首页

职称论文知识库

首页 职称论文知识库 问题

人工智能编程中心论文发表

发布时间:

人工智能编程中心论文发表

人工智能主要研究用人工方法模拟和扩展人的智能,最终实现机器智能。人工智能研究与人的思维研究密切相关。以下是我精心整理的有关人工智能论文的相关资料,希望对你有帮助!

浅谈逻辑学与人工智能

人工智能主要研究用人工方法模拟和扩展人的智能,最终实现机器智能。人工智能研究与人的思维研究密切相关。逻辑学始终是人工智能研究中的基础科学问题,它为人工智能研究提供了根本观点与方法。

1 人工智能学科的诞生

12世纪末13世纪初,西班牙罗门·卢乐提出制造可解决各种问题的通用逻辑机。17世纪,英国培根在《新工具》中提出了归纳法。随后,德国莱布尼兹做出了四则运算的手摇计算器,并提出了“通用符号”和“推理计算”的思想。19世纪,英国布尔创立了布尔代数,奠定了现代形式逻辑研究的基础。德国弗雷格完善了命题逻辑,创建了一阶谓词演算系统。20世纪,哥德尔对一阶谓词完全性定理与N 形式系统的不完全性定理进行了证明。在此基础上,克林对一般递归函数理论作了深入的研究,建立了演算理论。英国图灵建立了描述算法的机械性思维过程,提出了理想计算机模型(即图灵机) ,创立了自动机理论。这些都为1945年匈牙利冯·诺依曼提出存储程序的思想和建立通用电子数字计算机的冯·诺依曼型体系结构,以及1946年美国的莫克利和埃克特成功研制世界上第一台通用电子数学计算机ENIAC做出了开拓性的贡献。

以上经典数理逻辑的理论成果,为1956年人工智能学科的诞生奠定了坚实的逻辑基础。

现代逻辑发展动力主要来自于数学中的公理化运动。20世纪逻辑研究严重数学化,发展出来的逻辑被恰当地称为“数理逻辑”,它增强了逻辑研究的深度,使逻辑学的发展继古希腊逻辑、欧洲中世纪逻辑之后进入第三个高峰期,并且对整个现代科学特别是数学、哲学、语言学和计算机科学产生了非常重要的影响。

2 逻辑学的发展

2.1逻辑学的大体分类

逻辑学是一门研究思维形式及思维规律的科学。 从17世纪德国数学家、哲学家莱布尼兹(G. LEibniz)提出数理逻辑以来,随着人工智能的一步步发展的需求,各种各样的逻辑也随之产生。逻辑学大体上可分为经典逻辑、非经典逻辑和现代逻辑。经典逻辑与模态逻辑都是二值逻辑。多值逻辑,是具有多个命题真值的逻辑,是向模糊逻辑的逼近。模糊逻辑是处理具有模糊性命题的逻辑。概率逻辑是研究基于逻辑的概率推理。

2.2 泛逻辑的基本原理

当今人工智能深入发展遇到的一个重大难题就是专家经验知识和常识的推理。现代逻辑迫切需要有一个统一可靠的,关于不精确推理的逻辑学作为它们进一步研究信息不完全情况下推理的基础理论,进而形成一种能包容一切逻辑形态和推理模式的,灵活的,开放的,自适应的逻辑学,这便是柔性逻辑学。而泛逻辑学就是研究刚性逻辑学(也即数理逻辑)和柔性逻辑学共同规律的逻辑学。

泛逻辑是从高层研究一切逻辑的一般规律,建立能包容一切逻辑形态和推理模式,并能根据需要自由伸缩变化的柔性逻辑学,刚性逻辑学将作为一个最小的内核存在其中,这就是提出泛逻辑的根本原因,也是泛逻辑的最终历史使命。

3 逻辑学在人工智能学科的研究方面的应用

逻辑方法是人工智能研究中的主要形式化工具,逻辑学的研究成果不但为人工智能学科的诞生奠定了理论基础,而且它们还作为重要的成分被应用于人工智能系统中。

3.1 经典逻辑的应用

人工智能诞生后的20年间是逻辑推理占统治地位的时期。1963年,纽厄尔、西蒙等人编制的“逻辑理论机”数学定理证明程序(LT)。在此基础之上,纽厄尔和西蒙编制了通用问题求解程序(GPS),开拓了人工智能“问题求解”的一大领域。经典数理逻辑只是数学化的形式逻辑,只能满足人工智能的部分需要。

3.2 非经典逻辑的应用

(1)不确定性的推理研究

人工智能发展了用数值的方法表示和处理不确定的信息,即给系统中每个语句或公式赋一个数值,用来表示语句的不确定性或确定性。比较具有代表性的有:1976年杜达提出的主观贝叶斯模型, 1978年查德提出的可能性模型, 1984年邦迪提出的发生率计算模型,以及假设推理、定性推理和证据空间理论等经验性模型。

归纳逻辑是关于或然性推理的逻辑。在人工智能中,可把归纳看成是从个别到一般的推理。借助这种归纳方法和运用类比的方法,计算机就可以通过新、老问题的相似性,从相应的知识库中调用有关知识来处理新问题。

(2)不完全信息的推理研究

常识推理是一种非单调逻辑,即人们基于不完全的信息推出某些结论,当人们得到更完全的信息后,可以改变甚至收回原来的结论。非单调逻辑可处理信息不充分情况下的推理。20世纪80年代,赖特的缺省逻辑、麦卡锡的限定逻辑、麦克德莫特和多伊尔建立的NML非单调逻辑推理系统、摩尔的自认知逻辑都是具有开创性的非单调逻辑系统。常识推理也是一种可能出错的不精确的推理,即容错推理。

此外,多值逻辑和模糊逻辑也已经被引入到人工智能中来处理模糊性和不完全性信息的推理。多值逻辑的三个典型系统是克林、卢卡西维兹和波克万的三值逻辑系统。模糊逻辑的研究始于20世纪20年代卢卡西维兹的研究。1972年,扎德提出了模糊推理的关系合成原则,现有的绝大多数模糊推理方法都是关系合成规则的变形或扩充。

4 人工智能——当代逻辑发展的动力

现代逻辑创始于19世纪末叶和20世纪早期,其发展动力主要来自于数学中的公理化运动。21世纪逻辑发展的主要动力来自哪里?笔者认为,计算机科学和人工智能将至少是21世纪早期逻辑学发展的主要动力源泉,并将由此决定21世纪逻辑学的另一幅面貌。由于人工智能要模拟人的智能,它的难点不在于人脑所进行的各种必然性推理,而是最能体现人的智能特征的能动性、创造性思维,这种思维活动中包括学习、抉择、尝试、修正、推理诸因素。例如,选择性地搜集相关的经验证据,在不充分信息的基础上做出尝试性的判断或抉择,不断根据环境反馈调整、修正自己的行为,由此达到实践的成功。于是,逻辑学将不得不比较全面地研究人的思维活动,并着重研究人的思维中最能体现其能动性特征的各种不确定性推理,由此发展出的逻辑理论也将具有更强的可应用性。

