首页

职称论文知识库

首页 职称论文知识库 问题

数据库论文发表美食

发布时间:

数据库论文发表美食

论文发表的类别有:

1、专题型

这是分析前人研究成果的基础上,以直接论述的形式发表见解,从正面提出某学科中某一学术问题的一种论文。

2、论辩型

这是针对他人在某学科中某一学术问题的见解,凭借充分的论据,着重揭露其不足或错误之处,通过论辩形式来发表见解的一种论文。

3、综述型

这是在归纳、总结前人或今人对某学科中某一学术问题已有研究成果的基础上,加以介绍或评论,从而发表自己见解的一种论文。

4、综合型

这是一种将综述型和论辩型两种形式有机结合起来写成的一种论文。

论文的产出报告:

中国科学技术信息研究所2019年11月19日发布的显示,2018年中国卓越科技论文共计31.59万篇,比2017年增加12.4%,包括卓越国际科技论文14.45万篇,卓越国内科技论文17.15万篇。

从学科分布来看,临床医学、化学、生物学和电子、通讯与自动控制专业的卓越科技论文数量最多,其中,排名第一的临床医学超过43000篇。

以上内容参考:百度百科—论文

一般来说,论文发表流程如下:第一步,确定自己将要发表的论文内容,以及发表需求。第二步,选择与自己论文题材相关的期刊,核实期刊论文真伪。第三步,了解想要刊登的期刊的征稿的要求,阅读其刊登发表过的论文,看自己的论文在这些期刊上发表是否合适,其次,了解这些刊物的审稿周期等。第四步,将自己的的论文上传,通过国内的四大权威数据库如知网、万方、维普、龙源查询核实。

发表论文的平台如下:

1.知网

这里所说的是知网,是清华大学和清华同方共同办的这个数据库。在前些年他也叫中国期刊网,由于后来有人自己建了个网站也叫中国期刊网,自己收录期刊,假李逵装真李逵。玩文字游戏,导致很多作者上当。

所以现在知网对外不称中国期刊网了,就是叫知网。从论文发表来说,知网是最权威的,最有说服力的数据库。

凡是知网收录的期刊,一定是正规的,可以放心大胆的发表的,但是最近这两年知网变得更严格,所以知网收录的期刊发表费用比较贵一些。

2.万方数据库

万方数据库,也是一个比较大的论文数据库,仅次于知网。其权威性和重要性就等于是一个弱化版的知网,但是也是比较大。

从期刊正规性来说,如果一个期刊,知网不收录,但是万方数据库收录,说明还是比较正规的,虽然不如知网收录的那么正规。但是对于一般单位来说够用。

对于大学这样的单位可能必须要求知网。而对于一些企业单位,只要万方数据库能检索到已经发表的论文,就算不错了。所以,万方数据库也是一个必须参考的标准。

3.维普网

维普网在前些年实际上假刊比较多,比较泛滥,这两年所说期刊审核严格,上面审核严格,但是维普网收录的期刊从正规性和权威性上来说,都是严重不如知网和万方数据库。

对于很多要求不高的单位,或者评一些初级职称的单位,只有维普网收录的期刊还能管点用。稍微严格一些的,就不大灵光了。

1 、什么是核心期刊?简单地说,核心期刊是学术界通过一整套科学的方法,对于期刊质量进行跟踪评价,并以情报学理论为基础,将期刊进行分类定级,把最为重要的一级称之为核心期刊。2、什么是中文核心期刊?对中国(不含港、澳、台)出版的期刊中核心期刊的认定,目前国内比较权威的有两种版本。一是中国科技信息研究所(简称中信所)每年出一次的《中国科技期刊引证报告》(以下简称《引证报告》);另一种是北京大学图书馆与北京高校图书馆期刊工作研究会联合编辑出版的《中文核心期刊要目总览》(以下简称《要目总览》)。《要目总览》不定期出版,1996 年出版了第二版,2000 版,2004年版。2008年版暂未出版。《要目总览》收编包括社会科学和自然科学等各种学科类别的中文期刊。其中对核心期刊的认定通过五项指标综合评估。《引证报告》统计源期刊的选取原则和《要目总览》核心期刊的认定各依据了不同的方法体系,所以二者界定的核心期刊(指科技类)不完全一致。3、什么是国家级期刊?一般说来,“国家级” 期刊,即由党中央、国务院及所属各部门,或中国科学院、中国社会科学院、各民主党派和全国性人民团体主办的期刊及国家一级专业学会主办的会刊。另外,刊物上明确标有“全国性期刊”,“核心期刊”字样的刊物也可视为国家级刊物。4.什么是“省级”期刊?即由各省、自治区、直辖市及其所属部、委办、厅、局主办的期刊以及由各本、专科院校主办的学报(刊)。5、什么是学术期刊?学术期刊刊发的文献以学术论文为主,而非学术期刊刊发的文献则以文件、报道、讲话、体会、知识等只能作为学术研究的资料而不是论文的文章为主。由于《总览》选刊的依据是载文量多、收录量大和被引次数多,并不强调学术期刊与非学术期刊的界线,对此自然也就没有进行严格区分。具体说来,《总览》学术与非学术不分,主要表现在两个方面,一是期刊的定性,二是期刊的宗旨6、什么是CN类刊物?所谓CN 类刊物是指在我国境内注册、国内公开发行的刊物。该类刊物的刊号均标注有CN字母,人们习惯称之为CN类刊物。7、什么是ISSN类刊?现在许多杂志则同时具有CN和ISSN两种刊号。所谓ISSN 类刊物是指在我国境地外注册,国内、外公开发行的刊物。该类刊物的刊号前标注有ISSN字母。8.什么是CSCD期刊?中国科学引文数据库(Chinese Science Citation Database)来源期刊简称为CSCD期刊。中国科学引文数据库分为核心库和扩展库。核心库的来源期刊经过严格的评选,是各学科领域中具有权威性和代表性的核心期刊。扩展库的来源期刊也经过大范围的遴选,是我国各学科领域较优秀的期刊。核心库期刊:669种(以*号为标记); 扩展库期刊:378种(动态)。9.什么是科技论文统计源期刊科技论文统计源期刊又称为中国科技核心期刊,是由中国科学技术信息研究所经过严格的定量和定性分析选取的各个学科的重要科技期刊。2005年中国科技论文统计源期刊共1608种。10.什么是SCI期刊SCI(《科学引文索引》,英文全称是Science Citation ndex)是美国科学情报研究所出版的一部世界著名的期刊文献检索工具。它收录全世界出版的数、理、化、农、林、医、生命科学、天文、地理、环境、材料、工程技术等自然科学各学科的核心期刊3700多种。通过其严格的选刊标准和评估程序来挑选刊源,使得SCI收录的文献能够全面覆盖全世界最重要和最有影响力的研究成果。SCI从来源期刊数量划分为SCI和SCI-E。SCI指来源刊为3500多种的SCI印刷版和SCI光盘版(SCI Compact Disc Edition, 简称SCI CDE),SCI-E(SCI Expanded)是SCI的扩展库,收录了5600多种来源期刊,可通过国际联机或因特网进行检索。SCI涵盖学科超过100个,主要涉及农业、生物及环境科学;工程技术及应用科学;医学与生命科学;物理及化学;行为科学

