论文查询网站有FindaRticles文献论文搜索、钛学术文献平台、Semantic Scholar学术搜索引擎和Base Search德国比勒菲尔德学术搜索引擎。
一、FindaRticles文献论文搜索
1、平台优势:类别比较丰富,体量也比较广,涵盖了艺术与娱乐、汽车、商业与经融、计算机与技术、健康与健身、新闻与社会、科学教育、体育等各个方面刊物的上千万篇论文。
2、平台评价:检索操作简单,文献质量可能有所欠缺,但是它所拥有的文献总量达1100万篇,资料来源于杂志、定期刊物和报纸等,而且是一个适配谷歌的搜索站点。
二、钛学术文献平台
1、平台优势:拥有超广的收录视角,超强的NPL算法,目前已收录2.4亿余篇各式文献,是国内实力极强的一站式文献检索网站。
2、平台评价:实用功能较多,包括但不仅限于丰富的检索方式、高效检索文献功能,细致的文献详情页面、分析选题等等,致力于节省同学们下载后再通过内容去分析价值的时间。
三、Semantic Scholar学术搜索引擎
1、平台优势:由微软联合创始人Paul Allen创立,其检索结果来自于期刊、学术会议资料或者是学术机构的文献。这个搜索引擎能检索到80%的免费论文文献,大约有300万份。
2、平台评价:也是和钛学术功能一样可以提供图表预览,方便研究人员省下更多筛选的工作,另外是信息筛选技术可以搜寻论文发布的会议名称、论文发布的时间,从论文文中筛选出关键词句等。
四、Base Search德国比勒菲尔德学术搜索引擎
1、平台优势:由德国比勒费尔德大学图书馆开发的一个多学科的学术搜索引擎,提供对全球异构学术资源的集成检索服务,Base整合的文献大约有160个开放资源即超过200万个文档数据信息。
2、平台评价:站面精简,查找文献比较快速,以学科资料为主。
钛学术在钛学术版权交易平台投稿。钛学术联合入驻期刊社为上链的文献保证发表的真实性,并出具相应的发表认证证书作为凭证。基于区块链实现不可篡改的版权交易体系,期刊社独立运营,提供公正公平的版权交易环境,版权认证、溯源服务等维护版权所有人的合法权益。
钛学术智汇文献服务平台是由北京钛学术智汇科技有限公司研发并运营,是学术出版新技术应用与公共技术服务实验室所打造的文献生态体系的重要组成部分之一。1、丰富的检索方式:支持篇关摘分别检索以及融合检索。全文、作者、单位、分类号等检索,甚至于基金检索也可以。2、高效的检索功能:高效的高级检索,据可靠测试,学会高级检索后,检索文献所需时间至少可减20%。3.特色的文献详情页:高效检索文献的直接保障,细致的文献详情页面。打开即有文献分析,引文网络,以及相关的学者机构和相关的期刊文献。省去了同学们下载后再通过内容去分析价值的时间。
有机阳离子以及卤素阴离子空位缺陷是制约钙钛矿太阳能电池高效率以及长期稳定性的主要因素,如何同时消除这两种缺陷是当下的难题。基于此,北京大学工学院周欢萍研究员课题组提出一种新的消除机制,即在钙钛矿活性层中引入氟化物,利用氟极高的电负性,实现氟化物同时与有机阳离子形成强氢键以及与铅离子形成强离子键的双重效果。研究从而有效消除了有机阳离子以及卤素阴离子的空位缺陷,大大提升了电池的光电转换效率和长期稳定性。相关研究于2019年5月13日在国际顶级学术期刊《自然能源》( Nature Energy )上发表,题为“Cation and anion immobilization through chemical bonding enhancement with fluorides for stable halide perovskite solar cells”(doi:10.1038/s41560-019-0382-6)。 太阳能作为一种取之不尽用之不竭的清洁能源备受研究人员关注,而将太阳能转换为电能的太阳能电池也是世界上众多课题组青睐的材料。近年来,有机无机杂化钙钛矿太阳能电池以其高效率、低成本的优势获得了学术界和产业界的众多关注,而其光电转换效率也在短短几年内迅速提升至24.2%,是单节电池中当下效率最高的薄膜太阳能电池。 然而,这类电池稳定性不佳是严重阻碍其商业化应用的主要因素。相比于传统无机光伏材料,有机-无机杂化钙钛矿材料晶格较软,且是一种离子晶体,易在外界环境的干扰下发生离子迁移,形成大量的空位缺陷,从而诱导晶格塌缩以及组分分解,从而使其不再具备优异的光电转换能力。 在众多的空位缺陷中,卤素阴离子和有机阳离子空位由于其较低的缺陷形成能而普遍存在于钙钛矿表面以及晶界,该两种空位缺陷不仅会影响太阳能电池的工作效率,且会诱导钙钛矿晶体的进一步退化,形成更多的体相缺陷。针对这两种缺陷之前报道的工作主要集中在钝化单一缺陷,即有机阳离子或卤化物空位,无法做到“鱼与熊掌兼得”。如何同时消除这两种缺陷,实现钙钛矿太阳能电池的更高效率和高稳定性是钙钛矿材料目前最为棘手的问题。针对上述重要问题,周欢萍课题组提出了一种全新的消除机制,即通过在钙钛矿活性层中引入氟化钠,利用氟极高的电负性,实现氟化物同时与有机阳离子形成强氢键以及与铅离子形成强离子键的双重效果。基于此离子键和氢键的化学键调制,可以固定钙钛矿组分中的有机阳离子和卤素阴离子,从而消除了相应的空位缺陷,电池效率和稳定性都得到了明显提升。氟化钠引入的电池器件最高效率达到了21.92%(认证值为21.7%),且没有明显的迟滞现象。