5 结语

人工智能的产生与发展和逻辑学的发展密不可分。

一方面我们试图找到一个包容一切逻辑的泛逻辑,使得形成一个完美统一的逻辑基础;另一方面,我们还要不断地争论、更新、补充新的逻辑。如果二者能够有机地结合,将推动人工智能进入一个新的阶段。概率逻辑大都是基于二值逻辑的,目前许多专家和学者又在基于其他逻辑的基础上研究概率推理,使得逻辑学尽可能满足人工智能发展的各方面的需要。就目前来说,一个新的泛逻辑理论的发展和完善需要一个比较长的时期,那何不将“百花齐放”与“一统天下”并行进行,各自发挥其优点,为人工智能的发展做出贡献。目前,许多制约人工智能发展的因素仍有待于解决,技术上的突破,还有赖于逻辑学研究上的突破。在对人工智能的研究中,我们只有重视逻辑学,努力学习与运用并不断深入挖掘其基本内容,拓宽其研究领域,才能更好地促进人工智能学科的发展。

发论文的方向:人工智能应该算是综合性边缘学科,基本含有了计算机科学、统计学、信息论等多种学科。针对人工智能不同的特点肯定选题也不一样,我个人认为计算机方向比较好发一些,可以多看一点人工智能和机器学习方面的论文,特别是自然语言处理和图像处理方面的。而选方向应该是一个”先见树林后见参天大树“的过程。刚开始应该试图去了解的是简单地,概括性的内容,比如基本概念/术语,研究内容和对应的方法。选择一个你感兴趣好写的方向,进而关注某一个方向,也是真正研究工作的开始。

您好,可以安排各专业的核心期刊,SCI、EI、南北核心等,希望我的回答对您有帮助,望采纳!!!

人工智能论文发表心情

人类还有圣洁的一面,世界应该像结尾时橘黄色的暖色调一样充满温暖,充满爱的甜蜜。下面就是我给大家带来的人工智能 观后感 范文 ,希望大家喜欢!

人工智能观后感范文一

不知道大家是否都把注意力给了小男孩大卫。

我在这里只想写点话给卑微的泰迪。

泰迪也是人工智能,但他不如大卫高级,也不具有人的形态。可既然是智能(具有部分智慧),它就会希望获得爱。

泰迪教大卫写字,写的内容是:“马丁和大卫是妈妈的儿子,但泰迪不是...”

妈妈的头发掉在地上,两千年后,泰迪从它的肚子里掏了出来使妈妈复活。其实,当马丁跟大卫说,剪来妈妈的头发能使妈妈爱上自己时,泰迪也相信了这个谎言,夜里跟着大卫潜进妈妈的房间,并把掉落的头发保存了两千年。

当大卫和泰迪被遗弃后,这只小熊执着地跟着大卫,为什么?在机器人屠宰大会上,跟着大卫它很可能会死,跟着那位小女孩它才更安全。但它说:“我必须找到大卫!”

因为泰迪和大卫一样,它相信匹诺曹的 童话 故事 ,它也想见到蓝仙女。也许,蓝仙女把大卫变成真的小男孩时,也会顺道把它变成真的生命,或许变成小男孩,或许变成可爱的小动物。泰迪深深地渴望被爱,但它不敢奢求,更从未说出口。

最后,当大卫和妈妈幸福地睡在一起时,泰迪也爬上了床,静静地坐着。

不论是关于头发的谎言,或是匹诺曹的童话,还是复活一天的回光返照......泰迪一直没有放弃它那卑微的希望。

人工智能观后感范文二

他的程序是爱。当爱成为他生存的唯一理由,这个孩子无法不穷其毕生去寻找、去等待,千年万载,轮回往复。

“让妈妈爱我”——这样一个简单到极点的愿望,在孩子蔚蓝的眼睛里闪烁。

我又怎么能忍住自己的泪水,为了他,为了他从出生就注定无法抹去的烙印。他是机器,它的程序是爱。

美丽的蓝衣仙女,在孩子的拥抱中风化瓦解,变成无数狰狞的碎片。仙女残破的面颊温柔依旧,但是她曾经优雅的身躯居然是一具空壳——童话和梦想的空壳,人类谎言铸就的残躯碎体,就这样冰冷冷地展现在孩子面前(——斯皮尔伯格,你实在是太残忍了!)

他象一个男子汉那样关切地俯下身,为妈妈送上清晨的第一杯咖啡,微笑着看她啜饮。小小的身体努力、认真地挺直着,做她最初的,最后的屏障,小小的,爱的屏障。因为他知道,自己很快就要再次失去她,永远地失去她了。他从两千年之前把她找回来,只为现在这样斜倚在床边,独自一人拥有爱妈妈的时间。他的时间——他们的时间多么少啊!

斯皮尔伯格的镜头如同喃喃低语,屏心静息地讲述着。音乐仿佛辽阔背景下瞬息起伏的浪涛,配合着他的故事。一点点铺陈,一段段展开,一层层推进,一寸寸深入人心。最后,随着男孩的复制品妈妈沉入永恒的睡眠,这个小小的机器也静静睡去。故事终结,该讲的,不该讲的,都已经结束了。

在时间的永恒之河中等待是一种怎样的诅咒?等到绝望之日慢慢降临,愿望才能得以解脱。

这种漫长的等待让火柴放弃了对永恒的企望。同时默默庆幸:属于自己的时间是有限的--这是一种幸福。在我有限的生命中爱过,被爱过,是幸福中的幸福。

人工智能观后感范文三

感谢库布里克与斯皮尔伯格联手为我们献上了这部《AI》,我相信它将经受时间的考验,成为一部经典。如果这是部库氏单独完成的作品,那么它必将会狞厉而更具穿透力,但斯皮尔伯格为它披上了层温情的外纱,将《AI》制成了块酒心巧克力,醇美而意味深长。作品对人类、宇宙的终级思考和关怀并不是我所能完全把握和理解,所以以下我将开始关于这部影片的无主题漫游:

一、谁是造物主?

