首页

> 学术论文知识库

首页 学术论文知识库 问题

关于液压毕业论文资料

发布时间:

关于液压毕业论文资料

选择格瑞德挖掘机厂家实习,如果您有能力,要针对要点,重点了解,去描写

液压传动系统的故障分析与排故液压传动是以液压油为工作介质进行能量转换和动力传递的,它具有传送能量大、布局容易、结构紧凑、换向方便、转动平稳均匀、容易完成复杂动作等优点,因而广泛应用于工程机械领域。但是,液压传动的故障往往不容易从外部表面现象和声响特征中准确地判断出故障发生的部位和原因,而准确迅速地查出故障发生的部位和原因,并及时排除。在工程机械的使用、管理和维修中是十分重要的。��1 液压系统的主要故障��在相对运动的液压元件表面、液压油密封件、管路接头处以及控制元件部分,往往容易出现泄漏、油温过高、出现噪音以及电液结合部分执行动作失灵等现象。具体表现:一是管子、管接头处及密封面处的泄漏,它不仅增加了液压油的耗油量,脏污机器的表面,而且影响执行元件的正常工作。二是执行动作迟缓和无力,表现为推土机铲刀提升缓慢、切土困难,挖掘机挖掘无力、油马达转不起来或转速过低等。三是液压系统产生振动和噪音。四是其他元件出现异常。��2 故障的检查�� 直接检查法 �凭借维修人员的感觉、经验和简单工具,定性分析判断故障产生的原因,并提出解决的办法。 � 仪器仪表检测法 �在直接观察的基础上,根据发生故障的特征和经验,采取各种检查仪器仪表,对液压系统的流量、压力、油温及液压元件转速直通式检测,对振动噪音和磨损微粒进行量的分析。 � 元件置换法 �以备用元件逐一换下可能发生故障的元件,观察液压系统的故障是否消除,继而找出发生故障的部位和原因,予以排除。在施工现场,体积较大、不易拆装且储备件较少的元件,不宜采用这种方法。但对于如平衡阀、溢流阀及单向阀之类的体积小,易拆装的元件,采用置换法是比较方便的。 � 定期按时监控和诊断�根据各种机械型号、检查内容和时间的规定,按出厂要求的时间和部位,通过专业检测、监控和诊断来检测元器件技术状况,及时发现可能出现的异常隐患,这是使液压系统的故障消灭在发生之前的一种科学技术手段。当然,执行定期检测法,首先要培养一些专业技术检测人员,使他们既精通工程机械液压元件的构造和原理,又掌握和钻研检测液压传动系统的各种诊断技术,在不断积累靠人的直感判断故障经验的同时,逐步发展不解体诊断技术,来完成技术数据采集,辅以电脑来分析判断故障的原因及排除方法。��3 液压系统的故障预防�� 保证液压油的清洁度 �正确使用标定的和要求使用的液压油及其相应的替代品(详参《工程机械油料手册》),防止液压油中侵入污物和杂质。因为在液压传动系统中,液压油既是工作介质,又是润滑剂,所以油液的清洁度对系统的性能,对元件的可靠性、安全性、效率和使用寿命等影响极大。液压元件的配合精度极高,对油液中的污物杂质所造成的淤积、阻塞、擦伤和腐蚀等情况反应更为敏感。 �造成污物杂质侵入液压油的主要原因,一是执行元件外部不清洁;二是检查油量状况时不注意;三是加油时未用120目的滤网过滤;四是使用的容器和用具不洁净; 五是磨损严重和损坏的密封件不能及时更换;六是检查修理时,热弯管路和接头焊修产生的锈皮杂质清理不净;七是油液贮存不当等等。�在使用检查修理过程中,应注意解决这些问题,以减少和防止液压系统故障的发生。 � 防止液压油中混入空气 �液压系统中液压油是不可压缩的,但空气可压缩性很大,即使系统中含有少量空气,它的影响也是非常大的。溶解在油液中的空气,在压力较低时,就会从油中逸出产生气泡,形成空穴现象;到了高压区,在压力的冲击下,这些气泡又很快被击碎,急剧受到压缩,使系统产生噪音。同时,气体突然受到压缩时,就会放出大量的热能,因而引起局部受热,使液压元件和液压油受到损坏,工作不稳定,有时会引起冲击性振动。 �故必须防止空气进入液压系统。具体做法:一是避免油管破裂、接头松动、密封件损坏;二是加油时,避免不适当地向下倾倒;三是回油管插入油面以下;四是避免液压泵入口滤油器阻塞使吸油阻力增大,不能把溶解在油中的空气分离出来。 � 防止液压油温度过度�液压系统中的油液的工作温度一般在30℃~80℃范围内比较好,在使用时必须注意防止油温过高。如油箱中的油面不够,液压油冷却器散热性能不良,系统效率太低,元件容量小,流速过高,选用油液粘度不正确,它们都会使油温升高过快。粘度高增加油液流动时的能量损耗,粘度低会使泄漏增多,因此在使用中能注意并检查这些问题,就可以预防油温过高。此外对液压油定期过滤,定期进行物理性能检验,既能保证液压系统的工作性能,又能减少液压元件的磨损和腐蚀,延长油液和液压元件的使用寿命。��4 液压系统的故障分析�� 传动系统分析法 �工程机械的液压传动系统如果维护得好,一般说来故障是比较少的。由于密封件老化、变质和磨损而产生外泄是很容易观察到的,根据具体情况可设法排除。但是如果液压元件的内部发生了故障是观察不到的,往往不容易一下子就找出原因,有时虽然是同样的故障现象,但产生的原因却不一定相同,要想准确而迅速地找出液压元件的故障的部位和原因,首先要根据发生故障元件的构造图、系统图,分析了解和研究元件的工作原理和特性,再使了解的构造原理与实物对号,具体情况具体分析,检查寻找故障发生的部位和产生的原因,以便采取相应的技术措施来排除故障。 � 逻辑流程分析法 �此方法是根据液压传动系统的基本原理进行逻辑分析,减少怀疑对象,逐步逼近找出故障发生的部位和原因。��5 液压系统故障的排除��(1) 液压系统中管子、管子接头和焊接处,由于振动频率较高,常常发生破坏。在换用时要根据压力和使用场合,选用强度足够,内壁光滑清洁,无砂、无伤、无锈蚀、无氧化皮的管子。当管子需要焊接时,最好采用加套管的办法,因为对接可能使管的内径局部缩小;截段时,油管的截面与管子轴线的不垂直度不得大于°,并清除铁屑和锐边倒钝。当管子支承距离过大或支承松动时要设卡固定拧紧,当弯曲半径过小时,易形成弯曲应力,弯曲半径一般应大于管外径的3倍。 �在密封表面处,密封元件的老化变质会使泄漏量增大。密封件的有效寿命通常是:固定元件之间的密封寿命时间为10000h,运动元件之间密封寿命时间为1500h~2000h。到了规定的使用寿命时间后,即使还可用的元件也应该更换。密封面的泄漏还与预压面的压力不够或不均匀有关。预压量增大时,其封油量压力增大,密封效果好,反之则差。再者摩擦表面光洁度与硬度不足也会缩短密封件的寿命。 �密封件设计不合理以及安装时扭曲刮伤也是导致密封圈早期磨损而引起泄漏的原因。 �油液中杂质过多,易加速密封件与摩擦表面的磨损,形成密封件的早期失效,油封工作温度过高或过低也会影响其寿命和工作性能。� (2) 执行元件运动的速度降低,主要是由于输入执行元件的液压油流量不足;执行元件无力的原因主要是输入液压油压力不足,以及回油管路背压过高等因素所造成的。 �工程机械液压系统所用的油泵多为齿轮泵,其工作压力为210×102kPa,柱塞泵的工作压力可达320×102kPa。泵的输出压力是由荷载决定的,并随着荷载的变化而变化。荷载无限增加,泵的压力也无限升高,直到系统某一部分被破坏。对于齿轮泵:主要是轴承、齿轮啮合面、齿顶与壳体、齿轮端面与泵盖间的磨损和密封件的磨损、老化、损坏使齿轮泵的内漏表现更为突出。在一定转速与一定压力下,对无端面间隙补偿的齿轮泵,其轴线磨损引起的泄漏约占全部内漏量的75%~85%,齿顶间隙内漏量约占15%~20%,其他内漏约占4%~5%,因此我们要抓住主要问题,采取有效的技术措施予以解决,就能使泵恢复其原有性能。 �在维修工作中,我们发现使用了一定时间的齿轮泵,由于啮合挤压,在齿顶和端面会产生毛刺,使泵体和端盖的磨损加剧,尤其是铝合金泵盖更为严重。如能定期修理检查,用油石磨掉所产生的毛刺,则可以延长油泵的寿命。叶片泵的主要故障是定子、叶片、转子、轴承和两侧配流盘的磨损,定子的内表面是由圆弧和过渡曲线组成的,过渡曲线如果采用“阿基米德”螺旋线,则叶片径向等速运动。实践证明,当我们将叶片泵解体修理时,定子内表面就在曲线与圆弧连接部分磨损最严重,换掉磨损严重的定子,可以使叶片泵恢复原有的性能,采用这种修理方法是比较经济的。叶片泵转子、叶片的使用寿命约相当于定子使用寿命的两倍,这在备料时应予以考虑。 �(3) 液压系统的蓄能器是用来调节能量、贮存能量、减少设备容积、降低功率消耗、减少系统发热、缓冲吸收冲击和脉动压力的辅助元件。常见的蓄能器有胶囊式的,它具有漏气损失小、反应灵敏、可以吸收急速的压力冲击和脉动、重量轻、体积小等特点。蓄能器发生故障会影响液压系统的正常工作,因此在检查气压量不足时,应按时充入惰性气体。 �(4) 液压系统中,要求装备精度高的还有液压马达。如果注意日常维护和保养,防止油液污染,一般不会发生故障,进入液压马达的油液须仔细过滤,以减少杂质,防止过快磨损。修理后的马达,应注满干净的液压油,排尽系统中的空气。确定不了马达是否有故障,最好不要拆卸,这样可减少污染的机会和保持配合的精度。液压缸是液压系统中的执行元件,常见的故障有漏油和运动不正常。缸头因密封件损坏而外泄,应立即更换密封件;油缸运动不正常有油缸内漏、油路中有空气、活塞密封件老化和损坏、油液有杂质、平衡阀发生故障等。 �(5) 控制元件是用来实现系统和执行元件对压力、流量方向的要求的。控制阀及时控制系统中最重要的元件,由于阀的配合一般都比较精密,所以在修理时应特别注意,不需拆阀芯的尽量不要抽出阀芯;配合副方位不要错乱,偶件不要互换;螺丝的拧紧力矩要均匀一致,锥形阀芯的接触线磨损可采用研磨修正接触线的办法解决;回位弹簧疲劳时,可予更换。

