首页

> 学术论文知识库

首页 学术论文知识库 问题

大学趣味数学毕业论文

发布时间:

大学趣味数学毕业论文

可以考虑从概率方面来写,比如用3和其他的什么数字算的24,各自是怎么排列组合的,概率是多少,把里面的规律总结出来你可以玩玩数独,也就是九宫格,也可以从这方面来研究

24点说实话没什么好写的,本来就很简单的东西,要写成论文会让人笑话的!你要是真的想写关于24点游戏的论文,你可以通过不同的方法来实现,比如枚举法、递归法等,你自己下功夫了! 先说24点来由,再说出好处,然后说怎么玩...

分太诱人,可惜得不到

你可以从不同角度写啊,从24点一个很小的问题引申出许多大的理论,再说明什么问题都是从小的发展来的,作题的时候我们不能忽略小的细节或公式。可以考虑从概率方面来写,比如用3和其他的什么数字算的24,各自是怎么排列组合的,概率是多少,把里面的规律总结出来你可以玩玩数独

趣味数学杂志2013

趣味数学杂志伽罗华有40页。根据查询相关公开信息显示,趣味数学杂志创刊于2008月,凭借其革命性的教育理念,以及编辑的不断创新,提供给孩子前所未有的阅读体验,让孩子在爱不释手的同时,找回学习乐趣。

是杂志呢还是书呢?

杂志类:

中小学数学报,学习周报(北师大版)

小学数学教育,小学数学大眼界

小学数学老师,总过多媒体教学学报小学

学知报小学数学,学习周报

中小学数学教学报,学习周报(苏教版)

快乐学数学(小学版),少年智力开发报。。

其中教学版的通常是给老师提供教学方法的,

好,可以提高对数学的兴趣,对孩子培养学习有帮助的。

趣味数学报模版

关于六年级数学趣味手抄报 六年级数学手抄报数学手抄报 数学手抄报让走进数学趣味数学数学空间数学小驿站去数学手抄报是一种很好的培养数学趣味的方式2017级08班数学手抄报初二上册数学趣味题手抄报数学趣味手抄报2020小学三年级趣味数学数学手抄报数学巧算和趣味手抄报趣味数学手抄报数学趣味乐园手抄报图片三年级趣味数学手抄报模板趣味数学手抄报内容怎么写趣味数学手抄报竖版图五 趣味数学手抄报竖版2趣味数学题趣味数学word小报手抄报模板和中秋有关的数学趣味手抄报数学趣味手抄报趣味数学手抄报模板电子版小学生趣味数学知识学习手抄小报8ka3a4关于趣味数学的手抄报图片三年级趣味数学手抄报小学生数学手抄报趣味数学报趣味数学手抄报模板电子版小学生数学厘米长度单位cm测量手抄小报

趣味数学快乐无限明朗完小三年级数学手抄报作品展示小学生三四年级趣味数学手抄报数学家电子小报模板黑白涂色线稿图06二年级生活趣味数学手抄报图片内容关于数学的手抄报的内容数学手抄报数学快乐农场手抄报快乐数学手抄报一年级有关数学手抄报一年级数学手抄报洙泗小学举办趣味数学手抄报趣味数学快乐无限有趣的数学手抄报卡通简约趣味数学手抄报模板小学生一二三四五年级数学知识手抄报06趣味数学手抄报四下图文并茂的数学手抄报 奇妙的数学手抄报星星报 手抄报 数学手抄报 正文内容数学手抄报图片趣味无穷的数学天水市建三小学三年级三班数学手抄报竞赛优秀作品集数学手抄报内容三年级三年级趣味数学小故事手抄报三年级数学手抄报数学手抄报图片大全趣味数学8张三年级趣味数学手抄报模板趣味数学手抄报内容怎么写新建区竞晖学校四年级数学组趣味数学手抄报活动剪影走进数学王国 体验趣味之旅六年级趣味数学手抄报整理的趣味数学手小学生三年级数学手抄报内容数学领域小学二年级数学数学巧算和趣味手抄报趣味数学手抄报063趣味数学手抄报模板电子版小学生一二三四五六年级数学知识手

四年级趣味数学手抄报简单好画少字新建区竞晖学校四年级数学组趣味数学手抄报活动剪影趣味数学手抄报图片2020小学三年级趣味数学数学手抄报二年级下册趣味数学的手抄报 趣味数学的手抄报趣味数学快乐无限1905班孩子们有趣的数学手抄报趣味数学 快乐无限榆林高新第一小学四年级一班数学手抄报作品有趣的数学手抄报简单又漂亮大全三年级的数学老师利用国庆假期开展了数学趣味手抄报比赛活动数学巧算和趣味手抄报趣味数学手抄报5四年级趣味数学手抄报有趣的数学三年级趣味数学手抄报模板趣味数学手抄报内容怎么写趣味数学快乐无限有趣的数学手抄报趣味数学手抄报图片趣味数学快乐无限有趣的数学手抄报趣味数学快乐无限有趣的数学手抄报关于数学趣味手抄报资料遨游数学世界数学手抄报简单又漂亮趣味数学

大学趣味数学毕业论文范文模板

在大学数学教学中,数学文化是一个非常重要的组成部分,是学习数学的精髓。下面是我为大家整理的,供大家参考。

一、在数学教学中渗透语言的艺术美

斯托利亚曾说:“数学教学也就是数学语言的教学。”数学作为一门逻辑性非常强的学科,虽然和其他学科相比具有其特殊性,但其语言和其他学科语言一样,也是一门艺术,因此,数学教学语言的艺术技巧显得非常重要。为此,数学教师要不断锤炼自己的语言,用精准、简明、形象、生动的数学语言激发学生的兴趣、启迪学生思维,并积极鼓励学生不断探索,可以有效地优化数学教学效果。如:在学习高中数学必修一幂函式性质时,我很神秘地说:同学们,你们知道的365次方和的365次方分别约等于多少?当同学们不知所措时,我给出答案:的365次方约等于,的365次方约等于,并解释这道题蕴含的哲理是:的365次方也就是说你每天进步一点,即使只有,一年365天后,你将进步很大,远远超过1;的365次方也就是说你每天退步一点点,即使只有,一年365天后,你将远远小于1,几乎接近于0,远远被人抛在后面。通过这样的语言,学生很快认识了幂函式的值如何随底数变化而变化。同时鼓励同学们珍惜时间,不断努力,坚持下去,一定会有进步。富有艺术之美的语言在数学教学中具有强大的生命力,教师要创造机会,让学生体会艺术的语言给我们带来的数学之美,让学生在语言中逐渐理解、提升。

