Applied Mathematics Letters是一本专门发表应用数学领域研究成果的期刊。根据官方网站的介绍,从提交文章到投稿审查的整个过程一般需要4-6周的时间。具体流程包括:接收投稿后,编辑会进行初步筛选,然后将文章发送给专家进行匿名评审。通常情况下,一篇文章的审稿周期为6-8周,但如果文章需要进行大幅度修改,则审稿时间会相应地延长。接受文章后,稿件将进入审稿准备阶段,进行格式编辑和语言润色。最终,文章将被发表在线和印刷版上,同时作者也会收到关于出版的详细信息。
弗莱登塔尔数学思想中再创造之深入研究 01再创造的含义 学生再创造学习数学的过程实际上就是一个做数学的过程,这是目前数学教育的一个重要观点。其核心是数学过程再现。要求教师设想你当时已经有了现在的知识,你将怎样发现那些成果的。不能简单的放手学生自己去发现和创造,任务是引导和帮助进行这种再创造的工作。 02再创造的心理学依据 03再创造理论的优缺点分析 04理论中可增加的实践性背景和实验数据 05再创造理论的研究分化和未来方向 “教育学+数学例子”通过实际例子来说明 通过单独题目变式教学 06我对再创造理论的思考 根据自己研究数学的体会,以及观察儿童数学学习过程得出,思辨性理论 爬梯理论:建构逐步而上的阶梯 过程再现:在初步掌握时就看别人的初步再现
中等数学 本刊由天津师范大学主办。主要读者对象为初、高中学生数学竞赛爱好者,中学教师,数学教研人员。该刊是国内惟一一份以报道数学竞赛为主要内容的刊物
给您推荐一个自助投稿网站——万维书刊,上面的刊物非常全,包括数学类的刊物,电子邮箱基本都有,并且大多还能连接登录他们的官方网站。用着很方便,过去看看吧! 此投稿网的特点:自助投稿、非中介、高校教师创办、免费、直接投稿编辑部、可以收藏期刊、保存投稿记录、期刊点评、连接期刊官网等,功能齐全。每个刊物的电子邮箱都来自官网或者知网、万方等权威网站。 请收藏并且介绍给朋友们吧,让他们投稿时也省一份心!祝投稿顺利!心情愉快! 您在百度、谷歌键入“万维书刊”,首页便是!
很好的。德国数学年刊是很好的,每年汇集了全球知名的数学优秀论文。论文常用来指进行各个学术领域的研究和描述学术研究成果的文章,简称之为论文。
3个工作日内。根据德国应化公司显示条例中查询显示,投稿后应在3个工作日内送审,并在1个工作日内审核完毕反馈结果。
弗莱登塔尔数学思想中再创造之深入研究 01再创造的含义 学生再创造学习数学的过程实际上就是一个做数学的过程,这是目前数学教育的一个重要观点。其核心是数学过程再现。要求教师设想你当时已经有了现在的知识,你将怎样发现那些成果的。不能简单的放手学生自己去发现和创造,任务是引导和帮助进行这种再创造的工作。 02再创造的心理学依据 03再创造理论的优缺点分析 04理论中可增加的实践性背景和实验数据 05再创造理论的研究分化和未来方向 “教育学+数学例子”通过实际例子来说明 通过单独题目变式教学 06我对再创造理论的思考 根据自己研究数学的体会,以及观察儿童数学学习过程得出,思辨性理论 爬梯理论:建构逐步而上的阶梯 过程再现:在初步掌握时就看别人的初步再现
《数学的实践与认识》既不是EI源期刊,也不是SCI源期刊。
数学的实践与认识 [1000-0984] 本刊收录在: 中国科学引文数据库(CSCD)来源期刊(2009-2010)提示: CSCD扩展库(E)本刊收录在: 中国科学引文数据库(CSCD)来源期刊库(2013-2014)提示: CSCD扩展库(E)本刊收录在: 中国科技期刊引证报告(2010年版)提示: 《引证报告》2010年版影响因子:0.189本刊收录在: 中国科技期刊引证报告(2011年版)提示: 《引证报告》2011年版影响因子:0.175本刊收录在: 中国科技期刊引证报告(2012年版)本刊收录在: 中国科技期刊引证报告(2013年版)提示: 《引证报告》2013年版影响因子:0.181本刊收录在: 中文核心期刊要目总览(2008年版)提示: 排序:数学 - 第17位本刊收录在: 中文核心期刊要目总览(2011年版)提示: 排序:数学类 - 第11位 EI &SCI INDEX未收录本刊。
数学通报投稿难度偏上。数学通报投稿要求来稿要求题材新颖、内容真实、论点明确、层次清楚、数据可靠、文句通顺,文章不超过5000字。
文章在投稿的时候首先就是必须要和杂志社征稿的内容相符合才可以,要符合主题的要求,比如说是庆祝建国多少周年的一些文章,那么你的论文内容就要向这方面靠拢。杂志社征稿,相对竞争也是比较激烈的,尤其是一些知名度比较高的杂志社,在正稿的时候会有很多投稿者,所以在这种情况下,竞争自然也会增加,那么就要求你的文章内容质量一定要高。文章的质量是非常重要的,但是吸引审核者才是最关键的。所以在这种情况下,就要想办法让你的文章更加具有吸引力,可以在开头或者是引言的部分埋下伏笔。
论文投稿期刊的格式是什么?格式是最基本要求,期刊投稿对格式的要求几乎是一致的,我们只要掌握了一般的格式也就基本掌握了所有学术期刊的发表格式要求了,论文发表的格式包括题目、摘要、关键词、正文内容这几个方面,每个细节都要重视起来,可能哪个环节没有注意到就会导致论文不能顺利的发表,格式看似简单,但也是最容易被忽略的部分,来看看期刊投稿对格式的一般要求:( 一 ) 题名题名又称题目或标题。题名是以最恰当、最简明的词语反映论文中最重要的特定内容的逻辑组合。1 .准确得体 要求论文题目能准确表达论文内容,恰当反映所研究的范围和深度。题要扣文,文也要扣题。这是撰写论文的基本准则。2 .简短精炼 力求题目的字数要少,用词需要精选。3 .外延和内涵要恰如其分 外延和内涵属于形式逻辑中的概念。4 .醒目 论文题目虽然居于首先映入读者眼帘的醒目位置,但仍然存在题目是否醒目的问题,因为题目所用字句及其所表现的内容是否醒目,其产生的效果是相距甚远的。