同时,引入氟化钠的器件表现出优异的热稳定性和光稳定性,在一个太阳的连续光照射或85°C加热1000小时后,器件仍可分别保持原有效率的95%和90%,在最大功率点处连续工作1000小时后可以保持原有效率的90%。该方法解决了钛矿太阳能电池中限制其稳定性的两个重要因素——有机阳离子和卤素阴离子空位,并可推广至其他的钙钛矿光电器件;且化学键调制的方法对于其他面临类似问题的无机半导体器件也具有重要参考意义。该论文的第一作者是周欢萍课题组的2017级博士生李能旭,周欢萍特聘研究员为通讯作者。合作者还包括埃因霍温理工大学Shuxia Tao课题组和北京理工大学陈棋课题组、北京理工大学洪家旺课题组、香港大学杨世和课题组、中南大学谢海鹏老师、特温特大学Geert Brocks教授等。该工作得到了国家自然科学基金委、 科技 部、北京市自然科学基金、北京市科委、先进电池材料理论与技术北京市重点实验室等联合资助。 周欢萍课题组近期致力于提高钙钛矿太阳能电池的效率和稳定性,取得的一系列重要进展相继在 Science (DOI: 10.1126/science.aau5701), Nature Energy (DOI: 10.1038/s41560-019-0382-6), Nature Communications (DOI: 10.1038/s41467-019-09093-1;DOI: 10.1038/s41467-019-08507-4 和 DOI: 10.1038/s41467-018-05076-w), Advanced Materials (DOI: 10.1002/adma.201900390), Journal of the American Chemical Society (DOI: 10.1021/jacs.7b11157) 上发表。
最近,苏州大学材料与化学化工学部的汪胜研究团队在Advanced Materials和Biomaterials Science上分别发表了两篇论文。这些论文的主题集中在新型纳米材料在生物医学领域的应用。在Advanced Materials上发表的论文中,研究团队设计了一种基于层状双氧水钙钛矿纳米晶体的纳米药物载体。他们发现,这种载体可以有效地抑制癌细胞的增殖和扩散,并对正常细胞没有毒性。在Biomaterials Science上发表的论文中,研究团队探索了一种基于羟基磷灰石的生物活性材料,并将其应用于骨修复。他们发现,这种材料可以促进骨细胞的增殖和分化,从而加速骨的再生和修复。这些研究成果有望为生物医学领域提供新的治疗方法和技术,具有重要的应用价值。
最近,苏州大学材料与化学化工学部的汪胜教授发表了一篇题为“钯纳米粒子修饰纳米多孔碳作为高效的氢气传感器”的论文。在这项研究中,汪胜教授和他的团队使用钯纳米粒子修饰纳米多孔碳,并将其用于制造高效的氢气传感器。这种传感器可以快速且准确地检测到氢气,具有高灵敏度和较低的检测限值。与传统的氢气传感器相比,这种传感器具有更快的响应时间和更高的稳定性。据研究人员介绍,这种高效的氢气传感器具有广泛的潜在应用,例如工业生产中的氢气检测、水处理、化学反应等领域。此外,在环境保护和能源领域中,这种传感器也有很好的发展前景。汪胜教授的研究成果得到了国内外同行的高度评价,有望为氢气传感器的研发和应用提供重要的参考和指导。
近期,苏州大学材料与化学化工学部的汪胜教授在国际重量级学术期刊Advanced Materials上发表了题为“Ultrastrong and Tough Graphene Aerogel Fibers with Hierarchical Architecture”的论文。该论文报道了一种新型石墨烯气凝胶纤维,该纤维具有超强和韧性的特点,并且具有分层结构。这种新型石墨烯气凝胶纤维的制备方法简单易行,所得纤维具有超高的拉伸强度和韧性,并且具有显著的储能能力和超高的导电性能,因此在柔性电子、高强度材料和先进能源储存等领域有着广泛的应用前景。这项研究成果的发表不仅提高了我国在新型高性能材料领域中的国际影响力,而且也为石墨烯气凝胶纤维的制备和应用提供了新的思路。
我知道有两本刊物(材料科学、材料化学前沿)上面的文献都是可以免费查阅的
尖晶石型锰酸锂正极材料的合成及电化学性能研究 在线阅读 整本下载 分章下载 分页下载 【英文题名】 The Study of Electrochemistry Performance for Synthesize Spinel Li-Mn-O Materials on the Lithium-ion Battery 【作者】 卢星河; 【导师】 唐致远; 【学位授予单位】 天津大学; 【学科专业名称】 应用化学 【学位年度】 2005 【论文级别】 博士 【网络出版投稿人】 天津大学 【网络出版投稿时间】 2007-07-10 【关键词】 锂离子电池; 正极材料; 尖晶石型锰酸锂; 阴阳离子复合掺杂; 包覆改性; 电化学性能; 高温性能; 【英文关键词】 lithium-ion battery; cathode material; spinel LiMn_2O_4; doping; surface modification; electrochemical performance; elevated temperature performance; 【中文摘要】 锂离子电池因质量比容量大、平均开路电压高和循环寿命长等优点已广泛应用于移动、便携式电器。