数据挖掘论文发表美食

Web数据挖掘技术探析论文

在日复一日的学习、工作生活中,大家或多或少都会接触过论文吧,论文对于所有教育工作者,对于人类整体认识的提高有着重要的意义。那么你知道一篇好的论文该怎么写吗?以下是我收集整理的Web数据挖掘技术探析论文,供大家参考借鉴,希望可以帮助到有需要的朋友。

引言

当前,随着网络技术的发展和数据库技术的迅猛发展,有效推动了商务活动由传统活动向电子商务变革。电子商务就是利用计算机和网络技术以及远程通信技术,实现整个商务活动的电子化、数字化和网络化。基于Internet的电子商务快速发展,使现代企业积累了大量的数据,这些数据不仅能给企业带来更多有用信息,同时还使其他现代企业管理者能够及时准确的搜集到大量的数据。访问客户提供更多更优质的服务,成为电子商务成败的关键因素,因而受到现代电子商务经营者的高度关注,这也对计算机web数据技术提出了新的要求,Web数据挖掘技术应运而生。它是一种能够从网上获取大量数据,并能有效地提取有用信息供企业决策者分析参考,以便科学合理制定和调整营销策略,为客户提供动态、个性化、高效率服务的全新技术。目前,它已成为电子商务活动中不可或缺的重要载体。

计算机web数据挖掘概述

1.计算机web数据挖掘的由来

计算机Web数据挖掘是一个在Web资源上将对自己有用的数据信息进行筛选的过程。Web数据挖掘是把传统的数据挖掘思想和方法移植到Web应用中,即从现有的Web文档和活动中挑选自己感兴趣且有用的模式或者隐藏的数据信息。计算机Web数据挖掘可以在多领域中展示其作用,目前已被广泛应用于数据库技术、信息获取技术、统计学、人工智能中的机器学习和神经网络等多个方面,其中对商务活动的变革起到重大的推动作用方面最为明显。

2.计算机Web数据挖掘含义及特征

(1)Web数据挖掘的含义

Web数据挖掘是指数据挖掘技术在Web环境下的应用,是一项数据挖掘技术与WWW技术相结合产生的新技术,综合运用到了计算机语言、Internet、人工智能、统计学、信息学等多个领域的技术。具体说,就是通过充分利用网络(Internet),挖掘用户访问日志文件、商品信息、搜索信息、购销信息以及网络用户登记信息等内容,从中找出隐性的、潜在有用的和有价值的信息,最后再用于企业管理和商业决策。

(2)Web数据挖掘的特点

计算机Web数据挖掘技术具有以下特点:一是用户不用提供主观的评价信息;二是用户“访问模式动态获取”不会过时;三是可以处理大规模的数据量,并且使用方便;四是与传统数据库和数据仓库相比,Web是一个巨大、分布广泛、全球性的信息服务中心。

(3)计算机web数据挖掘技术的类别

web数据挖掘技术共有三类:第一类是Web使用记录挖掘。就是通过网络对Web日志记录进行挖掘,查找用户访问Web页面的模式及潜在客户等信息,以此提高其站点所有服务的竞争力。第二类是Web内容挖掘。既是指从Web文档中抽取知识的过程。第三类是Web结构挖掘。就是通过对Web上大量文档集合的内容进行小结、聚类、关联分析的方式,从Web文档的组织结构和链接关系中预测相关信息和知识。

计算机web数据挖掘技术与电子商务的关系

借助计算机技术和网络技术的日臻成熟,电子商务正以其快速、便捷的特点受到越来越多的企业和个人的关注。随着电子商务企业业务规模的不断扩大,电子商务企业的商品和客户数量也随之迅速增加,电子商务企业以此获得了大量的数据,这些数据正成为了电子商务企业客户管理和销售管理的重要信息。为了更好地开发和利用这些数据资源,以便给企业和客户带来更多的便利和实惠,各种数据挖掘技术也逐渐被应用到电子商务网站中。目前,基于数据挖掘(特别是web数据挖掘)技术构建的电子商务推荐系统正成为电子商务推荐系统发展的一种趋势。

计算机web数据挖掘在电子商务中的具体应用

(1)电子商务中的web数据挖掘的过程

在电子商务中,web数据挖掘的过程主要有以下三个阶段:既是数据准备阶段、数据挖掘操作阶段、结果表达和解释阶段。如果在结果表达阶段中,分析结果不能让电子商务企业的决策者满意,就需要重复上述过程,直到满意为止。