影片开始的一个画面就耐人寻味:Hobby教授在屋内发表着自己的高论,窗外是象征公司的雕塑(一个抽象化了的人的形象,坚毅有力,在片中多次出现),强烈的光线使它显得朦胧而神圣。我不由想到中世纪的哥特式教堂,高耸入云的尖塔,透过五颜六色玻璃射入的光线,烘托出教堂的庄严和宗教的权威,人们虔诚地祷告忏悔……而在这时,人类自身取而代之,成为崇拜的偶像。在这有趣的构图中,Hobby教授的形象始终是清晰明确的,而景深处的雕塑模糊渺小。Hobby教授光亮的前额,深邃的眼神,时刻提醒着我们:在这个科技高度发达的时代,人类压倒一切,在地球上无处不显着强势。

在这样一个时代,谁是造物主?上帝吗?不,早在尼采就宣告了它的死亡,科学使一切解码化,世界失去了魔力和神秘,宗教丧失了神圣性,人类抛弃了敬畏之心。当人类感受到自身的力量,便要求自己扮演造物主的角色。Hobby教授不就是典型吗?他要制造懂得爱的Mecha,片末David 在 Hobby教授的办公室内发现了流水线上无数的自己,那上面写着“At last---A love of your own”,我不知道拥有了自爱之心的Mecha与人类又有何差别。但人类是否便有资格成为造物主呢?让我们进入Flesh Fair去看看。

二、Flesh Fair

这是个古罗马斗兽场与现代摇滚演唱会相结合的光怪陆离的世界。正如现今有人反对全球化,在那个时代反对滥用Mecha也是大有人在。人类强烈意识到了自己的危机,科技是把锋利的双韧剑,一步步为人类挖掘自身的坟墓。已见末日却无力回天的人们绝望地聚会,在疯狂屠戮Mecha中取得无谓的快感,享受最后的狂欢。

看看关在笼内的Mecha们,他们求饶并彼此宽慰,再看看台上各个年龄Orgas面对残酷的炮轰、腰斩、五马分尸时的冷漠和叫嚣,我不知说出“我觉得mecha更有人性”这样的话是否很可笑,但这就是flesh fair给我的感受,如果古罗马竞技在血腥之余还展示了人的力量,那这就是泯灭人性的屠杀(毁坏?)。科技没有给人以真善美,全知的世界消去了人类的虔诚和敬畏,在恐惧和无所适从中,恶的本性暴露得淋漓尽致,然而对mecha的残暴破坏,事实上是徒劳无力的,连joe都意识到:“在世界末日来临时,剩下的会是我们mecha,而非人类。”

托马思库思认为科技并非在不断进步,不断引导人类向那越来越伟大的真理迈进,而只是不断地发现问题。我在想,当问题多到无法解决时,人类怎么办?人类不仅成不了造世主,而且将失去整个世界。

三、David自杀的意义

我不敢确认david跳下深海是否算得上自杀,但如果就此误读,又能引出个有趣的话题。

我们可以先探讨一下那个时代的人类有无自杀的可能,如果将一般意义的自杀定义为向暧昧的世界无意义性边界发起的最后冲击(刘小枫语),排除因世俗事物偶然脱节引起的自杀,我们要追寻的也就是那个时代的人们是否还有赖以安身立命的价值信念。可以想象在那时近代理想主义的信仰和价值依据,无论是上帝还是理性科学都已被颠覆,追求艺术审美来确信自身价值也不大可能,人们不再思考世界意义的有无,只是用虚无主义归避问题或是享乐主义麻痹人生,色欲之都Rouyh City 就是那个时代的真实写照。

既然人类都已不再寻求死亡,David作为一个机器人的自杀行为就更显出其意义。我们是否能把David 看作人类自身历史的浓缩和写照呢?他被创造,创造的目的一如上帝创造亚当,是用来爱的;他被Monica 输入程序,于是寻找和获取母爱成为他的最终目标;也如圣经所述,他必须遭受放逐和磨难,甚至经历死亡,这是一个自我救赎的过程。最后他虔诚的祷告——人类目前也只走到了这一步。只不过斯皮尔伯格给它加了个光明的尾巴,让David美梦成真。

David的跳海是他的新生,Joe在被抓走前,喊出了:“ I am ,I was . ”Mecha在自身追寻中暗自到达了终点,这暗示了的是人类的灭亡还是希望?我们都会有自己的读解和答案……

人工智能观后感范文四

回归电影,大卫带着找到蓝色仙女的愿望一路冒险着,在机器人屠宰场的九死一生和在欢乐城询问万事通博士企图找到答案,抢了来追朋友乔的警察的两栖飞机到达了没落的曼哈顿。一路上,大卫差点丧命,看着自己的机器人同伴被各种 方法 摧毁,他心里受到深深的震撼,正因他不一样,他有感情,他有爱人的天性。虽然情人机器人乔曾告诉大卫,他和自己一样,给人们带来快乐,一旦人们失去兴趣,就会抛弃他们,但大卫没有放下。支持他的是唯一那么一点母亲给予的爱的记忆,以及想要回家和母亲团聚的信念。qq女生个性签名

最后在玩具熊泰迪和乔的帮忙下,大卫找到了建造自己的工厂,自己其实是设计师以自己死去的儿子为原型制造的,而且并不是像自己想象的那样独一无二,而是同样是被批量生产的机器人。在打击下他跳入海里,却意外发现了蓝色仙女的雕像。在乔和泰迪的支持下,他与泰迪一齐乘坐两栖飞机到了海里,在蓝色仙女面前一遍一遍的祈求着,期望自己成为真的小孩。令我们想不到的是,这样的祈求竟然持续了20某某年。直到这个世界已经没有人类了,高级机器人发现了大卫,并想透过对大卫的研究获取过去人类的事实,他们根据大卫的记忆给他建造了家,而大卫却祈求他们给自己带回母亲。虽然利用泰迪保存的母亲的头发能够把莫妮卡带回来,但是这样凭借记忆带回来的莫妮卡只能坚持一天。但大卫还是毫不犹豫的答应了。在这一天里,大卫成为世界上最幸福的那个孩子,和母亲在一齐就是他全部的愿望,最后影片定格在大卫和母亲一齐躺在床上沉沉睡去的画面。

20某某年换一天,在大卫眼里,是那么的值得。我想比较大卫,我们是不是幸福很多,我们拥有的是大卫拼了命想拥有的东西,母亲的爱,独一无二的存在,等等。但我们却总是不满足,在爱里任性着。一句话我们总听到,那些爱你越深的人是那些越容易被你伤害的人。从此刻开始,我想我们是不是就应借机好好审视一下我们的生活,我们拥有什么,我们正因什么而幸福,我们又怎样让我们爱的人也幸福。现代都市人被判定幸福指数随着经济的增长却不断下降,不是我们的生活变差了,而是我们在变好的生活中忘了本性和初心。

