首页

> 学术论文知识库

首页 学术论文知识库 问题

富氢水功能研究论文

发布时间:

富氢水功能研究论文

所谓富氢水就是在高压条件下增加水中氢气的含量到 mg每升。

尽管推广的人声称富氢水有各种抗氧化,抑制肿瘤等等作用。但目前没有任何科学证据来支持这些声称的效果。 其他的办法含有吸入喊氢气的空气,或者注射含氢的生理盐水。                        扩充资料:

富氢水也就是Hydrogen Water,而日语中的水素就是氢的意思,因此氢水或者富氢水还有水素水说的都是同一种东西,富氢水机通过电解水,电解产生氢氧分离,但氢极难溶于水,传说富氢水机可以通过物理方式让水包裹氢分子,使氢与水交融而处于稳定状态!

1.富氢水与自由基 富氢水中氢气进入人体可快速清除恶性自由基,阻止自由基破坏细胞,并利用氢分子的氧化还原作用与恶性自由基相结合,结合后变为无毒无害的水排出体外,能够很好的促进新陈代谢。

何为自由基?  何为自由基?为何是百病之源?还会引起衰老?  自由基的另一名称是活性氧,是一群非常活泼,很容易引起化学反应的物质。当活性氧在体内持续累积,就会在体内形成氧化压力,如未予以疏导治疗,就可能引起心脑血管疾病、器官衰竭、皮肤病变、眼疾、炎症甚至癌症。  那自由基是如何产生?又如何致病(或衰老)的呢?

2、富氢水与高血压  活性氢水中所含有的氢素电子,可以防止不饱和脂肪酸与活性氧相结合生成过氧化脂质不饱和脂肪酸,令高血压病得到改善。

3、富氢水与糖尿病  活性氢水中所含有的氢素电子,可让胰岛及其受容体恢复正常机能,改善糖尿病症状。  4、富氢水与骨关节疾病  小分子团水中的钙离子容易被人体吸收,中和体内的有害酸性物质,而富氢水可降低血尿酸值从而缓解痛风及其他骨关节疾病。

5、富氢水与肝脏 富氢水可清除乙醇在代谢过程产生的恶性自由基,是一种绝无毒副作用的解酒护肝产品。 6、富氢水与记忆力减退 含氢的水能使受活性氧影响而减低的神经细胞的繁殖能力恢复,从而抑制记忆力的减退。

7、富氢水与亚健康  富氢水从根源上补充能量清除人体自由基(抗氧化剂),使人类改善亚健康状态、预防疾病。

8、富氢水与癌症  活性氢水中含有的活性氢的电子(负离子)可以阻止癌细胞的无限制分裂,使之改变成与普通细胞有同样寿命的细胞。

9、富氢水与美容老化  身体的衰老源于氧化,无论健康还是从护肤层面,富氢水可以抗氧化,从而美容抗衰老。

10、富氢水与炎症疾病  氢能对抗炎症反应,减少炎症损伤和加速炎症修复。(牙、皮肤、肠胃等炎症缓解)  从以上关系可以看出,富氢水的产业化符合我国食品工业“营养、卫生、方便”的发展趋势。富氢水在未来饮料和保健食品领域内都将具有一定地位,不仅可以作为人们的日常饮用水,还可以作为营养补充剂或功能性食品的原材料和配料使用。如添加到婴儿食品、美容面膜中,可以增强孩子免疫力,帮助女性皮肤美白,祛除老年斑等。

富氢水作用有哪些呢?

1. 富氢水有没有危害。

首先要清楚富氢水的作用机理并不是水本身的效应,更不是所谓水的弱碱性、负电位、离子特性的功效。真正起作用的是水中含有的氢气。

2. 比较好的富氢水机品牌:

(1)bespring好水坊

国内唯一一家专注于量子舱和富氢水的公司;世界上第一台集净化、加热、吸氢气、量子植入的免安装的1500pp以上的富氢水机

(2)美的

美的集团有限公司,在全国各地设有强大的营销网络,并在海外各主要市场设有近30个分支机构。

(3)东禾

起源于日本的电解水机生产厂家,透明机壳,电解过程直观,吸引力强。

产生富氧水的办法:

1. 氢水棒,又称水素水棒。由日本引入。利用镁和水反应产生氢气。将氢水棒放入装有饮用水的容器中,氢水棒周围就会产生氢气小气泡。

2. 富氢水机(滤芯式),里面装有PP棉、活性炭、镁粒子或者托玛琳等滤芯,当水流经过镁粒子滤芯或者托玛琳微电解滤芯时,产生微量氢气随水流一起流出。

3. 电解式富氢水机分为二种,一种直接接入自来水管,利用PP棉、活性炭等滤芯先净化水质,再通过电解槽电解,另一种是直接将干净的饮用水注入电解装置电解,经过一定的电解时间倒出。