我有几篇。。。。可以给你参考

关于液压毕业论文

一 绪论 液压传动与控制概述液压传动与控制是以液体(油、高水基液压油、合成液体)作为介质来实现各种机械量的输出(力、位移或速度等)的。它与单纯的机械传动、电气传动和气压传动相比,具有传递功率大,结构小、响应快等特点,因而被广泛的应用于各种机械设备及精密的自动控制系统。液压传动技术是一门新的学科技术,它的发展历史虽然较短,但是发展的速度却非常之快。自从1795年制成了第一台压力机起,液压技术进入了工程领域;1906年开始应用于国防战备武器。第二次世界大战期间,由于军事工业迫切需要反应快、精度高的自动控制系统,因而出现了液压伺服控制系统。从60年代起,由于原子能、空间技术、大型船舰及电子技术的发展,不断地对液压技术提出新的要求,从民用到国防,由一般的传动到精确度很高的控制系统,这种技术得到更加广泛的发展和应用。在国防工业中:海、陆、空各种战备武器均采用液压传动与控制。如飞机、坦克、舰艇、雷达、火炮、导弹及火箭等。在民用工业中:有机床工业、冶金工业、工程机械、农业方面,汽车工业、轻纺工业、船舶工业。另外,近几年又出现了太阳跟踪系统、海浪模拟装置、飞机驾驶模拟、船舶驾驶模拟器、地震再现、火箭助飞发射装置、宇航环境模拟、高层建筑防震系统及紧急刹车装置等,均采用了液压技术。总之,一切工程领域,凡是有机械设备的场合,均可采用液压技术。它的发展如此之快,应用如此之广,其原因就是液压技术有着优异的特点,归纳起来液压动力传动方式具有显著的优点:其单位重量的输出功率和单位尺寸输出功率大;液压传动装置体积小、结构紧凑、布局灵活,易实现无级调速,调速范围宽,便于与电气控制相配合实现自动化;易实现过载保护与保压,安全可靠;元件易于实现系列化、标准化、通用化;液压易与微机控制等新技术相结合,构成“机-电-液-光”一体化便于实现数字化。 液压机的发展及工艺特点液压机是制品成型生产中应用最广的设备之一,自19世纪问世以来发展很快,液压机在工作中的广泛适应性,使其在国民经济各部门获得了广泛的应用。由于液压机的液压系统和整机结构方面,已经比较成熟,目前国内外液压机的发展不仅体现在控制系统方面,也主要表现在高速化、高效化、低能耗;机电液一体化,以充分合理利用机械和电子的先进技术促进整个液压系统的完善;自动化、智能化,实现对系统的自动诊断和调整,具有故障预处理功能;液压元件集成化、标准化,以有效防止泄露和污染等四个方面。作为液压机两大组成部分的主机和液压系统,由于技术发展趋于成熟,国内外机型无较大差距,主要差别在于加工工艺和安装方面。良好的工艺使机器在过滤、冷却及防止冲击和振动方面,有较明显改善。在油路结构设计方面,国内外液压机都趋向于集成化、封闭式设计,插装阀、叠加阀和复合化元件及系统在液压系统中得到较广泛的应用。特别是集成块可以进行专业化的生产,其质量好、性能可靠而且设计的周期也比较短。近年来在集成块基础上发展起来的新型液压元件组成的回路也有其独特的优点,它不需要另外的连接件其结构更为紧凑,体积也相对更小,重量也更轻无需管件连接,从而消除了因油管、接头引起的泄漏、振动和噪声。逻辑插装阀具有体积小、重量轻、密封性能好、功率损失小、动作速度快、易于集成的特点,从70年代初期开始出现,至今已得到了很快的发展。我国从1970年开始对这种阀进行研究和生产,并已将其广泛的应用于冶金、锻压等设备上,显示了很大的优越性。液压机工艺用途广泛,适用于弯曲、翻边、拉伸、成型和冷挤压等冲压工艺,压力机是一种用静压来加工产品。适用于金属粉末制品的压制成型工艺和非金属材料,如塑料、玻璃钢、绝缘材料和磨料制品的压制成型工艺,也可适用于校正和压装等工艺。由于需要进行多种工艺,液压机具有如下的特点:(1) 工作台较大,滑块行程较长,以满足多种工艺的要求;(2) 有顶出装置,以便于顶出工件;(3) 液压机具有点动、手动和半自动等工作方式,操作方便;(4) 液压机具有保压、延时和自动回程的功能,并能进行定压成型和定程成型的操作,特别适合于金属粉末和非金属粉末的压制;(5) 液压机的工作压力、压制速度和行程范围可随意调节,灵活性大。二 150t液压机液压系统工况分析本机器(见图)适用于可塑性材料的压制工艺。如冲压、弯曲、翻边、薄板拉伸等。也可以从事校正、压装、砂轮成型、冷挤金属零件成型、塑料制品及粉末制品的压制成型。本机器具有独立的动力机构和电气系统。采用按钮集中控制,可实现调整、手动及半自动三种操作方式。本机器的工作压力、压制速度、空载快速下行和减速的行程范围均可根据工艺需要进行调整,并能完成一般压制工艺。此工艺又分定压、定程两种工艺动作供选择。定压成型之工艺动作在压制后具有保压、延时、自动回程、延时自动退回等动作。 本机器主机呈长方形,外形新颖美观,动力系统采用液压系统,结构简单、紧凑、动作灵敏可靠。该机并设有脚踏开关,可实现半自动工艺动作的循环。 工况分析本次设计在毕业实习调查的基础上,用类比的方法初步确定了立式安装的主液压缸活塞杆带动滑块及动横梁在立柱上滑动下行时,运动部件的质量为500Kg。1.工作负载 工件的压制抗力即为工作负载:2. 摩擦负载 静摩擦阻力:动摩擦阻力:3. 惯性负载自重:4. 液压缸在各工作阶段的负载值:其中: ——液压缸的机械效率,一般取 =。工况 负载组成 推力 F/负载图和速度图的绘制:负载图按上面的数值绘制,速度图按给定条件绘制,如图:三 液压机液压系统原理图设计3.1 自动补油的保压回路设计考虑到设计要求,保压时间要达到5s,压力稳定性好。若采用液压单向阀回路保压时间长,压力稳定性高,设计中利用换向阀中位机能保压,设计了自动补油回路,且保压时间由电气元件时间继电器控制,在0-20min内可调整。此回路完全适合于保压性能较高的高压系统,如液压机等。自动补油的保压回路系统图的工作原理:按下起动按纽,电磁铁1YA通电,换向阀6接入回路时,液压缸上腔成为压力腔,在压力到达预定上限值时压力继电器11发出信号,使换向阀切换成中位;这时液压泵卸荷,液压缸由换向阀M型中位机能保压。当液压缸上腔压力下降到预定下限值时,压力继电器又发出信号,使换向阀右位接人回路,这时液压泵给液压缸上腔补油,使其压力回升。回程时电磁阀2YA通电,换向阀左位接人回路,活塞快速向上退回。3.2 释压回路设计:释压回路的功用在于使高压大容量液压缸中储存的能量缓缓的释放,以免她突然释放时产生很大的液压冲击。一般液压缸直径大于25mm、压力高于7Mpa时,其油腔在排油前就先须释压。根据设计很实际的生产需要,选择用节流阀的释压回路。其工作原理:按下起动按钮,换向阀6的右位接通,液压泵输出的油经过换向阀6的右位流到液压缸的上腔。同时液压油的压力影响压力继电器。当压力达到一定压力时,压力继电器发出信号,使换向阀5回到中位,电磁换向阀10接通。液压缸上腔的高压油在换向阀5处于中位(液压泵卸荷)时通过节流阀9、换向阀10回到油箱,释压快慢由节流阀调节。当此腔压力降至压力继电器的调定压力时,换向阀6切换至左位,液控单向阀7打开,使液压缸上腔的油通过该阀排到液压缸顶部的副油箱13中去。使用这种释压回路无法在释压前保压,释压前有保压要求时的换向阀也可用M型,并且配有其它的元件。机器在工作的时候,如果出现机器被以外的杂物或工件卡死,这是泵工作的时候,输出的压力油随着工作的时间而增大,而无法使液压油到达液压缸中,为了保护液压泵及液压元件的安全,在泵出油处加一个直动式溢流阀1,起安全阀的作用,当泵的压力达到溢流阀的导通压力时,溢流阀打开,液压油流回油箱。起到保护作用。在液压系统中,一般都用溢流阀接在液压泵附近,同时也可以增加液压系统的稳定性。使零件的加工精度增高。3.3液压机液压系统原理图拟定上液压缸工作循环(1) 快速下行。按下起动按钮,电磁铁1YA通电,这时的油路为:液压缸上腔的供油的油路变量泵1—换向阀6右位—节流阀8—压力继电器11—液压缸15液压缸下腔的回油路液压缸下腔15—液控单向阀7—换向阀6右位—电磁阀5—背压阀4—油箱油路分析:变量泵1的液压油经过换向阀6的右位,液压油分两条油路:一条油路通过节流阀7流经继电器11,另一条路直接流向液压缸的上腔和压力表。使液压缸的上腔加压。液压缸15下腔通过液控单向阀7经过换向阀6的右位流经背压阀,再流到油箱。因为这是背压阀产生的背压使接副油箱旁边的液控单向阀7打开,使副油箱13的液压油经过副油箱旁边的液控单向阀14给液压缸15上腔补油。使液压缸快速下行,另外背压阀接在系统回油路上,造成一定的回油阻力,以改善执行元件的运动平稳性。(2) 保压时的油路情况:油路分析:当上腔快速下降到一定的时候,压力继电器11发出信号,使换向阀6的电磁铁1YA断电,换向阀回到中位,利用变量泵的柱塞孔从吸油状态过渡到排油状态,其容积的变化是由大变小,而在由增大到缩小的变化过程中,必有容积变化率为零的一瞬间,这就是柱塞孔运动到自身的中心线与死点所在的面重合的这一瞬间,这时柱塞孔的进出油口在配油盘上所在的位置,称为死点位置。柱塞在这个位置时,既不吸油,也不排油,而是由吸转为排的过渡状态。液压系统保压。而液压泵1在中位时,直接通过背压阀直接回到油箱。(3) 回程时的油路情况:液压缸下腔的供油的油路:变量泵1——换向阀6左位——液控单向阀7——液压油箱15的下腔液压缸上腔的回油油路:液压腔的上腔——液控单向阀14——副油箱13液压腔的上腔—节流阀8——换向阀6左位——电磁阀5——背压阀4——油箱油路分析: 当保压到一定时候,时间继电器发出信号,使换向阀6的电磁铁2YA通电,换向阀接到左位,变量泵1的液压油通过换向阀旁边的液控单向阀流到液压缸的下腔,而同时液压缸上腔的液压油通过节流阀9(电磁铁6YA接通),上腔油通过换向阀10接到油箱,实现释压,另外一部分油通过主油路的节流阀流到换向阀6,再通过电磁阀19,背压阀11流回油箱。实现释压。下液压缸的工作循环:向上顶出时,电磁铁4YA通电,5YA失电。进油路:液压泵——换向阀19左位——单向节流阀18——下液压缸下腔回油路:下液压缸上腔——换向阀19左位——油箱当活塞碰到上缸盖时,便停留在这个位置上。向下退回是在4YA失电,3YA通电时产生的,进油路:液压泵——换向阀19右位——单向节流阀17——下液压缸上腔回油路:下液压缸下腔——换向阀19右位——油箱原位停止是在电磁铁3YA,4YA都断电,换向阀19处于中位时得到的。四 液压系统的计算和元件选型4.1 确定液压缸主要参数:按液压机床类型初选液压缸的工作压力为25Mpa,根据快进和快退速度要求,采用单杆活塞液压缸。快进时采用差动连接,并通过充液补油法来实现,这种情况下液压缸无杆腔工作面积 应为有杆腔工作面积 的6倍,即活塞杆直径 与缸筒直径 满足 的关系。快进时,液压缸回油路上必须具有背压 ,防止上压板由于自重而自动下滑,根据《液压系统设计简明手册》表2-2中,可取 =1Mpa,快进时,液压缸是做差动连接,但由于油管中有压降 存在,有杆腔的压力必须大于无杆腔,估计时可取 ,快退时,回油腔是有背压的,这时 亦按2Mpa来估算。1) 计算液压缸的面积可根据下列图形来计算—— 液压缸工作腔的压力 Pa—— 液压缸回油腔的压力 Pa故:当按GB2348-80将这些直径圆整成进标准值时得: ,由此求得液压缸面积的实际有效面积为:2) 液压缸实际所需流量计算① 工作快速空程时所需流量液压缸的容积效率,取② 工作缸压制时所需流量③ 工作缸回程时所需流量4.2液压元件的选择4.确定液压泵规格和驱动电机功率由前面工况分析,由最大压制力和液压主机类型,初定上液压泵的工作压力取为 ,考虑到进出油路上阀和管道的压力损失为 (含回油路上的压力损失折算到进油腔),则液压泵的最高工作压力为上述计算所得的 是系统的静态压力,考虑到系统在各种工况的过渡阶段出现的动态压力往往超过静态压力,另外考虑到一定压力贮备量,并确保泵的寿命,其正常工作压力为泵的额定压力的80%左右因此选泵的额定压力 应满足:液压泵的最大流量应为:式中 液压泵的最大流量同时动作的各执行所需流量之和的最大值,如果这时的溢流阀正进行工作,尚须加溢流阀的最小溢流量 。系统泄漏系数,一般取 ,现取 。1.选择液压泵的规格由于液压系统的工作压力高,负载压力大,功率大。大流量。所以选轴向柱塞变量泵。柱塞变量泵适用于负载大、功率大的机械设备(如龙门刨床、拉床、液压机),柱塞式变量泵有以下的特点:1) 工作压力高。因为柱塞与缸孔加工容易,尺寸精度及表面质量可以达到很高的要求,油液泄漏小,容积效率高,能达到的工作压力,一般是( ) ,最高可以达到 。2) 流量范围较大。因为只要适当加大柱塞直径或增加柱塞数目,流量变增大。3) 改变柱塞的行程就能改变流量,容易制成各种变量型。4) 柱塞油泵主要零件均受压,使材料强度得到充分利用,寿命长,单位功率重量小。但柱塞式变量泵的结构复杂。材料及加工精度要求高,加工量大,价格昂贵。根据以上算得的 和 在查阅相关手册《机械设计手册》成大先P20-195得:现选用 ,排量63ml/r,额定压力32Mpa,额定转速1500r/min,驱动功率,容积效率 ,重量71kg,容积效率达92%。2.与液压泵匹配的电动机的选定由前面得知,本液压系统最大功率出现在工作缸压制阶段,这时液压泵的供油压力值为26Mpa,流量为已选定泵的流量值。 液压泵的总效率。柱塞泵为 ,取 。选用1000r/min的电动机,则驱动电机功率为选择电动机 ,其额定功率为。阀类元件及辅助元件的选择1. 对液压阀的基本要求:(1). 动作灵敏,使用可靠,工作时冲击和振动小。油液流过时压力损失小。(2). 密封性能好。结构紧凑,安装、调整、使用、维护方便,通用性大2. 根据液压系统的工作压力和通过各个阀类元件及辅助元件型号和规格主要依据是根据该阀在系统工作的最大工作压力和通过该阀的实际流量,其他还需考虑阀的动作方式,安装固定方式,压力损失数值,工作性能参数和工作寿命等条件来选择标准阀类的规格:序号 元件名称 估计通过流量型号 规格1 斜盘式柱塞泵 63SCY14-1B 32Mpa,驱动功率 WU网式滤油器 160 WU-160*180 40通径,压力损失 直动式溢流阀 120 DBT1/315G24 10通径,32Mpa,板式联接4 背压阀 80 YF3-10B 10通径,21Mpa,板式联接5 二位二通手动电磁阀 80 22EF3-E10B6 三位四通电磁阀 100 34DO-B10H-T 10通径,压力 液控单向阀80 YAF3-E610B 32通径,32MPa8 节流阀80 QFF3-E10B 10通径,16MPa9 节流阀80 QFF3-E10B 10通径,16MPa10 二位二通电磁阀30 22EF3B-E10B 6通径,压力20 MPa11 压力继电器- DP1-63B 8通径, MPa12 压力表开关- KFL8-30E 32Mpa,6测点13 油箱14 液控单向阀 YAF3-E610B 32通径,32MPa15 上液压缸16 下液压缸17 单向节流阀48 ALF3-E10B 10通径,16MPa18 单向单向阀48 ALF3-E10B 10通径,16MPa19 三位四通电磁换向阀 25 34DO-B10H-T20 减压阀 40 管道尺寸的确定油管系统中使用的油管种类很多,有钢管、铜管、尼龙管、塑料管、橡胶管等,必须按照安装位置、工作环境和工作压力来正确选用。本设计中油管采用钢管,因为本设计中所须的压力是高压,P= , 钢管能承受高压,价格低廉,耐油,抗腐蚀,刚性好,但装配是不能任意弯曲,常在装拆方便处用作压力管道一中、高压用无缝管,低压用焊接管。本设计在弯曲的地方可以用管接头来实现弯曲。尼龙管用在低压系统;塑料管一般用在回油管用。胶管用做联接两个相对运动部件之间的管道。胶管分高、低压两种。高压胶管是钢丝编织体为骨架或钢丝缠绕体为骨架的胶管,可用于压力较高的油路中。低压胶管是麻丝或棉丝编织体为骨架的胶管,多用于压力较低的油路中。由于胶管制造比较困难,成本很高,因此非必要时一般不用。1. 管接头的选用:管接头是油管与油管、油管与液压件之间的可拆式联接件,它必须具有装拆方便、连接牢固、密封可靠、外形尺寸小、通流能力大、压降小、工艺性好等各种条件。管接头的种类很多,液压系统中油管与管接头的常见联接方式有:焊接式管接头、卡套式管接头、扩口式管接头、扣压式管接头、固定铰接管接头。管路旋入端用的连接螺纹采用国际标准米制锥螺纹(ZM)和普通细牙螺纹(M)。锥螺纹依靠自身的锥体旋紧和采用聚四氟乙烯等进行密封,广泛用于中、低压液压系统;细牙螺纹密封性好,常用于高压系统,但要求采用组合垫圈或O形圈进行端面密封,有时也采用紫铜垫圈。液压系统中的泄漏问题大部分都出现在它管系中的接头上,为此对管材的选用,接头形式的确定(包括接头设计、垫圈、密封、箍套、防漏涂料的选用等),管系的设计(包括弯管设计、管道支承点和支承形式的选取等)以及管道的安装(包括正确的运输、储存、清洗、组装等)都要考虑清楚,以免影响整个液压系统的使用质量。国外对管子的材质、接头形式和连接方法上的研究工作从不间断,最近出现一种用特殊的镍钛合金制造的管接头,它能使低温下受力后发生的变形在升温时消除——即把管接头放入液氮中用芯棒扩大其内径,然后取出来迅速套装在管端上,便可使它在常温下得到牢固、紧密的结合。这种“热缩”式的连接已经在航空和其它一些加工行业中得到了应用,它能保证在40~55Mpa的工作压力下不出现泄漏。本设计根据需要,选择卡套式管接头。要求采用冷拔无缝钢管。2. 管道内径计算:(1)式中 Q——通过管道内的流量v——管内允许流速 ,见表:允许流速推荐值油液流经的管道 推荐流速 m/s液压泵吸油管液压系统压油管道 3~6,压力高,管道短粘度小取大值液压系统回油管道 (1). 液压泵压油管道的内径:取v=4m/s根据《机械设计手册》成大先P20-641查得:取d=20mm,钢管的外径 D=28mm;管接头联接螺纹M27×2。(2). 液压泵回油管道的内径:取v=根据《机械设计手册》成大先P20-641查得:取d=25mm,钢管的外径 D=34mm;管接头联接螺纹M33×2。3. 管道壁厚 的计算式中: p——管道内最高工作压力 Pad——管道内径 m——管道材料的许用应力 Pa,——管道材料的抗拉强度 Pan——安全系数,对钢管来说, 时,取n=8; 时,取n=6; 时,取n=4。根据上述的参数可以得到:我们选钢管的材料为45#钢,由此可得材料的抗拉强度 =600MPa;(1). 液压泵压油管道的壁厚(2). 液压泵回油管道的壁厚所以所选管道适用。4. 液压系统的验算上面已经计算出该液压系统中进,回油管的内径分别为32mm,42mm。但是由于系统的具体管路布置和长度尚未确定,所以压力损失无法验算。系统温升的验算在整个工作循环中,工进阶段所占的时间最长,且发热量最大。为了简化计算,主要考虑工进时的发热量。一般情况下,工进时做功的功率损失大引起发热量较大,所以只考虑工进时的发热量,然后取其值进行分析。当V=10mm/s时,即v=600mm/min即此时泵的效率为,泵的出口压力为26MP,则有即此时的功率损失为:假定系统的散热状况一般,取 ,油箱的散热面积A为系统的温升为根据《机械设计手册》成大先P20-767:油箱中温度一般推荐30-50所以验算表明系统的温升在许可范围内。五 液压缸的结构设计 液压缸主要尺寸的确定1) 液压缸壁厚和外经的计算液压缸的壁厚由液压缸的强度条件来计算。液压缸的壁厚一般指缸筒结构中最薄处的厚度。从材料力学可知,承受内压力的圆筒,其内应力分布规律应壁厚的不同而各异。一般计算时可分为薄壁圆筒和厚壁圆筒。液压缸的内径D与其壁厚 的比值 的圆筒称为薄壁圆筒。工程机械的液压缸,一般用无缝钢管材料,大多属于薄壁圆筒结构,其壁厚按薄壁圆筒公式计算设 计 计 算 过 程式中 ——液压缸壁厚(m);D——液压缸内径(m);——试验压力,一般取最大工作压力的()倍 ;——缸筒材料的许用应力。无缝钢管: 。= =则 在中低压液压系统中,按上式计算所得液压缸的壁厚往往很小,使缸体的刚度往往很不够,如在切削过程中的变形、安装变形等引起液压缸工作过程卡死或漏油。因此一般不作计算,按经验选取,必要时按上式进行校核。液压缸壁厚算出后,即可求出缸体的外经 为2) 液压缸工作行程的确定液压缸工作行程长度,可根据执行机构实际工作的最大行程来确定,并参阅<<液压系统设计简明手册>>P12表2-6中的系列尺寸来选取标准值。液压缸工作行程选缸盖厚度的确定一般液压缸多为平底缸盖,其有效厚度t按强度要求可用下面两式进行近似计算。无孔时有孔时式中 t——缸盖有效厚度(m);——缸盖止口内径(m);——缸盖孔的直径(m)。液压缸:无孔时取 t=65mm有孔时取 t’=50mm3)最小导向长度的确定当活塞杆全部外伸时,从活塞支承面中点到缸盖滑动支承面中点的距离H称为最小导向长度(如下图2所示)。如果导向长度过小,将使液压缸的初始挠度(间隙引起的挠度)增大,影响液压缸的稳定性,因此设计时必须保证有一定的最小导向长度。对一般的液压缸,最小导向长度H应满足以下要求:设 计 计 算 过 程式中 L——液压缸的最大行程;D——液压缸的内径。活塞的宽度B一般取B=()D;缸盖滑动支承面的长度 ,根据液压缸内径D而定;当D<80mm时,取 ;当D>80mm时,取 。为保证最小导向长度H,若过分增大 和B都是不适宜的,必要时可在缸盖与活塞之间增加一隔套K来增加H的值。隔套的长度C由需要的最小导向长度H决定,即滑台液压缸:最小导向长度:取 H=200mm活塞宽度:B=缸盖滑动支承面长度:隔套长度: 所以无隔套。液压缸缸体内部长度应等于活塞的行程与活塞的宽度之和。缸体外形长度还要考虑到两端端盖的厚度。一般液压缸缸体长度不应大于内径的20~30倍。液压缸:缸体内部长度当液压缸支承长度LB (10-15)d时,需考虑活塞杆弯度稳定性并进行计算。本设计不需进行稳定性验算。 液压缸的结构设计液压缸主要尺寸确定以后,就进行各部分的结构设计。主要包括:缸体与缸盖的连接结构、活塞与活塞杆的连接结构、活塞杆导向部分结构、密封装置、排气装置及液压缸的安装连接结构等。由于工作条件不同,结构形式也各不相同。设计时根据具体情况进行选择。设 计 计 算 过 程1) 缸体与缸盖的连接形式缸体与缸盖的连接形式与工作压力、缸体材料以及工作条件有关。本次设计中采用外半环连接,如下图1所示:图1 缸体与缸盖外半环连接方式优点:(1) 结构较简单(2) 加工装配方便缺点:(1) 外型尺寸大(2) 缸筒开槽,削弱了强度,需增加缸筒壁厚2)活塞杆与活塞的连接结构参阅<<液压系统设计简明手册>>P15表2-8,采用组合式结构中的螺纹连接。如下图2所示:图2 活塞杆与活塞螺纹连接方式特点:结构简单,在振动的工作条件下容易松动,必须用锁紧装置。应用较多,如组合机床与工程机械上的液压缸。