二、在数学教学中感受、欣赏艺术美

通过讲解共轭复数、对称多项式、对称矩阵等,让学生感受数学代数对称之美;通过讲解轴对称、中心对称、互补、互逆、相似等,让学生感受数学几何对称之美等。在学习选修内容《数系的扩充与复数》时,讲到历史上曾一度被看做是“幻想中的数”的虚数,由于它带有某种奇异色彩,更能使学生产生幻想和揭示其奥妙的欲望,这也正是数学的神秘之美。学生在教师充满艺术美的教学中感美、欣赏美,学生的学习劲头倍增,必定会达到意想不到的效果。

三、在数学教学中建立艺术化教学环境

在学习高中数学必修五数列知识时,我请一位同学用电子琴现场表演节目,同学们一下子就被这个新颖、独特的课前引入吸引,在观看表演后不禁问,老师葫芦里卖什么药。接着我简要介绍电子琴的键盘,让学生了解到琴的键中其中5个黑键恰好就是著名的斐波那契数列中的前几个数。在同学们追问什么是斐波那契数列时,我说:同学想知道什么是斐波那契数列,那么就要先学习好是数列,这样一步一步带领学生探索知识。教育家罗伯特•特拉弗斯说:“教学之所以被称为具有独特的表演艺术,它区别于其他任何表演艺术,就是由教师与那些观看表演的人的关系所决定的。”毫无疑问,掌握一定课堂教学艺术的教师,就能够取得较好的教学效果。

四、总结

综上所述,把艺术教育巧妙地渗透到数学教学中,使数学教学的课堂变得丰富多彩,充满活力,让学生在学习数学知识的同时促进艺术教育的发展。

一、限制职业学校数学教学发展的主要因素

一学生数学基础普遍较差

从职业学校的生源来看,学生以初中生为主。他们对数学基础知识的掌握普遍较差,缺少数学学习的积极性和自信心。大部分学生对数学思想的掌握不够全面,没有清晰的数学思维和逻辑,对数学中的很多概念性知识的理解不到位,缺少解决综合问题的能力。由于训练量的缺失,很多学生的运算能力不过关,很容易在数学运算中出现错误。

二数学课程安排不尽合理

近些年来,职业学校纷纷提高了对专业课程教学和实习的重视,为专业课程安排了更多的教学课时。这大大压缩了数学教学的时间,使得职业学校数学教师们面临着课时少、内容多的难题。很多数学教师只能将教学重心放到追赶教学进度上,对于很多重难点做不到细致的讲解,课堂练习的机会更是少之又少,从而大大影响了数学课堂的教学质量。

二、职业学校数学课堂教学的改革方向

一深化思想认识,端正学生学习态度

要想真正提高职业学校数学课堂教学质量,必须从思想认识上提高重视程度,从学校和学生两个层面配合数学教学工作。职业学校在保证专业课程教学时间的同时,还要尽量增加数学教学的课时,避免出现教学时间少、教学任务重、数学教师满负荷工作的现象。教师要加强与学生的交流,充分了解学生对数学课程的看法,教会学生数学学习的方法,帮助学生端正数学学习的态度,让学生能够自觉配合教师工作,更积极地参与到数学教学中。

二转变教学方式,激发学生学习兴趣

深化职业学校数学课堂教学改革必须加快教学方式的转变,数学教师要注重培养学生学习主动性和积极性,改变传统“一言堂”的灌输式教学,突出学生的主体地位,将课堂还给学生。为此,数学教师在课堂中要注重角色的转变,从课堂的主导者转变为引导者,通过构建情境、设定问题等方式让学生对教学内容进行自主探究,让学生在不断的学习成功中获得自信,从而达到激发学生学习兴趣,提高学生课堂参与度的目的。

三注重能力培养,灵活安排内容

职业学校数学课程不仅是为了提高学生数学运算能力,还要为学生日后的专业实习和工作打好基础。数学教师在安排课堂教学内容时,虽然做到了面面俱到,各类数学知识点都有涉及,但这种重理论轻应用的教学安排,使得数学的实用性和灵活性受到限制。所以,在职业学校数学课堂教学改革中,数学教师要灵活安排教学课堂内容,将数学教学与教育实际相结合,提高专业的针对性,针对不同专业的学生安排不同的教学内容和教学方式,提高学生在专业范畴内解决问题的能力,让数学真正为学生的专业学习、工作提供帮助。

四改善师生关系,实现课下教学拓展

良好的师生关系对激发学生学习积极性、提高课堂学习质量有重要帮助。数学教师在课堂教学中,要努力利用生动、幽默的课堂语言拉近与学生的距离,消除学生对数学学习的恐惧感和牴触情绪,对于学生面临的数学难题,教师要耐心解答。除了在课堂学习中的帮助,教师在平时的生活中也要加强与学生的沟通,加深与学生之间的感情,并及时了解学生对教师教学方法的想法,以便及时对教学方法和教学内容进行调整,提高数学课堂的教学效果。数学课程是职业学校不可或缺的基础课程。深化职业学校数学课堂教学改革必须从深化思想认识、转变教学方式、注重能力培养、改善师生关系等方面入手,达到激发学生学习积极性、提高数学课堂的教学质量的目的,让职业学校为社会提供更多的创造性人才和实用型人才。、

大学数学是大学生必修的课程之一,如何提升大学生数学学习兴趣,培养数学型人才,是每一个大学数学教师都需要思考的。下面是我为大家整理的大学数学论文,供大家参考。

大学数学论文 范文 一:大学数学网络 教育 论文

一、教师要转变观念

意识是行动的主宰者。首先,教师要充分认识到网络教学资源对大学数学教学所产生的深刻影响。在网络信息快速发展的当今时代,如果仍旧拘泥于传统教学方式,势必将会处于落伍的境地。不仅影响教学效率,往深层次讲,还会影响学生 毕业 走向社会的适应能力以及生存能力。因此,教师要积极主动投身于教学改革的先行者行列中,构建现代化网络教学平台、加强网络教学资源的建设。