4. 瓶装或者袋装富氢水,这种成品富氢水,是通过特殊工艺将高纯度的氢气溶解在纯净水或者其它矿泉水中,然后密封在容器里而制成。

5. 固体富氢水保健品,目前这种产品以日本引进为主。胶囊形式的包装,胶囊里面是粉状的白色粉末。负氢离子胶囊就是其中的一种。这种食品粉末进入胃里,遇见水就产生氢气,使用很方便,而且氢气的释放时间相对于以水为载体的富氢水要长。

参考资料:百度百科-富氧水

所谓富氢水就是在高压条件下增加水中氢气的含量到 mg每升。尽管推广的人声称富氢水有各种抗氧化,抑制肿瘤等等作用。但目前没有任何科学证据来支持这些声称的效果。其他的办法含有吸入喊氢气的空气,或者注射含氢的生理盐水。

富氢水可以长期喝的。

分子氢具有极强的穿透力,并且进入人体体内能够有效的清除羟基,也就是氢氧基,这是许多疾病的根源,分子氢对人体内的自由基有良好的选择性,能够祛除不利于人体的毒性自由基,保留有益的自由基。

恶性自由基与肝脏多种疾病的关系,及时清除有害自由基可以保护肝细胞,减轻肝脏损害,改善肝功能。

参考资料

1.富氢水对人身体氧化的作用

大量生物学研究证据表明,氢气是目前被确定具有选择性中和自由基和亚硝酸阴离子作用的唯一具有选择性抗氧化的物质,这正是氢气对抗氧化损伤治疗疾病的分子基础。另外,氢分子体积极小,可快速渗透扩散至全身,能穿透各类生理屏障和细胞膜,进入细胞核,带走一般手段无法消除的恶性活性氧。

更重要的是,氢气在清除活性氧后自身可以变成水被人体利用,不会影响其他良性活性氧和生物分子的正常功能。氧化体现在人体的方方面面,包括皮肤问题、心脑血管问题、免疫性疾病、恶性肿瘤以及衰老等等,长期饮用富氢水可以增强免疫力改善肤色、肤质、淡化色斑、老年斑等等

2.富氢水对人体代谢修复的作用

代谢修复指物质和能量代谢机能逐渐恢复的过程。大量脂肪、糖类、嘌呤的摄入会加重代谢系统负担,长此以往,代谢功能发生紊乱,对上述物质的处理能力下降,导致代谢性疾病。

富氢水通过平衡内环境,全面修复代谢功能,从根本上改善包括高血脂、糖尿病、高血压、高尿酸血症、痛风等代谢相关性疾病。

3.富氢水对抗衰老的作用

来自日本的一项研究发现,常年饮用富氢水的百岁老人产氢能力异常强大,是普通人的三倍以上。众所周知,百岁老人罹患心血管疾病和癌症的比例远低于普通人,该研究不仅证实了氢气的抗衰老作用,结合其他研究,进一步证实氢气在防治心脑血管疾病、恶性肿瘤等方面的价值。

4.富氢水对慢性疾病的作用

国际权威试验证明,富氢水中的氢气可减少氧化损伤、炎症性损伤、细胞凋亡等病理症状,对60多种人类常见疾病类型如心脑血管疾病、脑血管疾病、恶性肿瘤、慢性呼吸系统疾病、脑脊髓创伤老、年痴呆症、糖尿病、肾病等,具有理想治疗效果。

国内的泰山医院做了列人体代谢综合征,效果非常明显。但是这个东西还不是药,这是一个和奇特的现象。不过在日本富氢水已经申请药品批号,计划用于减轻癌症性化疗过程中病人不良反应。

富氢水研究论文合集

水素水(HydrogenWater),是直接使用了日语原名。因日语中“水素”的意思是“氢”,所以,也有人称之为“氢水”,国内又叫富氢水。对于富氢水的研究热始于2007在《自然医学》第一篇氢气生物学论文开始,常识告诉我们氢气是不溶于水的。在中学关于制备氢气的化学实验中,我们就采用排水法收集氢气,其主要原因是考虑到氢气是不溶于水。实际上,氢气并不是不能溶解与水,只是溶解度确实比较低。如果按照摩尔浓度计算,20℃时水溶解纯氢气的浓度为。如何提升并保持饱和氢气水的浓度及稳定性,才是氢气医学应用上的科研难题。国内纳米气液混合技术的发明攻克了氢气难溶于水的科学难题,采用物理方法让水均匀包裹氢分子,促使氢气和水达成稳定结合。具有氢气浓度高,稳定性能好等特点。优点:富氢水的氢离子可以中和体内多余的活性氧(H2+O=H2O)结合成水,随尿排出体外,帮助细胞新陈代谢,安全、绿色环保对人体没有任何毒副作用,没有明确的禁忌症与禁忌人群。弊端:部分报告显示,在人体内氢分子可以由肠内细菌产生,其产生量随食物纤维等的摄取量而变高。因此,饮用水素水是否能真正起作用值得还没有定论。