(2)Web数据挖掘技术在电子商务中的应用

目前,电子商务在企业中得到广泛应用,极大地促进了电子商务网站的兴起,经过分析一定时期内站点上的用户的访问信息,便可发现该商务站点上潜在的客户群体、相关页面、聚类客户等数据信息,企业信息系统因此会获得大量的数据,如此多的数据使Web数据挖掘有了丰富的数据基础,使它在各种商业领域有着更加重要的.实用价值。因而,电子商务必将是未来Web数据挖掘的主攻方向。Web数据挖掘技术在电子商务中的应用主要包含以下几方面:

一是寻找潜在客户。电子商务活动中,企业的销售商可以利用分类技术在Internet上找到潜在客户,通过挖掘Web日志记录等信息资源,对访问者进行分类,寻找访问客户共同的特征和规律,然后从已经存在的分类中找到潜在的客户。

二是留住访问客户。电子商务企业通过商务网站可以充分挖掘客户浏览访问时留下的信息,了解客户的浏览行为,然后根据客户不同的爱好和要求,及时做出让访问客户满意的页面推荐和专属性产品,以此来不断提高网站访问的满意度,最大限度延长客户驻留的时间,实现留住老客户发掘新客户的目的。

三是提供营销策略参考。通过Web数据挖掘,电子商务企业销售商能够通过挖掘商品访问情况和销售情况,同时结合市场的变化情况,通过聚类分析的方法,推导出客户访问的规律,不同的消费需求以及消费产品的生命周期等情况,为决策提供及时而准确的信息参考,以便决策者能够适时做出商品销售策略调整,优化商品营销。

四是完善商务网站设计。电子商务网站站点设计者能够利用关联规则,来了解客户的行为记录和反馈情况,并以此作为改进网站的依据,不断对网站的组织结构进行优化来方便客户访问,不断提高网站的点击率。

结语

本文对Web数据挖掘技术进行了综述,讲述了其在电子商务中广泛应用。可以看出,随着计算机技术和数据库技术快速发展,计算机Web数据技术的应用将更加广泛,Web数据挖掘也将成为非常重要的研究领域,研究前景巨大、意义深远。目前,我国的Web数据应用还处于探索和起步阶段,还有许多问题值得深入研究。

摘要: 该文通过介绍电子商务及数据挖掘基本知识,分别从几个方面分析了电子商务中WEB数据挖掘技术的应用。

关键词: 电子商务;数据挖掘;应用

1概述

电子商务是指企业或个人以网络为载体,应用电子手段,利用现代信息技术进行商务数据交换和开展商务业务的活动。随着互联网的迅速发展,电子商务比传统商务具有更明显的优势,由于电子商务具有方便、灵活、快捷的特点,使它已逐渐成为人们生活中不可缺少的活动。目前电子商务平台网站多,行业竞争强,为了获得更多的客户资源,电子商务网站必须加强客户关系管理、改善经营理念、提升售后服务。数据挖掘是从数据集中识别出隐含的、潜在有用的、有效的,新颖的、能够被理解的信息和知识的过程。由数据集合做出归纳推理,从中挖掘并进行商业预判,能够帮助电子商务企业决策层依据预判,对市场策略调整,将企业风险降低,从而做出正确的决策,企业利润将最大化。随着电子商务的应用日益广泛,电子商务活动中会产生大量有用的数据,如何能够数据挖掘出数据的参考价值?研究客户的兴趣和爱好,对客户分门别类,将客户心仪的商品分别推荐给相关客户。因此,如何在电子商务平台上进行数据挖掘成为研究的热点问题。

2数据挖掘技术概述

数据挖掘(DataMining),也称数据库中的知识发现(KnowledgeDiscoveryinDatabase,KDD)。数据挖掘一般是指从海量数据中应用算法查找出隐藏的、未知的信息的过程。数据挖掘是一个在大数据资源中利用分析工具发现模型与数据之间关系的一个过程,数据挖掘对决策者寻找数据间潜在的某种关联,发现隐藏的因素起着关键作用。这些模式是有潜在价值的、并能够被理解的。数据挖掘将人工智能、机器学习、数据库、统计、可视化、信息检索、并行计算等多个领域的理论与技术融合在一起的一门多学科交叉学问,这些学科也对数据挖掘提供了很大的技术支撑。

3Web数据挖掘特点

Web数据挖掘就是数据挖掘在Web中的应用。Web数据挖掘的目的是从万维网的网页的内容、超链接的结构及使用日志记录中找到有价值的数据或信息。依据挖掘过程中使用的数据类别,Web数据挖掘任务可分为:Web内容挖掘、Web结构挖掘、Web使用记录挖掘。

1)Web内容挖掘指从网页中提取文字、图片或其他组成网页内容的信息,挖掘对象通常包含文本、图形、音视频、多媒体以及其他各种类型数据。

2)Web结构挖掘是对Web页面之间的结构进行挖掘,挖掘描述内容是如何组织的,从Web的超链接结构中寻找Web结构和页面结构中的有价值模式。例如从这些链接中,我们可以找出哪些是重要的网页,依据网页的主题,进行自动的聚类和分类,为了不同的目的从网页中根据模式获取有用的信息,从而提高检索的质量及效率。

3)Web使用记录挖掘是根据对服务器上用户访问时的访问记录进行挖掘的方法。Web使用挖掘将日志数据映射为关系表并采用相应的数据挖掘技术来访问日志数据,对用户点击事件的搜集和分析发现用户导航行为。它用来提取关于客户如何浏览和使用访问网页的链接信息。如访问了哪些页面?在每个页面中所停留的时间?下一步点击了什么?在什么样的路线下退出浏览的?这些都是Web使用记录挖掘所关心要解决的问题。