目前锂离子电池的正极材料主要采用层状钴酸锂。由于钴资源的短缺、大电流充放电和高温环境使用的不安全因素,研究开发新一代高性能正极材料成为一项重要课题。尖晶石型LiMn_2O_4材料具有原料资源丰富、易制备和环境友好等优点,特别是因为充放电电压高、循环性能好、比容量高和使用安全等优良的电化学性能,该材料成为本研究的重点: 本研究首先对尖晶石型锰酸锂正极材料的研究现状、存在问题和解决方案等进行了较系统的探讨,先后制定了多项改善和提高尖晶石型锰酸锂电化学性能的措施。合成研究了分别和同时掺杂阴、阳离子正极材料Li_(1.02)M_xMn_(2-x)Q_yO_(4-y)的充放电比容量、循环性能、高温(55℃)性能和大电流充放电性能等,表征了合成材料的晶体结构、表观形态、粒径及粒径分布规律,进一步探讨了表面包覆(修饰)改性和电解液及其组成对锰酸锂正极材料的作用和影响。 以实验室合成的尖晶石型锰酸锂LiCo_xCr_yMn_(2-x-y)O_4材料为母体材料,以SiO_2... 【英文摘要】 The lithium-ion batteries have been widely used in portable electronic products such as, cell phones, notebook computers and cameras because of its high-capacity (2.5 times as large as the Ni-Cd batteries and 1.5 times as large as the Ni-MH batteries) and high average open voltage, that is, 3.7 V in contrast with the 1.2V of Ni-MH batteries. In the near future, the lithium-ion battery will used in the motive-batteries. As key parts of the battery,the anode and cathode have become one of the hott... 【DOI】 CNKI:CDMD:1.2007.078634 【更新日期】 2007-07-25 【相同导师文献】 导师:唐致远 导师单位:天津大学 学位授予单位:天津大学[1] 高飞.锂离子电池正极材料LiFePO_4的合成与电化学性能研究[D]. 中国博士学位论文全文数据库,2008,(08)[2] 黄娟.循环冷却水新型加酸工艺配方的研究[D]. 中国优秀硕士学位论文全文数据库,2008,(08)[3] 常林荣.铝轻型板栅在铅酸电池中的应用及聚苯胺的电化学合成[D]. 中国优秀硕士学位论文全文数据库,2008,(08)[4] 穆雪梅.新型高效氧电极催化剂的研究与评价[D]. 中国优秀硕士学位论文全文数据库,2008,(08)[5] 邱瑞玲.固相法合成LiFePO_4及其改性研究[D]. 中国优秀硕士学位论文全文数据库,2008,(08)[6] 王倩.柔性纸质电池的研制[D]. 中国优秀硕士学位论文全文数据库,2008,(08)[7] 赵松鹤.锂离子电池负极材料钛酸锂的研究[D]. 中国优秀硕士学位论文全文数据库,2008,(08)[8] 张联忠.两种锂离子电池负极材料的研究[D]. 中国优秀硕士学位论文全文数据库,2006,(08)[9] 肖成伟.车用锂离子动力电池循环性能的研究[D]. 中国优秀硕士学位论文全文数据库,2007,(08)[10] 樊勇利.锂离子电池正极材料氧化镍钴锰锂的研究[D]. 中国优秀硕士学位论文全文数据库,2007,(08)
钛酸锂电池优点:
1、安全稳定性好
传统的碳电极在嵌锂之后一旦过充,电极的表面容易析出金属锂,其与电解液接触发生反应会产生可燃性气体,带来安全隐患。钛酸锂的电势比纯金属锂的电势高,不易产生锂晶枝,放电电压平稳,而且,因此提高了锂电池的安全性能。
曾有第三方机构对钛酸锂电池进行测试发现,在针刺、挤压、短路等严苛测试下,不冒烟、不起火、不爆炸,安全性远高于其他锂电池。因此也有很多业内人士认为钛酸锂十分适合用在对电池稳定性要求极高的特种等领域。
电动汽车的安全稳定性能是消费者最为关注的指标,无论续航里程多远,如果不能解决安全问题,消费者开的不过是一辆装着不定时炸弹的车子,而钛酸锂电池的超安全性能无疑将会受到消费者的青睐。
2、快充性能优异
与碳负极材料相比,钛酸锂具有较高的锂离子扩散系数,可高倍率充放电。在大大缩短充电时间的同时,对循环寿命的影响较小,热稳定性也较强。据测试,最新技术研发的钛酸锂电池十分钟左右即可充满,比传统的电池有了质的飞跃。
充电时间太长一直是电动汽车发展过程中难以跨越的障碍。一般采用慢充的纯电动公交车,充电时间至少要4个小时以上,很多纯电动乘用车的充电时间更是长达8个小时。电动车辆的快速充电是未来的趋势,消费者不愿浪费太多时间在等待充电这个环节。
3、循环寿命长
电池循环寿命决定整个新能源车的性价比,是未来新能源车脱离补贴政策后的主要竞争点。汽车电池循环寿命的延长,让消费者能够买得起、养得起。