我想每个人甚至我们身边的动物植物,都有爱人的权利以及被爱的资格。爱永远不会太晚,此刻起,每一天对父母说我爱你,不仅仅从语言上更从我们的心里,对每个给自己带给帮忙和服务的人说声谢谢,时时刻刻持续微笑,将幸福传递给每一个人。爱很简单,却需要我们身体力行。怀有感恩的心去应对世界,我们收获的将是全世界的爱。

人工智能观后感范文五

这部电影的主题应该是多元的,人类制造了有情感的机器,大卫保留有之间最纯洁的爱,但现实总是残酷的,人类制造了会思考,有潜意识,懂暗喻,会推理的机器人,可在心底还是鄙视你,歧视你,。虽然你和我一样,但人类永远无法跨过自己心底的界限。这在历史上发生过多次的,哥伦布发现新大陆开启了屠杀的序幕,知道现在种族歧视还在每时每刻的发生着。的确,人类很擅长排除异己。

一切的一切终究是人类作茧自缚,人类在发展的同时贪婪无度向自然不停索取,最后导致的是自己的灭亡。影片开头展示了人类及发达的科技,可南极冰川在融化,沿海城市被海水吞没。电影的结尾时机器人复制已经灭绝的人类,历史在此刻戏剧性的颠覆。

影片中大卫也许仅是哪位母亲母爱的发泄品,但母亲最终也不舍得让他进入屠宰场。这是人性使然,人类还有最最珍贵的东西——爱。这是我们生命的意义。 戴维为了追求爱,在海底冰封了千年换来和母亲独处的一天。而哪位母亲真是的儿子却找机会陷害着戴维,纯洁与邪恶的较量高下两判。

人类还有圣洁的一面,世界应该像结尾时橘黄色的暖色调一样充满温暖,充满爱的甜蜜。

可这又是不可能的,也许我们能够希望父母,情人,朋友,爱人做到这一点,但现实又充满太多欺,猜忌,嫉妒,憎恨,我们最亲的人往往都不能达到我们期许的善待与温暖,何况我们白眼相待的陌生人。

最后想说:圣洁的爱是永恒,即使在人类灭亡时!

人工智能观后感范文相关 文章 :

1. 电影人工智能观后感范文5篇

2. 关于《人工智能》观后感范文5篇

3. 科幻电影人工智能观后感范文5篇

4. 人工智能观后感1000字

5. 人工智能感想的论文范文参考

论文的作者叫黄国平,2014年进入中国科学院自动化研究所攻读博士研究生,是该研究所研究员宗成庆指导的学生,其研究方向为模式识别与智能系统。对于自己因“致谢”走红,黄国平本人于今日做出了回应。

信念很简单:把书念下去,然后走出去

“我走了很远的路,吃了很多的苦,才将这份博士学位论文送到你的面前。二十二载求学路,一路风雨泥泞,许多不容易。如梦一场,仿佛昨天一家人才团聚过。”作者在“致谢”开头这样写道。“致谢”内容刷屏,让越来越多的人了解到了这个出生在小山村,通过不懈努力地读书,最终改变命运的博士。

“致谢”中写到:“出生在一个小山坳里,母亲在我十二岁时离家。父亲在家的日子不多,即便在我病得不能自己去医院的时候,也仅是留下勉强够治病的钱后又走了。我十七岁时,他因交通事故离世后,我哭得稀里糊涂,因为再得重病时没有谁来管我了。同年,和我住在一起的婆婆病故,真的无能为力。她照顾我十七年,下葬时却仅是一副薄薄的棺材。另一个家庭成员是老狗小花,为父亲和婆婆守过坟,后因我进城上高中而命不知何时何处所终。如兄长般的计算机启蒙老师邱浩没能看到我的大学录取通知书,对我照顾有加的师母也在不惑之前匆匆离开人世。每次回去看他们,这一座座坟茔都提示着生命的每一分钟都弥足珍贵。”

黄国平出生于四川南充仪陇县炬光乡的一个小山村,家中可谓是当年村里最贫困的家庭。除了让人心酸的生离死别以外,贫困也让他险些放弃。他这样写道:“人情冷暖,生离死别,固然让人痛苦与无奈,而贫穷则可能让人失去希望。家徒四壁,在煤油灯下写作业或者读书都是晚上最开心的事。如果下雨,保留节目就是用竹笋壳塞瓦缝防漏雨。高中之前的主要经济来源是夜里抓黄鳝、周末钓鱼、养小猪崽和出租水牛。那些年里,方圆十公里的水田和小河都被我用脚测量过无数次。被狗和蛇追,半夜落水,因蓄电瓶进水而摸黑逃回家中;学费没交,黄鳝却被父亲偷卖了,然后买了肉和酒,都是难以避免的事。”

“人后的苦尚且还能克服,人前的尊严却无比脆弱。上课的时候,因拖欠学费而经常被老师叫出教室约谈。雨天湿漉着上课,屁股后面说不定还是泥。夏天光着脚走在滚烫的路上。冬天穿着破旧衣服打着寒颤穿过那条长长的过道领作业本。这些都可能成为压垮骆驼的最后一根稻草。如果不是考试后常能从主席台领奖金,顺便能贴一墙奖状满足最后的虚荣心,我可能早已放弃。”

从炬光乡小学、大寅镇中学、仪陇县中学、绵阳市南山中学,到重庆的西南大学,再到中科院自动化所,黄国平一路坚持了下来,一路走出了大山,他在结尾写到,“这一路,信念很简单,把书念下去,然后走出去,不枉活一世。希望还有机会重新认识这个世界,不辜负这一生吃过的苦。最后如果还能做出点让别人生活更美好的事,那这辈子就赚了。”

黄国平伯父:每年过年都会打电话询问家里情况

“他们家当时穷到什么程度,基本就是吃了上顿没下顿。”黄国平的伯父这样说道。伯父说,黄国平母亲因为精神有问题经常都会离开家,父亲是在黄国平初中毕业那年,去广州打工时出车祸去世。而在不久后离世的婆婆,更是从喂饭到洗澡一路照顾黄国平长大的人。

黄国平的伯父说,虽然自己能力有限,无法承担黄国平上学的费用,但是他也经常教育黄国平,千万要记住党和人民的恩情,“在他求学的过程当中,真的离不开党和政府帮助。黄国平高中时就入了党。”

如今的黄国平已经走出了那个小山村,在城里安了家,伯父说:“如今他把我们还是记在心里的,每年过年都会打电话询问家里情况。”

黄国平回应:祝愿大家努力终有所成

4月19日,意外走红的黄国平也通过媒体发文,讲述自己的成长经历,并对那些一路走来帮助过自己的人表示感谢。他表示:“网络流传的‘致谢’是被人节选后发布到网上的,现将完整版本附后(隐私相关的敏感信息已被隐藏)。”在黄国文附上的致谢完整版本中,已将相关人员姓名隐去。

黄国平自述,九年义务教育阶段,自己先后就读于炬光小学和大寅镇中学;2004年升入仪陇中学,2007年在绵阳南山中学复读;2008年进入西南大学,2012年本科毕业后进入中国科学院自动化研究所模式识别国家重点实验室硕博连读,导师为宗成庆研究员,并在2017年7月毕业。现就职于腾讯人工智能实验室(腾讯AI Lab),继续博士期间确定的研究课题,持续向目标靠近。

他在文中也表示,作为众多从大山走出来的学生之一,受益于国家、政府、学校、 社会 以及老师和爱心人士的帮助,包括但不限于炬光乡小学、大寅镇中学、仪陇中学、绵阳南山中学、西南大学、中科院自动化所,尤其是博士导师宗成庆老师的悉心培养,我才能走到今天。还有许许多多我没办法列举的好心人,在此一并感谢!