4电子商务中Web挖掘中技术的应用分析

1)电子商务中序列模式分析的应用

序列模式数据挖掘就是要挖掘基于时间或其他序列的模式。如在一套按时间顺序排列的会话或事务中一个项目有存在跟在另一个项目后面。通过这个方法,WEB销售商可以预测未来的访问模式,以帮助针对特定用户组进行广告排放设置。发现序列模式容易使客户的行为被电子商务的组织者预测,当用户浏览站点时,尽可能地迎合每个用户的浏览习惯并根据用户感兴趣的内容不断调整网页,尽可能地使每个用户满意。使用序列模式分析挖掘日志,可以发现客户的访问序列模式。在万维网使用记录挖掘应用中,序列模式挖掘可以用于捕捉用户路径之中常用的导航路径。当用户访问电子商务网站时,网站管理员能够搜索出这个访问者的对该网站的访问序列模式,将访问者感兴趣但尚未浏览的页面推荐给他。序列模式分析还能分析出商品购买的前后顺序,从而向客户提出推荐。例如在搜索引擎是发出查询请求、浏览网页信息等,会弹出与这些信息相关的广告。例如购买了打印机的用户,一般不久就会购买如打印纸、硒鼓等打印耗材。优秀的推荐系统将为客户建立一个专属商店,由每个客户的特征来调整网站的内容。也能由挖掘出的一些序列模式分析网站及产品促销的效果。

2)电子商务中关联规则的应用

关联规则是揭示数据之间隐含的相互关系,关联分析的任务是发现事物间的关联规则或相关程序。关联规则挖掘的目标是在数据项目中找出每一个数据信息的内在关系。关联规则挖掘就是要搜索出用户在服务器上访问的内容、页面、文件之间的联系,从而改进电子商务网站设计。可以更好在组织站点,减少用户过滤网站信息的负担,哪些商品顾客会可能在一次购物时同时购买?关联规则技术能够通过购物篮中的不同商品之间的联系,分析顾客的购物习惯。例如购买牛奶的顾客90%会同时还购买面包,这就是一条关联规则,如果商店或电子商务网站将这两种商品放在一起销售,将会提高它们的销量。关联规则挖掘目标是利用工具分析出顾客购买商品间的联系,也即典型购物篮数据分析应用。关联规则是发现同类事件中不同项目的相关性,例如手机加充电宝,鼠标加鼠标垫等购买习惯就属于关联分析。关联规则挖掘技术可以用相应算法找出关联规则,例如在上述例子中,商家可以依据商品间的关联改进商品的摆放,如果顾客购买了手机则将充电宝放入推荐的商品中,如果一些商品被同时购买的概率较大,说明这些商品存在关联性,商家可以将这些有关联的商品链接放在一起推荐给客户,有利于商品的销售,商家也根据关联有效搭配进货,提升商品管理水平。如买了灯具的顾客,多半还会购买开关插座,因此,一般会将灯具与开关插座等物品放在一个区域供顾客选购。依据分析找出顾客所需要的商品的关联规则,由挖掘分析结果向顾客推荐所需商品,也即向顾客提出可能会感兴趣的商品推荐,将会大大提高商品的销售量。

3)电子商务中路径分析技术的应用

路径分析技术通过对Web服务器的日志文件中客户访问站点的访问次数的分析,用来发现Web站点中最经常访问的路径来调整站点结构,从而帮助使用用户以最快的速度找到其所需要的产品或是信息。例如在用户访问某网站时,如果有很多用户不感兴趣的页面存在,就会影响用户的网页浏览速度,从而降低用户的浏览兴趣,同时也会使整个站点的维护成本提高。而利用路径分析技术能够全面地掌握网站各个页面之间的关联以及超链接之间的联系,通过分析得出访问频率最高的页面,从而改进网站结构及页面的设计。

4)电子商务中分类分析的应用

分类技术在根据各种预定义规则进行用户建模的Web分析应用中扮演着很重要的角色。例如,给出一组用户事务,可以计算每个用户在某个期间内购买记录总和。基于这些数据,可以建立一个分类模型,将用户分成有购买倾向和没有购买倾向两类,考虑的特征如用户统计属性以及他们的导航活动。分类技术既可以用于预测哪些购买客户对于哪类促销手段感兴趣,也可以预测和划分顾客类别。在电子商务中通过分类分析,可以得知各类客户的兴趣爱好和商品购买意向,因而发现一些潜在的购买客户,从而为每一类客户提供个性化的网络服务及开展针对性的商务活动。通过分类定位模型辅助决策人员定位他们的最佳客户和潜在客户,提高客户满意度及忠诚度,最大化客户收益率,以降低成本,增加收入。

5)电子商务中聚类分析的应用

聚类技术可以将具有相同特征的数据项聚成一类。聚类分析是对数据库中相关数据进行对比并找出各数据之间的关系,将不同性质特征的数据进行分类。聚类分析的目标是在相似的基础上收集数据来分类。根据具有相同或相似的顾客购买行为和顾客特征,利用聚类分析技术将市场有效地细分,细分后应可每类市场都制定有针对性的市场营销策略。聚类分别有页面聚类和用户聚类两种。用户聚类是为了建立拥有相同浏览模式的用户分组,可以在电子中商务中进行市场划分或给具有相似兴趣的用户提供个性化的Web内容,更多在用户分组上基于用户统计属性(如年龄、性别、收入等)的分析可以发现有价值的商业智能。在电子商务中将市场进行细化的区分就是运用聚类分析技术。聚类分析可根据顾客的购买行为来划分不同顾客特征的不同顾客群,通过聚类具有类似浏览行为的客户,让市场人员对顾客进行类别细分,能够给顾客提供更人性化的贴心服务。比如通过聚类技术分析,发现一些顾客喜欢访问有关汽车配件网页内容,就可以动态改变站点内容,让网络自动地给这些顾客聚类发送有关汽车配件的新产品信息或邮件。分类和聚类往往是相互作用的。在电子商务中通过聚类行为或习性相似的顾客,给顾客提供更满意的服务。技术人员在分析中先用聚类分析将要分析的数据进行聚类细分,然后用分类分析对数据集合进行分类标记,再将该标记重新进行分类,一直如此循环两种分析方法得到相对满意的结果。

5结语

随着互联网的飞速发展,大数据分析应用越来越广。商业贸易中电子商务所占比例越来越大,使用web挖掘技术对商业海量数据进行挖掘处理,分析客户购买喜好、跟踪市场变化,调整销售策略,对决策者做出有效决策及提高企业的市场竞争力有重要意义。

参考文献:

[1]庞英智.Web数据挖掘技术在电子商务中的应用[J].情报科学,2011,29(2):235-240.