其他的传统锂离子电池,比如磷酸铁锂电池,在使用过程中会出现容量大幅衰减、寿命缩短的问题,不仅影响了用户的正常使用,还增加了电池更换成本。这种不佳的使用体验,很可能让消费者对电动汽车望而却步,从而不利于新能源汽车行业的可持续发展。
钛酸锂电池则很好地解决了这些问题。
钛酸锂电池在充放电时,锂离子嵌入和脱嵌不会造成钛酸锂晶型结构的变化,因此对钛酸锂材料的结构几乎没有影响。正因如此,钛酸锂也被称为“零应变材料”。钛酸锂电池与当前“慢充最多使用5年、快充最多使用2年”的磷酸铁锂电池相比,优势十分突出。
根据试验数据测定,普通电池循环使用寿命平均为3000次,而钛酸锂电池完全充放电循环次数可达3万次以上,在作为动力电池使用10年之后,可能还能作为储能电池再用20年。这也意味着,钛酸锂电池可以做到与车辆同生命周期,用户在实际使用中不用更换电池,几乎不增加后期成本。
4、耐宽温性能良好
钛酸锂电池的尖晶石结构具有三维锂离子扩散通道,因此钛酸锂电池在高低温性能上的表现也十分优异。一般电动汽车在零下10℃时充放电就会出现问题,钛酸锂电池耐宽温性能良好,耐用性强。
在零下50℃到零上60℃均可正常充放电,无论是在冰封的北国,还是在炎热的南方,车辆都不会因电池“休克”而影响工作,消除了用户的后顾之忧。
钛酸锂电池的这些优势,能大幅节省充电站场地建设和人员配置成本等,更适合在公交领域的推广应用,而公交系统正是我国新能源客车推广应用的“主战场”。来自目前推广应用新能源车比例最高的公交市场的反馈显示,快充方式更加适合当前公交市场的实际需求。
钛酸锂电池负极采用钛酸锂,相比负极用石墨的主流锂电池,市场份额十分小众。资料显示,在新能源客车中,钛酸锂电池的市场份额占比约为3%,远低于磷酸铁锂电池88%的市场份额;而在乘用车领域,钛酸锂电池则和其他少数派技术一起,分享着3%的市场空间。
钛酸锂电池缺点
钛酸锂(LTO)材料在电池中作为负极材料使用,由于其自身特性的原因,材料与电解液之间容易发生相互作用并在充放循环反应过程中产生气体析出,因此普通的钛酸锂电池容易发生胀气,导致电芯鼓包,电性能也会大幅下降,极大地降低了钛酸锂电池的理论循环寿命。
测试数据表明,普通的钛酸锂电池在经过1500-2000次左右的循环就会发生胀气的现象,导致无法正常使用,这也是制约钛酸锂电池大规模应用的一个重要原因。
钛酸锂(LTO)电池性能改进是单个材料的性能的提升以及各关键材料的有机整合的综合体现。针对快速充电与长使用寿命的要求,除负极材料以外,还要针对锂离子电池的其他关键原材料(包括正极材料、隔膜、以及电解液)。
同时结合特殊的工程化工艺经验,最终形成了“不胀气”的钛酸锂LpTO电池产品,并首先实现了在电动公交客车上的批量应用。
测试数据表明,在6C充电,6C放电,100%DOD的条件下,钛酸锂LpTO单体电池的循环寿命超过25000次,剩余容量超过80%,同时电芯产生的胀气现象不明显,不影响其寿命。
而重庆快速充电纯电动公交的实际应用情况也表明,在电池成组以后,电性能的表现也相当优异,可以保证纯电动公交客车的日常商业化运营。
优点:
1、它为零应变材料,循环性能好;
2、放电电压平稳,而且电解液不致发生分解,提高锂电池安全性能;
3、与炭负极材料相比,钛酸锂具有高的锂离子扩散系数(为2 *10-8cm2/s),可高倍率充放电等。
4、钛酸锂的电势比纯金属锂的高,不易产生锂枝晶,为保障锂电池的安全提供了基础。
缺点:
1、相对其他类型的锂离子动力电池能量密度会低一些。
2、胀气问题一直阻碍着钛酸锂电池的应用。
3、相对其他类型的锂离子动力电池价格偏高。
4、电池一致性仍存在差异,随着充放电次数的增加电池一致性差异会逐渐增大。
前景:钛酸锂材料在2-3年后,一定会成为新一代锂离子电池的负极材料而被广泛应用在新能源汽车、电动摩托车和要求高安全性、高稳定性和长周期的应用领域。钛酸锂电池工作电压2.4V,最高电压3.0V,充电电流大于2C(即电池容量值的2倍的电流)。
钛酸锂电池存在的问题:
钛酸锂电池在规模应用中面临的主要问题是成本问题,项目研发之初,其价格是磷酸铁锂电池价格的4—6倍。钛酸锂电池价格居高不下,虽然性能显著优于现有锂离子电池,但是经济性因素极大的限制了钛酸锂电池的市场推广。
因此,钛酸锂电池要实现大规模储能应用,需要在现有的电动汽车用钛酸锂电池的基础上进行技术重构,包括材料体系、电池设计、生产工艺等方面的技术重构,在保证钛酸锂电池长寿命本征特性的同时,大幅降低成本。
以上内容参考:百度百科-钛酸锂电池
人民网-重构钛酸锂电池 “多快好省”存储未来
导读
背景
1839年,德国矿物学家古斯塔夫·罗斯(Gustav Rose)站在俄罗斯中部的乌拉尔山脉上,拾起一块以前从未被发现的矿物。
那时,他并没有听说过“晶体管”或“二极管”,也没想到电子器件会成为我们日常生活的一部分。更出乎他意料的是,他手中的这块被他以俄罗斯地质学家 Lev Perovski 的名字命名为“钙钛矿(perovskite)”的这块矿石,会成为彻底变革电子器件的关键因素之一。
钙钛矿如此重要的地位,离不开它特殊的结构。钙钛矿材料结构式一般为ABX3,其中A为有机阳离子, B为金属离子, X为卤素基团。该结构中, 金属B原子位于立方晶胞体心处, 卤素X原子位于立方体面心, 有机阳离子A位于立方体顶点位置。
钙钛矿结构稳定,有利于缺陷的扩散迁移,具备许多特殊的物理化学特性,例如电催化性、吸光性等。
