 调和油 1号食用调和油1.01 2号食用植物调和油0.76 花生油 3号一级花生油0.50 葵花籽油 2号压榨葵花籽油0.62 橄榄油 4号特级初榨橄榄油0.11 黄油 5号含盐黄油3.11 6号植物黄油0.90 动物油脂类 猪油2.27 牛油7.22 奶油4.43 氢化植物油 氢化豆油45.31 氢化棕榈油9.28 氢化软棕榈油16.59 * 检验方法为AOCS Ce 1f-96。 ** 代表产品的不同品牌。下同。 由上述结果可见,除了橄榄油外,其余所有油脂(以每100克计)的反式脂肪酸含量都超过0.3克。氢化后的植物油中反式脂肪酸含量更高,如氢化豆油达到了45.31g/100g。氢化后的油脂虽然不会直接用来烹调,但作为一些包装食品的原料,会经常出现在各类食品中,值得引起关注。植物油也含有少量的反式脂肪酸,油脂加工工艺是导致反式脂肪酸含量差异的主要原因。压榨花生油的工艺条件较温和,仅存在少量的反式脂肪酸,而大豆油、玉米油、调和油通常进行高温脱臭,故其反式脂肪酸含量明显高于前者。另外,不同品牌的植物油中反式脂肪酸的含量也有一定差异。 3.2   饼干、糕点类反式脂肪酸含量 休闲食品已经成为人们闲暇生活不可或缺的一部分。对7种常见品牌中的19种产品,其中包括两种现制现售品牌的产品中脂肪含量较高的蛋黄派、巧克力派、小熊饼、糕点产品进行分析测定后发现,这些食品中均大都含有反式脂肪酸,有的含量较高,值得引起消费者的注意。详细结果如表2所示。 表 2 :常见休闲食品中的反式脂肪酸含量( g/100g ) 品牌 食品名称 配料中油脂名称 反式脂肪酸含量 11 号 小熊饼植物起酥油5.45 巧克力派-沙沙(巧克力注心饼)代可可脂、植物起酥油3.64 麦淇酪夹心(涂饰蛋类芯饼)植物起酥油、代可可脂3.14 12 号 巧克力味涂饰蛋类芯饼起酥油、氢化植物油3.64 注心蛋黄派起酥油、氢化植物油3.01 巧克力味注心蛋糕起酥油、氢化植物油0.86 13 号 巧克力(代可可脂)香橙味夹心饼干代可可脂(氢化)0.66 14 号 牛角面包氢化植物油0.09 巧克力小圈氢化植物油2.01 15 号 柚子布丁蛋糕3.87 咸味起酥点心0.62 16 号 牛角酥面包2.26 奶油蛋糕未测出 蛋挞0.65 原味奶酪蛋糕0.79 17 号 蓝莓奶酪三角派0.11 巧克力三角派0.16 南瓜三角派0.21 酥片油0.63 3.3 快餐食品中的反式脂肪酸含量 国外资料显示,洋快餐食品(薯条、炸鸡)和中国传统油炸食品油条中反式脂肪酸含量与油炸时间和煎炸油反复使用的周期有关。煎炸时间煎炸油反复使用的周期越长,反式脂肪酸的含量越高。本次实验同时采集了西方快餐代表品牌和部分速冻产品样品,具体检测结果见表3。 表 3   快餐食品中的反式脂肪酸含量( g/100g ) 品牌 食品名称 反式脂肪酸含量 21 号 炸鸡翅0.12 炸鸡腿0.11 22 号 鳕鱼条0.16 油条0.09 薯条0.08 23 号 品牌油条0.06 24 号 素三鲜水饺未测出 白菜三鲜水饺未测出 芹菜三鲜水饺未测出 韭菜三鲜水饺未测出 荠菜三鲜水饺未测出 青菜猪肉水饺未测出 白菜猪肉水饺未测出 3.4 常用饮品中的反式脂肪酸含量 咖啡、奶茶等饮品是目前含脂肪类似物较高的饮品。试验调查分析了具有代表性5个品牌的产品,检测饮品中固体成分的反式脂肪酸含量。具体反式脂肪酸含量如表4。 表 4   常见饮品中的反式脂肪酸含量( g/100g ) 品牌 食品名称 配料中油脂声称 反式脂肪酸含量 31号奶茶-(香浓原味)氢化植物油0.21 32号奶茶(巧克力味)氢化大豆油3.42 33号咖啡伴侣--植脂末食用氢化植物油 0.04 (重测) 34号咖啡奶末食用氢化植物油 未测出(重测) 35号小摊奶茶4.65 3.5 芝士、糖果和调味酱 芝士、糖果和调味酱的消费量也在逐年增高,试验调查分析了具有代表性6个品牌的产品,检测这类产品中的反式脂肪酸含量。具体反式脂肪酸含量如表5。 表 5   常见芝士、糖果和调味酱中的反式脂肪酸含量( g/100g ) 品牌 食品名称 配料中油脂声称 反式脂肪酸含量 芝士片 41号原味香浓奶味黄油0.54 42号原味芝士片黄油0.52 糖果 43号牛奶巧克力夹心太妃糖氢化植物油、代可可脂0.79 44号代可可脂巧克力氢化植物油0.15 沙拉酱 45号沙拉酱植物油0.05 46号巧克力花生酱氢化植物油0.03