(二)作者姓名和单位这一项属于论文署名问题。署名一是为了表明文责自负,二是记录作者的劳动成果,三是便于读者与作者的联系及文献检索(作者索引)。大致分为二种情形,即:单个作者论文和多作者论文。后者按署名顺序列为第一作者、第二作者厖。重要的是坚持实事求是的态度,对研究工作与论文撰写实际贡献大的列为第一作者,贡献次之的,列为第二作者,依此类推。注明作者所在单位同样是为了便于读者与作者的联系。(三)摘要论文一般应有摘要,有些为了国际交流,还有外文(多用英文)摘要。代写工程师论文它是论文内容不加注释和评论的简短陈述。其他用是不阅读论文全文即能获得必要的信息。 摘要应包含以下内容:①从事这一研究的目的和重要性;②研究的主要内容,指明完成了哪些工作;③获得的基本结论和研究成果,突出论文的新见解;④结论或结果的意义。(四)关键词关键词1; 关键词2; 关键词3; 关键词4; 关键词5 (要求5-8个关键词,各词间用分号";"隔开)(五)正文内容论文正文:(1)引言:引言又称前言、序言和导言,用在论文的开头。引言一般要概括地写出作者意图,说明选题的目的和意义, 并指出论文写作的范围。引言要短小精悍、紧扣主题。(2)论文正文:正文是论文的主体,正文应包括论点、论据、论证过程和结论。主体部分包括以下内容:a.提出问题-论点;b.分析问题-论据和论证;c.解决问题-论证方法与步骤;d.结论。①篇幅:一般在3000~5000字左右;文稿章节采用三级标题顶格排序。一级标题形式如1、2、3排序;二级标题形式为1.1、1.2、2.1、2.2…;三级标题形式为 1.1.1、1.1.2、2.1.1、2.1.2…。②符号:正文、图表中的变量都要用斜体,英文缩写、计量单位、函数名称、运算符号、括号等都要用正体, 容易混淆的外文字母及符号请注明, 文中的计量单位一律使用《中华人民共和国法定计量单位》;③插图:要有图序、图名,插图要精绘,图字要清晰;插图和照片不得用复印件,必须是精绘图和原照片;图、表应安排在正文中的相应位置上;④表格:要有表序、表名,用三线表(表格的左、右端不封),采用小数点对齐式;⑤公式:公式须用字符格式录入。(请您认真校对稿件,避免出现拼写错误、漏字、多字等问题,正确使用标点符号。)(六)参考文献来稿一定要有参考文献,限著者阅读过和论文中引用过且正式发表的出版物,未公开发表的资料请勿引用;按在文章引用的先后顺序编号;列出主要参考文献即可,一篇论文的参考文献是将论文在研究和写作中可参考或引证的主要文献资料,列于论文的末尾。参考文献应另起一页,标注方式按《GB7714-87文后参考文献著录规则》进行。
楼上说的似乎都太小儿科了,楼主想必是要发表的那种,当然要正式一点.http://ptc3.fjpt.cn.net/sxx/jingpin/teachersemail/paper/5-guojunmo.doc这里的一篇是偏向交作业的下面一个是正式发表的双语版本张彧典人工证明四色猜想 山西盂县党校数学高级讲师用25年业余时间研究四色猜想的人工证明。在借鉴肯普链法和郝伍德范例正反两方面做法的基础上,独创了郝——张染色程序和色链的数量组合、位置(相交)组合理论,确立了仅包含九大构形的不可免集合,从而弥补了肯普证明中的漏洞。现贴出全文(中——英文对照)及参考文献的英译汉全文。欢迎各位同仁批评指正。最后特别感谢英国兰开斯特大学A.lehoyd、兰州交大张忠辅、清华大学林翠琴、上海师大吴望名四位教授的无私帮助。附:论文用“H·Z—CP“求解赫伍德构形张彧典 (山西省盂县县委党校 045100)摘要:本文根据色链的数量和位置组合理论,用赫伍德染色程序(简称H—CP)和张彧典染色程序(简称Z—CP)找到一个赫伍德构形的不可避免集。关键词:H—CP Z—CP H·Z—CP《已知的赫伍德范例》〔1〕对求解赫伍德构形有两大贡献。其一,提供了H—CP,使我们用它找到了赫伍德染色非周期转化的赫伍德构形组合;其二,范例2提供了赫伍德染色周期转化的赫伍德构形,使我们发现了Z—CP,解决了这种构形的正确染色。为下面讨论方便,先给出〔1〕文中赫伍德构形的最简单模型。如图1所示:四色用A、B、C、D表示,待染色区V用小圆表示,其五个邻点染色用A1、B1、B2、C1、D1表示,形成的五边形区域叫双B夹A型中心区。中心区外有A1—C1链、A1—D1链(因它们的首尾分别被V连成环,故叫环,以便与开放链区分),其中还有B1—D2链、B2—C2链,A1、A2被C2—D2链隔开。其余赫伍德构形类同。在我们所设的模型中,再添加一些不同的色链后就构成许多不同的标准三角剖分图(记为G′)。当借助H—CP对它们求解时发现,其中色链的不同数量组合和相交组合直接影响解法上的差异。现在具体确立赫伍德构形的不可避免集。在后面图解中,画小横线者表示环,画粗线者表示两点以上染色互换的链,B(D)等表示一个点的染色互换。如图2: 设图1中有B1-A2链、D1-C2链(也可以是B2-A2链)存在时。其解法是:在A1—C1环内作B、D互换,生成新的A—D环(生不成情形归于下一种构形),再作A—D环外的C、B互换,可给V染C色。如图3:设图1中有C1-D2链、D1-C2链存在时。其解法是:在A1—C1环内作B、D互换,生成B—C环;作B—C环外的D、A互换,生成新的A—C环(生不成情形归于下一种构形);再作A—C环内的B、D互换,可给V染B色。如图4:设图1中有C1-D2链、B2-A2链存在时。其解法是:在A1—C1环内作B、D互换,生成B—C环;作B—C环外的D、A互换,生成B—D环;作B—D环内的A、C互换,生成新的B—C环(生不成情形归于下一种构形);再作B—C环内的D、A互换,可给V染D色。如图5:设图4中B1-D2链与A1-D1环相交,这时有B1-A3、C1-A3生成。