首页

职称论文知识库

首页 职称论文知识库 问题

人工智能论文发表数据

发布时间:

人工智能论文发表数据

随着大数据和人工智能技术的发展,未来的保险保障将不仅仅能提供经济补偿,还能实现损失干预,具体到人身险方面,以下是我精心整理的大数据和人工智能论文的相关资料,希望对你有帮助!

基于大数据和人工智能的被保险人行为干预

【摘要】随着大数据和人工智能技术的发展,未来的保险保障将不仅仅能提供经济补偿,还能实现损失干预,具体到人身险方面,则可以实现对被保险人行为的干预,降低给付发生的概率和额度,提高人民健康水平。基于此,文章介绍了利用大数据和人工智能技术对被保险人行为干预的优点及干预方式,并预期可能实现的干预结果,最后对保险公司进行被保险人行为干预提出了阶段建议。

【关键词】大数据 人工智能 行为干预

近年来随着大数据和人工智能技术的发展,越来越多的领域应用这些技术来提高自身的专业水平。保险作为基于大数法则进行风险管理的一种方式,对数据的处理和应用要求更高。目前大数据技术在保险业的应用主要是精准营销、保险产品开发和理赔服务等,但在保险中的防灾防损方面的应用还不够。如果能够深入挖掘大数据在被保险人行为方面的研究,再结合人工智能进行智能干预,则可以对被保险人实现有效的风险管理,提高被保险人的身体健康状况,从而极大程度的提升客户效用,提高社会整体福利水平。

一、被保险人行为干预简介

行为干预是通过对环境进行控制从而使个体产生特定行为的方式,目前主要在教育,医疗等方面发挥作用。但在被保险人管理方面,行为干预应用很少。现行的对被保险人的管理主要集中在投保审核的过程中,而在投保后提供的服务和干预很少,一般也就是提供健康体检等服务,而对被保险人投保后的日常生活行为方式,健康隐患则基本处于放任自流的状况。而被保险人行为干预则是通过对被保险人日常生活行为,饮食习惯等进行实时数据收集和分析,然后制定干预方式进行针对化管理的模式。

二、利用大数据和人工智能进行被保险人行为干预的优点

实现精准、良好的对被保险人的行为干预,需要利用大数据和人工智能技术。大数据相比传统数据具有海量、高速、多样等特点,它实现了对信息的全量分析而不是以前的抽样分析。在被保险人行为干预模式中,需要对每一个个体的日常生活作息,行为,饮食,身体健康指标的进行实时数据采集,然后进行分析,这用传统的数据统计方法是难以做到的。利用大数据技术进行分析能从海量信息中获取被保险人的风险状况,从而为精准干预提供基础。简单的干预难以实现特定的干预结果,而人工智能则让干预显得更加自然,让被保险人更加易于接受,从而很大程度上提高了干预效果。

三、如何利用大数据和人工智能进行被保险人行为干预

利用大数据和人工智能进行被保险人的行为干预主要有以下步骤:

首先利用人工智能设备进行被保险人数据收集,除了目前的手机APP,网络等软件和设备上的数据能够被收集外,未来人工智能家居能提供更多的被保险人信息。例如提供体重、坐姿等数据的椅子,提供饮食时间和品种的筷子,提供身体运动和健康数据的智能穿戴式设备等等。数据收集后,需要利用大数据技术对海量数据进行清洗,去噪等技术处理,然后对数据进行分析。第三步是根据数据分析结果,制定具体的行为干预方案。最后一步是根据制定的方法,利用人工智能进行干预,如智能椅子调整坐姿,智能厨具减少含油量,针对性的健康食谱推荐,锻炼提醒,智能家居辅助锻炼等等。与此同时,新一轮的数据收集又开始了,整个过程是连续进行,不断循环的。

四、利用大数据和人工智能进行被保险人行为干预的预期成果

对被保险人来说,这种干预方式能有效的进行健康管理。未来的健康保险将成为个人真正的健康管家,从日常生活行为,到身体机能都能提供很好的干预,并且让良好生活方式的养成更加容易,从而提高自身的健康状况,达到更好的生活状况。但另一方面,全面数据化,智能化的方式可能会带来很大的数据泄露风险,所以如果保护客户私密数据是另一个值得研究的问题。另外,对于投保前健康状况较差的客户,或者是对行为干预较为抵制,干预效果较差的客户,可能需要承担更多的保费。当然对于优质客户和乐于提升和改变的客户则可以享受到更加优惠的费率。也就是说在大数据和人工智能技术下,客户进行了进步一步细分。

对保险人来说,行为干预能够降低被保险人的风险,很多疾病能实现防范于未然,降低赔偿程度。另外,借助大数据和人工智能,保险人还能根据分析结果,被保险人对干预的反应等进行客户的进一步分类,从而实现区块化管理。但这对保险公司也提出了更高的技术要求,尤其在前期,可能会带来加大的成本。

五、保险公司推进被保险人行为干预的建议

对于保险公司来说,目前的一些人工智能技术还未能实现,或者成本高昂,难以普及。所以现阶段对保险公司来说首先是提高大数据能力。

具体来说,首先是利用大数据对公司已有客户信息进行数据挖掘,包括承保数据,理赔数据等,从而一定程度挖掘出客户的特征,并提供服务。如根据挖掘出的性别差异,地区差异,年龄差异等,提供不同的生活建议。

如果公司已经充分进行了自身客户已有数据的挖掘,则可以利用目前的手机APP,佩戴设备进行数据的进一步收集。例如,利用薄荷、饮食助手、微信运动、春雨掌上医生、血糖记录、小米手环等数据进行用户数据收集。同时可以针对被保险人开发专门的手机APP,集数据收集和服务于一身。

更进一步,保险公司可以尝试与其他高科技企业合作,开发一些智能穿戴式设备,智能家居等,逐步实现对被保险人的行为干预。

参考文献

[1]彼得・迪亚曼迪斯.将会被人工智能和大数据重塑的三个行业[J].中国青年,2015,23:41.

[2]王和,鞠松霖.基于大数据的保险商业模式[J].中国金融,2014,15:28-30.