二、进行有效引导

在现代网络信息资源的基础上,学生能够变传统被动接受知识为主动探索知识。因此,教师要进行适当引导,指导学生掌握有效运用现代网络资源的 方法 ,不断发挥学生的主观能动性,培养学生的自主学习与探索能力,进而实现学生主动探索、教师指导的理想教学模式。 课前预习 、课中学习、课后巩固等这些环节,教师均可以让学生先自主学习,而后再进行有效指导。

三、有效整合教学资源

现代网络为我们带来丰富多彩的教学资源的同时,也带来了一些垃圾信息。因此,在大学数学教学中,教师要具备有效甄选、整合教学资源的能力。要根据课程内容,选择适合课时内容的资源融入到教学中。在选择网络资源时要遵循趣味性原则、实用性原则以及内容相符原则。运用网络教学资源进行大学数学教学是提高大学数学教学质量与教学效率的有效途径与方法,也是教育教学发展的必然趋势。教师应当转变传统的教学观念,充分重视网络信息资源,以教材为中心,有效整合网络资源,并运用于教学中,提高学生的学习兴趣,不断培养学生的自主学习能力。

大学数学论文范文二:大学数学教学中网络教育资源研究

一、如何利用网络教育资源提高大学数学教育质量

(一)加强教师对网络教育资源的认知

以前的大学数学教学方式单一,与学生的交流也少之又少,但是随着网络资源的发展,这一切将会有很大的变化,这也是适应社会的发展,提高数学教学质量的一种必然趋势。学校也应加大网络资源建设,顺应社会发展的潮流,不要封闭在传统的教育理念之中。大学教师也应适应社会的发展,不断的学习,摆脱落伍的危机。

(二)教师要把网络教育资源的内容融入到教学之中

教师应该适应网络的发展,把网络教育资源融入到现代教学之中,但是不要盲目的引进,首先就要考虑引进内容的适用性,所引进的内容要与所学的内容有相关性,能起到补充,扩充的作用,这样能够开拓学生们的视野。其次引进的内容还要具有适用性,能够让学生们把所学的内容融入到生活,融入到社会,达到学生们能认识数学,应用数学,培养他们的能力。最后还要具有一定的趣味性,这样才能令学生更能接受所学内容,更愿意去学习数学,应用数学。所以教师合理的引进网络教育资源使十分重要的。

(三)教师要引导学生们自主利用网络教育资源

教师不但要学习引进网络教育资源,还要充分的引导学生利用网络资源,培养他们自主学习数学, 爱好 数学的良好作风。以前的数学教育中,以老师讲解为主,学生被动的接受知识,学习过后学生们无法应用,这是一个很大的失败,而现在的网络发展情况下,老师可以引导学生们更好的利用网络资源,引导学生们自主学习,可以布置学生做课前预习,到网络上寻求资料,还可以让学生们课后巩固学习内容,网上寻求交流,以便达到巩固知识的作用。

(四)增强学生自主学习能力和兴趣

现在大学数学教育尽管很重视学生的学习,教师又会安排课余时间组织学生们给他们进行答疑解惑,但是受到时间性和地域性的限制,效果往往是不太理想,现在网络资源的丰富,不再受时间和地域的限制, 网络技术 可以让学生和老师间进行多样化的交流和辅导,也可以让学生们通过一些论坛,邮箱,视频等等不断的学习巩固自己的知识。学习不再有时间地域的限制,学生们的积极性会大大提高,兴趣也会越来越高,提高数学成绩不再是难事。

二、结束语

大学数学教育充分有效的利用网络课程资源是提高大学数学教育质量的有效办法,教师应该打破传统教学的局限性,以课材为中心,充分利用网络资源融入到现在教学之中,补充课本上的不足,增强教育之中的趣味性,这样会开拓学生们的视野,培养学生们的 兴趣爱好 ,让他们更加具备学习数学的激情,更加具备自主学习的能力。只有这样学生们才会更加有发展,大学数学的教育才会更加成功。

大学数学论文范文相关 文章 :

1. 大学生论文范文

2. 大学论文格式范文

3. 大学生论文范文模板

4. 大学毕业论文范文

5. 大学生毕业论文范文

6. 大学毕业生论文范文

大学数学论文范文

导语:无论是在学校还是在社会中,大家都写过论文,肯定对各类论文都很熟悉吧,论文是探讨问题进行学术研究的一种手段。怎么写论文才能避免踩雷呢?以下是我收集整理的论文,希望对大家有所帮助。

论文题目: 大学代数知识在互联网络中的应用

摘要: 代数方面的知识是数学工作者的必备基础。本文通过讨论大学代数知识在互联网络对称性研究中的应用,提出大学数学专业学生检验自己对已学代数知识的掌握程度的一种新思路,即思考一些比较前沿的数学问题。

关键词: 代数;对称;自同构

一、引言与基本概念

《高等代数》和《近世代数》是大学数学专业有关代数方面的两门重要课程。前者是大学数学各个专业最重要的主干基础课程之一,后者既是对前者的继续和深入,也是代数方面研究生课程的重要先修课程之一。这两门课程概念众多,内容高度抽象,是数学专业学生公认的难学课程。甚至,很多学生修完《高等代数》之后,就放弃了继续学习《近世代数》。即使对于那些坚持认真学完这两门课程的学生来讲,也未必能做到“不仅知其然,还知其所以然”,而要做到“知其所以然,还要知其不得不然”就更是难上加难了。众所周知,学习数学,不仅逻辑上要搞懂,还要做到真正掌握,学以致用,也就是“学到手”。当然,做课后习题和考试是检验是否学会的一个重要手段。然而,利用所学知识独立地去解决一些比较前沿的数学问题,也是检验我们对于知识理解和掌握程度的一个重要方法。这样做,不仅有助于巩固和加深对所学知识的理解,也有助于培养学生的创新意识和自学能力。笔者结合自己所从事的教学和科研工作,在这方面做了一些尝试。