其解法是:在A1—C1环内作B、D互换,生成B—C环;作B—C环外的D、A互换,生成B—D环;作B—D环内的A、C互换,生成A—D环;作A—D环外的C、B互换,生成新的B—D环(生不成情形归于下一种构形);再作B—D环外的A、C互换,可给V染A色。如图6:设图5中C1-D2链与A1-C1环相交,为简单起见,将C1-D2链在A1-C1环外的D色点均改染B色,见图中B(带圈子的)。其解法是:在A1—C1环内作B、D互换,生成B—C环;作B—C环外的D、A互换,生成B—D环;作B—D环内的A、C互换,生成A—D环;作A—D环外的C、B互换,生成A—C环;作A—C环外的B、D互换,生成新的A—D环(生不成情形归于下一种构形);再作A—D环内的C、B互换,可给V染C色。如图7:设图6中B1-D2链再与B1-A3链相交,为简单起见,将B1-A3链在B1-D2链内侧的A色点均改染C色,见图中C(带圈子的)。其解法是:在A1—C1环内作B、D互换,生成B—C环;作B—C环外的D、A互换,生成B—D环;作B—D环内的A、C互换,生成A—D环;作A—D环外的C、B互换,生成A—C环;作A—C环外的B、D互换,生成B—C环;作B—C环内的D、A互换生成新的A—C环(生不成情形归于下一种构形);再作A—C环内的B、D互换,可给V染B色。如图8:设图7中有B1-D2链与C1-D2链在A1-C1环内相交。其解法是:在A1—C1环内作B、D互换,生成B—C环;作B—C环外的D、A互换,生成B—D环;作B—D环内的A、C互换,生成A—D环;作A—D环外的C、B互换,生成A—C环;作A—C环外的B、D互换,生成B—C环;作B—C环内的D、A互换生成B—D环;作B—D环外的A、C互换,生成新的B—C环(生不成情形归于下一种构形);再作B—C环内的D、A互换,可给V染D色。图9:设图8中有B2-A2链与A1-D1环相交。其解法是:在A1—C1环内作B、D互换,生成B—C环;作B—C环外的D、A互换,生成B—D环;作B—D环内的A、C互换,生成A—D环;作A—D环外的C、B互换,生成A—C环;作A—C环外的B、D互换,生成B—C环;作B—C环内的D、A互换生成B—D环;作B—D环外的A、C互换,生成A—D环;作A—D环内的C、B互换,生成新的B—D环;(生不成情形归于下一种构形)再作B—D环内的A、C互换,可给V染A色。如图10:这是一个十折对称的赫伍德构形。即在图3中,按图6的相交组合方式设C1—D2链与A1—C1环相交,D1—C2链与A1—D1环相交,C1—D2链在A1—C1环外的D色点与D1—C2链在A1—D1环外的C色点均改染B色,见图中B(带圈子的)。;再设改染成的C—B链、D—B链对称相交。这个赫伍德构形就是〔1〕文中范例2的拓扑变换形式。对于图10如果沿用图2—9的求解方法,就会产生四个周期转化的赫伍德构形,无法得解。但是,四个连续转化的赫伍德构形有一个共同的染色特征,即都包含A—B环,于是产生了如下特殊的Z—CP:若已知的是第一(或三)图时,先作A—B环外的C,D互换,生成新的A—C,A—D(或B—C、B—D)环,再作B(D)、B(C)[或A(D)、A(C)]互换,使五边形五个顶点染色数减少到3。解如图10(1)和图10(3)。若已知的是第二(或四)图时,先作A—B环外的C,D互换,生成了新的B—C(或A—D)链,再作B—C(或A—D)链一侧的A(D)[或A(C)〕互换,使五边形五个顶点染色数减少到3。解如图10(2)和10(4)。下面从理论上证明图2—10组成的不可避免集的完备性。在已四染色的G’中,由A、B、C、D四色中任意二色组成的不同色链共C42(=6) 种。反映在赫伍德构形中,有始点终点均在中心区且相交的A1-C1环、A1-D1环,还有始点在中心区,终点在A1-C1、A1-D1二环交集区域边缘上的B1-D2、B1-A2(B2-A2)、B2-C2、C1-D2(D1-C2)四种链。这四种链在赫伍德构形中的不同数量组合共四组:B1-A2、B1-D2、B2-C2、B2-A2B1-A2、B1-D2、B2-C2、D1-C2C1-D2、B1-D2、B2-C2、B2-A2C1-D2、B1-D2、B2-C2、D1-C2而六种色链中任意两种色链的不同位置组合共C62(=15)组。其中有三组不可相交组合:A-B与C-D、A-C与B-D、A-D与B-C;还有12组可相交组合:A-B与A-C、A-D、B-C、B-D;A-C与A-D、B-C、C-D ;A-D与B-D、C-D;B-C与B-D、C-D;B-D与C-D。我们把上述六种色链的不同数量组合(4组)及不同位置组合(12组可相交的)作为两大变量,一共可得到16种不同组合的赫伍德构形;然后在“结构最简”和“解法相同”的约束条件下逐一检验,具体归纳为:图2——4体现四种不同数量组合,其中图2体现前两种组合;图5——9体现依次增多的相交组合,其中图9已包含了12种相交组合;图10体现特殊的数量组合和相交组合。到此,我们用“H·Z—CP”成功地解决了赫伍德构形的正确染色,从而弥补了肯普证明中的漏洞。参考文献:〔1〕、Holroyd,F.C.and Miller,R.G..The example that heawood shold have given Quart J Math.(1992). 