许多网友在看到他的故事后都为之动容,网络热评如潮:“他把苦难写成诗歌”、“人选择不了自己的出身、但路和生活可以自己选择”、“不能想象一路走来。有多心酸崩溃,君为楷模”……网友们也祝福黄国平如他文中所言:“愿年过半百,归来仍是少年!”

屌丝和高富帅幸福的生活在一起

人工智能论文发表流程

学术堂整理了一份在核心期刊上发表论文的技巧,供大家参考:1、投稿要对路每个刊物都有自己的办刊方针以及刊文方向.在投稿之前必须做到心中有数,首先要了解刊物的发文方向,如果刊物是社科类的期刊,那么你发数学、物理、生物这些就有点不太合适了.其次还要了解刊物的出版周期,出版周期有双月刊、季刊、月刊……有的作者可能认为出版周期是小事,是编辑部的事情,跟我们投稿有什么关系呢?这样想就打错特错了,出版周期越长说明文章见刊的时间越长,文章的录用率可能会更低一些,如果是评职称用的话,一定要参考一下出版周期,这决定了你的准备时间.再次,了解刊物的栏目.栏目决定了刊物的发文方向,一般有两种情况:一、栏目是固定不变的.那么你在发文章的时候就可以根据栏目去投稿了,比较有针对性.二、栏目是变动的,比如说今年是建国七十周年,大部分刊物会出建国的专栏,你可以根据这个栏目进行专项写稿.变动的栏目一般都在年初的时候再刊物上做一个预告,如果你有意向投稿,一定要去关注一下,避免写出来的稿件与刊物方向不符,导致退稿.最后,在投寄时最好在信封上注明栏目名称,以便于编辑人员及时准确地处理稿件.2、注意把握时机教研论文按时效性大体可分为两类:一类时效性强,与教学进度配合(例如《中学化学教学参考》的新教材教学参考,各种同步练习等),另一类时效性不强,与教学进度无关.后者什么时候投稿都行,而前者必须掌握一定的提前量,到底提前多长时间投稿,一般报刊都会通过报刊启示提醒读者和作者.正常情况下,如果报刊没有规定,与教学进度配合的稿件,双月刊、月刊应提前4-6个月.总的说来,新闻类稿件越及时越好,报刊发行周期越短,提前量相应要小些.论文发表就像是新闻报道,越新的选题越近的时间越容易被录用.但是学术期刊毕竟不是"日报",就出版周期而言,滞后性太强,你投稿的时候还是一个热点,等到出刊的时候可能已经没有话题度了.3、注意格式要规范现在大部分都是邮箱投稿,需要形成电子版文档,建议投稿之前先观察一下刊物的排版习惯,最好能够将格式调整成刊物的标准格式.如果刊物没有提供参考格式,也一定要整理一下,最起码要美观、可读.编辑部每天都会收到大量的稿件,如果每一篇文章格式都是乱的,极不方便编辑审稿,如此一来,被退稿也是很常见的.建议一定要规范格式,另外如果有基金一定要带上,提高录用率.当然,这些并不是投稿被录用的决定性因素.关键还是要看稿件的质量,提高命中率的根本还在于稿件质量.4、适当控制字数不同的刊物,对论文字数的要求不同,而且差别很大,有的喜欢长篇大论,有的喜欢短小精悍,投稿时应对各刊物发表的文章进行研究,总结归纳出一些规律,这样投稿才有针对性.一般说来,寄给报刊发表的文章,应尽量短些,选题最好小一点,内容实用些,可操作一些,让别人看了能受到启发教育或拿过来就可以用;而参加评选的论文,理论性应强些,选题可稍大点,字数亦应适当多一些,这样才能将问题说清说透.通常组织论文评选的部门下通知或发启示时,对论文选题、格式、字数都有明确要求,撰写时应充分注意,如果没有要求,笔者以为参加评选的论文字数以3000- 5000字为宜,一般不要少于3000字,也不要多于7000字,根据选题只要论述清楚了就行,不必把过多的注意力放在字数多少上.不论哪类文章,在控制字数的同时应十分注意文章的科学性和可读性.所谓科学性是指文章的观点不能出错,引用的论据资料应准确无误,论证过程应经得住推敲;所谓可读性主要是指文字表述要让人喜闻乐读,一看题目就想看内容,一看内容就让人爱不释手,非一口气读完不可,当然这不是一日之功,需要长时间磨炼,文字功底是练出来的.5、讲究投稿策略刚开始投稿的人,将稿子投出后总希望尽快得到编辑部的回音.事实上,由于编辑部每天要处理的稿件无以数计,所以,不少刊物收到稿件后常常连收稿通知都懒得发,这挫伤了不少作者的积极性.还有个别刊物大量地照顾"关系稿件",眼睛只盯住几个"名人",结果使很多新人退避三舍.但应该承认,任何刊物都会考虑自己的信誉,真正有生命力的刊物在用稿上一定会坚持认稿不认人的原则,只要稿件对路时机合适,质量属于上乘之作,任何编辑部都没有舍优求次的道理.