我有几篇。。。。可以给你参考

液压传动系统的故障分析与排故液压传动是以液压油为工作介质进行能量转换和动力传递的,它具有传送能量大、布局容易、结构紧凑、换向方便、转动平稳均匀、容易完成复杂动作等优点,因而广泛应用于工程机械领域。但是,液压传动的故障往往不容易从外部表面现象和声响特征中准确地判断出故障发生的部位和原因,而准确迅速地查出故障发生的部位和原因,并及时排除。在工程机械的使用、管理和维修中是十分重要的。��1 液压系统的主要故障��在相对运动的液压元件表面、液压油密封件、管路接头处以及控制元件部分,往往容易出现泄漏、油温过高、出现噪音以及电液结合部分执行动作失灵等现象。具体表现:一是管子、管接头处及密封面处的泄漏,它不仅增加了液压油的耗油量,脏污机器的表面,而且影响执行元件的正常工作。二是执行动作迟缓和无力,表现为推土机铲刀提升缓慢、切土困难,挖掘机挖掘无力、油马达转不起来或转速过低等。三是液压系统产生振动和噪音。四是其他元件出现异常。��2 故障的检查�� 直接检查法 �凭借维修人员的感觉、经验和简单工具,定性分析判断故障产生的原因,并提出解决的办法。 � 仪器仪表检测法 �在直接观察的基础上,根据发生故障的特征和经验,采取各种检查仪器仪表,对液压系统的流量、压力、油温及液压元件转速直通式检测,对振动噪音和磨损微粒进行量的分析。 � 元件置换法 �以备用元件逐一换下可能发生故障的元件,观察液压系统的故障是否消除,继而找出发生故障的部位和原因,予以排除。在施工现场,体积较大、不易拆装且储备件较少的元件,不宜采用这种方法。但对于如平衡阀、溢流阀及单向阀之类的体积小,易拆装的元件,采用置换法是比较方便的。 � 定期按时监控和诊断�根据各种机械型号、检查内容和时间的规定,按出厂要求的时间和部位,通过专业检测、监控和诊断来检测元器件技术状况,及时发现可能出现的异常隐患,这是使液压系统的故障消灭在发生之前的一种科学技术手段。当然,执行定期检测法,首先要培养一些专业技术检测人员,使他们既精通工程机械液压元件的构造和原理,又掌握和钻研检测液压传动系统的各种诊断技术,在不断积累靠人的直感判断故障经验的同时,逐步发展不解体诊断技术,来完成技术数据采集,辅以电脑来分析判断故障的原因及排除方法。��3 液压系统的故障预防�� 保证液压油的清洁度 �正确使用标定的和要求使用的液压油及其相应的替代品(详参《工程机械油料手册》),防止液压油中侵入污物和杂质。因为在液压传动系统中,液压油既是工作介质,又是润滑剂,所以油液的清洁度对系统的性能,对元件的可靠性、安全性、效率和使用寿命等影响极大。液压元件的配合精度极高,对油液中的污物杂质所造成的淤积、阻塞、擦伤和腐蚀等情况反应更为敏感。 �造成污物杂质侵入液压油的主要原因,一是执行元件外部不清洁;二是检查油量状况时不注意;三是加油时未用120目的滤网过滤;四是使用的容器和用具不洁净; 五是磨损严重和损坏的密封件不能及时更换;六是检查修理时,热弯管路和接头焊修产生的锈皮杂质清理不净;七是油液贮存不当等等。�在使用检查修理过程中,应注意解决这些问题,以减少和防止液压系统故障的发生。 � 防止液压油中混入空气 �液压系统中液压油是不可压缩的,但空气可压缩性很大,即使系统中含有少量空气,它的影响也是非常大的。溶解在油液中的空气,在压力较低时,就会从油中逸出产生气泡,形成空穴现象;到了高压区,在压力的冲击下,这些气泡又很快被击碎,急剧受到压缩,使系统产生噪音。同时,气体突然受到压缩时,就会放出大量的热能,因而引起局部受热,使液压元件和液压油受到损坏,工作不稳定,有时会引起冲击性振动。 �故必须防止空气进入液压系统。具体做法:一是避免油管破裂、接头松动、密封件损坏;二是加油时,避免不适当地向下倾倒;三是回油管插入油面以下;四是避免液压泵入口滤油器阻塞使吸油阻力增大,不能把溶解在油中的空气分离出来。 � 防止液压油温度过度�液压系统中的油液的工作温度一般在30℃~80℃范围内比较好,在使用时必须注意防止油温过高。如油箱中的油面不够,液压油冷却器散热性能不良,系统效率太低,元件容量小,流速过高,选用油液粘度不正确,它们都会使油温升高过快。粘度高增加油液流动时的能量损耗,粘度低会使泄漏增多,因此在使用中能注意并检查这些问题,就可以预防油温过高。此外对液压油定期过滤,定期进行物理性能检验,既能保证液压系统的工作性能,又能减少液压元件的磨损和腐蚀,延长油液和液压元件的使用寿命。��4 液压系统的故障分析�� 传动系统分析法 �工程机械的液压传动系统如果维护得好,一般说来故障是比较少的。由于密封件老化、变质和磨损而产生外泄是很容易观察到的,根据具体情况可设法排除。但是如果液压元件的内部发生了故障是观察不到的,往往不容易一下子就找出原因,有时虽然是同样的故障现象,但产生的原因却不一定相同,要想准确而迅速地找出液压元件的故障的部位和原因,首先要根据发生故障元件的构造图、系统图,分析了解和研究元件的工作原理和特性,再使了解的构造原理与实物对号,具体情况具体分析,检查寻找故障发生的部位和产生的原因,以便采取相应的技术措施来排除故障。 � 逻辑流程分析法 �此方法是根据液压传动系统的基本原理进行逻辑分析,减少怀疑对象,逐步逼近找出故障发生的部位和原因。��5 液压系统故障的排除��(1) 液压系统中管子、管子接头和焊接处,由于振动频率较高,常常发生破坏。在换用时要根据压力和使用场合,选用强度足够,内壁光滑清洁,无砂、无伤、无锈蚀、无氧化皮的管子。当管子需要焊接时,最好采用加套管的办法,因为对接可能使管的内径局部缩小;截段时,油管的截面与管子轴线的不垂直度不得大于°,并清除铁屑和锐边倒钝。当管子支承距离过大或支承松动时要设卡固定拧紧,当弯曲半径过小时,易形成弯曲应力,弯曲半径一般应大于管外径的3倍。 �在密封表面处,密封元件的老化变质会使泄漏量增大。密封件的有效寿命通常是:固定元件之间的密封寿命时间为10000h,运动元件之间密封寿命时间为1500h~2000h。到了规定的使用寿命时间后,即使还可用的元件也应该更换。密封面的泄漏还与预压面的压力不够或不均匀有关。预压量增大时,其封油量压力增大,密封效果好,反之则差。再者摩擦表面光洁度与硬度不足也会缩短密封件的寿命。 �密封件设计不合理以及安装时扭曲刮伤也是导致密封圈早期磨损而引起泄漏的原因。 �油液中杂质过多,易加速密封件与摩擦表面的磨损,形成密封件的早期失效,油封工作温度过高或过低也会影响其寿命和工作性能。� (2) 执行元件运动的速度降低,主要是由于输入执行元件的液压油流量不足;执行元件无力的原因主要是输入液压油压力不足,以及回油管路背压过高等因素所造成的。 �工程机械液压系统所用的油泵多为齿轮泵,其工作压力为210×102kPa,柱塞泵的工作压力可达320×102kPa。泵的输出压力是由荷载决定的,并随着荷载的变化而变化。荷载无限增加,泵的压力也无限升高,直到系统某一部分被破坏。对于齿轮泵:主要是轴承、齿轮啮合面、齿顶与壳体、齿轮端面与泵盖间的磨损和密封件的磨损、老化、损坏使齿轮泵的内漏表现更为突出。在一定转速与一定压力下,对无端面间隙补偿的齿轮泵,其轴线磨损引起的泄漏约占全部内漏量的75%~85%,齿顶间隙内漏量约占15%~20%,其他内漏约占4%~5%,因此我们要抓住主要问题,采取有效的技术措施予以解决,就能使泵恢复其原有性能。 �在维修工作中,我们发现使用了一定时间的齿轮泵,由于啮合挤压,在齿顶和端面会产生毛刺,使泵体和端盖的磨损加剧,尤其是铝合金泵盖更为严重。如能定期修理检查,用油石磨掉所产生的毛刺,则可以延长油泵的寿命。叶片泵的主要故障是定子、叶片、转子、轴承和两侧配流盘的磨损,定子的内表面是由圆弧和过渡曲线组成的,过渡曲线如果采用“阿基米德”螺旋线,则叶片径向等速运动。实践证明,当我们将叶片泵解体修理时,定子内表面就在曲线与圆弧连接部分磨损最严重,换掉磨损严重的定子,可以使叶片泵恢复原有的性能,采用这种修理方法是比较经济的。叶片泵转子、叶片的使用寿命约相当于定子使用寿命的两倍,这在备料时应予以考虑。 �(3) 液压系统的蓄能器是用来调节能量、贮存能量、减少设备容积、降低功率消耗、减少系统发热、缓冲吸收冲击和脉动压力的辅助元件。常见的蓄能器有胶囊式的,它具有漏气损失小、反应灵敏、可以吸收急速的压力冲击和脉动、重量轻、体积小等特点。蓄能器发生故障会影响液压系统的正常工作,因此在检查气压量不足时,应按时充入惰性气体。 �(4) 液压系统中,要求装备精度高的还有液压马达。如果注意日常维护和保养,防止油液污染,一般不会发生故障,进入液压马达的油液须仔细过滤,以减少杂质,防止过快磨损。修理后的马达,应注满干净的液压油,排尽系统中的空气。确定不了马达是否有故障,最好不要拆卸,这样可减少污染的机会和保持配合的精度。液压缸是液压系统中的执行元件,常见的故障有漏油和运动不正常。缸头因密封件损坏而外泄,应立即更换密封件;油缸运动不正常有油缸内漏、油路中有空气、活塞密封件老化和损坏、油液有杂质、平衡阀发生故障等。 �(5) 控制元件是用来实现系统和执行元件对压力、流量方向的要求的。控制阀及时控制系统中最重要的元件,由于阀的配合一般都比较精密,所以在修理时应特别注意,不需拆阀芯的尽量不要抽出阀芯;配合副方位不要错乱,偶件不要互换;螺丝的拧紧力矩要均匀一致,锥形阀芯的接触线磨损可采用研磨修正接触线的办法解决;回位弹簧疲劳时,可予更换。

关于压降论文范文资料

选择格瑞德挖掘机厂家实习,如果您有能力,要针对要点,重点了解,去描写

随着科技负效应的显现,工程伦理越来越受的人们的重视。化学工程有着与其他工程不同的特点。下面是我为大家整理的化学工程应用 毕业 论文,供大家参考。

《 化学工程中计算流体力学应用分析 》

摘要:计算流体力学是以多种计算方程为基础,在多种化学反应设备中进行能量、质量和动量的综合计算,分析出不同守恒定律中,这些变量的主控形式和变化规律,从而优化工程设计和工艺设备,提高化学反应中正向变化的进行,提高热量交换和原材料的反应速率等。从化学工程经济效益的角度分析,有利于工程成本的节约,提升了经济回报。 文章 计算流体力学的基本原理进行分析,并 总结 了其砸你化学工程中搅拌、热交换、精馏塔和化学反应工程的具体应用。

关键词:计算流体力学;求解;基本原理;化学工程;应用

化学工程在我国具有较长的研究与应用历程,并在实际的生产与生活中取得到巨大的应用成效,不仅能够供给正常的生活需求,同时根据新材料的开发,能够满足现代型环保材料的使用。在化学工程中,较多的反映环境和反应机制都是在溶液中进行的,具有质量守恒和热量守恒定律的应用。而这种质量与能量的关系正是计算流体力学的主要原理。通过对实际应用环境和原理的分析,能够优化工程设计和工艺改进,提高化学工程的生产效率。

1计算流体力学在化学工程中的基本原理

计算流体力学简称CFD,是通过数值计算 方法 来求解化工中几何形状空间内的动量、热量、质量方程等流动主控方程,从而发现化工领域中各种流体的流动现象和规律,其主要以化学方程式中的动量守恒定律、能量守恒定律及质量守恒方程为基础。一般情况下,计算流体力学的数值计算方法主要包括数值差分法、数值有限元法及数值有限体积法,其也是一门多门学科交叉的科目,计算流体力学不仅要掌握流体力学的知识,也要掌握计算几何学和数值分析等学科知识,其涉及面广。

针对计算流体力学的真实模拟,其主要目的是对流体流动进行预测,以获得流体流动的信息,从而有效控制化工领域中的流体流动。随着信息技术的发展,市场上也出现了计算流体力学软件,其具有对流场进行分析、计算、预测的功能,计算流体力学软件操作简单,界面直观形象,有利于化学工程师对流体进行准确的计算。

2计算流体力学砸你化学工程中的实际应用

在搅拌中的应用分析

在搅拌的化学反应中,反映介质之间的流动性比较复杂,依据传统的计算形式根本无法解决,并在化学试剂在搅拌中存在不均匀扩散的特点,在湍流的形式中能量的分布状况也存在着空间特点。若是依据实验手段测得反映中物质、能量和质量的变化规律,其得出的结构往往存在较差时效性,实验差加大。

通过对二维计算流体力学的应用,能够对搅拌中流体的形式进行模拟,并进行质量、能量等数据的验证。但是流体的变化,不仅与化学试剂的浓度、减半速度有关,还与时间、容器的形状等有着之间的联系,需要建立三维空间模拟形式进行计算流行力学。随着科学技术和研究水平的提高,在通过借助多普勒激光测速仪后,已经对三维计算形式有了较大的突破,这对于化工工程中原料的有效应用和工程成本的减低具有促进的作用,但是在三维计算流体力学中还存在一定的缺陷,需要在今后的研究中不断的完善。

在化学工程换热器中的应用分析

换热器是化学工程中主要的应用设备,通过管式等换热器、板式换热器、冷却塔和再沸器等的应用,能够有效的控制化学试剂在反应中的温度变化。其中根据换热器的形式不同,计算流体力学的方式也就不同。在管式换热器中主要是通过流体湍流速度的改变,增加换热速率的。在板式换热器中是通过加大流体的接触面积,提高换热效率的。而在冷却塔和再沸器中,热量交换的形式更为复杂,但是却群在重复性换热的特点,增加了换热的时间,提高了换热的效果。从总体上分析,计算流量力学中,需要对温度变化、流体的速度变化、热交换面积变化和时间变化进行分析。通过CFD计算流体力学的应用,能够计算出不同设备的热交换效果,并根据生产的实际需求进行换热器的选择使用。

在精馏塔中的应用

CFD已成为研究精馏塔内气液两相流动和传质的重要工具,通过CFD模拟可获得塔内气液两相微观的流动状况。在板式塔板上的气液传质方面,Vi-tankar等应用低雷诺数的k-ε模型对鼓泡塔反应器的持液量和速度分布进行了模拟,在塔气相负荷、塔径、塔高和气液系统的参数大范围变化的情况下,模拟结果和现实的数据能够较好的吻合。