43 (2),67-71附英文版Using H·Z-CP Solves Heawood ConfigurationZhang Yu-dianYu Xian Party School, Yu Xian 045100, Shanxi, ChinaAbstract: In this text, One Heawood configuration’s inevitable sets is found by using Heawoods-clouring procedure (abbreviated as H-CP) and Zhang Yu-dian clouring procedure (abbreviated as Z-CP), based on quantity and poison combination theory of coloring chain. And, one new procedure is found, which is named as H·Z-CP.Key words: H-CP Z-CP H·Z-CPIntroduceThesis [1] made two main contributions to solving Heawood configuration. One is H-CP, by using it Heawood-coloring aperiodic transform’s Heawood configuration sets was found. The other one, in example II[1], provided Heawood-coloring periodic transform’s Heawood configuration. With it, Z-CP was found, and solved correct coloring for this configuration.For the convenience of discuss, the simplest Heawood configuration model is given in [1] as follows.As shown in Fig. 1, A, B,C ,D denote four colors, one roundlet denotes section V to be dyed, A1, B1, B2,C1 ,D1, denote five adjacent points border upon V, the pentagon area that forms is defined as pairs of B & A embedded area. Outside of V is A1-C1 chain and A1-D1 chain (because the head and trail is looped by V separately, so called loop, in order to distinguish with others). And there are B1-D2 chain and B 2-C2 chain also. A1, A2 is separated by C2-D2 chain. The other Heawood configuration is similar.In this model, if add another coloring chain, many distinct normal triangle section map is formed(is G′). When to find the solution of map, it is found that distinct quantity combination and intersectant combination have effect on solution’s difference.As follows, the detailed Heawood configuration’s inevitable sets is given.ResultIt is defined in latter figure as: a small transverse thread denotes a loop, a thick thread denotes a chain in which two or more coloring changed. B(D) etc. denotes that one point’s coloring is changed.As shown in Fig. 2, if there are B1-A2 chain and D1-C2 chain in Fig. 1(can also be B2-A2 chain):Its solution is: in A1-C1 loop, B and D is interchanged, a new A-D loop is formed (if it can’t be formed, belongs to another configuration). Then, C and B outside A-D loop is interchanged, and then V can be dyed with C color.As shown in Fig. 3, if there are C1-D2 chain and D1-C2 chain in Fig. 1:Its solution is: in A1-C1 loop, B and D is interchanged, a new B-C loop is formed, D and A outside B-C loop is interchanged, a new A-C loop is formed (if it can’t be formed, belongs to another configuration). Then, in A-C loop, B and D is interchanged, and then V can be dyed with B color.As shown in Fig.4, if there are C1-D2 chain and B2-A2 chain in Fig. 1:Its solution is: in A1-C1 loop, B and D is interchanged, a