[4]尹会岩.保险行业应用大数据的路径分析[J].上海保险,2014,12:10-16.

下一页分享更优秀的<<<大数据和人工智能论文

人工智能专业发展前景怎么样?哪些高校适合报考?

目前,人工智能是一个快速发展的领域,对人才的需求很大。和其他技术岗位相比,竞争低,工资相对高。所以现在是进入人工智能领域的好时机。研究还表明,三项技能以上的人才对企业更有吸引力,而且趋势越来越明显。所以IT技术人员需要在掌握一门技术的同时掌握更多的技能!人工智能人才目前处于明显短缺状态,这种状况还存在扩大的趋势。当前社会技术环境下,需要兼顾扎实的专业技术和复合型背景的人才。在互联网企业中,人工智能的薪酬排在第三位,其中薪酬最高的是声音识别方向的从业者。

11700篇。经查询中国科学院公布的资料显示,日本发布的人工智能论文为11700篇,总量排名世界第三。人工智能是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。

人工智能论文发表数量

人工智能的发展还是渐进式的,慢慢的将会发展成一个很大的产业,好多的商品都会越来越智慧。

文/陈根

人工智能,已经成为中美两国竞争的着力点 。

作为一种变革性技术,人工智能是现代工业发展的产物,具有推动产业革新、提升经济效益和促进 社会 发展的巨大潜力。正是由于具备主导技术发展和推动 社会 形态转变的基本潜质, 因此,人工智能不仅被视为未来创新范式的“技术基底”,更是被世界各国视为推动新一轮 科技 革命和产业变革的关键力量 。

纵观 历史 ,每一次 科技 革命、产业革命及军事变革的耦合与互动,都深刻影响乃至重塑了全球竞争格局。在人工智能的全球博弈中,中美两国作为领先大国,成为人工智能发展最为瞩目的两个国家。而中美两国对于人工智能高地的抢占,更关系着未来国际格局的重塑和全球人工智能的治理。

美国领先,中国跟进

2019年,美信息技术与创新基金会(ITIF)的数据创新中心曾发布百页研究报告《谁将在人工智能角逐中胜出:中国、欧盟或美国?》。报告对中、美、欧人工智能发展现状进行比较测算—— 美国以44.2分领先,中国以32.3分位居第二,欧盟则以23.5分位居第三 。美国的人工智能领先地位彰显无疑,而中国则以追赶之势跟进。

事实上,美国之所以能够占据人工智能全球领先地位,与人工智能在美国的发展密切相关。 1956年,人工智能正式在美国诞生。卡内基梅隆天学、麻省理工学院、IBM公司成为美国最初的3个核心人工智能研究机构。

60年代至90年代初,美国人工智能相关程序设计语言、专家系统等已取得重大进展,产品化方面取得重要成就。 比如,1983年,世界第一家批量生产统一规格电脑的公司诞生。并且,美国开始尝试应用Al研究成果,比如,利用矿藏勘探专家系统PROSPECTOR在华盛顿发现一处矿藏。

而同期的中国,人工智能才刚进入萌芽阶段 。1978年,中国科学大会在北京召开。科学事业思想解放,为中国人工智能产业发展提供基础。同年,“智能模拟”被纳入国家研究计划,中国人工智能产业在国家层面的推动下正式发展。

从研究成果来看,美国在人工智能方面的研究成果在全球处于领先地位 。根据全球最大的引文数据库Scopus的检索结果,2018年美国共发表了16233篇与人工智能有关的同行评审论文。论文数量的快速增长主要发生在2013年之后,5年内增长了2.7倍。

尽管同期中国和欧盟的人工智能论文数量也有类似的快速增长,并且每年发表论文的数量明显超过美国。 但是,就论文质量而言,美国人工智能论文的质量一直大幅度领先于其他地区。 2018年,美国平均每篇论文被引用的次数为2.23次,而中国为1.36 次。美国每个作者被引用的次数也比全球平均水平高出 40%。

尤其是在深度学习领域,美国的发表论文数量远超过其他国家。2015至2018 年,美国共在预印本文库网站arXiv发表了3078篇相关论文,是中国同期的两倍。 近几年,美国每年取得的人工智能专利数量更是占到全球总量的一半左右,专利引证数量占到全球的 60% 。

在关键技术上,美国的研究成果依旧居于世界领先地位 。比如,在计算机视觉领域,谷歌公司和卡内基梅隆大学开发的 Noisy Student方法对图片进行分类的Top-1准确率达到 88.4%,比6年前提高了35个百分点;在云基础设施上训练大型图像分类系统所需的时间,已经从2017年的3个小时减少到 2019年的88 秒,训练费用也从 1112美元下降到12.6美元。

从产业发展来看,根据中国信息通信研究院数据研究中心的《全球人工智能产业数据报告(2019Q1)》研究报告, 截至2019年3月底,全球活跃人工智能企业注达5386家。仅美国就多达2169家,数量远超过其他国家 。中国大陆达1189家,排名第三的英国则为404家。

而从企业 历史 统计来看,美国人工智能企业的发展也早于中国5年。美国人工智能企业最早从1991年萌芽,1998进入发展期,2005后开始高速成长期,2013后发展趋稳。而中国人工智能企业则诞生于1996年,2003年产业进入发展期,在2015年达到峰值后进入平稳期。

美国公司在专利和主导性人工智能收购方面表现更为强劲 。比如,在15个机器学习子类别中,微软和IBM在8个子类别中申请了比其他任何实体公司都更多的专利,包括监督学习和强化学习类。美国公司在20个领域中的12个领域的专利申请处于领先地位,包括农业(迪尔公司)、安全(IBM公司)以及个人设备、计算机和人机互动(微软公司)。

人才储备是美国在人工智能得以领先的又一关键原因。人工智能产业的竞争,可以说,就是人才和知识储备的竞争。 只有投入更多的科研人员,不断加强基础研究,才会获得更多的智能技术 。

根据 MacroPolo 智库的研究,在报告所圈定的顶级人工智能研究人才中,59% 在美国工作,中国占了 11%,与美国有四五倍的差距。剩下的人工智能人才则分布在欧洲、加拿大和英国,人才差异显而易见。