Vivek等以欧拉-欧拉方法为基础,充分考虑了塔壁对塔内流体的影响,用CFD商用软件FLUENT模拟计算了矩形鼓泡塔内气液相的分散性能,以及气泡数量、大小和气相速度之间的关系,取得了很好的效果。在填料塔方面,Petre等建立了一种用塔内典型微型单元(REU)的流体力学性质来预测整塔的流体力学性质的方法,对每一个单元用FLUENT进行了模拟计算,发现塔内的主要能量损失来自于填料内的流体喷溅和流体与塔壁之间的碰撞,且用此方法预测了整塔的压降。

Larachi等发现流体在REU的能量损失(包括流体在填料层与层之间碰撞、与填料壁的碰撞引起的能量损失等)以及流体返混现象是影响填料效率的主要因素,而它们都和填料的几何性质相关,因此用CFD模拟计算了单相流在几种形状不同的填料中流动产生的压降,为改进填料提供了理论依据。CFD模拟精馏塔内流体流动也存在一些不足,如CFD模拟规整填料塔内流体流动的结果与实验值还有一定的偏差。这是由于对于许多问题所应用的数学模型还不够精确,还需要加强流体力学的理论分析和实验研究。

在化学反应工程中的应用研究

在化学反应工程中,反应物和生成物的化学反应速率与反应器、温度和压力等有着较大的联系,在实际的反应中可以利用计算流体力学进行数据的获取。但是这数据的获取具有一定的温度限制,当反应中温度过大,就会造成分子的剧烈运动,其运动轨迹的变化规律就会异常,在利用计算流体力学的模型计算中,计算数据与实际情况会发生较大的偏差。由于高温中分子的运动轨迹和运动速度难以获取,在计算流体力学的实际计算中,就要借助FLUENT进行三维建型,并利用测速反应器进行速度的测量,通过综合的比较分析,利用限元法进行数据的计算。可以得出不同环境下的反应器的流线、反应器内部的浓度梯度及温度梯度。通过CFD软件预测反应器的速度、温度及压力场,可以更进一步理解化学反应工程中的聚合过程,详细、准确的数据可以优化化学反应中的操作参数。

3结束语

计算流体力学对于化学工程的应用具有实际意义,并在经济效益的提高上具有重要的价值,在近几年,化学工程技术人员不断的计算流体力学中展开研究,以二维空间计算和模拟为基础,不断的完善三维空间的流量计算,并得出了一系列的流体流动规律。根据计算流体力学在化学工程中的广泛应用,在今后的化学工程发展中,应加强此类学科的教学与延伸,提供出更有效的反应设备和工艺操作。

参考文献

[1]余金伟,冯晓锋.计算流体力学发展综述[J].现代制造技术与装备,2013(06).

[2]舒长青,王友欣.计算流体力学在化学工程中的应用[J].化工管理,2014(06).

《 能源化学工程专业化工热力学教学思考 》

[摘要]《化工热力学》是能源化学工程专业一门理论性和逻辑性较强的专业基础课,文章阐述了作者在《化工热力学》课程教学过程中如何提高学生对学习本课程兴趣的教学实践和教学体会。通过明确教学内容和教学主线,改变传统的单一的课堂教学,将课堂教学与学科动态及工程实践密切结合,激发学生学习兴趣,培养学生自主学习能力和工程意识,以满足培养能源化学工程领域领军人物的要求。

[关键词]化工热力学;能源化学工程;教学实践;教学体会

化工热力学是化工类学生的专业必修课程之一,主要讲述热力学定律在化学工程领域的应用,包括化工过程中各种形式的能量之间相互转换规律及过程趋近平衡的极限条件等。它是培养学生分析和解决实际化工问题思维方法的重要专业理论基础课[1-3]。然而该课程的课程内容抽象、计算繁琐,学生感到非常难学又缺乏实际应用,在课程学习过程中学生产生恐惧和厌学心理,达不到良好的教学效果,因此,我们对该课程的教学内容和 教学方法 进行一些改革和尝试,希望激发学生学习的兴趣,进而更好地掌握这门课程,为后续专业课程的学习夯实基础。

武汉大学2013年新开设的能源化学工程专业是由1958年原武汉水利电力学院开办的“电厂化学”专业发展而来,主要面向电力行业及高效洁净能源领域(包括超临界火电、核电、生物质能、氢能、新型化学电源等),培养掌握化学与化工基础理论及能源化学专业知识和技能的未来行业发展的领军人物。

目前,本专业主要有水处理、材料腐蚀与防护、化学监督与控制、能源化学四个主要研究方向。为了适应学校对新专业发展和一流学科建设的要求,2015年在本专业大三学生中新增设了《化工热力学》这门化工类专业的专业基础课程。如何调动学生的课堂积极性,培养学生的创新能力,夯实学生的专业基础,使他们在54学时的学习过程中理解并掌握本门课程的基本概念,并且将抽象的理论与实际的能源化学过程联系起来是本课程的核心教学任务。本文结合我校能源化学工程专业的培养目标,浅谈《化工热力学》的教学体会,着重对教学方式进行了探索和实践,为培养能源化学工程领域的领军人物奠定基础。

1明确教学内容与课程主线

结合我校《化工热力学》课程以工程应用为中心、专业研究方向覆盖面广等特点,我们选用了朱自强等编著、化学工业出版社出版的《化工热力学》作为教材[4],同时,也鼓励学生使用部分参考教材(《化工热力学》,冯新等编,2008;《化工热力学(第二版)》,陈钟秀等编,2000;《化工热力学导论(原著第七版)》,.史密斯等编,刘洪来等译,2007)[5-7]。化工热力学发展时间较长,已形成较完整的知识体系,如何在54学时内有效地把关键知识点教授给学生是本课程教学实践的关键。

由于本专业学生在大二《物理化学》课程中已经系统学习了理想气体相关的状态方程及其应用,因此在本课程教学中不再赘述,而是重点介绍工程实际应用较多的二参数状态方程、化工热力学分析、溶液热力学、流体相平衡和化学反应平衡等。在教学实践中,首先,详细分析《化工热力学》教材结构,围绕主线内容合理编排知识点;其次,建立好各知识点之间的逻辑关系,让学生在大脑中建立化工热力学框架图;最后,根据能源化学工程专业的需要,适当删减补充了教材内容,结合学科动态,增强化工热力学的应用能力,如燃料电池开路电压的计算、水/二氧化碳共电解制合成气过程中气体组成的计算等。

2改变单一课堂教学模式,培养学生自主学习能力

化工热力学课程设计的公式多而繁杂,学生在开始学习阶段容易产生恐惧厌学心理,传统的单一课堂教学模式具有“教师主导学生学习”的特点,与本课程“教师引导学生学习”的教学目的存在较大偏差。因此,应改变传统单一课堂讲授模式,充分采用“启发式”和“参与式”相结合的教学方法。

首先,教师在 课前预习 阶段设疑(提出问题),促使学生思考,复习旧知识,预习新知识;其次,教师在教学实践过程中采用多媒体和板书相结合的教学方式解疑(解决问题),并通过对例题和习题的讲解加深学生对化工热力学原理、方法和应用的理解,同时,教学过程中应避免陷于抽象的说教和枯燥的公式推导之中,重点讲述化工热力学知识点的应用条件和物理意义;最后,课堂教学结束后,教师主动与学生面对面交流答疑(探讨问题),并设置思考题让学生查阅相关资料。通过“设疑—解疑—答疑”的渐进式教学方法达到对关键知识点举一反三的目的,同时,吸引学生注意力,培养学生自主学习能力,提高学生学习的积极性和主动性。

3课堂教学与工程实践密切结合,培养学生初步的工程观点

化工热力学由于理论性较强、基本概念多且抽象,而且本科生在学习过程中接触科研课题及工程实践的机会较少,将课堂教学内容与科研课题及工程实践紧密结合起来,建立“以应用为中心”、“探究式”的特色教学模式,紧密联系我校在能源化学工程领域(特别是超临界火电、核电、生物质能、氢能、新型化学电源等方面)开发利用的化学工程实际问题,把学科前沿领域的科研成果带入课堂,可以使他们强化科研思想、激发听课兴趣、培养创新能力;同时,可以让学生获取利用化工热力学基本原理解决工程实际问题提供思路和方法,培养学生初步的工程观点。

4考核方式方法研究

传统的期末一张考卷为准的考试方式不利于学生能力的培养,也不能全面地体现学生对所学知识的掌握程度,为了更加系统全面地评价学生对课程内容的认识情况,我们对课程的考核方式方法进行了改革探索。目前,课程成绩总评包括平时成绩和期末成绩两部分,其中平时成绩包括学生的课堂综合表现、课程预习、作业三个部分,各占10%;期末考试采用开卷方式考试,考试的题目偏重于对知识点的理解和其在能源化学过程中的应用。然而由于该课程的课程内容抽象、计算繁琐,教学过程中发现仍有部分学生存在畏惧厌学心理,因此,在今后的教学实践中应考虑进一步激发学生的学习兴趣,增强学生的主观能动性,在课堂教学中引入分组讨论,开展导向性的专题研究,将课程内容与能源化学过程(特别是学科动态)相结合,培养学生查阅资料和分工协作的能力,为学生下一步学习专业课程夯实基础。

5结束语

在《化工热力学》课程的教学实践和尝试中,首先要明确教学内容与主线,打破单一的学生被动听讲的模式,理论联系实际应用,调动学生学习的积极性和主动性,激发学生对教学内容的兴趣,并且在教学的过程中对教学方法进行改革创新,因材施教,为学生下一步学习更专业的能源化学工程知识和从事新能源行业工作奠定扎实的基础。

参考文献

[1]陆小华,冯新,吉远辉,等.迎接化工热力学的第二个春天[J].化工高等 教育 ,2008,3:19-21.

[2]梁浩,刘惠茹,王春花.《化工热力学》教学实践与尝试[J].广东化工,2010,37(1):157-158.

[3]李兴扬,唐定兴,沈凤翠,等.化工热力学教学改革与体验[J].化工高等教育,2011,3:71-73.

[4]朱自强,吴有庭.化工热力学(第三版)[M].北京:化学工业出版社,2009.

[5]冯新,宣爱国,周彩荣,等.化工热力学[M].北京:化学工业出版社,2008.

[6]陈钟秀,顾飞燕,胡望明.化工热力学(第二版)[M].北京:化学工业出版社,2000.

[7]史密斯JM,范内斯HC,阿博特MM,等编;刘洪来,陆小华,陈新志,等译.化工热力学导论(原著第七版)(IntroductiontoChemicalEngineeringThermodynamics,SevenEdition).北京:化学工业出版社,2007.

有关化学工程应用毕业论文推荐:

1. 化学工程毕业论文

2. 化学毕业论文精选范文

3. 化工毕业论文范文大全

4. 化学毕业论文范例

5. 化学毕业论文范文

6. 化工毕业设计论文范文

我有几篇。。。。可以给你参考

关于减压论文范文资料

护士由于紧张忙碌、高压力、高风险的工作性质及要面对和处理各种复杂的人际关系,都会导致心理压力的产生,处于持续高压状态下的个体容易出现生理、心理方面的健康问题。下面是我为大家整理的护理心理压力论文,供大家参考。

护理心理压力论文 范文 一:人性化医院护理对护士心理压力的影响

选取我院的340名护士为研究对象,将其随机分为观察组和对照组,每组各170名,对照组护士采用常规护理管理,观察组护士在常规护理管理的基础上增加人性化护理管理。对医院的人性化护理管理对降低护士心理压力、提高护理满意度的作用进行探讨,获得较好的临床效果,具体如下。

1资料与 方法

一般资料

选取我院的340名护士为研究对象,将其随机分为观察组和对照组,各170名,所有研究对象均为女性。其中,对照组年龄18~46岁,平均(±)岁;本科学历的护士有35名,大专学历的护士有110名,中专学历的护士有25名;30名护士,110名护师,30名主管护师。观察组中,年龄(18~48)岁,平均(±)岁;本科学历的护士30名,大专学历的护士120名,中专学历的护士20名;45名护士,110名护师,25名主管护师。两组护理人员在年龄、学历、职称等方面比较,差异均无统计学意义(P>),具有可比性。

方法

对照组采用常规管理;观察组在常规管理的基础之上增加人性化护理管理,具体方法如下。

积极为护理人员营造人性化的工作环境医院要对护理人员的工作环境,如病房和休息室,进行改造,适度的调整病房和休息室的布局和色调,既让护士在工作和休息时可以保持心情舒畅,又能够增加患者对医院的亲和力。此外,还要制定并严格执行详细的卫生清洁制度,对工作区和休息区进行定期的清扫,保持良好的卫生清洁习惯。工作区内的物品摆放要有规有矩,进行定点摆放。在护士工作区和医院的走廊里悬挂一些小饰物,在墙上张贴一些艺术作品,使护士的工作环境更加温馨,护士工作起来也会更加舒心。

医院的管理人员要经常与护理人员进行沟通和交流对不同阶层、不同科室的护理人员的心理状态和心理变化进行及时的了解。管理人员到基层去了解大部分护理人员的实际需求,并尽量采取 措施 去满足其合理需求。此外,医院的相关管理人员还对护理人员的家庭状况进行及时的了解,帮助护理人员解决家庭中存在的经济或是其他困难,给予护理人员心理上的安慰,积极帮助他们走出困境。与此同时,定期将护理人员组织起来,开展讨论会,护理人员在会上提出自己对科室发展的意见和建议,医院的管理人员认真听取,并将可行性意见和建议投入到具体实施中。

医院还为护理人员提供了深造的机会将表现优秀的护理人员定期送至大型的综合性的医院进修和深造,组织专业的、 经验 丰富的高级职称护理人员进行定期的授课培训,邀请外院专家到院内开展讲座,以提高护理人员的专业素质和护理水平。此外,为护理人员进行 职业规划 提供有效的信息、时间和人力上的保障,将医院对护理人员职称评定办法下发给各护理人员,为其提供正确的努力方向,激发其工作热情和积极性。

医院对护理人员加强自我保护意识进行宣传将“安全第一”的原则深深印在护理人员的心里。让护理人员在工作的过程中加强自我保护,学习正确对待医患矛盾的处理办法,保证医患关系的和谐。医院要求护理人员要与患者进行及时的沟通,了解患者的实际需求,并尽量满足患者的合理需求。护理人员在于患者沟通的过程中,要多理解、多开导、多信任、多尊重,提高患者对护理人员的满意度。护理人员还定期接受心理学知识的培训,并进行自我心理压力的疏导,提高自身的心理抗压能力,保证护理人员的身心健康。同时,医院内要成立了帮助护理人员解决突发状况的应急小组,为护理人员的工作提供强有力的支撑。

评价指标

对对照组和观察组护理人员进行问卷调查,问卷调查的内容包括:测试护理人员的心理压力,满分为50分,测试人员所得的分数越高,说明其心理压力越大;测试两组护理人员护理的患者满意度。患者满意度=(非常满意+满意)/总例数×100%。

统计学方法

采用软件进行数据处理,计量资料以xs表示,采用t检验,计数资料用百分比表示,采用χ2检验,P<为差异具有统计学意义

2结果

两组护理人员实施管理前后的心理压力状况比较

实施管理后的观察组护士的心理压力评分明显低于对照组护士的心理压力评分,差异具有统计学意义(P<)。

观察组实施管理前后的患者对护理的满意度比较

实施管理后的观察组护士护理的患者对护理工作的满意度为要明显高于实施人性化管理之前的,差异具有统计学意义(P<)。

3讨论

造成护理人员心理压力大的原因、影响

造成护理人员心理压力大的原因随着医疗事业的不断发展,人们对护理工作的要求越来越高,造成护士需要承受更大的身体和心理压力。根据相关文献的调查研究,对造成护理人员心理压力大的原因进行分析 总结 ,主要体现在以下几方面:

(1)护士的工作环境过于杂乱和喧闹,其日常工作繁琐,既要配合医生的工作又要对患者进行护理,工作强度大,导致护士的心理长期处于紧张之中,每天的工作使其身体和心理都非常劳累,心理上的压力逐日堆积,对护士的心理健康产生了不良的影响。

(2)护士每日的工作量和任务量大,在一定程度上减少了护士与患者的交流时间,有时护理工作做得不细心、没有耐心。有些患者不能理解护士的工作态度,易产生误解甚至是冲突,激化了医患矛盾。

(3)有些护士的专业水平相对较低,对护理专业的基础知识、基础理论上有欠缺,缺乏护理经验。护士在工作中不能有效的解决遇到的各式各样的问题,增加了护士的心理压力。第四,来自团队中的压力,以及在实现个人价值的道路上困难重重,护士的心理压力就越来越大。