过去十年,钙钛矿因为制造起来更便宜、更绿色,效率可与硅太阳能电池相媲美,逐渐成为硅太阳能电池的替代品。
然而,钙钛矿仍会表现出明显的性能损耗以及不稳定性。迄今为止,大多数的研究集中在消除这些损耗的方法,然而真正的物理原因仍然是未知的。
创新
近日,在一篇发表在《自然(Nature)》期刊上的论文中,来自剑桥大学化学工程与生物技术系以及卡文迪许实验室 Sam Stranks 博士的研究小组,以及日本冲绳科学技术大学院大学 Keshav Dani 教授的飞秒光谱学单位的研究人员们,找到了问题的根源。他们的发现,将使得提升钙钛矿的效率变得更容易,从而使它们离大规模量产更近。
技术
当光线照射钙钛矿太阳能电池时,或者当电流通过钙钛矿LED时,电子被激发,跳跃到更高的能态。带负电荷的电子留下了空白,也称为“空穴”,它带正电荷。受激发的电子与空穴都可以通过钙钛矿材料,因此可成为载流子。
但是,在钙钛矿中会产生一种称为“深阱”的特定类型缺陷,带电的载流子会陷入其中。这些被困的电子与空穴重新结合,它们的能量以热量形式丧失,而不是转化为有用电力或者光线,这样就会显著降低太阳能面板和LED的效率以及稳定性。
迄今为止,我们对于这些陷阱知道得很少,部分原因是,它们似乎与传统太阳能电池材料中的陷阱表现得大相径庭。
2015年,Stranks 博士的研究小组发表了一篇研究钙钛矿发光的《科学(Science)》期刊论文,这篇论文揭示了钙钛矿在吸收光线或者发射光线方面有多擅长。Stranks 博士表示:“我们发现,这种材料非常不均匀;相当大的区域是明亮且发光的,而其他的区域则非常黑暗。这些黑暗区域与太阳能电池或者LED中的能量损耗相关。但是,引起这种能量损耗的原因一直是个谜,特别是由于钙钛矿在其他方面非常耐缺陷。”
由于标准成像技术的限制,研究小组无法说明黑暗区域是由一个大的陷阱位引起的,还是由众多小的陷阱位引起的,从而难以确定它们为什么只是在特定区域形成。
后来在2017年,Dani 教授在 OIST 的研究小组在《自然纳米技术(Nature Nanotechnology)》期刊上发表了一篇论文,在论文中他们制作了一个有关电子吸收光线后在半导体中如何表现的影片。Dani 教授表示:“在材料或者器件被照射光线之后,如果你可以观察到电荷是如何在其中移动的,那么你将从中学会很多。例如,你可以观察到电荷会落入陷阱。然而,因为电荷移动得非常快,以一千万亿分之一秒的时间尺度来衡量;并且穿越非常短的距离,以十亿分之一米的长度尺度来衡量;所以这些电荷难以进行可视化观测。”
在了解到 Dani 教授的工作之后,Stranks 博士伸出援手,看看他们是否可以一起合作应对这个问题,对钙钛矿中的黑暗区域进行可视化观测。
OIST 的团队首次对钙钛矿使用了一项称为“光激发电子显微镜(PEEM)”的技术。他们用紫外光探测材料,并用发射的电子形成一幅图像。
观察材料时,他们发现含有陷阱的黑暗区域,长度大约是10到100纳米,由较小的原子尺寸陷阱位聚集而成。这些陷阱簇在钙钛矿材料中分布不均,从而解释了 Stranks 较早的研究中观察到的非均匀发光。
有趣的是,当研究人员将陷阱位的图像覆盖到显示钙钛矿材料晶粒的图像上时,他们发现陷阱簇仅在特定的地方形成,即某些晶粒之间的边界上。
为了理解这种现象为什么只发生在特定晶粒的边界上,研究人员小组与剑桥大学材料科学与冶金系教授 Paul Midgley 的团队合作,他采用了一项称为“扫描电子衍射”的技术,创造出了钙钛矿晶体结构的详细图像。Midgley 教授的团队利用了位于金刚石光源同步加速器 ePSIC 设施中的电子显微镜装置,该设施拥有用于成像像钙钛矿这样的光束敏感材料的专用设备。
Stranks 研究小组的博士生、这项研究的共同领导作者 Tiarnan Doherty 表示:“因为这些材料是超级光束敏感的,你在这些长度尺度上用来探测局部晶体结构的一般技术,实际上会相当快地改变你正在观察的材料。取而代之的是,我们可以用非常低的照射剂量,从而防止损伤。”
“我们从 OIST 的工作中知道了陷阱簇的位置,并且我们在 ePSIC 围绕着同一块区域扫描,以观察局部结构。我们能够快速地查明晶体结构中陷阱位附近的意外变化。”
研究小组发现,陷阱簇只在材料中具有轻微扭曲结构的区域与具有原始结构的区域的结合处形成。
Stranks 博士表示:“在钙钛矿中,我们拥有这些规则的马赛克晶粒材料,这些晶粒大多数都是又好又崭新的,这是我们所希望的结构。但是,每隔一段时间,你就会得到一个稍微形变的晶粒,这个晶粒的化学成分是不均匀的。真正有意思的,也是一开始让我们困惑的,就是形变的晶粒并没有成为陷阱,而是这个晶粒遇到原始晶粒的地方;陷阱是在那个结合处形成的。”
通过对于陷阱本性的理解,OIST 的团队也采用了定制的 PEEM 仪器来可视化观测钙钛矿材料中载流子落入陷阱的动态过程。Dani 研究小组的博士生、这项研究的共同领导作者 Andrew Winchester 解释道:“这是可能的,因为 PEEM 的特征之一就是,可对超高速的过程进行成像,短至飞秒。我们发现,陷落的过程受到扩散到陷阱簇的载流子的控制。”
价值
这些发现代表了为了把钙钛矿带向太阳能市场所取得的一项重要突破。