中美角逐,追赶和超越

尽管美国在研究成果和人才储备上具有先发优势,但中国作为后起之秀,在政策的引导和宽松的环境下,正以追赶之势加快跟进美国人工智能产业的发展。

经过多年的积累,中国已在人工智能领域取得了一系列重要成果,形成了自身独特的发展优势。 不论是顶层的设计还是研发资源的投入,亦或是产业的发展,都呈加快追赶的态势,甚至在部分人工智能核心技术领域已可与美国比肩。尽管欲见成效仍需时日,但中美两国对于人工智能高地的抢占,已经开始。

从顶层设计来看,中美有近乎相仿的重视程度。 美国和中国政府都已经把人工智能的发展上升至国家战略,出台发展战略规划,从国家战略层面进行整体推进 。

早在2016 年 10 月,奥巴马政府就发布了两份与人工智能发展相关的重要文件,即《国家人工智能研发战略规划》和《为未来人工智能做准备》。中国政府也在2017年3月,将“人工智能”首次写入全国政府工作报告,并于同年7月发布《新一代人工智能发展规划》,人工智能全面上升为国家战略。

美国人工智能报告体现了美国政府对新时代维持自身领先优势的战略导向。作为最大的发展中国家,中国也在战略引导和项目实施上做了整体规划和部署。并且,美国和中国都在国家层面建立了相对完整的研发促进机制,整体推进人工智能发展。

从研发资源的投入来看,美国政府对研发的资金投入相对不足。 纵向来看,在过去的几十年中,联邦政府用于研发的支出占国内生产总值(GDP)的百分比从1964年的1.86%下降到2018年的0.7%。

目前,美国联邦政府的年度财政赤字已超过1万亿美元,累积的政府债务相当于 GDP的107%。 这些因素都会限制美国政府对人工智能及其相关基础研究的长期资金投入。

横向上看,美国政府对研发的投入正在被中国和欧盟追赶 。美国在全球研发投入中所占的份额从1960年的69%下降到2016年的28%。2000-2015年,美国只占全球研发投入增长的 19%,而中国占到了31%。

2019年8月 31日,上海宣布设立人工智能产业投资基金,仅首期就投入了100亿元人民币,最终规模将达到千亿元人民币,美国联邦政府的投资则是相形见绌。

从产业发展来看,尽管中国AI产业基础层整体实力较弱,少有全球领先的芯片公司,但各大厂商正加快布局追赶,包括百度、阿里、腾讯及华为等厂商在基础层软硬件的加快布局 。

对于技术层来说,中国企业则发展势头良好。 百度、阿里、腾讯和华为等综合型厂商在计算机视觉、自然语言处理、语音识别等核心技术领域均有布局,同时创业独角兽在垂直领域迅速发展。

应用层上,人工智能应用场景多样,中国人工智能企业已在教育、医疗、新零售等领域实现广泛布局,而金融、医疗、零售、安防、教育、机器人等行业亦有为数较多的人工智能企业参与竞争。

着眼未来,我国在人工智能发展方面仍然具有一定优势, 包括对基础理论研究的重视、丰富的技术应用场景、完善的创新生态链、企业数量的规模优势,以及我国在发展人工智能方面的人才优势。

此外,大数据优势是中国发展人工智能的重要优势,人工智能技术发展需要有大量的数据积累进行训练。中国较为完备的工业体系和庞大的人口基数,也使得中国人工智能发展在数据积累方面优势明显。

人工智能的未来难以预测,但可以看到的是,世界的竞争格局将因人工智能而改变。在巨变的环境里,只有通过创新发展以人工智能为代表的新一轮战略前沿技术,成为新竞赛规则的重要制定者、新竞赛领域的重要主导者、新竞赛范式的重要引领者,才能制胜未来而不是尾随未来。

美国斯坦福大学的报告称,从学术期刊上的人工智能相关论文引用率看,2020年中国已经首次超过美国。中国所占比例为20.7%,超过了美国所占的19.8%。据悉,自2012年以来,中国的人工智能论文数量已达24万篇,远远超过美国的15万篇。中国在图像认知和生成等方面取得了优秀成果。

[昱言]第三期人工智能第三部分:人工智能的发展前景

发表人工智能论文的篇数

一般C9高校的人工智能专业都好一些,当然师傅领进门,修行靠个人!

目前,人工智能是一个快速发展的领域,对人才的需求很大。和其他技术岗位相比,竞争低,工资相对高。所以现在是进入人工智能领域的好时机。研究还表明,三项技能以上的人才对企业更有吸引力,而且趋势越来越明显。所以IT技术人员需要在掌握一门技术的同时掌握更多的技能!人工智能人才目前处于明显短缺状态,这种状况还存在扩大的趋势。当前社会技术环境下,需要兼顾扎实的专业技术和复合型背景的人才。在互联网企业中,人工智能的薪酬排在第三位,其中薪酬最高的是声音识别方向的从业者。

ECCV:欧洲计算机视觉国际会议,两年一次,是计算机视觉三大会议(另外两个是ICCV和CVPR)之一。每次会议在全球范围录用论文300篇左右,主要的录用论文都来自美国、欧洲等顶尖实验室及研究所,中国大陆的论文数量一般在10-20篇之间。ECCV2010的论文录取率为27%。欧洲人一般比较看中理论,但是从最近一次会议来看,似乎大家也开始注重应用了,oral里面的demo非常之多,演示效果很好,让人赏心悦目、叹为观止。不过欧洲的会通常英语口音很重,有些人甚至不太会说英文,所以开会和交流的时候,稍微有些费劲。