[2]马宗亚,张会彦.Web数据挖掘技术在电子商务中的应用研究[J].现代经济信息,2014(6):23-24.

[3]徐剑彬.Web数据挖掘技术在电子商务中的应用[J].时代金融,2013(4):234-235.208

[4]周世东.Web数据挖掘在电子商务中的应用研究[D].北京交通大学,2008.

[5]段红英.Web数据挖掘技术在电子商务中的应用[J].陇东学院学报,2009(3):32-34.

数据挖掘在软件工程技术中的应用毕业论文

【 摘要 】计算机技术在发展,软件也发展的越来越复杂,而系统开发工作也显得更加重要。信息技术的广泛应用会产生大量数据,通过对数据进行挖掘,分析其存在的规律,对实现数据资源的有效利用意义重大。本文就数据挖掘技术在软件工程中的应用作简要阐述。

【 关键词 】数据挖掘技术;软件工程中;应用软件技术

随着信息技术发展而快速发展,但是其可控性并不是特别强。软件在应用过程中会产生大量数据,数据作为一种宝贵的资源,有效的利用可以带来价值增值。作为软件开发行业,数据挖掘技术应用则实现了数据资源的有效利用,通过对其中规律进行研究,为软件工程提供相应指导,并且对于系统故障能够有效处理,成本评估的有效性也能够提升。

1数据挖掘技术应用存在的问题

1.1信息数据自身存在的复杂性

软件工程所包含的数据可以分为两个类别,结构化与非结构化。在非结构化数据中软件代码发挥着重要作用。而对结构化数据产生影响的则是软件版本信息。结构与非结构化数据二者之间联系非常密切。实现数据有效利用就需要通过一定技术找出其中的规律。数据挖掘技术则刚好满足需求。利用该技术对结构与非结构化数据进行整合,提升其使用的有效性。

1.2在评价标准方面缺乏一致性

数据挖掘技术在生活中的应用比较广泛,通过该技术应用能够更好的对实际情况进行评价,从而对结果进行优化。但是由于没有统一标准,导致了软件信息复杂。而在表述方式方面自身又存有差异性。信息获取者无法有效的对信息进行应用及对比。而信息缺乏统一标准的原因就在于评价方式不一致。

2数据挖掘技术在软件工程中的应用

2.1数据挖掘执行记录

执行记录挖掘主要是对主程序的路径进行分析,从而发现程序代码存有的相关关系。其实质是通过对相关执行路径进行分析,并进行逆向建模,最终达到目的。作用在于验证,维护,了解程序。记录挖掘的过程通常是对被分析的系统进行初步插装,之后是记录过程,该过程在执行上一步程序后,对应用编程接口,系统,模块的状态变量记录,最后是对所得到的信息进行约简,过滤,聚类。最终得到的模型能够表达系统的特征。

2.2漏洞检测

系统或是软件自身都会存在漏洞,漏洞自身具一定的隐蔽性,由于人的思维存在某些盲区,无法发现漏洞的存在,就需要借助于某些软件。检测漏洞的目的就在于找出软件中存在的漏洞及错误,并对其进行修复,从而保证软件质量与安全。将数据挖掘技术应用于软件检测,首先要确定测试项目,结合到用户需要,对测试内容进行规划,从而确定测试方法,并制定出具体方案。测试工作环节主要是对数据进行清理与转换,其基础在于漏洞数据收集,通过对收集与采集的信息进行清理,将与软件数据有关联同时存在缺陷的数据筛选出来,而将剩余无数据清理,对丢失项目采取相应措施补充,将其属性转换为数值表示。之后是选择适当的'模型进行训练与验证,该环节要结合到项目实际的需要选择挖掘方式,通过对不同数据结果进行分析与比较找到最适合的方式。之后则是重复应用上述方法,对软件存在的漏洞进行定位与检测。并将与之对应的数据收集于软件库,在对漏洞进行描述的基础上分类,最后将通过挖掘得到的知识应用到测试的项目中.

2.3开源软件

对于开源软件的管理由于其自身的开放,动态与全局性,需要与传统管理软件进行区别对待,一般情况下,成熟的开源软件对于软件应用记录较为完整,参与的内容包括了错误报告,开发者活动。参与开发的工作人员会处在动态变化之中,存在动态变化的原因就在于软件的开放性。同时对于软件中动态性特征的挖掘,可达到对开源软件进行优质管理的目标。

2.4版本控制信息

为了保证参与项目人员所共同编辑内容的统一性,就需要对系统应用进行控制。软件开发工程应用中,开发工作管理与保护都会通过版本控制系统来实施。并且其应用方式主要是对变更数据挖掘,找出不同模块及系统存在关系,并对程序中可能会存在的漏洞进行检测。此类技术的应用,使得系统后期维护成本被有效的降低,而对后期变更产生的漏洞也有一定的规避作用。

3数据挖掘在软件工程中的应用

3.1关联法

该方法作用在于寻找数据中存在的相关联系与有趣关联。而体现的关联规则有两个明显的特征。①支持度;②信度。前者表示在某个事物集中,两个子集出现的概率是相同的。而后者则表明了某事物在事物集中出现的概率,而另一事物也会出现。