new B-C loop is formed, D and A outside B-C loop is interchanged, a new B-D loop is formed , in B-D loop, A and C is interchanged, a new B-C loop is formed, (if it can't be formed, belongs to another configuration). Then, in B-C loop, D and A is interchanged, and then V can be dyed with D color.As shown in Fig.5, if B1-D2 chain and A1-D1 loop is intersectant in Fig. 4, new B1-A 3 loop and C1-A 3 loop are formed.Its solution is:in A1-C1 loop, B and D is interchanged, a new B-C loop is formed, D and A outside B-C loop is interchanged, a new B-D loop is formed, in B-D loop, A and C is interchanged, a new A-D loop is formed, C and B outside A-D loop is interchanged, a new B-D loop is formed, (if it can't be formed, belongs to another configuration). Then, A and C outside B-D loop is interchanged, and then V can be dyed with A color.As shown in Fig.6, if C1-D2 chain and A1-C1 loop is intersectant in Fig. 5, for simplicity, D can be dyed with B color in C1-D2 chain outside A1-C1 loop. See ○B in Fig.6.Its solution is: in A1-C1 loop, B and D is interchanged, a new B-C loop is formed, D and A outside B-C loop is interchanged, a new B-D loop is formed, in B-D loop, A and C is interchanged, a new A-D loop is formed, C and B outside A-D loop is interchanged, a new A-C loop is formed, B and D outside A-C loop is interchanged, a new A-D loop is formed, (if it can't be formed, belongs to another configuration). Then, in A-D loop, C and B is interchanged, and then V can be dyed with C color.As shown in Fig.7, if B1-D2 chain and B1-A3 loop is intersectant in Fig. 6, for simplicity, A can be dyed with C color in B1-A3 chain inside B1-D2 chain. See ○C in Fig. 7.Its solution is: in A1-C1 loop, B and D is interchanged, a new B-C loop is formed, D and A outside B-C loop is interchanged, a new B-D loop is formed, in B-D loop, A and C is interchanged, a new A-D loop is formed, C and B outside A-D loop is interchanged, a new A-C loop is formed, B and D outside A-C loop is interchanged, a new B-C loop is formed, in B-C loop, D and A is interchanged, a new A-C loop is formed, (if it can't be formed, belongs to another configuration). Then, in A-C loop, B and D is interchanged, and then V can be dyed with B color.As shown in Fig.8, if B1-D2 chain and C1-D2 chain is intersectant inside A1-C1 loop in Fig. 7.Its solution is: in A1-C1 loop, B and D is interchanged, a new B-C loop is formed, D and A outside B-C loop is interchanged, a new B-D loop is formed, in B-D loop, A