中国人工智能技术起步较晚,但是发展迅速,目前在专利数量以及企业数量等指标上已经处于世界领先地位。2013-2018年,全球人工智能领域的论文文献产出共30.5万篇,其中,中国发表7.4万篇,美国发表5.2万篇。在数量占比方面,2017年中国人工智能论文数量占比全球已经达27.7%。当前中美两国之间人工智能科研论文合作规模最大,是全球人工智能合作网络的中心,中美两国合作深刻影响全球人工智能发展。2019年中国AI芯片市场规模约为115.5亿元,在5G商用的普及和政策、技术等各因素的推动下,AI芯片有望在云计算、安防、消费电子、机器人等领域实现大规模商用,预计2021年AI芯片市场规模将达到436.8亿元。但值得注意的是,随着人工智能技术的加速普及,下游应用领域对AI算力和能耗的要求越来越高,传统冯诺依曼架构式芯片的瓶颈逐渐显露,AI芯片将朝着存算一体化方向发展。有分析师认为,存算一体AI芯片的发展前景虽受到广泛认可,但整体仍处在发展的起步阶段。从实现计算与存储的融合设计,到技术的落地、量产、规模化商用,还有较长阶段。能够率先实现技术、产品突破的企业将更容易获得资本、人才、市场的支持。世纪浪人:智慧筑基,源聚强国,深度分析中国人工智能发展概况我国人工智能发展全球论文占比情况(数据来源:艾媒数据中心)相关调查机构数据显示, 截至2017年12月31日,中国人工智能专利申请数达46284件。随着国家大力提倡、投入研发逐渐增加,人工智能运用到越来越多的行业领域,未来相关专利数量应当会持续增加,人工智能技术产业化发展前景向好。世纪浪人:智慧筑基,源聚强国,深度分析中国人工智能发展概况截止2017年我国人工智能专利申请数量(数据来源:艾媒数据中心)2018年中国人工智能领域共融资1311亿元,增长率超过100%,投资者看好人工智能行业的发展前景,资本将助力行业更好地发展。随着人工智能技术的进一步发展和落地,深度学习、数据挖掘、自动程序设计等领域也将在更多的应用场景中得到实现,人工智能技术产业化发展前景向好。1.中国步入技术驱动增长的高质量发展阶段,政策将持续加码推动芯片全面国产化中国数字经济产业已经成为驱动经济增长的新动能,2019年数字经济规模占GDP的比重达36.2%;作为数字经济产业底层基础的集成电路,却严重依赖进口,2020年前八个月,中国集成电路进口金额超过万亿元;未来政策将持续加码发展集成电路产业,实现芯片全面国产化。2.中国AI芯片有望引领国产芯片实现弯道超车,预计2023年中国AI芯片市场规模将突破千亿元5G基站、大数据中心、人工智能等新型基础建设的完善,促使AI芯片成为引领芯片行业未来发展的重要方向;政策、资本、技术、市场等多重因素将驱动AI芯片这一新赛道快速发展,中国芯片有望实现弯道超车;预计2023年中国AI芯片市场规模将超过千亿元。3.存算一体化AI芯片是未来主流方向,受益于下游需求的强劲驱动力而快速发展人工智能产业的成熟化发展驱动AI芯片由通用型向专用型发展,急剧增长的数据量对AI芯片的性能以及能耗提出了更高要求;能够兼具性能和成本的存算一体化AI芯片符合未来发展趋势,在下游需求的推动下有望快速发展。世纪浪人:智慧筑基,源聚强国,深度分析中国人工智能发展概况AI芯片概念描述直观图(来源:艾媒咨询)人工智能,作为计算机科学最前沿的发展方向,同时也是新一轮产业变革的核心驱动力,具有巨大的市场前景。面向人工智能应用的AI算法,除具有传统算法一般的性能特征,还具备处理大量非结构化数据、处理过程计算量大、参数量大等新特质,亟须强大的运算能力和高效的访存能力支撑。世纪浪人:智慧筑基,源聚强国,深度分析中国人工智能发展概况人工智能相关学科及关联关系(来源:艾媒咨询)4.中国人工智能未来热度持续目前中国整个人工智能产业规模仍在保持增长,同时国家也在不断出台各类人工智能产业扶持政策,资本市场对人工智能行业的投资热情不减,技术方面不断突破是产业增长的核心驱动力。未来人工智能产业的走向取决于算法的进步,由于算法的技术突破是决定人工智能上限的,所以未来人工智能企业拉开差距就在算法的技术突破上,谁能先在算法上取得成功,谁就能取得资本市场青睐,同时产业落地也会进一步提速。在算法方面,目前已经有深度学习和神经网络这样优秀的模型,但就目前国内人工智能算法的总体发展而言,工程学算法虽已取得阶段性突破,但基于认知层面的算法水平还亟待提高,这也是未来竞争的核心领域。虽然算法决定人工智能上限,但是目前的算法短时间内可能很难有所突破,所以算力也是目前人工智能企业竞争的一个重点方向,以目前的算力水平,主要实现商业化的人工智能技术为计算机视觉、智能语音等,未来若算力进一步突破包括算力的提升、生产成本的降低都会使人工智能技术的产业化进一步深入。

人工智能论文发表数量要求

近些年的科技方面在人工智能的的飞速发展,人工智能不仅给我们的日常生活带来了一些新鲜的亮点。神 经 猿 很好的,该学校为全国高职高校提供人工智能、大数据领域实训及学分课程以及高校人工智能实训室、实验室建设。 ..

近年来我国人工智能产业呈现出了蓬勃发展的良好态势。一是部分关键应用技术特别是图像识别、语音识别等技术,处于全球相对领先的水平,人工智能论文总量和高倍引用的论文数量,也处在第一梯队,据全球相对前列。二是产业整体实力显著增强。全国人工智能产业超过一千家,覆盖技术平台、产品应用等多环节,已经形成了比较完备的产业链。京津冀、长三角、珠三角等地区的人工智能产业急剧发展的格局已经初步形成。三是与行业融合应用不断深入。人工智能凭借其强大的赋能性,正在成为促进传统行业转型升级的重要驱动力量,各领域智能的新技术、新模式、新业态不断涌现,辐射溢出的效应也在持续增强,人工智能概念的火热促进了不少行业的兴起,比如域名,许多相关的.top域名已经被注册。但也要看到,在快速发展过程当中,我国人工智能的基础技术,还有较大欠缺,能够真正创造商业价值的还比较少。传统行业与人工智能的融合还存在较高门槛,有数据显示,今年人工智能领域投融资比前两年特别是跟去年相比,也有比较大幅度的下调。中国人工智能应用具有领域广、渗透深的特点,在产业化方面具有独特优势,但也面临巨大挑战,尤其是在基础理论和算法方面,原始创新能力不足,在高端芯片、关键部件等方面基础薄弱,高水平人才也不足。随着全球人工智能加速发展,各国在认知智能、机器学习、智能芯片等方面将不断取得突破。