压力对护士个人及整个团队的影响一方面,压力对护士个人产生了很大的影响。在工作方面,长期的繁重的工作量和任务量使护士身心俱疲,再加上不能得到及时有效的心理疏导,导致很多护士出现焦虑、抑郁、烦躁的不良情绪,这些不良情绪直接影响护士在工作中的工作态度、工作质量和工作效率。在个人的认知方面,护士逐渐缺少了对自己的工作的肯定和认可,失去信心,产生了懒惰性和依赖性,工作不主动,缺乏创新意识。在身体状况方面,常会出现失眠、头痛、营养不均衡等现象。另一方面,压力对护理团队产生了很大的影响。护士个人的工作效率低下,人员的 离职 率高,导致护理队伍不牢固,造成护理质量的整体质量下降。

医院对护士实施人性化管理的重要性

人性化管理是指在科学管理的基础上,将人作为管理的中心,这种管理方式的本质和目的就是激励人的积极性,将其创造性发挥到最大限度。医院对护士实施人性化管理的目的就是让护士站在主体地位上,充分发挥其主体作用和主观能动性。对护士实施人性化的管理不仅可以及时解决护士自身在身体和心理上存在的问题,还可以帮助护士实现其自身价值和职业规划,将其积极性和主动性充分的调动起来。此外,医院为护士营造宣泄压力的环境和场所,在医院领导与医护人员之间建立沟通的桥梁,增加了护士的心理抗压能力,对工作和生活中的困难都能应对自如。从本研究中可以看出,实施管理后的观察组护士的心理压力评分明显低于实施管理后对照组护士的心理压力评分;实施管理后的观察组护士护理的患者对护理工作的满意度要高于实施管理之前的满意度。综上所述,医院对护士进行人性化的护理管理可以有效降低护士心理压力,提高患者的护理满意度。

护理心理压力论文范文二:护士心理压力状态及化解路径

心血管疾病是临床多发病及常见病,病情重、责任大、抢救多及高死亡率,使心血管内科病房的护理工作中的护理人员易紧张疲劳而心理压力最大。而长期高强度的工作压力会使护士产生工作疲惫感,影响护理工作的质量[1]。本文回顾性分析我院心血管内科护理人员的心理压力情况,现汇报分析如下。

1资料与方法

一般资料

分析本院心血管内科护理人员40例,年龄22-55岁,平均年龄(±)岁;护龄1年~24年,平均护龄(±)年;其中本科6人,大专12人,中专学历22人;主管护师4人,护师15人,护士21人;同时选取其他科室护理人员40例,年龄~53岁,平均年龄(±)岁;护龄1年~22年,平均护龄(±)年;其中本科7人,大专14人,中专学历19人;主管护师5人,护师13人,护士22人。对其进行自行设计调查问卷进行调查。

方法

自行设计调查问卷,问卷内容以心血管护理工作相关的心理层面的相关问题为主,评价心血管内科护理人员的心理特点、产生心理压力的原因。将40例心血管内科护理人员设置为观察组,40例其他科室护理人员设为对照组。比较两组焦虑、抑郁症等心理状态。

疗效评定方法

评定项目:所有患者采用汉密顿焦虑自评量表(SAS)及抑郁自评量表(SDS)评定患者护理前后的心理状态评定焦虑、抑郁评分及汉密顿生活满意评分。

统计学处理

使用软件进行统计分析,计量资料符合正态分布以均数±标准差(x±s)表示,组间均数比较采用成组设计的t检验,以P<为差异有统计学意义。

2结果

观察组在抑郁评分、焦虑评分与汉密顿生活满意评分方面,均显著高于对照组,在统计学上具有显著性意义(P<)。

3讨论

引发心血管内科护理人员心理压力的原因分析

工作量大

心血管科收治的患者多数病情较重,生活自理能力较差,且多为中老年患者,反应迟钝,不能较好地配合医护人员进行正常的疾病救治。同时心血管内科患者病情较重,护理人员需要做的护理工作要求较高,需要应用和维护保养较多的仪器,如微量泵及多个心电监护仪等,护理工作繁琐、劳累,还常需值夜班,在遇到紧急事件时,需随时到岗,护理工作可控制性和可预测性程度低[2]。故心血管内科护理人员长期处于超负荷的脑力和体力压力下。

紧张的工作环境

心内科患者病情危重复杂、预后不良易引发突发呼吸、心跳骤停,工作环境极其紧张;同时患者及其家属因病痛折磨,易对护理人员脾气暴躁,无理指责。加上患者危急、濒死、昏迷、死亡现象的刺激,患者痛苦叫喊声,家属的哭叫与抱怨等。以及各种仪器如监护仪、呼吸机、吸痰器、除颤仪等的报警声,均导致工作环境十分紧张,易导致护理人员心理紧张,伴发紧张、焦虑等不良情绪。研究报道,职业紧张影响情感状态,智力活动以至于发生情绪障碍[3]。护理人员得不到理解、感到威胁或感情受到伤害,使护士陷入精神困境[4]。

高风险压力

心血管内科的护理存在一定的潜在风险,如心内科患者的病情复杂,稳定性差,变化较大,常合并并发症。而患者及其家属常会对治疗有较高地期待,对于病情的反复、恶化、复发不能够接受,将责任归咎于医务工作者身上,对治疗护理产生不信任,导致纠纷。这种风险使得护理人员的压力明显增加。同时一些患者不遵守医院的 规章制度 ,导致护理人员受到上级的批评,均会加大心血管内科护理人员的心理压力。

应对措施

和谐工作环境的建立

首先要加强医患沟通,要患者入院初期,即需要护理人员向患者及其家属介绍患者的相关病情,介绍相关的治疗方案、效果预测以及可能出现的并发症。同时介绍医院的规章制度,阐明按章操作的必要性,以确保护理工作的实效性。与患者建立和谐有效地沟通方式,对于有语言障碍的患者,可以通过沟通卡、图片的方式进行沟通,使得医患关系和谐,从而可以减轻护理人员的心理压力。

自我心理压力调整

完全没有压力的工作环境是不存在的,作为心血管内科的护理人员,应充分意识到工作中的压力,积极应对压力所造成的不良影响,学会自我放松的技巧,积极参加各种活动,加强与人的沟通,遇到问题时积极与领导和同事沟通,排遣心中的压力,必要时寻求心理医生的帮助,培养积极的工作生活态度,调节情绪,放松精神,以形成愉快的心理气氛。以提高个人对心理压力的应对能力。

减轻工作强度

护理人员出现压力较大的主要原因之一,即为工作强度较大,此时应配置足够的护理人力。工作强度大则导致心理压力超负荷、身心疲惫,增加护理人员的心理压力。医院管理层要尽量保障护士与患者的比例,减轻护士的工作压力。

提高了学习能力和团队协作能力

医院管理层也要加大护理人员的培训,使其具备较高的职业素质,得心应手地应对工作。学习护理科学知识和伦理知识,提高自身的基本素质,并转化为观察问题和处理问题的能力[5]。同时定期对护理人员进行心理疏导。加强团队协作,互相交流,互相沟通,共同面对工作中的各种困难。形成了快乐工作、快乐学习的良好氛围。

总之心血管内科护理人员的工作强度大,工作环境紧张,内容繁杂、工作风险较大,护理人员易出现较大的心理压力。适当的压力可刺激工作和学习的热情,但过度的压力可导致机体平衡失调,引起疾病甚至护理人才的流失[6],也关系到护理质量、患者的满意度、护理人员的留职意愿[7]。而这种心理压力也会进一步加深医患之间的矛盾,影响护理人员的日常工作,通过护理人员的努力来促进内外部环境的和谐;加强培训力度,以及护理人员的数目,同时护理人员要学会自我调解,以多种手段来缓解职业压力,是解决内科护理人员压力的关键。

护理心理压力论文相关 文章 :

1. 心理护理论文综述范文

2. 心理护理论文范文

3. icu病人的心理护理论文

4. 关于护理心理学论文

5. 病人心理护理论文

6. 浅谈icu病人的心理护理论文

莎士比亚以前说过:“压力是一柄双刃剑。”正确地对待压力,能够使人进步,反之,它则会成为你失败的根源。下面是我为大家精心整理的文章,希望对大家有所帮助。

【篇一】

“有压力是因为有动力。” “学习中需要动力,因动力才有压力。面对即将来临的期末考,我要以怎样的心态去迎接呢?心乱即形成压力、紧张、怯场的心理;镇定,则心静、思想清醒。但是,初三的同学不也是那么想吗?我面对的是初一的期末考,而他们可要面对的是中考呀!多么严峻的考验啊!可想而知,他们的压力并不比我小。他们坚持每天练习,复习、上学、补习。这样的大无畏精神,不值得我们去学习吗? 今天上补习班时,初三的同学也同样在与中考搏斗,拼命熬到最后一刻,所谓“养兵千日,用在一时”,他们所花的时间,精力全部都是为了那一刻,全城轰动的一刻。在此,不得不为我的师兄师姐们而感到佩服了,同时,也为我们辛勤的园丁们说声:“谢谢你们!” 现在的我们,只会叹息着日子的辛酸,根本就不会明白“拼命的含义,有人会因为玩游戏机时”拼命“,有人会对上课的烦闷而”拼命“,有人会因作业的问题而”拼命“但又有没有想过,在你拼命的那一刻,是以怎样的心态和怎样的事而”拼命“呢? 日子的消逝,意味着我们的未来,以前——现在——以后——将来。我们的日子又会是怎样呢? 没有动力去学习的人,未来的路一定很辛酸;现在分秒必争地学习的人,将来必定有所作为。我们向往这什么?向往着未来的理想:理想的中学、理想的大学、理想的工作、理想的生活。 为何不现在去努力呢?日子还来的及,只要抱着信念,想蓝蓝的天空高呼出我们的理想吧!放飞梦想,把理想转变成现实,我们一定做得到的。 没有压力,又怎可给我们记住自己得理想呢? 为自己定目便,向着目标而前进,时刻推动我走向理想的家园,自己为自己鼓掌、为自己喝彩,给自己一个肯定的眼神,相信自己的能力。 从这一刻开始,不与坏习惯打交道,要与学习做好朋友。 我相信自己的动力!

【篇二】

压力就是这样,过多过少都不适宜。多,会使你精神紧张;少,则颓废学业,不进则退。压力是急促清脆的闹钟声,令你从熟睡中惊醒,一阵茫然;压力又是一条布满尖刺的长鞭,鞭策着你继续前进。正如“水能载舟,亦能覆舟”,压力也是如此。至于什么时候该放下,只能靠你自己慢慢掌握压力的大小,取得前进的方向。古人所叙述的也只有压力的利与弊,掌握的方法还是要靠自己来慢慢探索。而我们的任务这是去把压力转化为动力去支持我们,支持我们去前进。一名培训师在课堂上拿起一杯水,说:“这杯水的重量并不重要,重要的是你能那多久?拿一分钟,谁都能够;拿一个小时,可能觉得手酸;拿一天,可能就得进医院了。其实这杯水的重量是一样的。但是,你拿得越久,就越觉的沉重。这就像我们承担的压力一样。如果,我们一直把压力放在身上,不管时间的长短,到最后就觉得压力越来越沉重以致无法承担。我们必须做的是放下这杯水,休息一下后再拿起这杯水,如此我们才能拿得更久……”压力使人挖掘自己的潜力,迸发出最大的力量。曾有一则故事,它让我回味了好久好久:一只狼追一只兔子,想让兔子成为它的午餐,可最终狼没有追到,让兔子给跑了。一只豹笑话它道:“笨蛋,你竟然跑不过一只小兔子。”可狼却平静地说:“我只不过仅仅为了一顿饭而奔跑,可兔子却是为了它的性命啊!”毕竟,一只空木桶是很容易被风吹倒的,可是你把它加几舀水,它就不容易被风吹倒了。其实我们就是一只木桶,水就象生活中的压力,我们若是没有压力就没有动力,虽然这些压力有时候会让我们烦恼,但是可以不让我们被生活中的风浪打翻,就像没有高压,石油也不会自己就冒出来。这个世界早已教会我们去感恩父母、感恩老师、感恩社会、感恩自然,因为他们对我们贡献太大。然而,有没有人想过,如果没有了压力,哪来的动力?没有了动力,这个世界将怎样发展下去?面对压力,我们不要悲观,反而应乐观的面对它,也不要拒绝压力,让压力这块磨刀石把你的刀锋磨得更加锋利!

【篇三】

生活处处存在着压力,有时,压力犹如泰山压顶,使我们不堪重负,甚至被压垮。但没有压力就没有动力,机遇与挑战并存,压力与动力共生。莎士比亚以前说过:“压力是一柄双刃剑。”正确地对待压力,能够使人进步,反之,它则会成为你失败的根源。她,倒在压力下原指南针乐队的女主唱罗琦可谓20世纪90年代流行乐队的风云人物之一。但由于与人发生摩擦,罗琦被刺瞎左眼后,为了排解心中压力,她开始吸毒。之后她被娱乐圈公开暴光以后,便远赴德国音信皆无了。我认为,最大的压力来自于自我。要学会应对压力,首先要认识到适度的压力是生活所必需的。研究压力对人类身心影响最有名的加拿大医学教授赛勒博士曾说:“压力是人生的燃料。”他提醒我们,不要以为压力只有不良影响,而应转换认知情绪,多去开发压力的有利因素。对生活的热爱,对命运的豁达态度,对完美明天的乐观,就应是我们每个人心头必备的一把伞。直面生活的风雨,才能走出风雨。只要自我的心不被风雨淋湿,我们总能找到一片属于自我的丽日蓝天。 他,在压力下成为了大力士在美国,有这么件事儿。一个孩子在事故中被一辆小卡车压在水沟里,眼看要不行了。孩子的父亲赶来,跳进沟中,居然把小卡车抬到了必须的高度,孩子获救了!但事后,他再也抬不起那辆小卡车了。我想,这正是因为救子心切的强大压力激发了他的无穷潜力,使他的力气超出了往常。这验证了爱默生的一句名言??奇迹往往是在压力中产生的。当孩子的父亲看到孩子在死亡的边缘上时,心中只有一个念头:“无论如何,必须要把孩子救上来,必须!”作为父亲的他,压力与职责并存,他甚至来不及思考自我是否能够搬得起这辆小卡车。这种“必须要救出孩子”的信念与无形的压力使他不顾一切,释放出了前所未有的力量。用辨证的观点来看,事物有坏的一面,也就必须有好的一面。压力也是如此。这正是“双刃剑”的另外一面。人们不是常说“井无压力不喷油,人无压力轻飘飘”吗?又要它没能杀死你,就会使你更强大! 他们,在压力下失手在奥运会上,不少名将因为压力太大而失手,而黑马却不时杀出。为什么他们会有压力?因为他们把自我定位在一个“名将”的位置上,认为自我拿了几块金牌,这次也就必须要再拿一块。因此,他们就背上了沉重的思想包袱,所以发挥得比较保守,顾虑也太多了。而“黑马”们却把自我的定位在一个挑战者的位置上:如果我输了,没有什么,你是名将,各方面都比我强,理所应当;如果我赢了,当然更好,说明我有夺冠的这个实力。因而“黑马”们便能够发挥出自我的正常水平,甚至超常。这又应了一句老话,“攻城容易守城难”。其实,应对压力主要是自我定位问题。若是“名将”们把这次比赛看作是一个与其他选手们交流的平台,以一颗平常心来应对,把自我定位在一个较低的位置上,也就有了更大的发挥空间。在这次的雅典奥运会上,李婷婷她们这支网球队伍不正是因为自我定位好而取得了最后的胜利吗?人最大的敌人是自我,只要战胜了自身压力,那么,其他一切外界压力也就不值得一谈了。学会自我减压,才能正常发挥。压力无法逃避,压力是人生的燃料,化压力为动力,迎战压力,让压力来得更猛烈些吧!