and C is interchanged, a new A-D loop is formed, C and B outside A-D loop is interchanged, a new A-C loop is formed, B and D outside A-C loop is interchanged, a new B-C loop is formed, in B-C loop, D and A is interchanged, a new B-D loop is formed, A and C outside B-D loop is interchanged, a new B-C loop is formed, (if it can't be formed, belongs to another configuration). Then, in B-C loop, D and A is interchanged, and then V can be dyed with D color.As shown in Fig.8, if B2-A2 chain and A1-D2 loop is intersectant in Fig. 8.Its solution is: in A1-C1 loop, B and D is interchanged, a new B-C loop is formed, D and A outside B-C loop is interchanged, a new B-D loop is formed, in B-D loop, A and C is interchanged, a new A-D loop is formed, C and B outside A-D loop is interchanged, a new A-C loop is formed, B and D outside A-C loop is interchanged, a new B-C loop is formed, in B-C loop, D and A is interchanged, a new B-D loop is formed, A and C outside B-D loop is interchanged, a new A-D loop is formed, in A-D loop, C and B is interchanged, a new B-D loop is formed, (if it can't be formed, belongs to another configuration). Then, in B-D loop, A and C is interchanged, and then V can be dyed with A color.In Fig. 10, it is a ten-fold symmetrical Heawood configuration. Namely in Fig. 3, according intersectant combination method in Fig. 6,if C1-D2 chain and A1-C1 loop intersects, D1-C2 chain and A1-D1 loop intersects, D color point at C1-D2 chain outside A1-C1 loop and C color point at D1-C2 chain outside A1-D1 loop are both exchanged with B coloring, see ○B in Fig. 10. And then presume the exchanged C-B chain and D-B chain are symmetrically intersectant. This Heawood configuration is the topology transform form in example II [1].For Fig. 10, if using the solution way in Fig. 9, 4 periodic transform’s Heawood configurations will come into being, and will be no result. But there is a common coloring character for the 4 sequence transform Heawood configurations, namely, they all contain A-B loop. And then, as follows Z-CP comes into being.If Fig. 10(1) or 10(3) is known, firstly, C and D outside A-B loop interchanged, the new A-C loop and A-D loop(or B-C loop and B-D loop) come into being.then B(D) & B(C) (or A(D) & A(C)) interchange. The coloring number at the point of the pentagon is reducing to 3. Its conclusion is shown in Fig. 10(1) and Fig. 10(3).If Fig. 10(2) or 10(4) is known, firstly, C and D outside A-B loop is interchanged, the new B-C (or