“说实话,我很不喜欢「人工智障」这个词。”

在与掘金志的聊天中,一位从事计算机视觉方向的算法工程师多次表示,他讨厌这个词很久了,几乎是本能的反感,即便只是一种调侃,在他看来都是一种嘲讽。

这种嘲讽就好像是,一名路人,对着自己刚刚学会爬的孩子冷嘲热讽:这孩子真笨,连路都不会走。

他甚至坦言,如果身边有同事使用这个词自嘲,他会刻意与之保持距离,因为这种自嘲实属对自己的工作、对专业知识的“不尊重”。

拥有他这种技术性癖好的工程师不在少数,在掘金志询问的多个从业人员之中,都表达了类似观点:通常被问及人工智能水平时,类似表述以 「弱人工智能」 为准。

某负责品牌传播与公关的业务专员透露,如果在对外交流中使用了「人工智障」之类的词,被举报或是被公司发现,“直接影响绩效考核”,因为这类不专业的表述很可能导致负面的传播效果。

在与这些人的谈话中,掘金志发现,在AI圈内,从业者对于AI有着清晰的认知,在外宣的时候,对AI的负面化表述都较为严谨。

然而,在圈外,接二连三发生的各种AI事故,让大众对AI的真实能力产生诸多怀疑,关于人工智能变成人工智障的言论甚嚣尘上,唱衰人工智能的声音时常见诸报端。

表面上,这只是一场关于AI的舆论争议。但,其实质却是企业与大众对AI话语权的争夺,并会直接影响到AI的推广、落地与应用。

“如果大众无法对新技术形成有效的认知,那么新技术的推广则是非常缓慢的。” 某传媒大学在读研究生表示,大众对于新技术的接受能力是逐层递进的,这个进程很容易受到舆论影响,而负面舆论则存在一种 「爆破效应」 ,可能会直接摧毁此前建立起的「信任基础」。

比如自动驾驶,公众对其的信任基础很薄弱,出现多次事故之后,这种信任实际上已经消耗殆尽。

相关调研报告显示,自动驾驶一哥——特斯拉FSD在国内的激活率不足10%,甚至相当一部分人没有开通AP服务,即便在开通的人群中,也很少有人会使用AP功能。

这种现象固然有其客观原因(比如路侧数据不够、算法能力有限),但从舆论传播的角度看,自动驾驶的一次失误,比起传统 汽车 的十次车祸更加严重,从而也给自动驾驶的进一步落地,带来阻碍。

那么,如何给大众建立起对AI的有效认知,推动AI更快、更广泛地落地?

掘金志通过采访之后认为: 媒体报道、企业外宣、大众知识普及教育 ,是三个最主要的途径。而围绕着大众展开的各种「认知教育」,也注定是一场旷日持久的「攻坚战」。

人工智能应用有一个有趣的悖论: 当一种AI技术已经非常普及的时候,人们普遍不会认为这就是AI。

好比上世纪八九十年代,一台黑白电视机可能是划时代的象征,需要手动调频;但现在遥控型的彩色电视机成为标配,人们也不觉得这就算智能。又比如,小区停车场通过车牌识别进出、刷脸进入小区等,在近几年开始普及,但人们很少将之与AI联系起来,即便这里面实际上用了各种识别算法、芯片等等。

在大众的认知里,人工智能理所应当达到电影里机器人的水平,或者近似人一样地思考、行动。

“大众有时对于人工智能过于乐观,甚至高估。” 中国计量大学信息学院副教授、人工智能专业负责人杨力认为,作为走向 社会 的新技术,人们对AI的理解并不全面,认为AI应该无所不能,这种认知与实际并不相符。

在掘金志看来,大众对于人工智能的认知比较浅层,这主要表现在两个方面:

这种浅层认知很容易被诱导,而在一些不着边际的宣传之下,AI本身的能力被过分夸大,大众对AI产生盲目「自信」或高估。

“外行看热闹,内行看门道。”

杨力表示,以人脸识别为例,5年前可能人们会觉得很神秘、先进,但在经过消费类电子的普及之后,许多人觉得人脸识别已经没什么难度了。当他给学生们授课讲人脸识别时,同学们都觉得这已经是很成熟的技术,“并不新鲜,难度不大。”

但其实人脸识别距离高度智能化还有很长一段距离,在许多复杂场景下,很难捕捉到有效的人脸信息。并且,人脸识别在小规模(数据库较小)场景下效果很好,但当数据库非常大的时候,识别的准确率就没那么高了。

“大众由于缺少专业知识,很容易把复杂问题简单化,但从事AI研究的人对此却非常谨慎,普通人觉得简单的技术,从业者可能会觉得‘这个做不了,那个做不了’,简单而言, 就是望山跑死马的感觉。 ”

掘金志发现,由于缺少专业的通识教育,大众对于人工智能的了解渠道比较单一,多数是通过媒体报道、企业宣传这两种途径来触及AI,只有小部分人会自发研读相关书籍、学习课程,以增进了解。

从传播的角度看,如果受众获取信息的渠道有限,那么该信息渠道的控制人将具有信息传递的「控制权」,形成一种「舆论垄断」的局面,而信息在经过多次传播之下,极易「失真」。

实际上,这种「失真」是在所难免的。在AI的传播过程当中,形成了圈内和圈外两大群体,由于人工智能本身属于较高门槛的专业,圈内(企业)和圈外(普通受众)之间的连接,主要通过媒体来实现。

但媒体宣传存在问题是,许多从业者要么科班出身,要么跨界转型,真正懂AI的媒体人只有少数。并且媒体本身随着大数据、互联网技术的变化,进一步下沉到各平台,又造就了无数自媒体,形成了媒体界良莠不齐的局面。在流量导向的环境下,各种消息报道层出不穷,而这类信息又存在「放大效应」(比如标题过于惊乍),以至于大众接受到的信息与实际信息存在「误差」。