3.2分类方法

该方法主要是应用于分类标号与离散值的操作。该方法的操作步骤是,首先要建立相应的模型,对数据进行描述,并利用模型对其进行分类。在分类方法选择方面,常用的有判定树法,贝叶斯法,支持项量机法等。判定树法应用的基础是贪心算法。

3.3聚类方法

该方法常用的有划分方法,基于密度,模型,网格的方法与层次方法。聚类分析输入的是一组有序对,有序对中的数据分别表示了样本,相似度。其基本的应用理论是依据不同的对象数据予以应用。

4数据挖掘在软件工程中的应用

4.1对克隆代码的数据挖掘

在软件工程中最为原始的是对克隆代码的检查测试。就其方式而言有文本对比为基础,标识符对比为基础。前者是利用系统中程序代码包含的语句进行判断。该方法在后期改进过程中主要是对字符串匹配效率进行提升。实际应用过程中是通过相关函数匹配对效率进行优化。

4.2软件数据检索挖掘

该方法同样是软件工程中原始的挖掘需求之一。该方法在应用时主要有以下三个步骤。

①数据录入。其实质是对需要检索的信息录入,并结合到使用者需要在数据中查找使用者需要的数据。

②信息查找过程。确认了用户需要查找的信息后,系统将依据信息内容在数据库中进行查找,并分类罗列。

③信息数据导出与查看。用户可以依据自身需要将数据导出或者是在线查看。数据在导出时会形成相应的记录,客户再次进行查找时就会更加的方便与快捷。而将数据导出则需要利用到相关的软件。

4.3应用于设计的三个阶段

软件工程有许多关于软件的资料,资料通常是存放于代码库中。数据运用可以提升工作效率。软件工程每一次循环都会产生大量的数据。基于软件工程生命周期可以将其分为分析设计,迭代的开发,维护应用三个阶段。

4.4面向项目管理数据集的挖掘

软件开发工作到目前已经是将多学科集中于一体。如经济学,组织行为学,管理学等。对于软件开发者而言,关注的重点除过技术方面革新外,同时也需要科学规范的管理。除过对于版本控制信息挖掘外,还有人员组织关系挖掘。对于大规模的软件开发工作而言,对人力资源的有效分配与协调也是软件工作领域需要面对的问题。例如在大型系统开发过程中,往往会有许多人参与其中,人员之间需要进行沟通交流。交流方式包括了面对面沟通,文档传递,电子信息等。通过对人员之间的关系进行挖掘,有利于管理工作开展。员工群体存在的网络是社会网络。通过人员合理组织与分配,将会影响到项目进度,成本,成功的可能性。而对该方面实施研究通常采用的是模拟建模。

5结束语

软件工程技术在生活中许多领域都有广泛的应用,数据挖掘作为其中的一项技术,其重要性及作用随着技术发展而表现的越加明显。为了保证挖掘技术的可靠性与高效,与其它工程技术有一定融合性。数据挖掘在实际应用工作中体现出了巨大的经济效益,因此应该大力推进其应用的范围,并拓展其应用的深度与层次。

参考文献

[1]李红兰.试论数据挖掘技术在软件工程中的应用综述[J].电脑知识与技术,2016(34).

[2]雷蕾.关于数据挖掘技术在软件工程中的应用综述究[J].电子测试,2014(02).

[3]孙云鹏.数据挖掘技术在软件工程中的应用综述[J].中国新通信,2015(15).

现在发表讠仑文都是在学术期刊上面发表。所以,要问清楚你们有没有特别规定的期刊。至于学术期刊的分类,现在也就是省级、国家级、核心、这几类。由于作用不一样所以发表期刊的等级也是有要求的。然后呢,就是要选择一个发表讠仑文的渠道了。现在讠仑 文发表,一个是可以直接投稿杂志社,一个是可以通过讠仑文代理机构。你直接到网页上输入“壹品优'再输入"刊"这个网站看下就有

据学术堂了解,论文,既是一项研究的终点,也是每个研究人员、大学教师积累个人影响力的起点——做了项目要发论文,评职称也要发论文。当然,仅仅写出来的论文并不能作数,发表到期刊/会议上的论文才能证明其价值的归宿。

1、发论文是个系统工程。

先不论研究选题、研究设计、研究实施、数据收集与分析、论文撰写等一系列问题,即便有了一篇成形的论文,往哪儿投、如何和编辑联系、如何修改也是一项费心费力的事情。

2、每个过程中都存在着被退稿的可能。

俗话说得好,知己知彼,百战不殆。如果将期刊杂志作为你征战的目标的话,你首先要做到的事情就是全面了解你的目标。

就计算机领域而言,假设你已经做了一项研究,完成了一篇论文,想要投递出去,你需要解决以下两个问题:

①. 你可以投哪些期刊/会议?

②. 如何选择适合自己的期刊?

知道自己有哪些可以选择是第一步,所以有一份计算机领域的期刊/会议目录是非常有帮助的。

中国计算机学会会按照专业领域和期刊/会议等级(分为A、B、C三类)整理一些计算机国际学术会议和期刊目录(《中国计算机学会推荐国际学术会与和期刊目录》)。

2015年版的目录一共提供了以下几大领域的国际学术会议和期刊:计算机体系结构/并行与分布计算/存储系统、计算机网络、网络与信息安全、软件工程/系统软件/程序设计语言、数据库/数据挖掘/内容检索、计算机科学理论、计算机图形学与多媒体、人工智能、人机交互与普适计算、交叉/综合/新兴。

目录中的每一项会说明会议简称、会议全程、出版社和网址等信息。

国内的话,共整理了128本国内的计算机期刊信息(《国内计算机领域期刊目录》),囊括了期刊的级别、发行审稿速度、投稿要求、主办单位等信息,帮助您了解:

1. 计算机领域中有哪些期刊可以投?