如何用手机充Q点

碳水化合物期刊投稿

碳水化合物审稿周期为3个月。根据查询相关公开信息显示,碳水化合物研究在中科院分区中位于4区,JCR分区位于Q2。审稿速度为3.0个月,且近两年没有被列入国际预警名单,可以放心投稿。

国际生物大分子杂志》是研究所有天然大分子的化学和生物学方面的公认国际期刊。它介绍了有关蛋白质,大分子碳水化合物,糖蛋白,蛋白聚糖,木质素,生物多酸和核酸的分子结构和性质的最新研究成果。这些发现必须是新的和新颖的,而不是重复早期或类似的出版工作。范围包括生物活性和相互作用,分子缔合,化学和生物修饰以及功能特性。还欢迎有关模型系统,结构构象研究,理论发展和新的分析技术的论文

碳水化合物聚合物期刊应该是JCR分区。拓展资料:碳水化合物是由碳、氢和氧三种元素组成,自然界存在最多、具有广谱化学结构和生物功能的有机化合物。由于它所含的氢氧的比例为二比一,和水一样,故称为碳水化合物。它可以为人体提供热能。食物中的碳水化合物分成两类:人可以吸收利用的有效碳水化合物和人不能消化的无效碳水化合物。糖类化合物是一切生物体维持生命活动所需能量的主要来源。它不仅是营养物质,而且有些还具有特殊的生理活性。