在人工智能最为火热的时候,不少AI企业为了拿融资、打知名度,纷纷投放广告、软文,宣传产品,造成人工智能已经能够大规模落地的假象。后来AI遇冷,大众对AI的调侃某种程度上可以看作是前期宣传过于猛烈的一种「反噬」。

当然,圈内也注意到大众传媒存在的局限,不少企业在重要的社交平台上都开辟了宣传渠道,但由于内容差异(比如太垂直、产品推广)或渠道差异,并不符合C端属性,多数AI企业无法直接建立起与大众的有效连接。

因此,在“企业-媒体-大众”这一传播链条下,由于大众传媒本身存在机制缺陷,导致大众很难在参差不齐的信息中,建立起对AI的有效认知。然而企业又不得不依赖大众传媒来宣传AI, 这种内在矛盾,是造成圈内与圈外对AI产生「认知差异」的重要原因。

“归根到底,还是AI人才太少。”在杨力看来,人才是推动产业发展的核心力量,当前AI处于爬坡阶段,技术本身的问题是造成大众对AI产生质疑的根本因素,舆论传播一定程度上加剧了这种影响。

解铃还须系铃人,不论是AI纵深发展,还是横向传播, 只有AI人才,可以给AI「正名」, 但现阶段的情况是,国内AI人才极度紧缺。

“应用型人才真的太少了。”杨力感叹道,当AI从空中楼阁走向田间地头,懂技术又懂行业的人“真的不多”。

而在工信部《人工智能产业人才发展报告(2019-2020)》(下称“报告”)里,预计我国人工智能产业内有效人才缺口达 30 万,而这仅是两年前的数据。实际上,在过去的两年里,根据掘金志观察,AI企业对人才的需求持续旺盛,整个AI产业的应用人才缺口进一步拉大。

作为技术/知识密集型产业,AI的人才准入门槛较高,对学历、工作经验非常看重。

根据报告,2019年AI企业发布的岗位中,仅有11.9%的岗位接受专科学历;也仅有5.4%的岗位接受1年以下工作经验的求职人才;接受提供应届生的岗位仅占3.3%。

这意味着要从事AI行业,基本上要求本科学历,同时,由于多数AI企业缺乏人力、资金和动力去培养应届毕业生(至少一年以上),企业对应届毕业生的需求并不旺盛,而更青睐那些拥有知识储备和实践经验的人才, 这种“排新”性质的招聘需求,又加重了人才短缺情况。

除此之外,AI对人才的专业性要求极强,尤其是算法研究、应用开发等岗位,60%以上岗位要求具备计算机、数学相关专业背景。

各种线性条件约束下,原本就短缺的AI人才,显得更加「紧俏」。

一位AI初创公司HR告诉掘金志,招人是一件很困难的事,“专业、学校、工作经历筛选下来,符合条件的人很少,加上公司要的是进来立马能产出的人,还要考虑薪资这些因素,优秀的人才很难招到;而走校招的话,优秀的毕业生早早被互联网、明星AI公司签下,剩下的也更青睐大公司。筛选去筛选来,选择真的不多。”

除了缺少与行业相结合的应用型人才以外,在杨力的观察之中,AI的另一个人才缺口, 是能够“扎下心来做基础性工作”的理论研究型人才。

根据斯坦福发布的《2022年人工智能报告》,虽然我国在AI 期刊论文的引用数、会议论文发表数量以及在人工智能专利申请数量上排名世界第一,但在AI会议论文被引数上却远落后于欧美。并且,一些创新性的基础理论、前沿 科技 的研究仍以欧美为主。

“很多人工智能的基础理论,都是由外国人/机构提出来的,比如现在比较火热的深度学习。”

杨力表示,这与我国人工智能起步较晚有很大关系,要弥补这样的差距,除了要加强对基础理论研究的资金、人才投入以外,也应该建立起标准的AI人才培养体系,为AI研究提供源源不断的人才活力。

“学校是培养人才的摇篮,理想的情况是, 一部分学生毕业以后从事理论研究,更多的毕业生进入行业,通过产学研联动,来推动AI的落地。”

掘金志了解到,当前我国人工智能产业已经初步形成“政产学研一体化”人才培 养生 态体系,但仍然处于起步阶段。2019年,人工智能专业正式获批列入本科专业名单,国内诸多高校开始自建或与企业共建人工智能学院(研究院),并开设AI专业。

然而,对于如何培养专业的AI人才,各大高校也正处于摸索之中,尚未形成行之有效的范式。

2019年,国内人工智能专业正式获批,被列入本科专业名单,但开办专业需要经过课程建设、实验条件、专业申报等流程,多数学校于近两年才开始正式招生。

换句话说,距离最早的一批AI本科生毕业,离毕业也还需要大概一到两年的时间。

如何把这一批新生培养成才,来填补当前存在的人才缺口,是一件并不容易的事情。此外,未来的第一批毕业生,其综合能力是否达标也极具象征意义。

“一方面,人工智能专业学的内容很难, 以前很多研究生阶段才开设的课程,现在放到本科阶段来学了, 对学生是一种压力,对老师的教学方式、技巧也带来挑战;另一方面,如何将人才培养与 社会 需求结合起来,让学生能够学以致用,也是难点。”

作为人工智能领域的资深学者,杨力在多年的执教生涯中,除了对AI有着深入的研究与思考外,也 探索 出了一些关于培养AI人才的「方法论」。

“首先要尊重学习规律。” 杨力告诉掘金志,AI本身对实践能力的要求较高,这就不能照搬传统学科的培养模式,即大一大二侧重于理论,大三大四侧重于专业。而应该理论和实践并用,先学习、再实践,在实践中学习,然后呈“螺旋式上升”。

在具体举措方面,他表示,可以通过成立 「科创小组」 的模式,鼓励学生以团队协作的方式参加各种学习竞赛、研究课题。

这种小组模式的优势在于:小组覆盖全体学生,通过团队协作,形成内部互帮互助的学习氛围,让成员都能参与到实践之中,成为一个「利益团体」;并且,小组的持续时间覆盖学生的整个大学生涯,所有成员都能共享「利益成果」。同时,小组成员之间互相帮助,从某种程度上也能给老师减轻压力。