Stranks 博士表示:“我们仍然无法准确地知道,为什么陷阱聚集在那里,但是我们现在知道它们确实在那里形成,并且只有那里。这非常令人振奋,因为这意味着我们现在可以知道如何有针对性地提升钙钛矿的性能。我们需要针对这些非均匀相,或者以某种方式去除这些结合处。”
Dani 教授表示:“载流子必须首先扩散到陷阱,这一事实也为改善这些器件提出了其他方案。也许,我们可以改变或者控制这些陷阱簇的排列,而无需改变它们的平均数,这样一来,载流子就不太可能到达这些缺陷部位。”
团队的研究集中在一种特殊的钙钛矿结构。科学家们也将研究这些陷阱簇是否在所有的钙钛矿材料中都是普遍存在的。
Stranks 博士表示:“器件性能的大部分进展都是经过反复试错的,然而目前为止,这一直是一个低效率的过程。迄今为止,这个过程还没有真正被‘理解特定原因以及系统性针对该原因’所驱动。它是这方面最重要的突破之一,将帮助我们采用基础科学来设计更高效的器件。”
关键字
参考资料
【1】Liu, M.Z., Johnston, M.B. and Snaith, H.J. (2013) Efficient Planar Heterojunction Perovskite Solar Cells by vaPour Deposition. Nature, 501, 395-398.
【2】Tiarnan A. S. Doherty, Andrew J. Winchester, Stuart Macpherson, Duncan N. Johnstone, Vivek Pareek, Elizabeth M. Tennyson, Sofiia Kosar, Felix U. Kosasih, Miguel Anaya, Mojtaba Abdi-Jalebi, Zahra Andaji-Garmaroudi, E Laine Wong, Julien Madéo, Yu-Hsien Chiang, Ji-Sang Park, Young-Kwang Jung, Christopher E. Petoukhoff, Giorgio Divitini, Michael K. L. Man, Caterina Ducati, Aron Walsh, Paul A. Midgley, Keshav M. Dani, Samuel D. Stranks. Performance-limiting nanoscale trap clusters at grain junctions in halide perovskites . Nature, 2020; 580 (7803): 360 DOI: 10.1038/s41586-020-2184-1
【3】
钙钛矿期刊一般接收sci和istp检索,但是也有的会发表在国内外核心学术期刊上
最近,苏州大学材料与化学化工学部的汪胜教授团队在高水平期刊《Nature Communications》上发表了题为“Hybrid nanogenerator for simultaneously harvesting sun and rain energy”的一篇论文。该研究团队成功地设计并制备了一种新型的混合纳米发电机,可以同时从太阳和雨水中收集能量。该混合纳米发电机采用了多层结构,包括由半导体纳米线、珍珠岩和碳纤维布组成的柔性基板和由钛酸锶、银、氧化锌和聚丙烯腈等复合材料制成的光电极。在实验中,该混合纳米发电机可以同时输出太阳能和雨能电能,达到了不错的能量转换效率。这项研究的成果具有重要的应用价值,可以在实现清洁能源方面发挥重要作用。该研究还证明了科学家们通过将不同技术结合在一起,可以开发出更加高效的能源转换装置。
最近,苏州大学材料与化学化工学部的汪胜教授发表了一篇题为“钯纳米粒子修饰纳米多孔碳作为高效的氢气传感器”的论文。在这项研究中,汪胜教授和他的团队使用钯纳米粒子修饰纳米多孔碳,并将其用于制造高效的氢气传感器。这种传感器可以快速且准确地检测到氢气,具有高灵敏度和较低的检测限值。与传统的氢气传感器相比,这种传感器具有更快的响应时间和更高的稳定性。据研究人员介绍,这种高效的氢气传感器具有广泛的潜在应用,例如工业生产中的氢气检测、水处理、化学反应等领域。此外,在环境保护和能源领域中,这种传感器也有很好的发展前景。汪胜教授的研究成果得到了国内外同行的高度评价,有望为氢气传感器的研发和应用提供重要的参考和指导。
钙钛矿纳米晶体是发光二极管(LED)的特殊候选材料。然而,它们在固体薄膜中不稳定,这破坏了它们作为LED的潜力。
在这里,美国洛斯阿拉莫斯实验室等单位的研究人员证明了 稳定在金属-有机框架(MOF)薄膜中的钙钛矿纳米晶体可以制造出明亮和稳定的LED 。MOF薄膜中的钙钛矿纳米晶可以在连续的紫外光照射、热应力和电应力下保持光致发光和电致发光。光学和X射线光谱显示,强发射源于局域载流子复合。由钙钛矿型MOF纳米晶体制成的发光二极管的最大外量子效率超过15%,超过105 cdm 2的高亮度。在LED工作过程中,通过MOF基质的保护,纳米晶体可以得到很好的保护,没有离子迁移或晶体合并,可以有50小时以上的稳定性能。相关论文以题目为“Bright and stable light-emitting diodes made with perovskite nanocrystals stabilized in metal–organic frameworks”于2021年发表在Nature Photonics期刊上。