2. 核心期刊有哪些?

3. 这些期刊主要接收哪种主题的论文?

4. 这些期刊又有哪些投稿要求?

5. 期刊的审稿速度如何?能不能赶得上职称评选的截止日期?

基本上投稿需要的介绍信息这里都包括了,投稿的老师可以依着这份目录根据自己的情况以及期刊的信息来选择,省去了一个一个去期刊网站看信息的麻烦。

如何选择适合自己的期刊?

这里主要说说期刊的投递。

如果稿件投向了不适合的期刊,会存在几个比较负面影响,主要有以下三项:

(1)退稿:这是大概率事件了,内容不适合此期刊,退稿之后还要继续寻找其他的期刊,会使得稿件延迟数周或数月发表,延误原本的工作计划。

(2)不公正的同行评议:由于编辑和审稿人对作者研究领域的了解比较模糊,从而有可能导致稿件收到较差或不公正的同行评议。

(3)少有同行关注:埋没在一份同行很少问津的期刊中,达不到与同行交流的目的,也很难被他人引用。

所以在选择拟投期刊的过程中要将自己的需求条件和期刊方进行匹配,选择适合的期刊。

筛选时一般需要确定以下几个问题:

1. 论文的主题是否是期刊所规定的范围?

投稿之前阅读“投稿要求”或者“作者须知”是非常有必要的,这些信息能够帮助你判断期刊的领域是否与你的论文契合。同时这些信息往往也包括论文的格式、投递方式等。

2. 期刊的级别如何?

学校对评职称的论文是有级别要求的, 有的看引证指标(复合影响因子、综合影响因子);有的看是否是核心期刊,是CSCD核心还是北大核心;有的评选条件则是看期刊是不是国家级核心期刊/省级核心期刊等。

3. 期刊的审稿时间如何?

如果审稿速度慢,超过职称评选限定时间,那么你就要慎重考虑。

4、其他因素要考虑

还有一些其他因素要考虑,例如版面费。总的来说,选择拟投期刊也是一件需要综合考量的事情。如果自己没把握,可以咨询比较有经验的领导,学生就可以咨询自己的导师,他们的经验会帮助你少走很多弯路。

数据库论文发表

sci检索论文,就是登陆web of science 网站能够查询到的论文。发表sci论文,要匹配期刊,那该期刊检索收录的网站是哪几个,是可以提前了解的,选择符合自己要求的,投稿发表,等论文见刊后,期刊会送检,相应数据库进行检索收录。

大学教师不是在哪个网上发论文,而是在某些期刊上发表,然后这些期刊被一些大型学术数据库收录,供大家下载。国内期刊的话,就去知网找,那儿是最全的。国外的话,就很多了、

商丘学术期刊网:,这是商丘市本地的学术期刊网站,可以发表各类学术论文。中国知网:,这是一个包含大量学术论文的数据库,可以检索到商丘相关的期刊和论文,也可以提交论文进行发表。维普论文检索:,这是一个综合性的学术论文数据库,包含了来自全国各地的期刊和学术论文,可以检索到商丘相关的论文。万方数据:,这是一个综合性的学术资源数据库,包含了来自全国各地的期刊和学术论文,可以检索到商丘相关的论文。这些网站可以为您提供论文发表的机会和平台,但具体要求和审稿流程可能会有所不同,请您根据自己的需求和实际情况选择合适的网站进行发表。

论文发表可选择不同的sci期刊,有部分sci期刊只是线上发表不见刊的。若作者你的论文是在这样的期刊上发表,往往不能被检索。当被检索不是自己发表sci论文要求时,可以选择这样的期刊。不过,作者不同要求有差异,有的单位只认可被检索的sci论文,此时作者在选择期刊上就要注意,应该选择能见刊或出版的sci期刊,这样发表的论文,一般都能被检索。

发表论文数据库

职称论文三大网站是知网、万方、维普。

1、中国知网

知网一般是中国知网。知网是国家知识基础设施的概念,由世界银行于1998年提出。CNKI工程是以实现全社会知识资源传播共享与增值利用为目标的信息化建设项目。由清华大学、清华同方发起,始建于1999年6月。

提供CNKI源数据库、外文类、工业类、农业类、医药卫生类、经济类和教育类多种数据库。其中综合性数据库为中国期刊全文数据库、中国博士学位论文数据库、中国优秀硕士学位论文全文数据库、中国重要报纸全文数据库和中国重要会议文论全文数据库。每个数据库都提供初级检索、高级检索和专业检索三种检索功能。高级检索功能最常用。

2、万方

万方数据库是由万方数据公司开发的,涵盖期刊、会议纪要、论文、学术成果、学术会议论文的大型网络数据库;也是和中国知网齐名的中国专业的学术数据库。

其开发公司——万方数据股份有限公司是国内第一家以信息服务为核心的股份制高新技术企业,是在互联网领域,集信息资源产品、信息增值服务和信息处理方案为一体的综合信息服务商。万方期刊集纳了理、工、农、医、人文五大类70多个类目共7600种科技类期刊全文。