给点建议:一、准备 下载你想要投稿的杂志的跟你相关的最新的文献几篇,看看人家怎么写的,照葫芦画瓢,引用文献时,注意不能照抄原文,要将别人的话换种说法转成自己的话。二、写文章 文章一般包括题目,摘要,引言,正文,结论,参考文献几部分组成。 摘要部分语言要简明扼要,一般包括目的,内容手段,结论三部分。 引言也要重视,一般包括:1)你课题研究的意义(宏观上);2前人研究的现状(多多引用参考文献)和存在问题、不足之类;3)你的研究创新点,就是和别人不一样的地方,比如可以解决前人未解决的问题,或者在前人研究的比较浅,你在人家研究基础之上更深入进行研究。 正文是你要表达的内容,语句通顺,少用口语,有理有据就OK。 结论部分,要简洁高度概括,可以分几条来写,每条一两句话概括。参考文献就是要严格按杂志要求格式来,这块每个杂志要求不一样的。三、在线投稿 搜索你准备投稿杂志的网站,注册一个用户名,网站上一般会有格式内容要求,有的还会有论文格式WORD模板,注意格式很重要的。上传稿件时,网站上一般有投稿指南,按照那个一步一步来。提醒一下,推荐审稿人选你所引用的参考文献里的作者专家,或者你的导师的师兄弟姐妹,总之要是了解你这个领域的专家。手打写了半天啊,觉得有用,给好评啊。

给点建议:一、准备 下载你想要投稿的杂志的跟你相关的最新的文献几篇,看看人家怎么写的,照葫芦画瓢,引用文献时,注意不能照抄原文,要将别人的话换种说法转成自己的话。二、写文章 文章一般包括题目,摘要,引言,正文,结论,参考文献几部分组成。摘要部分语言要简明扼要,一般包括目的,内容手段,结论三部分。引言也要重视,一般包括:1)你课题研究的意义(宏观上);2前人研究的现状(多多引用参考文献)和存在问题、不足之类;3)你的研究创新点,就是和别人不一样的地方,比如可以解决前人未解决的问题,或者在前人研究的比较浅,你在人家研究基础之上更深入进行研究。正文是你要表达的内容,语句通顺,少用口语,有理有据就OK。结论部分,要简洁高度概括,可以分几条来写,每条一两句话概括。参考文献就是要严格按杂志要求格式来,这块每个杂志要求不一样的。三、在线投稿 搜索你准备投稿杂志的网站,注册一个用户名,网站上一般会有格式内容要求,有的还会有论文格式WORD模板,注意格式很重要的。上传稿件时,网站上一般有投稿指南,按照那个一步一步来。提醒一下,推荐审稿人选你所引用的参考文献里的作者专家,或者你的导师的师兄弟姐妹,总之要是了解你这个领域的专家。手打写了半天啊,觉得有用,给好评啊。

论文范文是指论文写作参考方面的范文,主要涉及到论文写作规范、论文格式要求、论文内容要求、不同的学校要求不同,但基本都是细微的差别,总体基本都相似。由于论文范文本身的内容和性质不同,研究领域、对象、方法、表现方式不同,因此,论文范文就有不同的分类方法。论文范文分为专题型、论辩型、综述型和综合型四大类。论文范文是指论文写作参考方面的范文,主要涉及到论文写作规范、论文格式要求、论文内容要求、不同的学校要求不同,但基本都是细微的差别,总体基本都相似。 为了探讨和掌握论文的写作规律和特点,需要对论文范文进行分类。由于论文范文本身的内容和性质不同,研究领域、对象、方法、表现方式不同,因此,论文范文就有不同的分类方法。按内容性质和研究方法的不同可以把论文范文分为理论性论文范文、实验性论文范文、描述性论文范文和设计性论文范文。按议论的性质不同:可以把论文范文分为立论文范文和、驳论文范文。立论性的论文范文是指从正面阐述论证自己的观点和主张。一篇论文侧重于以立论为主,就属于立论性论文范文。立论文要求论点鲜明,论据充分,论证严密,以理和事实服人。驳论性论文范文是指通过反驳别人的论点来树立自己的论点和主张。如果论文范文侧重于以驳论为主,批驳某些错误的观点、见解、理论,就属于驳论性论文范文。驳论文范文除按立论文对论点、论据、论证的要求以外,还要求针锋相对,据理力争。

中国发表人工智能论文

人工智能60年的历史中,一共经历了两代的发展。第一代人工智能,有时候称它作符号主义。他们提出了基于知识和经验的推理模型,用这个模型来模拟人类的理性智能行为,像推理、规划、决策等等。根据这个原理,需要在机器里面建立知识库和推理机制,利用这两者对人类的推理和思考行为进行模拟。图1 张钹院士在2020世界人工智能大会上演讲下面举一个例子,1971年左右,美国斯坦福大学根据这个原理建造的一个专家系统,叫做MYCIN系统,主要用来诊断血液传染病和开抗菌素处方。它把传染病专家的知识放在计算机里头,并且把医生诊断的过程(如何从症状推到疾病,然后进行处方)作为推理机制,也放在计算机里头。这样,计算机就可以帮助内科医生进行辅助诊断。因为内科医生一般不是传染病专家,因此利用这样的计算机辅助治疗系统可以帮助内科医生做出更好的、更准确的诊断和处方。利用这种原理做的人工智能系统,一个最有代表性的成果就是国际象棋程序IBM的深蓝。这个国际象棋程序,在1997年5月打败了世界冠军卡斯帕罗夫。图2 IBM深蓝与世界冠军卡斯帕罗夫下棋我们看一下,计算机的深蓝程序为什么可以打败人类的象棋大师呢?主要是三个要素,第一个要素是知识和经验,也就是说他利用了人类大师下过的70万盘棋局,还有全部的5-6只的残局。分析这些棋局,总结成为下棋的规则,并放进计算机。然后又通过大师和机器之间的对弈,调试评价函数中的参数,把大师的经验也放在程序里头。图3 IBM深蓝成功的原因第二个靠的是算法,使用阿尔法-贝塔剪枝算法,这个算法的速度很快。第三个是算力,IBM当时用的RS/6000SP2机器,每秒能够分析2亿步,平均每秒钟能够往前预测8-12步。一个有经验的象棋大师,一般只能往前看3-5步,机器的速度远超过人类,因此可以超过人类的下棋水平。图4 第一代人工智能的优势第一代人工智能的优势,在于它能够模仿人类的推理、思考的过程,因此是可解释的,跟人类的思考问题过程很一致。利用这个办法进行机器学习,就能够举一反三,所以这是第一代人工智能的优势。图5 第一代人工智能的局限但是第一代人工智能也存在着非常严重的缺陷,例如:这些知识都来自于专家。大家都知道专家的知识十分稀缺,也非常昂贵。而且通常要通过人工编程把它输进计算机,非常费时费力。同时有很多知识是很难表达的,比如说那些不确定的知识

你好:

《自然》(Nature)期刊发表的一篇文章,从论文影响力、核心应用、硬件、人才等方面,详细地对中国当前的AI发展现状进行了分析。

2017年,我国制定了《新一代人工智能发展规划》,描绘了未来十几年我国人工智能发展的宏伟蓝图,确立了 “三步走” 目标:

人工智能专业发展前景怎么样?哪些高校适合报考?