互连网络的拓扑结构可以用图来表示。为了提高网络性能,考虑到高对称性图具有许多优良的性质,数学与计算机科学工作者通常建议使用具有高对称性的图来做互联网络的模型。事实上,许多著名的网络,如:超立方体网络、折叠立方体网络、交错群图网络等都具有很强的对称性。而且这些网络的构造都是基于一个重要的代数结构即“群”。它们的对称性也是通过其自同构群在其各个对象(如:顶点集合、边集合等)上作用的传递性来描述的。

下面介绍一些相关的概念。一个图G是一个二元组(V,E),其中V是一个有限集合,E为由V的若干二元子集组成的集合。称V为G的顶点集合,E为G的边集合。E中的每个二元子集{u,v}称为是图G的连接顶点u与v的一条边。图G的一个自同构f是G的顶点集合V上的一个一一映射(即置换),使得{u,v}为G的边当且仅当{uf,vf}也为G的边。图G的全体自同构依映射的合成构成一个群,称为G的全自同构群,记作Aut(G)。图G称为是顶点对称的,如对于G的任意两个顶点u与v,存在G的自同构f使得uf=v。图G称为是边对称的,如对于G的任意两条边{u,v}和{x,y},存在G的自同构f使得{uf,vf}={x,y}。

设n为正整数,令Z2n为有限域Z2={0,1}上的n维线性空间。由《近世代数》知识可知,Z2n的加法群是一个初等交换2群。在Z2n中取出如下n个单位向量:

e1=(1,0,…,0),e2=(0,1,0,…,0),en=(0,…,0,1)。

●n维超立方体网络(记作Qn)是一个以Z2n为顶点集合的图,对于Qn的任意两个顶点u和v,{u,v}是Qn的一条边当且仅当v-u=ei,其中1≤i≤n。

●n维折叠立方体网络(记作FQn)是一个以Z2n为顶点集合的图,对于Qn的任意两个顶点u和v,{u,v}是Qn的一条边当且仅当v-u=ei(1≤i≤n)或者v-u=e1+…+en。

●n维交错群图网络(记作AGn)是一个以n级交错群An为顶点集合的图,对于AGn的任意两个顶点u和v,{u,v}是AGn的一条边当且仅当vu-1=ai或ai-1,这里3≤i≤n,ai=(1,2,i)为一个3轮换。

一个自然的问题是:这三类网络是否是顶点对称的?是否边对称的?但值得我们注意的是,这些问题都可以利用大学所学的代数知识得到完全解决。

二、三类网络的对称性

先来看n维超立方体网络的对称性。

定理一:n维超立方体网络Qn是顶点和边对称的。

证明:对于Z2n中的任一向量x=(x1,…,xn),如下定义V(Qn)=Z2n上面的一个映射:f(x):u→u+x,u取遍V(Qn)中所有元素。容易验证f(x)是一个1-1映射。(注:这个映射在《高等代数》中已学过,即所谓的平移映射。)而{u,v}是Qn的一条边,当且仅当v-u=ei(1≤i≤n),当且仅当vf(x)-uf(x)=ei(1≤i≤n),当且仅当{v(fx),u(fx)}是Qn的一条边。所以,f(x)也是Qn的一个自同构。这样,任取V(Qn)中两个顶点u和v,则uf(v-u)=v。从而说明Qn是顶点对称的。

下面证明Qn是边对称的。只需证明:对于Qn的任一条边{u,v},都存在Qn的自同构g使得{ug,vg}={0,e1},其中0为Z2n中的零向量。事实上,{uf(-u),vf(-u)}={0,v-u},其中v-u=ei(1≤i≤n)。显然,e1,…,ei-1,ei,ei+1,…,en和ei,…,ei-1,e1,ei+1,…,en是Z2n的两组基向量。由《高等代数》知识可知存在Z2n上的可逆线性变换t使得t对换e1和ei而不动其余向量。此时易见,若{a,b}是Qn的一条边,则a-b=ej(1≤j≤n)。若j=1,则at-bt=ei;若j=i,则at-bt=e1;若j≠1,i,则at-bt=ej;所以{at,bt}也是Qn的一条边。由定义可知,t是Qn的一个自同构。进一步,{0t,(v-u)t}={0,e1},即{uf(-u)t,vf(-u)t}={0,e1}。结论得证。

利用和定理一相似的办法,我们进一步可以得到如下定理。

定理二:n维折叠立方体网络FQn是顶点和边对称的。

最后,来决定n维交错群图网络的对称性。

定理三:n维交错群图网络AGn是顶点和边对称的。

证明:首先,来证明AGn是顶点对称的。给定An中的一个元素g,如下定义一个映射:R(g):x→xg,其中x取遍An中所有元素。容易验证R(g)为AGn顶点集合上上的一个1-1映射。(注:这个映射在有限群论中是一个十分重要的'映射,即所谓的右乘变换。)设{u,v}是AGn的一条边,则vu-1=ai或ai-1,这里1≤i≤n。易见,(vg)(ug)-1=vu-1。所以,{vR(g),uR(g)}是AGn的一条边。因此,R(g)是AGn的一个自同构。这样,对于AGn的任意两个顶点u和v,有uR(g)=v,这里g=u-1v。这说明AGn是顶点对称的。

下面来证明AGn是边对称的。只需证明对于AGn的任一条边{u,v},都存在AGn的自同构g使得{ug,vg}={e,a3},其中e为An中的单位元。给定对称群Sn中的一个元素g,如下定义一个映射:C(g):x→g-1xg,其中x取遍An中所有元素。由《近世代数》知识可知,交错群An是对称群Sn的正规子群。容易验证C(g)是AGn的顶点集合上的一个1-1映射。(注:这个映射其实就是把An中任一元素x变为它在g下的共轭。这也是有限群论中一个十分常用的映射。)令x=(1,2),y(j)=(3,j),j=3,…,n。下面证明C(x)和C(y(j))都是AGn的自通构。取{u,v}为AGn的任一条边,则vu-1=ai或ai-1。从而,vC(x)(u-1)C(x)=(x-1vx)(x-1u-1x)=x-(1vu-1)x=ai-1或ai。

因此,{uC(x),vC(x)}也是AGn的一条边。从而说明C(x)是AGn的自通构。同理,若j=i,有vC(y(j))(u-1)C(y(j))=a3-1或a3;若j≠i,则有vC(y(j))(u-1)C(y(j))=ai-1或ai。这说明{uC(y(j)),vC(y(j))}也是AGn的一条边,从而C(y(j))是AGn的自通构。现在,对于AGn的任一条边{u,v},令g=u-1,则{uR(g),vR(g)}={e,vu-1}={e,ai}或{e,ai-1}。若i=3,则{e,a3-1}C(x)={e,a3}。而若i≠3,则{e,ai}C(y(j))={e,a3}而{e,ai-1}C(y(j))={e,a3-1}。由此可见,总存在AGn的自同构g使得{ug,vg}={e,a3},结论得证。

至此,完全决定了这三类网络的对称性。不难看出,除了必要的图论概念外,我们的证明主要利用了《高等代数》和《近世代数》的知识。做为上述问题的继续和深入,有兴趣的同学还可以考虑以下问题:

1、这些网络是否具有更强的对称性?比如:弧对称性?距离对称性?