胃肠外科患者病情复杂多变,常需放置多种管道以方便临床病情观察和治疗,因此,管道护理在胃肠外科护理工作中显得尤其重要。下面是我为大家整理的胃肠外科护理论文,供大家参考。

摘要:优质护理服务是以患者为中心,强化基础护理,全面落实护理责任制,深化护理专业内涵,整体提升护理服务水平。本文对胃肠外科的优质护理服务进行了探讨。选取了我院在2013年4月~2014年2月期间接收的50例胃肠患者为研究对象,将其随机分成两组,每组25人,一组为优质护理组,另一组为一般护理组,最后将两组所得护理结果进行对比。结果表明,优质护理服务组比一般护理组的效果显著。

关键词:胃肠外科;优质护理;分层管理;基础护理;技术革新

胃肠疾病是比较常见的疾病类型,胃肠外科手术会对患者造成很大创伤,不仅给患者带来较大的身体痛苦和经济压力,在长时间的恢复过程也给患者造成巨大的精神压力。所以优质临床护理,既可以帮助缩短患者康复的时间,又可以减轻其身体上的痛苦,帮其消除理顾虑,进而提高患者的治愈率[1]。

1 资料与 方法

一般资料 在50例研究对象中,年龄为22~50岁,平均年龄在(±)岁,其中有32例为男性患者,18例为女性患者。胃肠疾病类型主要包括:直肠癌、胃部肿瘤、胃穿孔、十二指肠穿孔等,均采取相应的手术治疗方法,优质护理服务小组采用优质护理服务,一般护理服务小组采用一般护理服务。

方法

加强分层管理与培训 随着我院责任护理模式的改进,护理 规章制度 也得到进一步完善。近来分层管理模式正为医院各部门广泛关注和运用,使医院的管理水平有了很大的提高,同时也为护理服务的优化提供了条件。因此,医院应加强分层管理与培训[2]。首先要使每个岗位的工作人员明确自身的职责和具体的服务内容;重新建立分层培训管理机制,结合护理人员的能力和级别的不同对其培训目标、内容和计划做适当的安排,严格把关,确保培训工作能顺利完成并达到预期的效果。同时还要建立健全相关的绩效考核制度,对护理人员的工作表现进行定时的检查、考核和评估,对表现突出的护理人员给予适当的表彰和奖励,对有欠缺的工作人员进行批评指正,调动护理人员的积极性,进而提高护理质量。

加强基础护理 基础护理主要包括为患者提供的最基本的护理服务如舒适的休息环境、严格卫生的治疗器械、与患者适当的沟通等等。对于入住到医院的胃肠患者,首先要为其提供一个安静、舒适、卫生的病房,向其宣传和普及护理知识以得到患者的良好配合;在患者的床边,尤其是刚刚做完手术的患者,建立流动式的护理工作站,加强护理流动车的巡逻检查工作,可以使护理人员的工作效率得到有效提高;在原来的基础上增加多个流动输液架,方便手术后的患者早期的下床活动;护理人员要与患者进行定期的沟通和交流,帮其缓解心理上的顾虑,帮助患者及其家属建立信心,促使其能够积极配合治疗等等。

加强技术革新 由于胃肠疾病和容易导致患者及其周围的人产生不良情绪,因此,加强胃肠护理技术的革新是十分必要的[3]。如对于结肠癌患者来说,手术后使用的人工肛门会给其带来严重的身体上和心理上的不适,粪便很容易污染到造口周围的皮肤,发出异味,并容易产生由于感染导致的并发症。此外,由于恶劣的气味和不忍直视的画面,让患者很容易产生自卑、抑郁的情绪,害怕被家人和朋友嫌弃、厌恶,有些患者还对癌症和死亡有一定的恐惧心理。因此,护理人员要掌握良好、完善的护理技术,并加强及时更新,利用先进的护理技术尽量为患者建立一个良好的治疗环境,减少患者的消极情绪,帮助患者保持良好的状态,以增大痊愈的速度。

2 结果

在优质护理服务小组中,有18例患者取得显著效果,5例患者效果较明显,2例患者的效果一般;在一般护理服务小组中,有8例患者的效果显著,12例患者效果较明显,5例患者得到的护理效果一般。可以看出,优质护理服务组比一般护理组的效果显著。

3 讨论

笔者认为,优质护理服务作为新型的护理模式,具有明显的整体性特点。平等对待健康人、残疾人和疾病患者,将其作为一个整体进行服务;将护理、生理和心理护理的服务内容作为一个整体;把护理服务的科研、管理、对策、环境和效果作为一个整体;将治疗前、治疗时、治疗后的护理服务作为一个时间上的整体。

在我院肠胃外科实行的优质护理服务,不仅使患者的医疗环境得到了大程度的改善,硬件设施的舒适度也有所增强。临床护理需要对患者的身体和心理健康进行同时的促进与维护。除了要帮助患者消除身体上的痛苦外,还要对其进行心理、精神上的安抚,在条件允许的情况下满足其社会需要,同时通过与家属进行良好的沟通,争取获得患者家属的积极配合和支持[4]。

本次调查研究是严格按照优质护理的服务计划进行的,并根据医院的医疗条件和患者的实际病情细化工作环节、优化服务流程、加强护理技术的革新,使护理质量得到很大的提高,同时提高了患者及其及其家属的满意率。

4 结语

在本次胃肠外科优质护理服务的落实过程当中,笔者获益匪浅,得到深刻的认识。胃肠外科疾病的治疗和护理都是相对复杂的,无论在技术上还是素质上都对医护人员提出了很高的要求。因此,为了使优质护理服务达良好的效果,护理人员要在掌握最新护理技术和专业知识的基础上对患者进行适当的心理治疗,帮助患者克服恐惧心理和不良情绪,及时与家属进行沟通已获得良好配合。医护人员的优质护理服务,加上患者及其家属的良好配合,一定可以帮助患者早日康复,恢复正常生活。

参考文献:

[1]骆菊英,朱慧琴,罗庆玲.优质护理在胃肠外科的应用体会[J].求医问药(下半月),2012,06:419.

[2]严娜萍,任品芬,王品楠.优质护理服务在胃肠外科的应用[J].护理实践与研究,2012,16:77-78.

[3]陈敏.优质护理服务在胃肠外科的应用效果探析[J].中国医药指南,2013,29:224-225.

[4]王红.实施优质护理服务减少护患纠纷[J].中医药管理杂志,2013,10:1127-1128.

【关键词】外科;胃肠减压

【中图分类号】R473 【文献标识码】A 【 文章 编号】1004―7484(2013)10―0254―01

护理胃肠减压是临床常用的基础护理操作技术,更是普外科患者非常重要的诊疗 措施 ,在普外科应用极为广泛。胃肠减压是利用负压吸引装置,通过胃管将积聚于胃肠道内的气体和液体吸出,降低胃肠道内压力和张力,改善胃肠壁血液循环,有利于炎症的局限,促进胃肠功能恢复的一种治疗措施。现将护理体会介绍如下。

1 床资料和方法

一般资料我科自2013年3月至2013年8月共进行胃肠减压术65例,其中男51例,女14例,年龄17―80岁,平均58岁。肠梗阻40例,胃癌5例,胰腺炎12例,胆石症8例。

胃肠减压方法先将患者充分准备后,选择质量好,刺激小,型号适宜的胃管,用液体石蜡油充分润滑全管后,将胃管从一侧鼻腔轻轻地、均匀地插入患者的胃内,边插边瞩其吞咽,同时耐心地告之不要紧张,要放松。待插入所需长度确定在胃内后,妥善固定。

2 护理

置管前 普外科患者均为清醒患者,所以宣教工作至关重要。

向患者说明胃肠减压的重要性

说明置管过程中不适,让患者有充分的心理准备。

告知患者如何配合及配合的重要性。

置管中

充分润滑胃管:润滑的长度为需要的插入的长度。插管中,病人若出现恶心,应暂停片刻,嘱做深呼吸或吞咽动作,随后迅速将胃管插入,以减轻不适。插入不畅时,应检查胃管是否盘在口中,插管过程中,如发现呛咳、呼吸困难、紫绀等情�,提示误入气管,应立即拔出,休息片刻后重插。对清醒病人插管,由于患者恐慌,加之疾病带来的痛苦,有时不�与医务人员配合,所以成功率可能会降低。根据我科临床可采取口含温开水或石蜡油使患者唾液分泌增多,促进吞咽动作,有时也可坐起插管。插管时先将胃管与鼻孔平行插入2cm后改呈60°角,继续插入至鼻咽部,约插入15cm后将患者头部托起,使其下颌紧贴胸壁,以增加咽喉部弧度,使胃管顺利通过咽喉部进入食管。此时嘱患者边吞咽边将胃管缓缓插至所需长度后固定。

检查胃管是否通畅的方法:

用注射器抽吸有胃液抽出;

将胃管末端置盛水的杯中无气体逸出,如有大量气体逸出,表明误入气管;

用注射器从胃管注入10mL空气,同时用听诊器能在胃部听到气过水音。然后,用注射器抽尽胃内容物,以胶布固定在鼻尖部,接上胃肠减压器。

胃管固定方法:传统的固定方法因受出汗、胃管重力影响,固定的胶布�脱落,经改良后的胶布固定法克服了以上缺点,大大减少了胃管因固定不当而脱出的机率。方法是首先将固定处管周的石蜡油和病人鼻梁上的油渍用纱布擦净,用3m贴剪成碟翼状备用,将剪好的胶布头部固定于鼻梁上,胶布两翼分别缠绕于胃管上,一般每日更换一次,汗液分泌物浸湿胶布后应及时更换。

观察引流物的颜色、性质和量,并记录24小时引流总量。观察胃液颜色,判断有无出血情况,如有鲜红色液体引出,说明有出血,应停止胃肠减压,及时通知医生。观察胃液的量,判断吸出量是否过多而影响水电解质平衡。应合理安排输液的顺序及速度,若出现电解质紊乱现象,应与医生联系,及时纠正。

基础护理在置管期问,随时评估病人口腔黏膜的损伤、溃疡、感染及咽部不适情况作好口腔护理,每日早晚各一次;定时清洁鼻腔;长期使用胃管病人,应每周更换胃管一次改变胃管置人部位,避免胃管压迫鼻腔黏膜或软骨,引起鼻孔黏膜溃疡或坏死。加强呼吸道理保持适宜的病室温湿度,一般温度为18―20度,湿度为5O一70%,经常协助病人拍背咳嗽、做深呼吸、及时清除呼吸道分泌物,保持呼吸道通畅,减少呼吸道感染[3]。

拔管的护理肠蠕动恢复,肛门有排气,无腹胀,肠鸣音恢复后可拔除胃管。拔胃时,先将吸引装置与胃管分离,捏紧胃管末端,嘱病人屏气,先缓慢往外牵拉,当胃管前端近咽喉部时,迅速将胃管拔出,以减少刺激。拔出胃管后,妥善处理胃肠减压装置。

3 胃肠减压管脱出的原因:留置胃管是普外科术后各种引流管中最不适的引流管。

对于神志清楚的部分患者由于对鼻胃管的重要性认识不足,再加之承受着病痛和疾病带来的心理冲击,不能耐受鼻胃管所带来的咽痛等不适,情绪急躁将胃管强行拔出。

护理:①加强心理护理:向患者说明留置胃管的重要性及应有的不适,稳定患者的情绪。留置胃管期间,保持口腔清洁卫生,同时给予雾化吸入每日2次,既可稀释痰液帮助咳出,又可湿润温暖咽喉部,减轻疼痛,预防咽喉炎的发生。②留置胃管期间,向鼻孔处滴石蜡油,每日1次。减小胃管与鼻黏膜的磨擦,减少不舒适感。

固定不牢,自行脱出主要原因:①鼻胃管固定不妥,胶布成为活环。传统的方法是将胶布绕管缠绕360°,然后交叉粘贴在上唇面颊部。缺点是缠绕鼻胃管的胶布�受鼻涕浸湿,形成活环,上唇面颊分泌的油渍�造成胶布失去粘性而脱落。②鼻饲治疗或胃管内注药时因操作不当或病人不注意或活动时均可导致鼻胃管脱落。

剧烈呕吐导致鼻胃管呕出 鼻饲治疗时由于患者不遵守医嘱自行调节加大胃管营养液的滴速,或鼻饲物过凉导致短时间内大量营养液倾倒入胃,引起胃部不适引起剧烈呕吐导致鼻胃管呕出。同时患者因长期卧床胃肠蠕动减少,当鼻胃管被药物、黏稠的胃液、食物残渣等堵塞造成不通时,胃肠道的积气积液不能排出,造成胃肠道的逆蠕动,鼻胃管和胃内容物一同呕出。

4 预防对策

做好心理护理:给予关心体贴,耐心解释病情,讲述鼻胃管在治疗中的重要性,让患者及家属明白鼻饲对改善患者胃肠功能和营养状�的作用以及经胃肠道用药安全性和经济性。对于昏迷病人护士应向家属讲解,以取得配合,做好监护避免将鼻胃管自行拔出。对患者提出的问题,给予明确、有效和积极的解释,建立良好的护患关系,取得患者的信任,解除患者的恐惧心理,避免不良刺激,稳定患者情绪。

做好胃管知识的健康 教育 为了保证宣教效果,应在插管前、后多次宣教。在插胃管前宣教时,详细向患者和家属讲解留置胃管的意义和脱落的危害,胃管固定方法及如何防止胃管拔出。通过宣教,引起患者的重视,掌握在翻身、坐起及下床活动时动作宜缓慢,不要突然变换体位,不要牵拉胃管。在发现或无意识中将胶布抓脱落时,及时按信号灯让护士重新固定。

加强巡视特别是加强夜间巡视,发现不安全因素及时解决。对意识障碍患者,在无护士专人护理的情�下,进行适当和有效的约束,防止无意拔管。 护理操作中每一项技术都需要大家去思考,去反复的推敲,不是所有的操作都是死板的,其实每一项操作都会有人性化护理穿插与整个操作当中,就需要大家去努力,增强病人的应对和适应能力,使之达到最佳的健康状态。

5 体会

胃肠减压在普外科是不可缺少的护理操作之一,对于胃肠道肿瘤、肠梗阻、胰腺炎、胆石症等手术患者术前都要留置胃管。所以护理人员要熟悉局部解剖和操作方法,力争插管顺利,减压通畅。不断 总结 经验 ,提高插管的成功率,减少患者痛苦。经常巡视病人,发现问题及时处理,避免不良后果发生。

参考文献:

[1] 王建芳_夕 科胃肠减压的临床护理及体会.中华现代临床护理学杂志.2008年第3卷第1期

[2] 郭桂芳姚兰_夕 科护理学.北京医科大学出版社2002年2月第1版

关于压裂论文范文资料

颜志丰1 琚宜文1 侯泉林1 唐书恒2

(1.中国科学院研究生院地球科学学院 北京 100049 2.中国地质大学(北京)能源学院 北京 100083)

摘要:为模拟研究煤储层水力压裂效果,对煤样进行了饱水条件下的常规单轴压缩试验和声发射测试。对结果进行分析表明:在常规单轴压缩条件下,煤在平行层面上其力学性质具有方向性差异,平行面割理方向的单轴极限抗压强度要比垂直面割理方向的单轴极限抗压强度大得多,其弹性模量也大得多。煤样在垂直面割理方向弹性模量E随着单轴极限抗压强度σc的增加而增加,相关性较高,平行面割理方向弹性模量E随着抗压强度的增高而增高,但离散性较大。在单轴压缩条件下煤样变形破坏表现出的全应力—应变曲线形态大体可以概括为3种类型。

关键词:单轴压缩试验 力学性质 各向异性 饱和含水率 割理

基金项目: 国家自然科学基金项目 ( No. 41030422; 40972131) ; 国家重点基础研究发展规划 ( 973) 课题( No. 2009CB219601) ; 国家科技重大专项课题 ( 2009ZX05039 - 003) ; 中国科学院战略性先导科技专项课题( XDA05030100) ; 河北工程大学博士基金课题。

作者简介: 颜志丰,1969 年生,男,河北邯郸人,博士后,长期从事能源地质和构造地质研究。Email: yanzf@ gucas. ac. cn。

Uniaxial Mechanical Test of Water-saturated Coal Samples in Order to Simulate Coal Seam Fracturing

YAN Zhifeng1JU Yiwen1HOU Quanlin1TANG Shuheng2

( 1. College of Earth Science,Graduate University of Chinese Academy of Sciences,Beijing 100049 2. School of Energy Resources,China University of Geosciences ( Beijing) ,Beijing 100083 China)

Abstract: In order to simulate effect of hydraulic fracturing in coal reservoir,conventional uniaxial compres- sion test and acoustic emission test on the water-saturated coal samples were hold. The results showed that the me- chanical properties in parallel to the level of coal have directional difference. Under the conditions of conventional uniaxial compression. The uniaxial limit compressive strength in direction parallel to the face cleat is much larger than it in the vertical,so is the elastic modulus. The elastic modulus of coal increased with the increasing of com- pressive strength,however it is higher correlation in the direction of vertical face cleat,but a larger dispersion in parallel. The complete stress-strain curve shape showed by deformation of coal samples under uniaxial compression can be roughly summarized as 3 types.