论文链接:
金属卤化物钙钛矿纳米晶体是新兴的光发射器,具有可调谐的光学带隙、改进的颜色纯度和高光致发光量子产率(PLQY)。这些特性归因于纳米结构中的限制效应、电子-空穴对结合能和电荷局部化。可使用溶液法制备薄膜,这使得钙钛矿纳米晶体成为发光二极管(LED)、激光器和辐射闪烁体中应用的诱人候选材料。令人印象深刻的是,基于钙钛矿纳米晶的LED已经达到了创纪录的超过20%的外部量子效率(EQE)值。尽管有这些优点,稳定钙钛矿纳米晶体仍然是一个挑战。研究表明,在环境条件下,CsPbBr 3纳米晶可以合并到体相,使发射特性猝灭十倍。也有人提出,在潮湿环境中,纳米晶体可以在恒定的紫外线(UV)照射下降解回其前驱体,这是用于显示器时的一个关键问题。
为了解决这些问题,人们进行了大量的努力来设计更坚固的配体,加入添加剂,并引入交联剂来保护纳米晶体免受周围环境的影响。为了解决这些瓶颈问题,最近一些有趣的概念巧妙地使用了金属-有机框架(MOF)作为基质,其中含有钙钛矿纳米晶体。此类系统表现出显著改善的材料稳定性,PLQY值超过50%。MOF的多孔性和钙钛矿型纳米晶体的光电特性相结合,使得该材料在光电化学和催化方面具有很高的应用前景。然而,这些研究大多集中在使用粉末,钙钛矿型MOF(PeMOF)结构从未被用作LED应用中的发射层。这主要是因为在沉积高质量二极管所需的均匀薄膜方面存在挑战。此外,为了实现有效的电荷注入,必须考虑通过加入大量绝缘组件在导电性方面进行权衡。(文:爱新觉罗星)
图1 | PEM薄膜的形成和表征。
图2 | PEMA薄膜的TEM图像分析。
图3 | LeD器件性能特征的分析。
导读
背景
1839年,德国矿物学家古斯塔夫·罗斯(Gustav Rose)站在俄罗斯中部的乌拉尔山脉上,拾起一块以前从未被发现的矿物。
那时,他并没有听说过“晶体管”或“二极管”,也没想到电子器件会成为我们日常生活的一部分。更出乎他意料的是,他手中的这块被他以俄罗斯地质学家 Lev Perovski 的名字命名为“钙钛矿(perovskite)”的这块矿石,会成为彻底变革电子器件的关键因素之一。
钙钛矿如此重要的地位,离不开它特殊的结构。钙钛矿材料结构式一般为ABX3,其中A为有机阳离子, B为金属离子, X为卤素基团。该结构中, 金属B原子位于立方晶胞体心处, 卤素X原子位于立方体面心, 有机阳离子A位于立方体顶点位置。
钙钛矿结构稳定,有利于缺陷的扩散迁移,具备许多特殊的物理化学特性,例如电催化性、吸光性等。
过去十年,钙钛矿因为制造起来更便宜、更绿色,效率可与硅太阳能电池相媲美,逐渐成为硅太阳能电池的替代品。
然而,钙钛矿仍会表现出明显的性能损耗以及不稳定性。迄今为止,大多数的研究集中在消除这些损耗的方法,然而真正的物理原因仍然是未知的。
创新
近日,在一篇发表在《自然(Nature)》期刊上的论文中,来自剑桥大学化学工程与生物技术系以及卡文迪许实验室 Sam Stranks 博士的研究小组,以及日本冲绳科学技术大学院大学 Keshav Dani 教授的飞秒光谱学单位的研究人员们,找到了问题的根源。他们的发现,将使得提升钙钛矿的效率变得更容易,从而使它们离大规模量产更近。
技术
当光线照射钙钛矿太阳能电池时,或者当电流通过钙钛矿LED时,电子被激发,跳跃到更高的能态。带负电荷的电子留下了空白,也称为“空穴”,它带正电荷。受激发的电子与空穴都可以通过钙钛矿材料,因此可成为载流子。
但是,在钙钛矿中会产生一种称为“深阱”的特定类型缺陷,带电的载流子会陷入其中。这些被困的电子与空穴重新结合,它们的能量以热量形式丧失,而不是转化为有用电力或者光线,这样就会显著降低太阳能面板和LED的效率以及稳定性。
迄今为止,我们对于这些陷阱知道得很少,部分原因是,它们似乎与传统太阳能电池材料中的陷阱表现得大相径庭。
2015年,Stranks 博士的研究小组发表了一篇研究钙钛矿发光的《科学(Science)》期刊论文,这篇论文揭示了钙钛矿在吸收光线或者发射光线方面有多擅长。Stranks 博士表示:“我们发现,这种材料非常不均匀;相当大的区域是明亮且发光的,而其他的区域则非常黑暗。这些黑暗区域与太阳能电池或者LED中的能量损耗相关。但是,引起这种能量损耗的原因一直是个谜,特别是由于钙钛矿在其他方面非常耐缺陷。”
由于标准成像技术的限制,研究小组无法说明黑暗区域是由一个大的陷阱位引起的,还是由众多小的陷阱位引起的,从而难以确定它们为什么只是在特定区域形成。
后来在2017年,Dani 教授在 OIST 的研究小组在《自然纳米技术(Nature Nanotechnology)》期刊上发表了一篇论文,在论文中他们制作了一个有关电子吸收光线后在半导体中如何表现的影片。Dani 教授表示:“在材料或者器件被照射光线之后,如果你可以观察到电荷是如何在其中移动的,那么你将从中学会很多。例如,你可以观察到电荷会落入陷阱。然而,因为电荷移动得非常快,以一千万亿分之一秒的时间尺度来衡量;并且穿越非常短的距离,以十亿分之一米的长度尺度来衡量;所以这些电荷难以进行可视化观测。”
在了解到 Dani 教授的工作之后,Stranks 博士伸出援手,看看他们是否可以一起合作应对这个问题,对钙钛矿中的黑暗区域进行可视化观测。