2、完全决定这些网络的全自同构群。

实际上,利用与上面证明相同的思路,结合对图的局部结构的分析,利用一些组合技巧,这些问题也可以得到解决。

三、小结

大学所学代数知识在数学领域中的许多学科、乃至其他领域都有重要的应用。笔者认为任课教师可以根据自己所熟悉的科研领域,选取一些与大学代数知识有紧密联系的前沿数学问题,引导一些学有余力的学生开展相关研究,甚至可以吸引一些本科生加入自己的课题组。当然,教师要给予必要的指导,比如讲解相关背景知识、必要的概念和方法等。指导学生从相对简单的问题入手,循序渐进,由易到难,逐步加深对代数学知识的系统理解,积累一些经验,为考虑进一步的问题奠定基础。

结束语

本文所提到的利用《高等代数》和《近世代数》的知识来研究网络的对称性就是笔者在教学工作中曾做过的一些尝试。在该方面,笔者指导完成了由三名大三学生参加的国家级大学生创新实验项目一项。这样以来,学生在学习经典数学知识的同时,也可以思考一些比较前沿的数学问题;学生在巩固已学知识的同时,也可以激发其学习兴趣,训练学生的逻辑思维,培养学生的创新思维,以及独立发现问题和解决问题的能力。

【摘要】

随着数学文化的普及与应用,学术界开始重视对于数学文化的相关内容进行挖掘,这其中数学史在阶段我国大学数学教学之中,具有着重要的意义。从实现大学数学皎月的两种现象进行分析,在揭示数学本质的基础上,着重分析数学史在我国大学数学教育之中的重要作用,强调在数学教学之中利用数学史进行启发式教学活动。本文从数学史的角度,对于大学数学教学进行全面的分析,从中分析出适合我国大学数学教育的主要意义与作用。

【关键词】

数学史;大学数学教育;作用

一、引言

数学史是数学文化的一个重要分支,研究数学教学的重要部分,其主要的研究内容与数学的历史与发展现状,是一门具有多学科背景的综合性学科,其中不仅仅有具体的数学内容,同时也包含着历史学、哲学、宗教、人文社科等多学科内容。这一科目,距今已经有二千年的历史了。其主要的研究内容有以下几个方面:

第一,数学史研究方法论的相关问题;

第二,数学的发展史;

第三,数学史各个分科的历史;

第四,从国别、民族、区域的角度进行比较研究;

第五,不同时期的断代史;

第六、数学内在思想的流变与发展历史;

第七,数学家的相关传记;

第八,数学史研究之中的文献;

第九,数学教育史;

第十,数学在发展之中与其他学科之间的关系。

二、数学史是在大学数学教学之中的作用

数学史作为数学文化的重要分支,对于大学数学教学来说,有着重要的作用。利用数学史进行教学活动,由于激发学生的学习兴趣,锻炼学生的思维习惯,强化数学教学的有效性。

笔者根据自身的教学经验,进行了如下总结:首先,激发学生的学习兴趣,在大学数学的教学之中应用数学史,进行课堂教学互动,可以最大限度的弱化学生在学习之中的困难,将原本枯燥、抽象的数学定义,转变为简单易懂的生动的事例,具有一定的指导意义,也更便于学生理解。

从学生接受性的角度来讲,数学史促进了学生的接受心理,帮助学生对于数学概念形成了自我认知,促进了学生对于知识的透彻掌握,激发了学生兴趣的产生。其次,锻炼学生的创新思维习惯,数学史实际意义上来说,有很多讲授数学家在创新思维研发新的理论的故事,这些故事从很多方面对于当代大学生据有启迪作用。例如数学家哈密顿格拉斯曼以及凯利提出的不同于普通代数的具有某种结构的规律的代数的方法代开了抽象代数的研究时代。用减弱或者勾去普通代数的各种各样的假设,或者将其中一个或者多个假定代之一其他的假定,就有更多的体系可以被研究出来。这种实例,实际上让学生从更为根本的角度对于自己所学的代数的思想进行了了解,对于知识的来龙去脉也有了一定的认识,针对这些过程,学生更容易产生研究新问题的思路与方法。

再次,认识数学在社会生活之中的广泛应用,在以往的大学数学教学之中,数学学科往往是作为一门孤立的学科而存在的,其研究往往是形而上的研究过程,人们对于数学的理解也是枯燥的,是很难真正了解到其内涵的。但是数学史的应用,与其在大学数学教学之中的应用,可以让学生了解到更多的在社会生活之中的数学,在数学的教学之中使得原本枯燥的理论更加贴近生活,更加具有真实性,将原本孤立的学科,拉入到了日常生活之中。从这一点上来说,数学史使得数学更加符合人类科学的特征。

三、数学史在大学数学教学之中的应用

第一,在课堂教学之中融入数学史,以往枯燥的数学课堂教学,学生除了记笔记验算,推导以外,只能听老师讲课,课堂内容显得比较生硬,教师针对数学史的作用,可以在教学之中融入数学史,在教学活动之中将数学家的个人传记等具有生动的故事性的数学史内容,进行讲解,提高学生对于课堂教学的兴趣。例如一元微积分学的相关概念,学生在普通的课堂之中,很难做到真正意义的掌握,而更具教学大纲,多数老师的教学设计是:极限——导数与微分——不定积分——定积分。这种传统的教学方式虽然比较呼和学生的一般认知规律,但是却忽视了其产生与又来,教师在教学之中可穿插的讲授拗断——莱布尼茨公式的又来,将微积分艰难的发展史以故事的形式呈现出来,更加便于学生理解的同时也激发了学生的学习热情。