3、维普网

维普网,建立于2000年。经过多年的商业运营,维普网已经成为全球著名的中文专业信息服务网站。网站陆续建立了与谷歌学术搜索频道、百度文库、百度百科的战略合作关系。

网站遥遥领先数字出版行业发展水平,数次名列中国出版业网站百强,并在中国图书馆业、情报业网站排名中名列前茅。

01 中国知网 中国知网是国家和清华大学等为主导的论文资源共享平台。中国知网可以说是国内论文数据库中,资料最全,涵盖范围最广的一个网站。需要写论文的朋友们可以到这个网站去寻找你要的论文资料。 02 万方学术搜索网 万方学术搜索网是由中国科技信息研究所和万方数据共同联合创建的论文资源共享平台。在这个网站上有很多关于学术如何跟生产相结合的论文,有这方面需求的学生朋友们可以去这个平台看一看。 03 维普咨询 维普咨询可以说是国内最早的一个论文数据库网站之一。它里面的论文资源也是非常丰富的。该网站收入了比较全的自然科学类论文和三农类的论文材料,有写这方面论文的学生朋友们,可以考虑一下去维普咨询看一看。 04 龙源期刊网 龙源期刊网中的论文资源也是比较丰富的,只是该网站下载相关的论文信息是要收费的。我不建议花钱去找论文资源。 05 中国生物医学文献数据库和中文生物医学期刊数据库 如果你是从事医药行业或者是研究生物的学子,可以到中国生物医学文献数据库和中文生物医学期刊数据库,去寻找写论文的资源。 06 学校图书馆的相关网站 任何一座大学的图书馆中的电脑上都有一些比较好的论文资源,如果在上述网站中没有找到合适的论文资源,可以到你所在的学校的图书馆电脑上中去找一下有没合适的论文资源。

发表论文的平台如下:

1.知网

这里所说的是知网,是清华大学和清华同方共同办的这个数据库。在前些年他也叫中国期刊网,由于后来有人自己建了个网站也叫中国期刊网,自己收录期刊,假李逵装真李逵。玩文字游戏,导致很多作者上当。

所以现在知网对外不称中国期刊网了,就是叫知网。从论文发表来说,知网是最权威的,最有说服力的数据库。

凡是知网收录的期刊,一定是正规的,可以放心大胆的发表的,但是最近这两年知网变得更严格,所以知网收录的期刊发表费用比较贵一些。

2.万方数据库

万方数据库,也是一个比较大的论文数据库,仅次于知网。其权威性和重要性就等于是一个弱化版的知网,但是也是比较大。

从期刊正规性来说,如果一个期刊,知网不收录,但是万方数据库收录,说明还是比较正规的,虽然不如知网收录的那么正规。但是对于一般单位来说够用。

对于大学这样的单位可能必须要求知网。而对于一些企业单位,只要万方数据库能检索到已经发表的论文,就算不错了。所以,万方数据库也是一个必须参考的标准。

3.维普网

维普网在前些年实际上假刊比较多,比较泛滥,这两年所说期刊审核严格,上面审核严格,但是维普网收录的期刊从正规性和权威性上来说,都是严重不如知网和万方数据库。

对于很多要求不高的单位,或者评一些初级职称的单位,只有维普网收录的期刊还能管点用。稍微严格一些的,就不大灵光了。

数据库发表论文

发表论文的整个流程,简单概括就是:定稿-选择期刊-审核-通过/返修-支付费用-定版-排版校对-印刷-出刊邮寄-上传数据库接下来按照步骤详细说说每个发表环节以及注意事项。定稿:其实就是写论文,这个我也不是专业的,所以不多说,仅从发表的角度简单说几句。1.关于论文主题:如果你的文章是准备用来发表的,尤其是准备投稿普刊,那么有些选题千万不要碰,比如港ao台、疫情、涉党涉政、宗教、神学、封jian迷xin、校园bao力等等,不要问为什么,这类主题写了大概率发表不出去!即便有收的,审核也严格,论文内容不能有不适合刊登的点。选择期刊:我个人认为这是发表论文最重要的一个环节,这个说起来很简单,做起来其实很难,很耗费精力和时间。选择期刊分为两步——第一步,大家务必要先弄清楚自己对期刊的要求,尤其是因为评职称、评奖学金、保研等这些原因需要发表论文的,一定要先去看看学校、单位对期刊的具体要求是什么,比如期刊等级,是要普刊、学报还是核心?是不是非知网收录的期刊不可?最晚什么时候需要提交评审材料?第二步,选择的期刊一定要是正规的学术期刊,即该期刊要在国家新闻出版总署可查,并且在知网、万方、维普这三个数据库(至少一个)稳定、正常更新,且收学术论文,别你在总署能查到某个期刊,数据库也稳定更新,结果人家根本不收学术性论文(比如《中国经济评论》),而你还傻傻地去投稿。而总署可查、数据库稳定更新也只能保证期刊确实存在,(青墨手打严禁复制粘贴)却不能保证你发的就一定是正刊本身,毕竟存在不少盗版刊物,所以收到录用后一定要先打杂志社电话查稿,确认文章确实被正刊录用了再付款安排。慎发电子刊、报刊、增刊,因为认可度不高,所以除非单位、学校明文规定可用,否则不要发;不要发假刊、套刊,尤其是期刊网的刊物,前面那几个还只是不太正规,但好歹是真的,假刊、套刊直接就是假的!!!假的东西能有用吗?第三步,弄清楚对期刊的要求后,根据要求去选择合适的期刊。这里需要说到投稿的两种方式:自投和找中介代发如果你是准备自己投稿,那么——首先,一定要找到官方投稿方式,可以去各数据库下载期刊的版权页,上面都会有投稿邮箱但如果你时间比较紧张、着急出刊,又或者实在没有精力去收集筛选期刊信息,那么也可以找中介代发(仅指普刊,核心找代发性价比太低了),不需要你自己花时间去找期刊,只要告知论文主题和对期刊的要求,就能给你推荐最合适的期刊。以上,发表论文的大致流程就是如此。

中医杂志第6期。据中国知网官网得知,知网数据库收录屠呦呦发表的期刊论文最早的一篇论文为中医杂志第6期。中国知网是世界上最大的连续动态更新的中国学术文献数据库,包括学术期刊、博硕士学位论文等。

钱逸泰学术论文共108篇。第一作者70篇,最后一篇学术论文为:2009-01-01;工程·技术·哲学;【年鉴】工程·技术·哲学:中国技术哲学研究年鉴。?

相关百科

热门百科

首页
发表服务