OIST 的团队首次对钙钛矿使用了一项称为“光激发电子显微镜(PEEM)”的技术。他们用紫外光探测材料,并用发射的电子形成一幅图像。
观察材料时,他们发现含有陷阱的黑暗区域,长度大约是10到100纳米,由较小的原子尺寸陷阱位聚集而成。这些陷阱簇在钙钛矿材料中分布不均,从而解释了 Stranks 较早的研究中观察到的非均匀发光。
有趣的是,当研究人员将陷阱位的图像覆盖到显示钙钛矿材料晶粒的图像上时,他们发现陷阱簇仅在特定的地方形成,即某些晶粒之间的边界上。
为了理解这种现象为什么只发生在特定晶粒的边界上,研究人员小组与剑桥大学材料科学与冶金系教授 Paul Midgley 的团队合作,他采用了一项称为“扫描电子衍射”的技术,创造出了钙钛矿晶体结构的详细图像。Midgley 教授的团队利用了位于金刚石光源同步加速器 ePSIC 设施中的电子显微镜装置,该设施拥有用于成像像钙钛矿这样的光束敏感材料的专用设备。
Stranks 研究小组的博士生、这项研究的共同领导作者 Tiarnan Doherty 表示:“因为这些材料是超级光束敏感的,你在这些长度尺度上用来探测局部晶体结构的一般技术,实际上会相当快地改变你正在观察的材料。取而代之的是,我们可以用非常低的照射剂量,从而防止损伤。”
“我们从 OIST 的工作中知道了陷阱簇的位置,并且我们在 ePSIC 围绕着同一块区域扫描,以观察局部结构。我们能够快速地查明晶体结构中陷阱位附近的意外变化。”
研究小组发现,陷阱簇只在材料中具有轻微扭曲结构的区域与具有原始结构的区域的结合处形成。
Stranks 博士表示:“在钙钛矿中,我们拥有这些规则的马赛克晶粒材料,这些晶粒大多数都是又好又崭新的,这是我们所希望的结构。但是,每隔一段时间,你就会得到一个稍微形变的晶粒,这个晶粒的化学成分是不均匀的。真正有意思的,也是一开始让我们困惑的,就是形变的晶粒并没有成为陷阱,而是这个晶粒遇到原始晶粒的地方;陷阱是在那个结合处形成的。”
通过对于陷阱本性的理解,OIST 的团队也采用了定制的 PEEM 仪器来可视化观测钙钛矿材料中载流子落入陷阱的动态过程。Dani 研究小组的博士生、这项研究的共同领导作者 Andrew Winchester 解释道:“这是可能的,因为 PEEM 的特征之一就是,可对超高速的过程进行成像,短至飞秒。我们发现,陷落的过程受到扩散到陷阱簇的载流子的控制。”
价值
这些发现代表了为了把钙钛矿带向太阳能市场所取得的一项重要突破。
Stranks 博士表示:“我们仍然无法准确地知道,为什么陷阱聚集在那里,但是我们现在知道它们确实在那里形成,并且只有那里。这非常令人振奋,因为这意味着我们现在可以知道如何有针对性地提升钙钛矿的性能。我们需要针对这些非均匀相,或者以某种方式去除这些结合处。”
Dani 教授表示:“载流子必须首先扩散到陷阱,这一事实也为改善这些器件提出了其他方案。也许,我们可以改变或者控制这些陷阱簇的排列,而无需改变它们的平均数,这样一来,载流子就不太可能到达这些缺陷部位。”
团队的研究集中在一种特殊的钙钛矿结构。科学家们也将研究这些陷阱簇是否在所有的钙钛矿材料中都是普遍存在的。
Stranks 博士表示:“器件性能的大部分进展都是经过反复试错的,然而目前为止,这一直是一个低效率的过程。迄今为止,这个过程还没有真正被‘理解特定原因以及系统性针对该原因’所驱动。它是这方面最重要的突破之一,将帮助我们采用基础科学来设计更高效的器件。”
关键字
参考资料
【1】Liu, M.Z., Johnston, M.B. and Snaith, H.J. (2013) Efficient Planar Heterojunction Perovskite Solar Cells by vaPour Deposition. Nature, 501, 395-398.
【2】Tiarnan A. S. Doherty, Andrew J. Winchester, Stuart Macpherson, Duncan N. Johnstone, Vivek Pareek, Elizabeth M. Tennyson, Sofiia Kosar, Felix U. Kosasih, Miguel Anaya, Mojtaba Abdi-Jalebi, Zahra Andaji-Garmaroudi, E Laine Wong, Julien Madéo, Yu-Hsien Chiang, Ji-Sang Park, Young-Kwang Jung, Christopher E. Petoukhoff, Giorgio Divitini, Michael K. L. Man, Caterina Ducati, Aron Walsh, Paul A. Midgley, Keshav M. Dani, Samuel D. Stranks. Performance-limiting nanoscale trap clusters at grain junctions in halide perovskites . Nature, 2020; 580 (7803): 360 DOI: 10.1038/s41586-020-2184-1
【3】
钙钛矿期刊一般接收sci和istp检索,但是也有的会发表在国内外核心学术期刊上