“其次要因材施教,激发学生对AI的求知欲、 探索 欲。”

杨力表示,学生对AI的学习兴趣也呈现出明显的「二八定律」,即20%的学生求知欲很强,而80%的学生兴趣一般。

“对于这20%的学生,你只需要告诉他怎样做到最好,并且告诉他这个过程中需要注意的事项、细节,其余的无需太过关心;而对于80%的学生,他们的兴趣没那么高,就需要比较细致的指导,并且需要搭配一些「强制指派」,例如直接分配任务让他们参加。”

“再而,通过激励机制来刺激学生的创作灵感。”

比如,在课程设计时,将创新性纳入评分标准之中,以课程成绩来驱动学生进行创新。

例如,在做某个案例时,如果学生只是根据老师列的步骤照猫画虎,其成绩最高可能也就刚好及格,而剩下的分数则全靠个人创意和发挥。

“大多数学生需要老师给一些推力,而成绩就是最好的激励。”杨力表示,学生为了拿更高的绩点,便不得不“多费心思”,而不是敷衍了之,最终交上来的作品“往往有很多意想不到的亮点”。

“最后,教师与学生之间要形成良性互动的正循环。”

本科教学存在的一个普遍问题是,学生与教师之间的互动较弱,或者只存在于课堂之上,课外的联系非常少,“上课是师生,下课是路人”的情况并不少见。

在杨力看来,如果老师仅仅把教学当作是一种工作任务来完成,那么学生也会采取应付的态度。相反,如果老师富有责任感,学生也会受到其“以身作则的影响“,更有进取意识。

因而,老师可以通过带项目、线上线下互动等方式与学生沟通,来了解学生的需求,给自身的教学工作进行反馈,而这种反馈最终又将通过教学的方式来触及学生,形成「师生共赢」的局面。

除了培养AI人才方法论外,杨力也指出,培养人工智能专业人才需要 破除「唯研究生论」。

“读人工智能专业必须读研究生,不读研究生就没有前途。”

不少人持有这样的观点,但杨力却坚决表示反对。他认为,原来很多研究生的课程已经下放到本科来学,本科阶段的人才培养成体系之后,学生的理论、实践能力将能够满足AI行业的基本需求,一味追求研究生教育,只会造成AI圈越来越卷,无助于缓解行业人才短缺情况。

“当然,研究生教育也很重要,但研究生人才培养可能更应该倾向于基础理论方面, 而AI的规模化落地,需要更多应用型人才去推动。”

举个例子:很多传统制造业引进了人工智能,比如机械臂、自动化生产设备等,但由于缺少应用型人才,企业买回去的设备不知道该怎么使用,也不知道如何做到效益最大化,更不懂运营维护。

这样的岗位,并不需要从业者非常深厚的理论功底,而是有AI基础,又懂行业的人才。而在传统产业智能化升级过程中,类似的人才缺口非常大。

“实际上,当AI走向各行各业、落地之后,对人才的需求也会发生变化,而在本科阶段,通过理论学习加上与专业相关的 社会 实践,也能培养出优秀的人才。”

在刚结束的冬奥会上,杨力教授带领他的团队做了一个智能辅助技术,可通过视频来实现对选手动作进行回顾与分析,给裁判打分给予参考。

虽然只是一个比较简单的行为识别,模型并不精巧,市场上有很多AI公司具备开发该技术的能力。但让人欣慰的是,这个项目一经提出,学生们便踊跃参加,在导师的指引下,一步步挖掘数据、标注、建模、训练、测试,整个过程持续两周之久,大部分工作由学生完成,而且是在春节期间,有同学甚至因为出力不够而深感抱歉。

“Talk is cheap.”在杨力看来,这个项目别人有能力做,然而只有他们去落地实践了,并且整个项目由大一学生完成,过程远重于结果, 他们“代表着AI领域的新生力量。”

做这个项目也并非一帆风顺。

该项目的成员,中国计量大学信息学院 21级人工智能专业学生,蒋正阳告诉掘金志,小组在建模的时候,要么网络太大训练太慢,要么网络太小而不适合要求,难以达到预期目标。同时,训练也会遇到算力不够的情况。

经过多次失败尝试之后,小组不得不求助于杨力教授,后者补充了一种网络结构,该结构下,模型变得相对“较轻”,训练也可以符合预期。

最终,小组成功研发出“单板滑雪AI裁判技术”。该技术可在画面模糊、相机高速运动、长距离全景画面等复杂场景下,对运动员是否抓板进行精准识别,从而为裁判打分提供依据,助力「冬奥公平」。

“我们的专业知识有限,需要继续加强理论学习。通过这个项目,我们了解了从零开始做项目的过程、方法、难度,积累了经验。当然,最后看到项目跑出来的结果,内心还是很欣喜的。”蒋总结道。

杨力认为,遇到问题很正常,关键在于去行动、实践了。“人在学走的路上,会跌倒很多次,但不能因为跌倒,就只学爬,这样永远也不会走。”

这何尝不是国内AI发展的缩影。

在经历无人问津的韬光养晦期之后,国内AI于10年开始蓬勃发展,商汤、旷视、云从、依图等一众AI公司先后诞生,受到资本热捧,撑起国内AI的希望。但激情燃烧之后,随之而来的是行业落地难、商业化难、变现难等各种质疑。

如今的AI,正处于从爬到走的摸索期,磕磕碰碰、跌倒摔倒等时有发生,也被大众调侃成「人工智障」。

但杨力对此并不沮丧,反而感到乐观, 因为“有越来越多的企业、越来越多的人才参与到AI的发展、推广、落地之中”, 在“政产学研”模式的推动之下,AI也将被掀开神秘面纱,显露出最真实的样子,而大众在未来也会对AI形成一个“全面、客观”的认知。

在掘金志与多位AI从业者的交流过程中,几乎所有人都对AI充满希望,即便AI仍然处于「弱人工智能」阶段,他们仍然坚信,AI有着光明的未来。

“AI的浩海不止于边边角角,而在于改变世界。”开篇吐槽「人工智障」的那位工程师告诉掘金志,即便改变世界的路途,充满坎坷,但 “因为热爱,所以坚持。”