Keyword: uniaxial compression test; mechanical properties; Anisotropy; saturated water content; cleat

1 前言

煤层气是储存于煤层内的一种非常规天然气,其中CH4含量多数大于90%,是一种优质洁净的气体能源(单学军,2005)。我国煤层气资源十分丰富,根据新一轮全国煤层气资源评价结果,在全国19个主要含煤盆地,适合煤层气勘探的埋深300~2000m范围内,预测煤层气远景资源量为万亿m3。煤层气主要是以吸附状态存在于煤层内,也有少量以游离状态存在于孔隙与裂缝中(SmithDM,1984)。就孔隙结构而言,煤的孔隙结构可分为裂缝性孔隙和基岩孔隙。人们又习惯地把煤岩中的内生裂缝系统称为割理。其中面割理连续性较好,是煤中的主要裂隙,端割理是基本上垂直于面割理的裂缝,只发育在两条面割理之间,把基岩分割成一些长斜方形的岩块体(李安启,2004)。

渗透率高的煤层产气量往往较高,而低渗透率的煤层产气量较低。水力压裂改造措施是国内外煤层气井增产的主要手段。而我国的煤层气储层普遍属于低渗透煤储层,研究表明:我国煤层渗透率大多小于50×10-3μm2(张群,2001)。因此,目前国内的煤层气井采用最广泛的完井方法是压裂完井,煤层和砂岩的岩性特征有很大的区别,压裂施工中裂缝在煤层中的扩展规律与在砂岩中的扩展规律也不相同,为了解煤层的压裂特征和压裂效果就需要对煤层压裂进行模拟研究,要进行模拟研究就需要研究煤岩的力学性质。

通过试验研究煤岩的力学性质,发现煤岩具有尺寸效应———即煤岩的尺寸对试验结果具有影响,Daniel和Moor在1907年就指出(DanielsJ,1907):小立方体的屈服强度高于大立方体,而且当底面积保持常数时,随着试块高度的增加,其屈服强度降低。研究过煤岩尺寸效应的还有Bunting(Bunting )。Hirt和Shakoor(Hirt A M,1992),Med-hurst和Brown(MedhurstT P,,1998),吴立新(1997),刘宝琛(1998),靳钟铭(1999)等。

由于单轴力学性质试验结果受尺寸、形状等因素制约,因此进行单轴岩石压缩试验时,对试验样品的加工有一定的要求,通常试件做成圆柱体,一般要求圆柱体直径48~54mm,高径比宜为~,试件端面光洁平整,两端面平行且垂直于轴线。

2 试验方法说明

在单轴压缩应力下,煤块产生纵向压缩和横向扩张,当应力达到某一量级时,岩块体积开始膨胀出现初裂,然后裂隙继续发展,最后导致破坏(闫立宏,2001)。为避免其他因素的影响,采用同一试样,粘贴应变片,在测试强度过程中同时用电阻应变仪测定变形值。

煤样制备和试验方法

实验煤样采自沁水盆地南部晋煤集团寺河煤矿3#煤层。煤样制备和试验方法参照中华人民共和国行业标准《水利水电工程岩石试验规程(SL264-2001)》(中华人民共和国水利部.2001),以及国际岩石力学学会实验室和现场试验标准化委员会提供的《岩石力学试验建议方法》(郑雨天,1981)进行的。沿层面方向在大煤块上钻取直径为50mm,高为100mm的圆柱样,煤样轴向均平行煤岩层面。为研究平行面割理和垂直面割理方向煤岩力学性质的差异,制备了两组煤样。一组煤样平行面割理方向,样品数10个,编号DP1DP10;另一组煤样垂直面割理方向,样品数10个,编号DC1DC10。试验前对煤样进行了饱水处理(48h以上)。单轴实验设备为WEP600微机控制屏显万能试验机。记录设备为30吨压力传感器,7V14程序控制记录仪。数据处理设备为联想杨天E4800计算机及相应的绘图机、打印机。试验工作进行前测试了煤样的物理性质,对试件进行了饱水处理。进行单轴压缩试验的煤样条件见表1。

表1 煤样条件

计算公式

单轴抗压强度计算公式:

中国煤层气技术进展: 2011 年煤层气学术研讨会论文集

式中:σc为煤岩单轴抗压强度,MPa;Pmax为煤岩试件最大破坏载荷,N;A为试件受压面积,mm2。

弹性模量E、泊松比μ计算公式:

中国煤层气技术进展: 2011 年煤层气学术研讨会论文集

式中:E为试件弹性模量,GPa;σc(50)为试件单轴抗压强度的50%,MPa;εh(50)为σc(50)处对应的轴向压缩应变;εd(50)为σc(50)处对应的径向拉伸应变;μ为泊松比。

3 试验结果与分析

加载轴线方向对煤块的抗压强度σc和弹性模量有显著的影响。

试验结果数据见表2。从表中可以看出,平行面割理方向的单轴极限抗压强度要比垂直面割理方向的单轴极限抗压强度大得多,其弹性模量也大得多,抗拉强度平均值高出2/3,而弹性模量更是高出一倍。这说明即使在平行煤的层面上其力学性质也具有方向性,不同方向上其值大小有显著差异。

表2 煤样单轴抗压强度试验结果

注:DP9沿裂隙面破裂,没有参与力学性质分析。

煤是沉积岩,小范围内同一煤分层在形成环境、形成时代上都是相同的,可以认为小范围内在平行煤的层面上,煤的组分、煤质等是均匀的,变化非常小,所以沿平面上力学性质的差异与煤质、组分等关系不大。推测其原因是由于在地史上受到构造应力的影响,构造应力具有方向性,在不同的方向上其大小不同,使煤在不同的方向上受到地应力作用的大小程度也不同,导致煤在不同方向上结构有所不同,从而表现出来在不同方向上力学性质的差异,在受力较大的方向上可能会表现出较大的强度。由于在构造力作用下沿最大主应力方向裂隙最容易发育,发育程度也应该较好,沿最小主应力方向上裂隙发育程度要差些。发育好的裂隙往往形成面割理,因而在平行面割理的方向上抗压强度和弹性模量都高,而在垂直面割理的方向上其值相对就会小些。

煤岩单轴极限抗压强度与其他性质之间的关系

由表2可知煤样的抗压强度离散性较大,影响因素是什么?煤的密度与含水状态对单轴抗压强度有什么影响?现分析如下:

图1a表示了极限抗压强度σc与饱和密度ρw之间的关系。从图中可以看出,无论是C组、P组还是全部样品,随着饱和密度的增加,煤块的极限抗压强度都有增加的趋势,说明随着饱和密度的增加,抗压强度有增加的趋势。

图1 σc与其他性质之间的关系

图1b表示极限抗压强度σc与饱和吸水率ωs之间的关系。从图中可以看出,C组样品随饱和吸水率的增加抗压强度有减少的趋势,而P组样品单轴抗压强度和饱和吸水率的相关性非常低,可以认为饱和吸水率对P组样品没有影响。由此可见,饱和吸水率的增高使垂直面割理方向的抗压强度降低,而对平行面割理方向的单轴极限抗压强度影响很小。

图1c表示单轴极限抗压强度σc与弹性模量E之间的关系。从图中可以看出C组样品单轴极限抗压强度σc与弹性模量E之间具有明显的正相关性,即垂直于面割理方向的单轴极限抗压强度随着弹性模量的增加而增加,P组样品具有不明显的线性正相关,即平行于面割理方向的单轴极限抗压强度σc与弹性模量E的增加而增加,但离散性较大。

图1d表示单轴极限抗压强度σc与泊松比μ之间的关系。从图中可以看出C组样品单轴抗压强度与泊松比之间具有较明显的负相关关系,也就是说垂直于面割理的单轴抗压强度随着泊松比的增高而降低;但是P组样品的相关性很低,即平行于面割理方向的单轴极限抗压强度σc与泊松比的变化无关。

弹性模量和其他性质之间的关系

图2a表示弹性模量E与泊松比μ之间的关系。从图中可以看出C组样品、P组样品及全部样品相关性均不明显。说明弹性模量与泊松比之间的变化互不影响。

图2 弹性模量E与其他性质之间的关系

图2b表示弹性模量E与饱和密度ρw之间的关系。从图中可以看出无论C组还是P组,样品弹性模量与饱和密度相关性非常弱,可以认为不相关。由此可见弹性模量不受饱和密度变化的影响。

图2c表示弹性模量E与饱和吸水率ωs之间的关系。从图中可以看出C组样品弹性模量与饱和吸水率相关性较高,呈明显的负相关关系;但是P组样品的相关性却很低,几乎不相关。由于C组样品以垂直轴向的裂隙为主,在压力作用下煤样的变形等于煤岩本身的变形再加上水的变形,水是液体,在压力作用下很容易变形,在压力不变的情况下随着水含量的增加变形随之增大,而产生较大的轴向变形,导致C组的煤样随着含水量的增加弹性模量变小。而P组样品裂隙以平行轴向为主,尽管在饱水的情况下裂隙中完全充填了水,但由于水含量很少,承载压力的主要是煤岩本身,变形量也是由煤岩本身决定的,因此它与含水量关系不明显。

泊松比和其他性质之间的关系

由图3a中可以看出C组样品、P组样品和全部样品的泊松比与饱和密度之间散点图均比较离散,相关性很低,也可以说它们不相关。

由图3b中可以看出C组样品、P组样品和全部样品的泊松比与饱和吸水率之间相关性很低,可以认为它们不相关。

煤岩单轴压缩全应力—应变曲线类型

岩石试件从开始受压一直到完全丧失其强度的整个应力应变曲线称为岩石的全应力应变曲线(重庆建筑工程学院,1979)。大量岩石单轴压缩实验表明,岩石在破坏以前的应力应变曲线的形状大体上是类似的,一般可分为压密、弹性变形和向塑性过渡直到破坏这三个阶段。

煤是一种固体可燃有机岩石,由于成煤物质的不同及聚煤环境的多样化,煤的岩石组分、结构特征比较复杂。因此,在单轴压缩条件下煤样变形破坏机制及表现出的全应力—应变曲线形态多种多样,大体可以概括为3种类型。

图3 泊松比μ与饱和吸水率ωs之间的关系

迸裂型

应力—应变曲线压密阶段不明显,加速非弹性变形阶段很短,曲线主要呈现表观线弹性变形阶段直线,直到发生破坏,见图4a。具有迸裂型全应力—应变曲线特征的煤样,通常均质性较好、强度较大、脆性较强,其抗压强度通常很高。煤样在整个压缩变形过程中,积聚了大量弹性应变能,而由于发生塑性变形而耗散的永久变形能相对较小。因此,当外部应力接近其极限强度而将要发生破坏时,煤岩内积聚的大量弹性应变能突然、猛烈地释放出来并发出较大声响,形成一个很高的声发射峰值。

图4 煤岩样品应力—应变关系曲线图

破裂型

应力较低时,出现曲折的压密阶段,当应力增加到一定值时,应力—应变曲线逐渐过渡为表观线弹性变形阶段;最后变为加速非弹性变形阶段,直到发生破坏,见图4b。试件随荷载的增加,煤样受力结构逐渐发生变化,同时出现局部张性破坏,但整体仍保持完整,并在变形过程中也积聚了一定的弹性应变能。当外部应力接近其抗压强度,即煤岩发生加速变形时,煤岩中积聚的弹性应变能就突然释放,产生较高的声发射值,破坏时声发射强度又变得非常低。

稳定型

应力—应变曲线压密阶段不明显,表观线弹性变形阶段呈略微上凸的直线,加速非弹性变形阶段较长,见图4c。试件随荷载的增加,煤样受力结构逐渐发生变化,同时出现局部张性破坏,并在变形过程积聚的弹性应变能释放,形成振铃计数率峰值,随后振铃计数率迅速降低,并在加速非弹性变形阶段开始时出现新的振铃计数率峰值,接近破坏时又出现一次振铃计数率峰值。破坏时声发射强度又变得非常低。

4 结论

通过上面对沁水盆地寺河煤矿3号煤力学试验,可以得出如下结论:

(1)煤岩单轴抗压强度和弹性模量等力学性质在平行煤层的平面上具有方向性差异,平行面割理方向的单轴极限抗压强度要比垂直面割理方向的单轴极限抗压强度大得多,其弹性模量也大得多。

(2)煤的极限抗压强度σc随着饱和密度ρw的增加而增加;极限抗压强度σc在垂直于面割理方向上随饱和吸水率ωs的增加而减少,而在平行面割理方向上与饱和吸水率无关;单轴极限抗压强度σc随着弹性模量E的增加而增加,在垂直面割理方向上相关程度较高,在平行面割理方向上离散性较大。单轴极限抗压强度σc在垂直面割理方向上随着泊松比μ增加而减小,而在平行面割方向上与泊松比无关。

(3)弹性模量E的变化不受泊松比变化的影响,同时也不受饱和密度的影响;垂直面割理方向弹性模量随着饱和吸水率ωs的增加而减小,而平行面割理方向弹性模量与饱和吸水率无关。

(4)泊松比μ的变化既不受饱和密度变化的影响,也不受饱和吸水率ωs变化的影响。

(5)在单轴压缩条件下煤样变形破坏表现出的全应力—应变曲线形态大体可以概括为3种类型:①迸裂型;②破裂型;③稳定型。

参考文献

单学军,张士诚,李安启等.2005.煤层气井压裂裂缝扩展规律分析.天然气工业,25(1),130~132

靳钟铭,宋选民,薛亚东等.1999.顶煤压裂的实验研究.煤炭学报,24(l),29~33

李安启,姜海,陈彩虹.2004.我国煤层气井水力压裂的实践及煤层裂缝模型选择分析.天然气工业,24(5),91~94

刘宝琛,张家生,杜奇中等.1998.岩石抗压强度的尺寸效应.岩石力学与工程学报,17(6),611~614

吴立新.1997.煤岩强度机制及矿压红外探测基础实验研究.北京:中国矿业大学.

闫立宏,吴基文.2001.煤岩单轴压缩试验研究.矿业安全与环保,28(2),14~16

张群,冯三利,杨锡禄.2001.试论我国煤层气的基本储层特点及开发策略.煤炭学报,26(3),230~235

郑雨天等译.1981.国际岩石力学学会实验室和现场标准化委员会:岩石力学试验建议方法.北京:煤炭工业出版社

中华人民共和国水利部.2001.水利水电工程岩石试验规程(SL264~2001).北京:地质出版社

重庆建筑工程学院,同济大学编.1979.岩体力学.北京:中国建筑工业出版社

Bunting D. 1911. Pillars in Deep Anthracite Mine. Trams. AIME,( 42) ,236 ~ 245

Daniels J,Moore L D. 1907. The Ultimate Strength of Coal. The Eng. and Mining,( 10) ,263 ~ 268

Hirt A M,Shakoor A. 1992. Determination of Unconfined Compressive strength of Coal for pillar Design. Mining Engineer- ing,( 8) ,1037 ~ 1041

Medhurst T P,Brown E T. 1998. A study of the Mechanical Behavior of Coal for Pillar Design. Int. J. Rock. Min. Sci. 35 ( 8) ,1087 ~ 1104

Smith D M,Williams F L. Diffusional effects in the recovery of methane from coalbeds. SPE,1984: 529 ~ 535

油井压裂的风险分析与安全对策论文

摘要:对油井压裂过程中存在的安全风险进行了分析,梳理了安全管理的重点环节,提出了相应的安全管理对策措施。

关键词:油井压裂;风险分析安全对策

引言

油井压裂作业设备多、环节多,具有技术含量高、施工难度大、作业环境恶劣、救援及逃生困难的特点,安全管理工作难度大,极易酿成重大的人员伤亡和财产损失事故。笔者就油井压裂过程中存在的安全风险进行了分析,并提出了相应的安全管理对策措施。

1、压裂施工风险分析

人员与设备高度集中压裂作业井场占地一般1600m2左右;压裂设备包括压裂车、混砂车、仪表车、管汇车、砂罐车及立式砂罐、大罐等。在特殊情况下,如压力高或需要更大排量施工的井,还要增加压裂车和仪表车。井场人员和设备密集,管理难度大。

井场布置易存在隐患由于受井场场地的限制,施工车辆距离井口过近,压裂仪表车、其他辅助车辆和仪器距离高压区的距离较近,存在安全隐患。

施工过程危险性高压裂作业施工,尤其是老井、重复压裂井、大型酸化压裂,工序复杂,地面压力在30MPa-60MPa之间,极易造成井身结构破坏、管线爆裂,发生卡钻、砂堵油管、管柱断脱、井口设备刺漏等工程事故,极易引发井喷事故和物体打击事故。

救援及逃生困难由于井场摆放着各种车辆和压裂罐,视野较窄,一旦发生事故,很难迅速逃生和得到救援,极易升级为不良事件。

环境保护要求高如果压裂失控、压裂管柱破裂或者高压井口、管线泄漏,极易发生压裂液、有毒有害气体和原油的泄露,污染大气层和地表层,造成重大地面污染事故。

2、安全管理的重点环节

作业人员的管理应对设计人员进行井控培训,施工人员需穿戴好劳保用品并持证上岗,非本岗位工作人员要限入高压区。

生产设备的管理使用压裂设备前,必须对设备的气控系统、液压系统、吸入排出系统、仪表及执行机构系统、设备故障诊断系统等十个系统进行认真检查,并对仪表进行校正。

井场布置的管理压裂施工的井场布置应严格按高压区、低压区、井口区和辅助区划分,设立好警戒线,非工作人员严禁入内。油井压裂的所有生产设备,必须停放在上风方向,并与井口保持30m距离。

试压工序的管理井口要用钢丝绳固定牢固,高压管汇要安装泄压阀及安全阀。排空试压并保持15min,仔细检查无刺漏后再放空。要确定最高限压压力,现场施工中严禁超压操作,超压时应紧急停车。

施工过程的管理施工过程主要包括:循环、试压、试挤、压裂、支撑剂、替挤、反洗或活动管柱等环节,压裂施工期间应统一现场的操作指挥,必须对施工的设计要求、井下情况、地面设备及各个岗位的技术情况清楚,落实各项安全防范措施。在生产过程中,要保存安全生产的相关资料,主要包括作业人员名册、工作日志、培训记录、事故和险情记录、安全设备维修记录情况等。