发表氢能论文

近年来,随着氢能的能源属性日渐凸显,将氢能参照汽油等类似能源进行管理,还原其能源属性,完善标准体系和安全监管的呼声也越来越高。3月23日,业内期盼已久的氢能源属性在当日出台的《氢能产业发展中长期规划(2021 2035年)》中被明确,氢能也由此迎来了发展的风口。 熟悉氢能的人都知道,由于氢气被作为危险化学品列管,制氢和加氢装置只能建在化工园区内。化工园区通常地处偏远,不仅氢能用量有限,项目审批流程也很长,极大限制了氢能项目的布局和应用。从加氢站建设的角度来看,针对其安全距离的要求使得加氢站占地面积增加,导致土地成本飙升,这也使氢能难以大规模在城市核心区域布局。制氢和加氢的基础设施不足,直接制约了包括氢燃料电池 汽车 在内的氢能下游的推广应用,进而影响了氢能产业链的 健康 发展。 此次《规划》的出台,对氢能业而言无疑是“久旱逢甘霖”。《规划》指出“氢能是未来国家能源体系的重要组成部分”,首次明确了氢的能源属性,成为我国氢能产业发展的重要制度基础,并将对氢能产业发展发挥重要指导作用。清洁低碳氢能源的生产和使用也将成为“双碳”战略的重要实现路径。 氢能是一种来源丰富、绿色低碳、应用广泛的二次能源,正逐步成为全球能源转型发展的重要载体之一。从全球来看,以燃料电池为代表的氢能开发利用技术取得重大突破,全球氢能全产业链关键核心技术趋于成熟,一些主要发达国家和经济体已将氢能视为能源转型的重要战略选择,不断拓宽清洁氢气供应的市场份额。 从国内看,我国是世界上最大的制氢国,年制氢量约3300万吨,其中达到工业氢气质量标准的约1200万吨。我国可再生能源装机量居于世界首位,在清洁低碳氢能源供给上具有巨大潜力。我国也已初步掌握了氢能制备、储运、加注及燃料电池开发等关键技术,还在部分区域开展了燃料电池 汽车 示范应用。 为拓展石油和化工行业氢能应用场景,中国石油和化学工业联合会在2021年就专门成立了氢能专委会,旨在立足氢能源,从六个方面重点促进我国氢能产业发展。一是深入了解氢能行业发展现状和亟待解决的问题,利用联合会平台及时发声,推动行业 健康 发展。二是促进氢能全产业链、上下游协同发展。三是推动氢能关键共性技术的研发、示范和推广。四是推动氢能产业标准的完善与应用。五是反映行业重大利益诉求。六是在国际合作、技术孵化、产融服务上下功夫。这些都与此次出台的《规划》内容不谋而合。 《规划》还明确提出,要围绕氢能高质量发展重大需求,准确把握氢能产业创新发展方向,聚焦短板弱项,适度超前部署一批氢能项目,持续加强基础研究、关键技术和颠覆性技术创新。石化等相关行业要聚焦关键核心技术、聚焦创新支撑平台、聚焦专业人才队伍、聚焦国际合作机遇,建立完善更加协同高效的创新体系,不断提升氢能产业的竞争力和创新力。 相信有国家对氢能发展的顶层设计和相关行业协会的群策群力,氢能产业一定能抓住 历史 机遇,走上 健康 发展的新征程,助力“双碳”目标如期实现。 (朱良伟为中国石油和化学工业联合会国际交流和外企委员会副秘书长)

行业主要上市公司:美锦能源(000723);厚普股份(300471);中国石化(600028);卫星化学(002648);嘉化能源(600273);亿华通(688339)等

本文核心数据:氢能源板块上市公司研发费用;氢能源相关论文发表数量

全文统计口径说明:1)论文发表数量统计以“hydrogen energy”为关键词,选择“中国”、“论文”筛选。2)统计时间截至2022年8月17日。3)若有特殊统计口径会在图表下方备注。

氢能技术概况

1、氢能源的界定及分类

(1)氢能源的界定

氢能是氢在物理与化学变化过程中释放的能量。氢能是氢的化学能,氢在是宇宙中分布最广泛的物质,它构成了宇宙质量的75%,储量丰富。氢能被视为21世纪最具发展潜力的清洁能源,随着世界范围内对绿色经济发展重视程度的提升,氢能源的需求和应用领域不断扩展。

(2)氢能源的分类

按照氢气的来源,通常将氢能源分为三类,即灰氢、蓝氢和绿氢。

2、技术全景图:四大环节构成

氢能产业主要由制氢、储氢、运氢、加氢和用氢四大环节构成。为发挥氢能重要能源载体作用,需大力推动氢能产业每个环节的技术发展。其中电解水制氢、液态/固态储氢、液态有机储氢、氢燃料电池等先进技术研究对氢能产业规模化应用具有重要意义。