文/陈根

人工智能,已经成为中美两国竞争的着力点 。

作为一种变革性技术,人工智能是现代工业发展的产物,具有推动产业革新、提升经济效益和促进 社会 发展的巨大潜力。正是由于具备主导技术发展和推动 社会 形态转变的基本潜质, 因此,人工智能不仅被视为未来创新范式的“技术基底”,更是被世界各国视为推动新一轮 科技 革命和产业变革的关键力量 。

纵观 历史 ,每一次 科技 革命、产业革命及军事变革的耦合与互动,都深刻影响乃至重塑了全球竞争格局。在人工智能的全球博弈中,中美两国作为领先大国,成为人工智能发展最为瞩目的两个国家。而中美两国对于人工智能高地的抢占,更关系着未来国际格局的重塑和全球人工智能的治理。

美国领先,中国跟进

2019年,美信息技术与创新基金会(ITIF)的数据创新中心曾发布百页研究报告《谁将在人工智能角逐中胜出:中国、欧盟或美国?》。报告对中、美、欧人工智能发展现状进行比较测算—— 美国以44.2分领先,中国以32.3分位居第二,欧盟则以23.5分位居第三 。美国的人工智能领先地位彰显无疑,而中国则以追赶之势跟进。

事实上,美国之所以能够占据人工智能全球领先地位,与人工智能在美国的发展密切相关。 1956年,人工智能正式在美国诞生。卡内基梅隆天学、麻省理工学院、IBM公司成为美国最初的3个核心人工智能研究机构。

60年代至90年代初,美国人工智能相关程序设计语言、专家系统等已取得重大进展,产品化方面取得重要成就。 比如,1983年,世界第一家批量生产统一规格电脑的公司诞生。并且,美国开始尝试应用Al研究成果,比如,利用矿藏勘探专家系统PROSPECTOR在华盛顿发现一处矿藏。

而同期的中国,人工智能才刚进入萌芽阶段 。1978年,中国科学大会在北京召开。科学事业思想解放,为中国人工智能产业发展提供基础。同年,“智能模拟”被纳入国家研究计划,中国人工智能产业在国家层面的推动下正式发展。

从研究成果来看,美国在人工智能方面的研究成果在全球处于领先地位 。根据全球最大的引文数据库Scopus的检索结果,2018年美国共发表了16233篇与人工智能有关的同行评审论文。论文数量的快速增长主要发生在2013年之后,5年内增长了2.7倍。

尽管同期中国和欧盟的人工智能论文数量也有类似的快速增长,并且每年发表论文的数量明显超过美国。 但是,就论文质量而言,美国人工智能论文的质量一直大幅度领先于其他地区。 2018年,美国平均每篇论文被引用的次数为2.23次,而中国为1.36 次。美国每个作者被引用的次数也比全球平均水平高出 40%。

尤其是在深度学习领域,美国的发表论文数量远超过其他国家。2015至2018 年,美国共在预印本文库网站arXiv发表了3078篇相关论文,是中国同期的两倍。 近几年,美国每年取得的人工智能专利数量更是占到全球总量的一半左右,专利引证数量占到全球的 60% 。

在关键技术上,美国的研究成果依旧居于世界领先地位 。比如,在计算机视觉领域,谷歌公司和卡内基梅隆大学开发的 Noisy Student方法对图片进行分类的Top-1准确率达到 88.4%,比6年前提高了35个百分点;在云基础设施上训练大型图像分类系统所需的时间,已经从2017年的3个小时减少到 2019年的88 秒,训练费用也从 1112美元下降到12.6美元。

从产业发展来看,根据中国信息通信研究院数据研究中心的《全球人工智能产业数据报告(2019Q1)》研究报告, 截至2019年3月底,全球活跃人工智能企业注达5386家。仅美国就多达2169家,数量远超过其他国家 。中国大陆达1189家,排名第三的英国则为404家。

而从企业 历史 统计来看,美国人工智能企业的发展也早于中国5年。美国人工智能企业最早从1991年萌芽,1998进入发展期,2005后开始高速成长期,2013后发展趋稳。而中国人工智能企业则诞生于1996年,2003年产业进入发展期,在2015年达到峰值后进入平稳期。

美国公司在专利和主导性人工智能收购方面表现更为强劲 。比如,在15个机器学习子类别中,微软和IBM在8个子类别中申请了比其他任何实体公司都更多的专利,包括监督学习和强化学习类。美国公司在20个领域中的12个领域的专利申请处于领先地位,包括农业(迪尔公司)、安全(IBM公司)以及个人设备、计算机和人机互动(微软公司)。

人才储备是美国在人工智能得以领先的又一关键原因。人工智能产业的竞争,可以说,就是人才和知识储备的竞争。 只有投入更多的科研人员,不断加强基础研究,才会获得更多的智能技术 。

根据 MacroPolo 智库的研究,在报告所圈定的顶级人工智能研究人才中,59% 在美国工作,中国占了 11%,与美国有四五倍的差距。剩下的人工智能人才则分布在欧洲、加拿大和英国,人才差异显而易见。

中美角逐,追赶和超越

尽管美国在研究成果和人才储备上具有先发优势,但中国作为后起之秀,在政策的引导和宽松的环境下,正以追赶之势加快跟进美国人工智能产业的发展。

经过多年的积累,中国已在人工智能领域取得了一系列重要成果,形成了自身独特的发展优势。 不论是顶层的设计还是研发资源的投入,亦或是产业的发展,都呈加快追赶的态势,甚至在部分人工智能核心技术领域已可与美国比肩。尽管欲见成效仍需时日,但中美两国对于人工智能高地的抢占,已经开始。

从顶层设计来看,中美有近乎相仿的重视程度。 美国和中国政府都已经把人工智能的发展上升至国家战略,出台发展战略规划,从国家战略层面进行整体推进 。

早在2016 年 10 月,奥巴马政府就发布了两份与人工智能发展相关的重要文件,即《国家人工智能研发战略规划》和《为未来人工智能做准备》。中国政府也在2017年3月,将“人工智能”首次写入全国政府工作报告,并于同年7月发布《新一代人工智能发展规划》,人工智能全面上升为国家战略。

美国人工智能报告体现了美国政府对新时代维持自身领先优势的战略导向。作为最大的发展中国家,中国也在战略引导和项目实施上做了整体规划和部署。并且,美国和中国都在国家层面建立了相对完整的研发促进机制,整体推进人工智能发展。

从研发资源的投入来看,美国政府对研发的资金投入相对不足。 纵向来看,在过去的几十年中,联邦政府用于研发的支出占国内生产总值(GDP)的百分比从1964年的1.86%下降到2018年的0.7%。