第二,利用数学方法论进行教学,数学方法论是数学史的之中的有机组成部分,而方法论的探索对于大学数学教学来说,也具有着重要的意义,例如在极限理论的课堂教学来说,除了单纯的对于极限的相关概念进行讲解的基础上,也可以将第二次数学危机以及古希腊善跑英雄阿基里斯永远追不上乌龟等相关故事,融入到课堂之中。这种让学生带着疑问的听课方式,更进一步促进了学生对于教学内容的兴趣,全面的促进了学生在理解之中自然而然的形成了理解极限的形成思想,并逐渐的享受自身与古代数学家的共鸣,从而促进自身对于数学的理解,提高学生的学习兴趣,进一步提高课堂的教学效果。所以,在大学数学课堂教学之中,融入数学史的相关内容,不仅具有积极的促进作用,同时在实践之中,也具有一定的可操作性。这种教学模式与方法对于提高我国大学数学教学的质量有着积极的推动作用,同时也更进一步推动了大学数学教学改革的进行。

作为工科类大学公共课的一种,高等数学在学生思维训练上的培养、训练数学思维等上发挥着重要的做用。进入新世纪后素质教育思想被人们越来越重视,如果还使用传统的教育教学方法,会让学生失去学习高等数学的积极性和兴趣。以现教育技术为基础的数学建模,在实际问题和理论之间架起沟通的桥梁。在实际教学的过程中,高数老师以课后实验着手,在高等数学教学中融入数学建模思想,使用数学建模解决实际问题。

一、高等数学教学的现状

(一)教学观念陈旧化

就当前高等数学的教育教学而言,高数老师对学生的计算能力、思考能力以及逻辑思维能力过于重视,一切以课本为基础开展教学活动。作为一门充满活力并让人感到新奇的学科,由于教育观念和思想的落后,课堂教学之中没有穿插应用实例,在工作的时候学生不知道怎样把问题解决,工作效率无法进一步提升,不仅如此,陈旧的教学理念和思想让学生渐渐的失去学习的兴趣和动力。

(二)教学方法传统化

教学方法的优秀与否在学生学习的过程中发挥着重要的作用,也直接影响着学生的学习成绩。一般高数老师在授课的时候都是以课本的顺次进行,也就意味着老师“由定义到定理”、“由习题到练习”,这种默守陈规的教学方式无法为学生营造活跃的学习氛围,让学生独自学习、思考的能力进一步下降。这就要求教师致力于和谐课堂氛围营造以及使用新颖的教育教学方法,让学生在课堂中主动参与学习。

二、建模在高等数学教学中的作用

对学生的想象力、观察力、发现、分析并解决问题的能力进行培养的过程中,数学建模发挥着重要的作用。最近几年,国内出现很多以数学建模为主体的赛事活动以及教研活动,其在学生学习兴趣的提升、激发学生主动学习的积极性上扮演着重要的角色,发挥着突出的作用,在高等数学教学中引入数学建模还能培养学生不畏困难的品质,培养踏实的工作精神,在协调学生学习的知识、实际应用能力等上有突出的作用。虽然国内高等院校大都开设了数学建模选修课或者培训班,但是由于课程的要求和学生的认知水平差异较大,所以课程无法普及为大众化的教育。如今,高等院校都在积极的寻找一种载体,对学生的整体素质进行培养,提升学生的创新精神以及创造力,让学生满足社会对复合型人才的需求,而最好的载体则是高等数学。

高等数学作为工科类学生的一门基础课,由于其必修课的性质,把数学建模引入高等数学课堂中具有较广的影响力。把数学建模思想渗入高等数学教学中,不仅能让数学知识的本来面貌得以还原,更让学生在日常中应用数学知识的能力得到很好的培养。数学建模要求学生在简化、抽象、翻译部分现实世界信息的过程中使用数学的语言以及工具,把内在的联系使用图形、表格等方式表现出来,以便于提升学生的表达能力。在实际的学习数学建模之后,需要检验现实的信息,确定最后的结果是否正确,通过这一过程中的锻炼,学生在分析问题的过程中可以主动地、客观的辩证的运用数学方法,最终得出解决问题的最好方法。因此,在高等数学教学中引入数学建模思想具有重要的意义。

三、将建模思想应用在高等数学教学中的具体措施

(一)在公式中使用建模思想

在高数教材中占有重要位置的是公式,也是要求学生必须掌握的内容之一。为了让教师的教学效果进一步提升,在课堂上老师不仅要让学生对计算的技巧进一步提升之余,还要和建模思想结合在一起,让解题难度更容易,还让课堂氛围更活跃。为了让学生对公式中使用建模思想理解的更透彻,老师还应该结合实例开展教学。

(二)讲解习题的时候使用数学模型的方式

课本例题使用建模思想进行解决,老师通过对例题的讲解,很好的讲述使用数学建模解决问题的方式,让学生清醒的认识在解决问题的过程中怎样使用数学建模。完成每章学习的内容之后,充分的利用时间为学生解疑答惑,以学生所学的专业情况和学生水平的高低选择合适的例题,完成建模、解决问题的全部过程,提升学生解决问题的效率。

(三)组织学生积极参加数学建模竞赛

一般而言,在竞赛中可以很好地锻炼学生竞争意识以及独立思考的能力。这就要求学校充分的利用资源并广泛的宣传,让学生积极的参加竞赛,在实践中锻炼学生的实际能力。在日常生活中使用数学建模解决问题,让学生独自思考,然后在竞争的过程中意识到自己的不足,今后也会努力学习,改正错误,提升自身的能力。

四、结束语

高等数学主要对学生从理论学习走向解决实际问题的能力进行培养,在高等数学中应用建模思想,促使学生对高数知识更充分的理解,学习的难度进一步降低,提升应用能力和探索能力。当前,在高等教学过程中引入建模思想还存在一定的不足,需要高校高等数学老师进行深入的研究和探索的同时也需要学生很好的配合,以便于今后的教学中进一步提升教学的质量。