氢能产业技术发展历程:始于上世纪50年代

中国的氢能与燃料电池技术研究始于上世纪50年代。20世纪80年代以来,相继启动了863计划和973计划,加速以研究为基础的技术商业化项目,氢能和燃料电池均被纳入其中。“十三五”期间,氢能与燃料电池开始步入快车道。2016年以来相继发布《能源技术革命创新行动计划(2016-2030年)》、《节能与新能源汽车产业发展规划(2012-2020年)》、《中国制造2025》等顶层规划。2019年两会期间,氢能首次写入政府工作报告。2020年4月,氢能被写入《中华人民共和国能源法》(征求意见稿)。2021年,“十四五”规划指出要在氢能与储能等前沿科技和产业变革领域,组织实施未来产业孵化与加速计划,谋划布局一批未来产业。2022年发布第一个氢能源专项规划——《氢能产业发展中长期规划(2021-2035 年)》,为中国氢能源产业发展作为指引。

氢能产业技术政策背景:政策加持技术水平提升

近些年来,我国提出了一系列氢能产业技术发展相关政策,包括氢气制备、储运、应用和燃料电池等关键技术,使得氢能产业技术水平稳步提升。

氢能产业技术发展现状

1、氢能产业技术科研投入现状

(1)国家重点专项

为推进氢能技术发展及产业化,国家重点研发计划启动实施“氢能技术”重点专项。2018-2022年,“氢能技术”重点专项数量逐年增加。2018年仅9项技术专项,到2022年,“氢能技术”重点专项围绕氢能绿色制取与规模转存体系、氢能安全存储与快速输配体系、氢能便捷改质与高效动力系统及“氢能万家”综合示范4个技术方向,拟启动24项重点专项。

(2)A股上市企业研发费用

目前,中国氢能市场正处于发展初期,行业整体研发投入水平不算太高。从A股市场来看,2017-2021年,我国氢能源板块上市公司研发总费用逐年增长,2022年第一季度,氢能源板块上市公司研发总费用约158.69亿元。

2、氢能产业技术科研创新成果

(1)论文发表数量

从氢能相关论文发表数量来看,2010年至今我国氢能相关论文发表数量呈现逐年递增的趋势,可见氢能科研热度持续走高。截至2022年8月,我国已有80825篇氢能相关论文发表。

注:统计时间截至2022年8月。

(2)技术创新热点

通过创新词云可以了解氢能产业技术领域内最热门的技术主题词,分析该技术领域内最新重点研发的主题。通过智慧芽提取该技术领域中最近5000条专利中最常见的关键词,其中,催化剂、燃料电池、制氢系统、电解水、电解槽等关键词涉及的专利数量较多,说明氢能领域近期的研发和创新重点集中于燃料电池和制氢等领域。

(3)专利聚焦领域

从氢能专利聚焦的领域看,目前氢能产业专利聚焦领域较明显,其主要聚焦于催化剂、燃料电池、制氢系统、电解水、电解槽等。

注:图中格子数量表示每家公司的专利覆盖率,每个格子代表相同数量的专利。

主要氢能产业环节技术分析

1、前端制氢环节:可再生能源电解制氢是氢源终极方案

制氢环节技术主要包括化石能源制氢和可再生能源制氢。其中,利用化石能源制氢并未摆脱能源对石油、煤炭和天然气的依赖,仍会产生大量碳排放;即使是加上CCUS捕集制备的蓝氢,一旦甲烷在制备过程中发生泄漏,对气候的影响比碳排放更大。而利用可再生能源进行电解水制氢,生产过程基本不会产生温室气体。

2、中端储运氢环节:固态储运安全性更好

储运氢气的方式主要分为气态储运、液态储运和固态储运。相比于气氢储运和液氢储运,固态储运在安全性方面优势明显。

3、后端加氢及氢燃料电池

(1)加氢:站内制氢成本优势大

加氢基础设施是氢能利用和发展的中枢环节,是氢能产业发展的核心配套设施。根据氢气来源不同,加氢站可分为外供氢加氢站和站内制氢加氢站。相较于外供氢而言,站内制氢能够大幅减小氢气的运输成本。