而对于大众的一些调侃和质疑,他迟疑了一下,回道:

“请给AI一些包容。”雷峰网雷峰网

虽然“人工智能”(AI)已经成为一个几乎人人皆知的概念,但对人工智能的定义还没有达成普遍共识。传统的人工智能发展思路是研究人类如何产生智能,然后让机器学习人的思考方式和行为。现代人工智能概念的提出者约翰·麦卡锡认为,机器不一定需要像人一样思考才能获得智能,重点是让机器能够解决人脑所能解决的问题。第四次工业革命正在来临,而人工智能已经从科幻逐步走入现实。从1956年人工智能这个概念被首次提出以来,人工智能的发展几经沉浮。随着核心算法的突破、计算能力的迅速提高、以及海量互联网数据的支撑,人工智能终于在21世纪的第二个十年里迎来质的飞跃,成为全球瞩目的科技焦点。自从2016年AIphaGo战胜李世石之后,全球对于人工智能发展的兴奋与担忧交织难分。即使如此,世界各国已经认识到人工智能是未来国家之间竞争的关键赛场,因而纷纷开始部署人工智能发展战略,以期占领新一轮科技革命的历史高点。对于中国而言,人工智能的发展是一个历史性的战略机遇,对缓解未来人口老龄化压力、应对可持续发展挑战以及促进经济结构转型升级至关重要。本文从科技产出与人才投入、产业发展和市场应用、发展战略和政策环境等方面描绘中国人工智能的发展面貌。科技产出与人才投入1. 论文产出 : 中国人工智能论文总量和高被引论文数量都是世界第一。中国在人工智能领域论文的全球占比从 1997 年 4.26% 增长至2017 年的 27.68%,遥遥领先其他国家。高校是人工智能论文产出的绝对主力,在全球论文产出百强机构中,87家为高校。中国顶尖高校的人工智能论文产出在全球范围内都表现得十分出众。不仅如此,中国的高被引论文呈现出快速增长的趋势,并在 2013 年超过美国成为世界第一。但在全球企业论文产出排行中,中国只有国家电网公司的排名进入全球前 20 位。从学科分布看,计算机科学、工程和自动控制系统是人工智能论文分布最多的学科。国际合作对人工智能论文产出的影响十分明显,高水平论文里中国通过国际合作而发表的占比高达 42.64% 。2. 专利申请 : 中国专利数量略微领先于美国和日本,国家电网表现突出。中国已经成为全球人工智能专利布局最多的国家,数量略微领先于美国和日本,而中美日三国占全球总体专利公开数量的 74%。全球专利申请主要集中在语音识别、图像识别、机器人以及机器学习等细分方向。中国人工智能专利持有数量前 30 名的机构中,科研院所与大学和企业的表现相当,其技术发明数量占比分别为 52% 和48%。企业中的主要专利权人表现差异巨大,尤其是中国国家电网近五年的人工智能相关技术发展迅速,在国内布局专利技术量远高于其他专利权人,而且在全球企业排名中位列第四。

人工智能论文发表数量排名

比大学好,科研能力比大学强,全球人工智能领域发表超500篇论文名单出炉,自动化所排名中国第一,全球第七。

据全球最大的文摘和索引数据库爱思唯尔SCOPUS中数据显示,中国在人工智能领域的研究有着巨大驱动力,中国的研究人员自2011年至2015年创下了超过41000个出版物的记录。就出版量而言,排名世界第一。

同时,在各类独立机构发表论文数量的统计中,中科院自动化所作为中国内地唯一一家超过500篇论文的独立机构上榜,且引文影响力数值超过了世界平均水平,排名全球第七位。

论文发布数量方面,美国在此期间排名第二约为25500篇,日本排名第三约为11700篇,英国第四约为10100篇。尽管中国在数量方面得分很高,但加权引文影响力则只排名34位,表明大多数论文的质量不如美国(美国的加权引文影响排名第4)等国。

在加权引文影响力衡量标准中,排名第一的是瑞士,其得分为2.71,其次是新加坡(2.24)和中国香港(2.00),尽管在数量上这三个国家(地区)都少于2500种。

在各类科研机构中,引文影响力排名前三分别为麻省理工学院(3.57)、卡耐基梅隆大学(2.53)、新加坡南洋理工大学(2.51),自动化所以2.26排名第七。

研究所简介

中国科学院自动化研究所(以下简称自动化所)成立于1956年,以智能科学与技术为主要定位,是中国科学院率先布局成立的“人工智能创新研究院”的总体牵头单位,是我国最早开展类脑智能研究的国立研究机构,也是国内首个“人工智能学院”牵头承办单位。

六十多年来,自动化所为我国国民经济建设、社会进步、科技发展和国家安全做出了重要的贡献。建国发展初期,自动化所开拓了我国的控制科学,为“两弹一星”做出了历史性的贡献;改革开放年代,自动化所开创了我国模式识别智能信息处理的新领域。

1990年代,自动化所以控制科学为基础,率先布局了人工智能研究;2016年起,自动化所率先布局博弈智能研究,逐步形成了数据智能、类脑智能和博弈智能的完整布局,并产出了一系列重要成果。

自动化所长期坚持“智能科学与技术”研究,在复杂系统智能集成、模式识别、机器学习、计算机视觉、语音语言信息处理、类脑智能、智能机器人、智能系统和智能芯片等领域形成了鲜明的学科优势和技术特色,具有从原始创新、核心关键技术研发到技术转移转化的完整智能技术创新链。

以上内容参考 中国科学院自动化研究所——研究所简介

上海交通大学发表人工智能国际论文数为1151篇,在国内位居第二;人工智能专业整体综合实力在国内排名第三。 以上三所院校就是在人工智能专业

11700篇。经查询中国科学院公布的资料显示,日本发布的人工智能论文为11700篇,总量排名世界第三。人工智能是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。

一般C9高校的人工智能专业都好一些,当然师傅领进门,修行靠个人!

相关百科

热门百科

首页
发表服务