安全管理的法规标准油井压裂作业安全管理须遵守SY6443-2000《压裂酸化作业安全规定》等有关的安全管理规定。

3、安全对策

规范人的安全行为

①压裂前召开安全会议,以保证所有的`现场人员都知道压裂施工程序,现场人员都应清楚自己在压裂施工中的职责和在应急情况下的处理措施。对施工现场人数进行统计,在应急情况下的人员逃生路线明确,在实施压裂过程中,暂无施工任务的人员应到指定位置待命。

②员工是油井压裂作业的主体,要从关爱员工生命及保护生产力的角度出发,严格压裂作业从业人员的选择任用。规范安全行为,加强安全教育及操作技能的培训,使其能够按规程、标准上岗操作,减少人为操作失误,降低因不安全行为引起的事故。

③压裂施工过程中,要严格按照操作规程的要求进行,不满足安全要求的井场坚决不能作业。高、低压管汇吊装、压裂车并入管汇、砂罐车倒车等重点工序,必须由专人指挥方能进行,提高操作的准确性及可靠性,有效避免人员伤亡事故的发生。

④要消除工作环境中的有害因素,创造适合人的工作环境,从而减少人失误的可能性。

控制设备设施的不安全状态

①压裂作业生产设施,要根据施工耐压等级,确定油井压裂生产设施和专业设备的选型,抓好设备的运行检查、定期校验、日常维护保养、维修改造、报废处理等环节的管理,杜绝设备带病运行,是确保油井压裂作业安全的重要途径。

②安全检查是监测单位生产作业情况与国家、地方及企业标准不符合程度的过程,是发现危害因素的方法,是安全管理工作的重要内容。通过安全检查,掌握油井压裂生产设备的安全运行状况,确保生产安全。

③严格按标准布置井场压裂设备,配备齐全的消防设施,消除压裂现场的机械设备、化学药剂的潜在危险。

④设备的安全附件要定期校验,不符合安全标准的安全附件要及时更换或修复,以消除作业中的安全隐患。

⑤安全管理部门要依据安全检查及隐患排查结果、隐患评价及隐患分级情况,提出隐患治理计划并组织实施。

抓好安全管理和应急救援工作

①油井压裂作业单位要依据国家有关安全生产的各项法律、法规和标准,结合单位的生产经营实际,制定单位安全生产管理的各项规章制度,要及时修订或完善,并组织员工对新制度进行学习培训。

②压裂作业单位要建立与单位生产和发展相适应的安全生产管理模式,建立健全安全管理网络,并配备好安全工程师,对于改善单位的安全管理、提高单位安全生产保障能力具有良好的作用。

③抓好应急救援工作。事故应急救援能有效降低事故发生后的人员伤亡和财产损失。油井压裂作业单位应建立并不断完善油井压裂作业配套的应急救援预案,强化应急演练,提高处理事故的应急技术,储备充足的应急物资和装备设施。同时,应建立可靠的通信联络与警报系统,加强与兄弟应急救援机构的信息沟通和交流,确保在应急状况下,及时得到救助,避免大的人员伤亡和财产损失。

彭少涛 刘川庆 朱卫平 孙斌 刘学鹏

作者简介:彭少涛,男,1970年11月生,2007年获西南石油大学硕士学位,现为高级工程师、煤层气开发利用国家工程研究中心储层改造所所长,长期从事石油、天然气、煤层气勘探开发技术研究与管理工作,通信地址:北京市海淀区中关村环保科技园地锦路7号1幢,邮编:100095,E-mail:

(煤层气开发利用国家工程研究中心,北京 100095)

摘要:鄂尔多斯盆地东缘保德区块以中低阶煤为主,分布十分广阔,虽然其含气量不高,但其煤岩厚度大,渗透性好,机械强度高,具有高产潜质。目前,保德区块压裂施工中面临压裂液滤失极大,造缝不充分,加砂困难的问题,易导致施工失败,影响压裂效果。本文针对2010年压裂施工中所遇到的难题,开展了煤层气井地质与压裂施工资料的统计与分析,总结了问题的原因,提出了从优选压裂液体系、优化支撑剂组合、调整施工工艺入手的技术对策;该研究成果可为今后保德区块中低阶高渗煤层的压裂工作提供可参考的依据,从而为储量目标的完成与产能建设提供技术保障。

关键词:保德区块中低阶煤压裂技术对策

The Problems and the Corresponding Technical Strategies of Low Rank Coal Fracture in Baode Block

PENG Shaotao LIU Chuanqing ZHU Weiping SUN Bin

(China United CoalBed Methane National Engineering Research Center, Beijing 100095, China)

Abstract: Low rank coal is the main kind of coal in Baode block of Ordos Basin, which is very broadly dis- the gas content is not high, it has a high yield potential for big coal thickness, good permeability and high mechanical , it easily leads to fracturing failure for enormous filtration and insufficient fracture extension, which affect the gas production this article, aiming at the fracturing problems in 2010, we started statistics and analysis of geological and fracturing summarizing the reasons, we pres- ented some technical strategies, which include preferring fracturing fluid, proppant portfolio optimization and process research fruit in this article will provide a basis for reference of low rank coal fracture, and also offer technical support for production capacity building.

Keywords: Baode block; low rank coal; fracturing strategy

1 前言

煤层气是一种非常规的天然气资源,是成煤过程中生成的以甲烷为主要成分的各种烃类气体,经运移、散失后,仍保留在煤层和顶底板岩石中的部分。煤层中游离气很少,煤层甲烷主要以吸附状态(70%~90%)附在煤层微孔隙内表面上。煤层吸附甲烷的能力随着压力升高而增大,饱和后以游离态存在,少量溶于水中[1]。煤层的裂隙系统是煤层甲烷运移的主要通道,但其连通性差、渗透率低,难以形成具有高导流能力的通道。为了开采这种气体,必须采出大量的水,降低裂隙系统的压力,气体从煤层表面上解吸进入裂隙系统。为了使气体从裂隙系统流入井筒,必须在煤层的天然裂隙与井筒之间建立起有效的连通孔道,而产生这种连通孔道的最有效的方式是对煤层进行压裂。

2 保德区块中低阶煤特性

保德区块位于鄂尔多斯盆地东北缘,晋西挠褶带的北端;总体形态为向西缓倾的大型单斜构造,地层倾角较为平缓;构造简单,走向近北东。区内煤岩Ro介于,平均,煤阶较低,以气煤为主,次为肥煤,属于中低阶煤。虽然煤阶较低,含气量不高,但其埋藏较浅,渗透性好,具有高产潜质。

通常情况下,中低阶煤具有割理发育,渗透率较高,机械强度相对高,含气量低的特点。通过查阅相关资料,证实:

(1)保德区块煤岩割理较为发育,面割理密度在5~13条/5cm,渗透率较高,介于,一般在;

(2)根据煤芯岩石力学参数实验,弹性模量为,泊松比为;对比韩城、吉县区块(弹性模量在1355~9755,泊松比在)来说,保德区块机械强度相对高;

(3)区内发育两套主力煤层,从含气量来看:X1#煤层平均含气量为煤层平均含气量为;相比于韩城区块(约15m3/t)和大宁—吉县区块(约)来说,保德区块含气量较低。

此外,保德区块煤岩还具有其他一些特点,如:

(1)厚度大、夹矸多;保德区块主要含煤地层为二叠系山西组和石炭系太原组,煤层厚度大、分布稳定。X1#煤层平均厚,含夹矸1~5套,平均套;X2#煤层平均厚,含夹矸0~3套,平均2套;

(2)部分煤层段具有软煤岩特征;通过对保德区块测井资料统计分析发现,大部分井X1#煤层上部、X2#煤层下部呈现低密度、低电阻、高声波时差,为软煤特征。

3 保德区块中低阶煤压裂存在的问题

根据保德区块煤岩特征,结合压裂液评价实验结果,2010年优选了活性水作为保德区块主要采用的压裂液体系,并提出了大排量、大液量、射孔避开软煤层等压裂思路。

从施工情况来看,成功率仅为80%。说明2010年采用的压裂工艺不能完全满足保德区块煤层改造的需要。因此,有必要开展影响保德区块活性水压裂成功率的原因分析,并提出针对性强的技术对策,提高压裂施工成功率;同时,也为今后其他区块中低阶煤开发提供技术储备。

为了找到影响压裂成败的因素,提高施工成功率,我们对2010年压裂失败层的原因进行了分类统计(见图1)。

图1 2010年保德区块压裂失败原因分类统计

从图1可以看出,煤层因素占,主要表现为加砂困难,是影响保德区块压裂一次成功率低的主因。煤层因素涉及的面比较广,只有对其进行更为细化的分析,找到影响一次成功率的关键性因素,才能提出针对性强的压裂工艺改进措施。

渗透率高造成压裂液滤失大

保德区块渗透率较高,一般在,远高于其他区块的煤层渗透率。因此,施工成功率较低的原因很可能是压裂液滤失大,造缝效率低,引起缝内脱砂,导致砂堵失败。为了验证是否由于滤失过大造成砂堵的原因,我们引入了压后压降分析技术,通过G函数曲线计算压裂液滤失效率。

G函数压降分析法最早由Nolte[2]提出,20世纪80年代中期在国内外油田得到了广泛的应用。压后关井裂缝闭合期,压力动态在很大程度上有压裂液滤失特征以及裂缝形态所决定,所以可用来确定裂缝几何参数,压裂液滤失系数以及液体效率。图2是我们根据A井X2#煤层压后压力实时数据绘制的G函数曲线图,然后根据压力曲线的斜率可计算出排量的活性水滤失系数为×10-3m/;同理,对其他一些层的压降数据进行计算,得到其滤失系数在()×10-3m/。由此说明,保德区块采用活性水压裂滤失非常大,是造成成功率低的一个重要原因。

割理发育、煤层非均质性强造成压裂时产生多裂缝

保德区块割理发育,面割理密度为5~8条/5cm。割理发育,就会影响并局部改变煤层气藏中的地应力分布格局,水力裂缝不再是沿最大地应力方向扩展的单一裂缝,而是形成复杂的多裂缝(俗称菊花缝),难以形成主裂缝,造成地层加砂困难,易砂堵。

这是因为,煤层割理发育,割理处表现出的是一种弱面胶结,依据水力压裂人工裂缝的启裂机理是弱面破裂的理论,煤层压裂过程中将产生大量的分支裂缝,同时由于保德地区X1#夹矸较多,射孔时人为将X1#分为多段,这同时加剧了多裂缝产生的几率。

多裂缝的产生一方面消耗了驱动裂缝扩展的部分能量,另一方面将严重影响人工裂缝的宽度,造成支撑剂难以进入人工裂缝,形成砂堵。因此对于易于产生多裂缝的井,选择合适的支撑剂是压裂成功的关键。为了进一步了解保德区块压裂过程中多裂缝形成的情况,对B井和C井进行了压后净压力分析,见图4,图5。

图2 A井X2#煤层压后压降G函数曲线

图3 多裂缝形态示意图

图4 B井净压力分析

图5 C井净压力分析

通过净压力分析得到B井和C井压裂过程中多裂缝的形成趋势:

B井开缝因子:3~5条(48min~98min)

C井开缝因子:5~7条(90min~140min)

开缝因子:指有多少条平行裂缝在争夺同一开启的裂缝空间。

因此,从以上两口井的开缝因子分析,保德区块煤层气井压裂过程中多裂缝产生严重,由于多裂缝的影响,裂缝宽度较小,往往造成压裂加砂过程中砂堵。从这一点出发尝试较小粒径支撑剂,以提高压裂一次成功率。

其他因素对压裂成败影响的分析

通过对压裂煤层数据的统计发现,扩径率是影响保德煤层压裂成败的突出因素,因为出现了支撑剂堵塞的煤层平均扩径率超过20%,而未出现砂堵的煤层平均扩径率不到12%。进一步分析认为:扩径率大,反映煤质较软,压裂时容易产生大量煤粉,堵塞在裂缝前端,影响裂缝的延伸与扩展。

另外,根据压裂工艺因素(如:液量、砂比、排量等)对煤层压裂成败影响的分析,发现:施工排量的大小及其变化也是影响煤层压裂成败的重要因素。2010年,保德区块压裂的核心理念是“低伤害、大排量、大液量”,其施工排量为左右。从统计结果看,排量在以上的,施工成功率约;排量在以下的,施工成功率约,由此证明,适当增加排量可提高成功率。此外,排量的稳定性也是不容忽视的重要因素,因为在压裂过程中出现了支撑剂堵塞的压裂中,施工排量不稳定的占60%,稳定不变的占40%;而在压裂施工过程中未出现支撑剂堵塞的施工中,排量波动较大的占,排量有较小起伏的占25%,稳定不变的占。从这个情况来看,施工排量稳定也有利于减少支撑剂堵塞。

综上所述,影响保德区块煤层压裂施工成败因素如下:

(1)保德区块渗透性较好,导致低粘压裂液滤失大,造缝效率低;

(2)保德区块割理发育,煤层压裂过程中多裂缝产生严重,人工裂缝宽度狭小,“吃”砂能力弱,易产生砂堵;

(3)扩径率大,反映煤岩软,压裂时产生的大量煤粉堵塞在裂缝前端,影响裂缝的扩展与延伸;

(4)排量()偏小,导致活性水有效利用率低,携砂能力差,易引起砂堵;

(5)排量不稳定,尤其是中途停泵,必然导致沉砂,引起支撑剂堵塞。

4 保德区块中低阶煤压裂技术对策

针对上面分析的几个影响保德区块煤层压裂施工成败的因素,通过反复认真的思考,提出了相应的技术对策。

压裂液的优选

2011年采用的活性水作为保德区块煤层压裂的主体压裂液是基本可行的。但是,基于中低阶煤层具有渗透性好、滤失大以及其他方面的需求(例如,利于造缝和携砂,加大砂量,提高前置液百分数和砂比,降低滤失等),可考虑引入低伤害且具有较高携砂能力的TD-1清洁压裂液[3]。根据压裂液评价实验来看,TD-1清洁压裂液对保德区块煤芯的平均伤害率约为,可完全满足保德区块煤层压裂改造的需要。

另外,对于扩径率大的煤层,其煤岩软,压裂时产生的大量煤粉堵塞在裂缝前端,影响裂缝的扩展与延伸。针对这种类型的煤层,可在压裂液中加入煤粉分散剂,使煤粉在压裂液中均匀分布,避免其在裂缝前端聚集。从前期在韩城区块的试验情况来看,使用煤粉分散剂活性水压裂液,可有效降低施工压力,提高施工成功率。

支撑剂的优化组合

考虑到中低阶煤压裂时易形成扭曲的缝宽较窄的多裂缝形态,造成加砂困难,建议2011年保德区块煤层压裂时,加大40/70目中细砂的用量,以保证支撑剂更易被携带到裂缝的深部。同时开展小粒径支撑剂压裂试验,将目前常规的20~40目和16~20目支撑剂均缩小一个粒径等级,即用30~50目替代20~40目支撑剂,以20~40目替代16~20目支撑剂进行施工。从2010年底所做的裂缝内的支撑剂优化组合实验来看,适当降低支撑剂粒径,不会造成裂缝导流能力的明显下降。

提高施工排量,保证排量稳定性

通过排量的提升来降低相对滤失量,提高活性水携砂能力;同时,考虑到设备承受能力及井场实际情况,施工排量从提升至;此外,要求泵车在40MPa的压力下,排量能够稳定在,正常工作2小时以上。

5 现场应用

概况

截止到2011年6月20日,中石油煤层气公司综合应用上述几项压裂技术对策,在保德区块施工29井次,成功率。相比2010年的施工成功率(80%)来说,有了明显提高。从压后产气效果来看,虽然投产井数少(8口)且时间较短(不足70天),但已有4口井见气,2口井见套压,显示了良好的潜力。

应用实例

A井钻井井深750m,煤层埋深610~680m,X1#煤层厚度煤层,含气量。2011年3月,先用102枪127弹射开X1#,X2#煤层,然后以排量注入煤粉分散剂活性水879m3,加石英砂(40/70目8m3,30/50目30m3,20/40目)。压后投产55天,执行连续、稳定、缓慢、长期的排采原则,目前产气量610m3/d,且呈现出良好的上升势头。

6 认识与结论

(1)保德区块煤层渗透性好,压裂液滤失大是影响压裂成败的重要因素;

(2)保德区块割理发育,非均质性强,这些特征改变了煤层气藏地应力分布形态,使压裂时裂缝扩展呈现多裂缝形态;多裂缝的产生严重影响了人工裂缝的宽度,造成支撑剂难以进入人工裂缝,形成砂堵;

(3)优选压裂液体系,优化支撑剂组合,选择合适稳定的排量是解决保德区块煤层压裂成功率低的有效途径。

参考文献

[1]王红霞,戴凤春,钟寿鹤.2003.煤层气井压裂工艺技术研究与应用.油气井测试.12(1):51~52

[2]Economides M J,Nolte K .油藏增产技术(第三版).张保平等译.北京:石油工业出版社

[3]李曙光,李晓明等.2008.新型煤层气藏压裂液研究.2008年煤层气学术研讨会论文集.317~334

相关百科

热门百科

首页
发表服务