(2)氢燃料电池:质子交换膜燃料电池是主流发展方向

按电解质的种类不同,燃料电池可分为碱性燃料电池、质子交换膜燃料电池、硝酸型燃料电池、碳酸型燃料电池、固体氧化物燃料电池等。其中,质子交换膜燃料电池是当前燃料电池的主流技术发展方向。

氢能产业技术发展痛点及突破

1、氢能产业技术发展痛点

(1)高成本是制约氢能大规模发展的关键

当前,经济性为氢能产业发展最大的挑战因素,即使是成本相对较低的氢气($0.5/kg),除了转化成氨用作肥料以外,绝大多数氢能应用场景都比现有化石能源技术昂贵。解决氢能产业在绿氢制备、储运氢、加氢站建设、燃料电池电堆等关键环节的经济性问题,是未来氢能大规模发展必须要攻克的一道难题。

(2)制氢技术:先进电解技术发展不成熟

目前国内电解水制氢的成熟技术为碱性电解水制氢技术,碱性水电解槽难以响应瞬态负载,因而难以与波动大的可再生电力配合。另外,PEM电解水制氢技术也面临着匹配可再生能源电力而进行的电解槽设计、控制技术以及电源系统设计等尚不成熟的局面。

2、氢能产业技术发展突破

(1)先进电解技术:PEM电解槽设计改进突破

PEM电解槽设计改进策略方向包括更轻更稳定的端板和双极板、经济且耐腐蚀的集电器等。据Yagya N Regmi博士的研究小组研究发现,PEM电解中发生不含铂族金属催化的析氧反应在短期内是无法实现的,因此,尽可能使铱的质量活性最大化才是目前的可行策略。

(2)氢能储运:固态储氢和潜液式液氢泵突破储运氢技术瓶颈

氢能储运技术突破在于提高储氢密度和安全性,以及降低运输成本。固态储氢是利用物理或化学吸附将氢气储存在固体材料之中。固态储氢具有体积储氢密度高、安全性更好的优势,因此是一种有前景的储氢方式。因此,固态储氢得到了越来越多的研究和关注,主要工作集中在储氢材料的研发与改性等方面。以氢枫能源的镁基固态储氢为例,镁基固态储氢具有资源、性能及技术优势。

液氢泵为液氢储运的重要部件,用于对液体氢气进行传输分配。从氢能全产业链来看,氢气输配成本和初始资本支出为降本的最主要环节。潜液式液氢泵取代了外置泵,减少了氢蒸发,去掉了气氢压缩机;且用液氢的冷源省去制冷系统。此外,潜液式液氢泵大流量液氢泵直接加注,不用高压储罐,去除级联储存;最终的结果是减少初始投资和运行成本,使氢气的售价与汽油、柴油比肩。

氢能产业技术发展方向及趋势:氢能各环节技术加快突破

氢能供应体系发展路径以实现绿色经济高效便捷的氢能供应体系为目标,中国将在氢的制储运加各环节上逐渐突破。从长远看,随着用氢需求的扩大,结合可再生能源的分布式制氢加氢一体站、经济高效的集中式制氢、液氢等多种储运路径并行的方案将会是主要的发展方向。

「前瞻碳中和战略研究院」聚焦碳中和领域的政策、技术、产品等开展研究,瞄准国际科技前沿,服务国家重大战略需求,围绕“碳中和”开展有组织、有规划科研攻关,促进碳中和技术成果转化和推广应用,为企业创新找到技术突破口,为各级政府提供碳达峰、碳中和的战略路径管理咨询和技术咨询。院长徐文强博士毕业于美国加州大学伯克利分校,二十余年来一直深耕于低碳清洁能源和绿色材料领域的基础研究、产品开发和产业化,拥有55项专利、33篇论文,并已将30多种产品推向市场,创造商业价值50+亿元,专注于氢能、太阳能、储能等清洁能源研究。

以上数据参考前瞻产业研究院《氢能产业技术趋势前瞻及投资价值战略咨询报告》。

相关百科

热门百科

首页
发表服务