A-D) chain come into being, then A(D) (or A(C)) at the side of B-C (or A-D) is interchange. The coloring number at the point of the pentagon is reducing to 3. Its conclusion is shown in Fig. 10(2) and Fig. 10(4).The self-contained inevitable sets composed of Fig 2 to 10 will be proved as follows.In the 4 color dyed G’, the quantity of distinct coloring chain formed by two colors in A, B,C ,D four colors have C42(=6) kinds totally. It is reflected in Heawood configuration, there are intersectant A1-C1 loop and A1-D1 loop whose start-point and end-point are all in center area. And there are B1-D2, B1-A2(B2-A2), B2-C2, C1-D2(D1-C2) 4 chains , whose start-point is in center area, and end-point is on the verge of the intersection area of A1-C1 loop and A1-D1 loop. There are 4 groups in total for the 4 kinds of chain’s distinct quantity combination in Heawood configuration:B 1-A2、B 1-A2、B2-C2、B2-A2B 1-A2、B 1-D2、B2-C2、D1-C2C 1-D2、B 1-D2、B2-C2、B2-A2C 1-D2、B 1-D2、B2-C2、D1-C2There are C62(=15) kinds of two different situation’s combination in 6 kinds of chains, among them ,there are 3 kinds of not intersectant combinations:A-B and C-D、A-C and B-D、A-D and B-C;Otherwise there are 12 kinds of intersectant combinations:A-B and A-C、A-D、B-C、B-D;A-C and A-D、B-C、C-D ;A-D and B-D、C-D;B-C and B-D、C-D;B-D and C-D。Above 6 kinds of chain’s different quantity combinations(4 groups) and different situation combinations (intersectant 12 groups ) are two major variables, 16 kinds of Heawood configurations in different combination can be found totally. Then, on the “simplest structure” and “same solution” restrictive condition, verifiyed one by one, detailed conclusion is: Fig. 2 to Fig. 4 indicate 4 kinds of different quantity combinations. Among them, Fig. 2 indicates the former 2 groups. Fig. 5 to Fig. 9 indicate intersectant combination increased in turn. Among them, Fig. 9 contains12 kinds of intersectant combinations. Fig. 10 indicates specific quantity combinations sand intersectant combinations.By this time, correct coloring for Heawood configuration is solved. The procedure which solve the problem, we name it H·Z-CP. The conclusion renovate the leak of kengpu proof.Bibliography:〔1〕、Holroyd,F.C.and Miller,R.G..The example that heawood shold have given Quart J Math.(1992). 43 (2),67-71
1、通过网站将论文发到投稿邮箱。2、论文邮件标题格式:数学通报+作者姓名+联系方式+论文投稿。3、论文应立论新颖、主题明确、论据充分、数据可靠,语言简练,具有一定的科学性、创新性、应用性。
数学论文一般都有专门的课题,不知你要哪方面的,网上有很多这方面的资料,你在百度搜索出输入:数学论文或者某课题的数学论文,注意下面的相关搜索及更多相关搜索,你就会看到的。