目前,美国联邦政府的年度财政赤字已超过1万亿美元,累积的政府债务相当于 GDP的107%。 这些因素都会限制美国政府对人工智能及其相关基础研究的长期资金投入。

横向上看,美国政府对研发的投入正在被中国和欧盟追赶 。美国在全球研发投入中所占的份额从1960年的69%下降到2016年的28%。2000-2015年,美国只占全球研发投入增长的 19%,而中国占到了31%。

2019年8月 31日,上海宣布设立人工智能产业投资基金,仅首期就投入了100亿元人民币,最终规模将达到千亿元人民币,美国联邦政府的投资则是相形见绌。

从产业发展来看,尽管中国AI产业基础层整体实力较弱,少有全球领先的芯片公司,但各大厂商正加快布局追赶,包括百度、阿里、腾讯及华为等厂商在基础层软硬件的加快布局 。

对于技术层来说,中国企业则发展势头良好。 百度、阿里、腾讯和华为等综合型厂商在计算机视觉、自然语言处理、语音识别等核心技术领域均有布局,同时创业独角兽在垂直领域迅速发展。

应用层上,人工智能应用场景多样,中国人工智能企业已在教育、医疗、新零售等领域实现广泛布局,而金融、医疗、零售、安防、教育、机器人等行业亦有为数较多的人工智能企业参与竞争。

着眼未来,我国在人工智能发展方面仍然具有一定优势, 包括对基础理论研究的重视、丰富的技术应用场景、完善的创新生态链、企业数量的规模优势,以及我国在发展人工智能方面的人才优势。

此外,大数据优势是中国发展人工智能的重要优势,人工智能技术发展需要有大量的数据积累进行训练。中国较为完备的工业体系和庞大的人口基数,也使得中国人工智能发展在数据积累方面优势明显。

人工智能的未来难以预测,但可以看到的是,世界的竞争格局将因人工智能而改变。在巨变的环境里,只有通过创新发展以人工智能为代表的新一轮战略前沿技术,成为新竞赛规则的重要制定者、新竞赛领域的重要主导者、新竞赛范式的重要引领者,才能制胜未来而不是尾随未来。

中国人工智能论文发表

人工智能的发展现状处于成长期,由于相关人才的数量比较少,人工智能的人才市场处于空缺,出现了供不应求的状况。加之国家发布相关政策促进人工智能的发展;一些省份也比较重视人工智能的发展

经过多年的持续积累,我国在人工智能领域取得重要进展,国际科技论文发表量和发明专利授权量已居世界第二,部分领域核心关键技术实现重要突破。

语音识别、视觉识别技术世界领先,自适应自主学习、直觉感知、综合推理、混合智能和群体智能等初步具备跨越发展的能力,中文信息处理、智能监控、生物特征识别、工业机器人、服务机器人、无人驾驶逐步进入实际应用,人工智能创新创业日益活跃,一批龙头骨干企业加速成长,在国际上获得广泛关注和认可。

加速积累的技术能力与海量的数据资源、巨大的应用需求、开放的市场环境有机结合,形成了我国人工智能发展的独特优势。

与此同时,我国人工智能整体发展水平与发达国家相比仍存在差距,缺少重大原创成果,在基础理论、核心算法以及关键设备、高端芯片、重大产品与系统、基础材料、元器件、软件与接口等方面差距较大。

科研机构和企业尚未形成具有国际影响力的生态圈和产业链,缺乏系统的超前研发布局;人工智能尖端人才远远不能满足需求;适应人工智能发展的基础设施、政策法规、标准体系亟待完善。

人工智能领域技术能力全面提升为人机协同奠定基础

随着大数据、云计算、互联网、物联网等信息技术的发展,以深度神经网络为代表的人工智能技术飞速发展,人工智能领域科学与应用的鸿沟正在被突破。

图像分类、语音识别、知识问答、人机对弈、无人驾驶等人工智能技术能力快速提升,技术的产业化进程得以开启,人工智能迎来爆发式增长的新高潮。机器在人工智能技术的应用下,在“视觉”“听觉”“触觉”等人体感官的感知能力不断增强。

例如计算机视觉领域中深受关注的Image Net图像识别挑战赛获奖结果表明,2015年,计算机对于图像的识别能力已经超过人类水平,这意味着计算机能够在多种场景下一定程度上替代人类视觉的工作,更高效地完成任务。

同时得益于深度学习算法能力的提升,语音识别、自然语言处理等人工智能算法的不断革新助推计算机视觉产业持续向前。

人工智能技术能力的不断成熟使得机器能够实现越来越人性化的操作。人工智能技术能力的全面提升为人机系统的能力实现奠定了坚实的基础。

目前,人工智能是一个快速发展的领域,对人才的需求很大。和其他技术岗位相比,竞争低,工资相对高。所以现在是进入人工智能领域的好时机。研究还表明,三项技能以上的人才对企业更有吸引力,而且趋势越来越明显。所以IT技术人员需要在掌握一门技术的同时掌握更多的技能!人工智能人才目前处于明显短缺状态,这种状况还存在扩大的趋势。当前社会技术环境下,需要兼顾扎实的专业技术和复合型背景的人才。在互联网企业中,人工智能的薪酬排在第三位,其中薪酬最高的是声音识别方向的从业者。

工智能(Artificial Intelligence)是研究、开发用于模拟、延伸和扩展人智能的理论、方法、技术及应用系统的一门新技术科学。人工智能领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。人工智能(Artificial Intelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新技术科学。人工智能是计算机科学的一个分支,它企图了解智能的实质,可以产出一种新的可以和人类智能相似的方式做出反应的智能机器,该领域的研究主要有机器人、语言识别、图像识别、自然语言处理和专家系统等。自从人工智能诞生以来,理论和技术越来越成熟,应用领域在不断的扩大,可以设想,未来人工智能带来的科技产品,将会是人类智慧的“容器”。人工智能可以把人的意识、思维的信息过程的模拟。虽然人工智能不是人的智能,但可以像人那样思考、最终可能超过人的智能。优点:1、在生产方面,效率更高且成本低廉的机器及人工智能实体代替了人的各种能力,人类的劳动力将大大被解放。2、人类环境问题将会得到一定的改善,较少的资源可以满足更大的需求。3、人工智能可以提高人类认识世界、适应世界的能力。缺点:1、人工智能代替了人类做各种各样的事情,人类失业率会明显的增高,人类就会处于无依靠可生存的状态。2、人工智能如果不能合理利用,可能被坏人利用在犯罪上,那么人类将会陷入恐慌。3、如果我们无法很好控制和利用人工智能,我们反而会被人工智能所控制与利用,那么人类将走向灭亡,世界也将变得慌乱。

相关百科

热门百科

首页
发表服务