趣味数学论文题目

“兴趣是最好的老师”,怎样调动起学生学习数学的兴趣,对学生掌握数学知识起著至关重要的作用。下文是我为大家整理的,欢迎阅读! 篇一:小学数学趣味课堂的构建 一、故事激趣 小学生喜欢听故事。数学教学中可以根据学生爱听故事的特点,将故事情节融入数学教学,有效激发学生的兴趣,增强学生对数学问题的探究动力。例如,在讲解《三角形》一节内容时,教师给学生讲述了这样一个故事:喜羊羊得到了三根精美的条形金属,她想用三根金属条制作一面镜子。但是她将三个金属条摆来摆去就是摆不成一个完整的三角形。大家能不能给喜羊羊一个满意的解释?通过故事激趣,学生动手,从而得出:三角形任意两边之和大于第三边,任意两边之差小于第三边的结论。通过故事引领,学生动手操作、探究,激活了学生思维,提高了学生动手解决问题的能力。 二、游戏激趣 爱玩游戏是小学生的天性,在小学数学课堂中引入游戏,能激发学生的探究积极性,延长学生的有意注意时间,取得更好的教学效果。例如,在学习《角的认识》时,教师让学生用纸张做折角的游戏,一次、两次反复对折,启发学生观察角有哪些特点?在原角的基础上对折一次只有两个角吗?再如,教学“年、月、日”这节内容,为了巩固所学知识,在教学将要结束的时候,教师引入游戏:让一个同学报月份,如果报出的是大月,同学们要快速举左手,如果报出的是小月,同学们快速举右手,如果报的是二月,两只手都要举起。同学们都踊跃地参与到游戏中。通过游戏可以强化思维训练,使学生对所学知识加深理解。 三、媒体激趣 小学生的抽象思维还不发达,他们多以形象思维认识与理解问题。在小学数学教学中可以利用多媒体形象逼真的特点,直观呈现知识之间的联络,使复杂的内容简单化,使静态的内容动态化,符合学生形象思维较为发达的特点,可以有效激发学生兴趣,提高数学教学效果。例如在教学“对称、平移和旋转”一节时,如果只凭教师的讲解,或者只让学生观看静态的图画,学生就会感觉到枯燥乏味,教学效果就会大打折扣。因此,笔者在教学中利用多媒体技术展示了图形平移与旋转的动态过程,学生饶有兴趣地观看图片的演变与移动,对知识就有了直观形象的认识,通过形象的展示也使学生感觉知识简单、容易掌握。多媒体还在视觉上给学生以图文并茂的美感 *** ,有效地延长了学生的有意注意时间,激发了学生的学习兴趣。学生在观察中,提高了分析问题与解决问题的能力,有效达成了课堂教学目标。 四、评价激趣 心理学研究表明:人的内心最深层次的要求,就是得到别人的欣赏与认可。对思维活跃、表现欲望强的小学生来说,在学习中更需要教师的鼓励与肯定。教师在教学中要注意发现学生的优点与进步,及时给予肯定与鼓励,通过对学生学习过程的评价,激发学生的学习兴趣与信心。例如对于表现优秀的学生可以说:“你真棒,你思考问题的角度是独特的,这种解法老师也没有想到”,对努力学习有进步的学生可以这样评价:“你的学习比以前有了很大进步,继续努力,老师相信你会更好”,对学习暂时困难的学生,教师应该给予一个温暖鼓励的眼神、一次肩头的抚摸,可以对其这样进行评价:“没有关系,虽然你没有答对问题,但是老师同学们都欣赏你的勇气。”教师的激励是学生学习兴趣的催化剂,学生会在心中燃起克服困难、力争上游的火焰。 五、活动激趣 小学生活泼好动,他们适合在“动”中获取知识与体验,教师根据教学内容,开展课堂数学活动,可以有效激发学生参与的热情与兴趣,提升教学效果。例如学习“加减法”这部分内容时,教师引领学生在课堂开展了“小小超市”数学活动,学生将教室布置成超市格局,学生们分别扮演售货员与购物的顾客,到超市进行购物。在购物中会直接涉及到加减法的运算,顾客和售货员可以相互交流,讨论付钱多少及应该找零多少等问题。因为超市购物是学生在生活中经常遇到的情境,学生们对活动感到亲切,兴致盎然地参与活动。在活动中计算,在活动中踊跃交流,在活动中发现问题,在活动中掌握与巩固了知识。总之,小学数学教学应该以激发学生的兴趣为中心,使学生学习数学的兴趣变为深入探究问题的动力,在趣中学,在乐中研,在潜移默化中完成对数学知识的构建。教师要根据学生的特点创设趣味浓厚的情境,采取各种措施,激发学生兴趣,挖掘学生潜能,促进学生数学能力与素质的不断提高。 作者:汪玲玲 单位:江苏省南京市六合区程桥中心小学 篇二:初中数学趣味教学研究 一、设计有效性汇入,提高学生的兴趣 课堂汇入是课堂教学的重要环节。俗话说得好:“良好的开端是成功的一半。”我们要认识到课堂汇入的重要意义,采用行之有效的汇入手段,以吸引学生的注意力,激发学生的学习兴趣。在汇入环节,教师可以采用直接汇入法。所谓“直接汇入法”,就是一上课就将要解决的问题直接提出来。例如,在教学“切割定理”时,教师可以先将定理的内容写在黑板上,引导学生分清楚其中的已知和求证,然后由师生共同证明定理的形成过程;还可采用“强调式汇入法”,即针对学生有意义的事物比较感兴趣的特点,在上课伊始就阐述本节课重要意义的一种汇入方式。例如“,三角形”这一部分就是平面几何的重点“,圆”是平面几何重点中的重点,在中考试题中占据非常重要的地位,也是学生未来学习和深造的基础。为此,教师在教学之前,可以将这两部分的重要性介绍给学生,以引起学生的重视。 二、利用现代手段,激发学习兴趣 多媒体技术图文并茂、声形兼备,集声音、图片、视讯、动画于一体,能够为学生创设直观形象的教学情境,实现课堂教学的动静结合,化抽象为形象,化复杂为简单,化深奥为浅显,帮助学生理解学习内容,充分激发学生的学习兴趣。因此,教师要充分利用这一技术,增强学生的学习欲望。例如,在教学“图形的旋转”时,学生需要具备相应的空间感才能充分理解这一部分内容,教师可以利用多媒体进行展示,这样不但调动了学生的学习兴趣,而且提高了课堂教学效率。 三、完善评价机制,提高学生的积极性 受应试教育的影响,在长期的教学活动中,学生成绩一直被作为衡量学生好坏的唯一标准,这样只注重成绩的好坏,而忽视学生学习过程的评价方式,势必对学生的学习态度和精神状态产生消极影响,造成好的学生更好、差的学生更差的恶性回圈。因此,教师要积极完善评价机制,注重发展性和鼓励性评价,将学生的学习态度和平时的表现情况纳入考核标准中,多一些鼓励,少一些批评,让学生看到自己的闪光点,增强学生的自信心,引导学生自我控制、自我调节学习的情绪,提高学生学习的积极性。总之,只有开展趣味教学才能减轻学生的心理负担,让学生自发投入学习活动中。否则,如果学生将学习当作一种负担和累赘,势必会影响学习效率。因此,我们要加强趣味教学,提高学生数学学习的兴趣,同时让学生的数学能力得到锻炼。 作者:姜辉 单位:重庆市酉阳县大溪初级中学校 篇三:高等数学趣味教学法思索 1上好绪论课 所谓“开门见山,山形几何”,第一节课是一门课程的开篇之言,是学生了解教材内容、教学目的、学习方法的“视窗”,它直观地在学生大脑中形成印象,对于激发学生的学习兴趣非常重要。所以第一节课怎样讲、讲什么、达到怎样教学目的等问题是值得我们来探讨的。教师可提出一些具有吸引力、与学生的知识有紧密联络而又暂时不能马上解答的问题,使学生一开始就对新知识产生浓厚的兴趣。 例如在新生入学后的第一次高等数学课上,教师可设定这样几个问题:1作变速直线运动的物体的瞬时速度如何求?2曲边梯形的面积,旋转体的体积以及外表面积如何求?这两个问题正是利用高等数学中的微分和积分来解决的,用现有的知识虽无法解决,然而学习高等数学后很快就会计算出来。学生一听,便产生了学习高等数学的浓厚兴趣。 2介绍数学家人物传记 在教学过程中将教学内容与典故进行有效的结合也是一种很好的方法。在教学过程中不失时机地向学生介绍相关数学家人物传记,对提高课程的趣味性、激发学生的学习兴趣能起到积极作用。例如《微积分》这节课程中,可以向学生讲述世界科学史上的一桩公案,即微积分到底是谁发明的,在欧洲大陆的学者归功于德国的莱布尼兹1646~1716,英伦三岛的学术界授誉于牛顿。激烈的争执甚至伤害了民族感情。最后判决:微积分是莱布尼兹和牛顿共同发明的,争执才得到公正的解决。再如《尤拉公式》一节中,可以向学生介绍天才数学家尤拉。 尤拉是一位牧师的儿子,1707年4月15日生于瑞士西北部城市巴塞尔Basel。尤拉在很多领域均有他独到的见解,一生发表论文886篇、论著47册,堪称数学界的莎士比亚。内容遍及微积分学、几何学、代数学、数论、概率论、光学、力学、天文学、统计学、财政学等诸多领域。尤拉活了76岁。他28岁瞎了一只眼,40多岁双目失明,这之后,靠自己口述、助手整理的方法发表论著。他的顽强毅力和才华横溢曾震惊世界。通过向学生介绍这些重要数学家的生平,提高课程的趣味性的同时,也对学生进行了一次良好的教育,鼓励学生刻苦钻研数学知识,为将来学习各类科学知识打下坚实的基础。 3借助计算机实施教学 教学中将传统教学与多媒体教学相互补充、相互融合,根据教学内容不同灵活选择教学方式。传统教学利用板书这种特有的教学方法是人们在长期的教育实践中保留下来的,它是任何别的手段不可替代的。多媒体教学是一种先进有效的教学手段,它具有直观、形象、资讯量大等优点。只有将传统教学与多媒体教学有效融合,才能帮助学生更好地汲取知识,培养他们的创新能力和思维能力。例如高等数学中的极限定义语言、中值定理、定积分概念、微元法、二次曲面、偏导数的几何意义、重积分的概念及计算等,都可绘制成二维或三维的静、动态图形,供教师在讲解时进行演示,可使教师一下子就能讲清平时要花好几倍的时间才能讲清楚的问题。再如旋转曲面课程,学生很难理解旋转后的图形形状,而利用多媒体,这个问题很容易就解决。 看过" "的还:

概率问题:一个国家有一条法律,死刑犯抽签(两个纸团)决定生死。一个正直的大臣,国王想借他的一次失望杀了他,于是让法官把两个纸团都换成“死”字的。法院上,大臣看着眼前的纸团一笑,一把夺过一个塞进嘴里。“你干什么?”法官走了下来。“就让我没抽到的这张决定我抽到的那个吧,如果这个是‘生’那我死,如果这个是‘死’那我活。”请问:大臣为什么这么自信。

如果你看那些新有趣的数学论文小课题,有一些预言引发所有的数学考思考的话,可以这样去学一些知识的一些杂文,可以把题目写出来。

趣味数学故事:

战国时期,齐威王与大将田忌赛马,齐威王和田忌各有三匹好马:上马,中马与下马。比赛分三次进行,每赛马以千金作赌。由于两者的马力相差无几,而齐威王的马分别比田忌的相应等级的马要好,所以一般人都以为田忌必输无疑。

但是田忌采纳了门客孙膑(着名军事家)的意见,用下马对齐威王的上马,用上马对齐威王的中马,用中马对齐威王的下马,结果田忌以2比1胜齐威王而得千金。这是我国古代运用对策论思想解决问题的一个范例。

数学分支

1、数学史

2、数理逻辑与数学基础

a:演绎逻辑学(也称符号逻辑学),b:证明论(也称元数学),c:递归论,d:模型论,e:公理集合论,f:数学基础,g:数理逻辑与数学基础其他学科。

3、数论

a:初等数论,b:解析数论,c:代数数论,d:超越数论,e:丢番图逼近,f:数的几何,g:概率数论,h:计算数论,i:数论其他学科。

相关百科

热门百科

首页
发表服务