光催化水解制氢的研究论文

(绿色合成具有优异光解水性能的三元催化剂) 湖南日报·新湖南客户端3月21日讯(通讯员 赵园园)近日,由湘大土木工程与力学学院张平教授、尹久仁教授和丁燕怀教授组成的团队在光解水方面的研究取得了突破性进展,相关成果以“Solid-state, Low-cost and Green Synthesis and Robust Photochemical Hydrogen Evolution Performance of Ternary TiO2/MgTiO3/C Photocatalysts”发表于国际期刊iScience。 该期刊属于Cell的综合性子刊,主要关注自然科学各个领域最前沿的研究工作。杨忠美博士和蒋运鸿博士为论文共同第一作者,丁燕怀教授和张平教授为本文的共同通讯作者(论文链接: )。 (TiO2/MgTiO3/C的低倍TEM图及其不同光照条件下光催化产氢的视频截图) 团队利用一种绿色、低成本方法制备了一种高效三元催化剂TiO2/MgTiO3/C用于光解水产氢,整个制备过程不涉及任何有机溶剂和有毒副产物,其在一个模拟太阳光下产氢效率高达∙h-1∙g-1, 较商品化的P-25 TiO2提高了四倍以上,其在纯可见光下的产氢效率也达到∙h-1∙g-1。光电化学测试结果表明该催化剂在紫外光区的IPCE(the incident photon to charge carrier generation efficiency)效率接近90%,而在400nm~ 470nm的IPCE效率也有较大程度的提高。迄今为止,在已报道的克级制备的同类型催化剂材料中其光催化产氢效率最高,相关成果已经申请发明专利保护。 该研究工作得到了国家自然科学基金、湖南省自然科学基金、湖南省教育厅重点项目、湖南省研究生创新基金、力学国家重点学科、化工模拟与增强国家级工程中心的支持和资助。张平教授、尹久仁教授和丁燕怀教授课题组长期从事交叉学科的研究,课题组成员具有力学、材料学、计算模拟等方面的研究背景,近来年课题组成员在Energy & Environmental Science, Nature Communications, Journal of Materials Chemistry A,Nanoscale,Carbon,Journal of Membrane Science和中国科学等知名期刊发表论文20余篇,申报国家专利10余项。 [责编:曹漾] [来源:湖南日报·新湖南客户端]

光催化法制氢半导体TiO2及过渡金属氧化物、层状金属化合物,如K4Nb6O17、K2La2TiO10、Sr2Ta2O7等,以及能利用可见光的催化材料,如CdS、Cu-ZnS等,都能在一定的光照条件下,催化分解水,从而产生氢气。然而到目前为止,利用催化剂光解水的效率还很低,只有1% ~2%。已经研究过的用于光解水的氧化还原催化体系主要有半导体体系和金属配合物体系两种,其中以半导体体系的研究最为深入。 半导体光催化在原理上类似于光电化学池,细小的光半导体颗粒可以被看作是一个个微电极悬浮在水中,他们像光阳极一样在起作用,所不同的是它们之间没有像光电化学池那样被隔开,甚至阴极也被设想是在同一粒子上,水分解成氢气和氧气的反应同时发生。当小于387nm 的紫外光照射到TiO2时,价带上电子吸收能量后发生跃迁到导带,在价带和导带分别产生了空穴与电子,吸附在TiO2的水分子被氧化性很强的空穴氧化成为氧气,同时产生的氢离子在电解液中迁移后被电子还原成为氢气。和光电化学池比较,半导体光催化分解水放氢的反应大大简化,但通过光激发在同一个半导体微粒上产生的电子空穴对极易复合。因此为了抑制氢和氧的逆反应及光激发半导体产生的电子和空穴的再结合,可加入电子给体作为空穴清除剂,以提高放氢效率。废水中许多有机物是良好的电子给体,如果把废水处理与光催化制氢结合起来,可同时实现太阳能制氢和太阳能去污 。工程热力学是热力学最先发展的一个分支,它主要研究热能与机械能和其他能量之间相互转换的规律及其应用,是机械工程的重要基础学科之一。通过对热力系统、热力平衡、热力状态、热力过程、热力循环和工质的分析研究,改进和完善热力发动机、制冷机和热泵的工作循环,提高热能利用率和热功转换效率。为此,必须以热力学基本定律为依据,探讨各种热力过程的特性;研究气体和液体的热物理性质,以及蒸发和凝结等相变规律;研究工质特性也是分析某些类型制冷机所必需的。现代工程热力学还包括诸如燃烧等化学反应过程,溶解吸收或解吸等物理化学过程,这就又涉及化学热力学方面的基本知识。

近日,《催化学报》在线发表了中国石油大学(北京)戈磊教授团队在光催化解水领域的最新研究成果。该工作报道了结合动力学和热力学对PtPd修饰硫化镉锌纳米棒高效光催化制氢的机理研究。论文第一作者:张临河硕士,论文通讯作者:戈磊教授。02背景介绍双金属合金是目前最有效的共催化剂之一。与单金属纳米粒子相比,双金属纳米粒子由于其独特的微观结构和优良的催化性能而具有巨大的催化潜力。Pt具有较高的功函数和较低的质子还原能力,被认为是最有效的贵金属助催化剂。本课题组研究发现,在氢气生产过程中,PtPd合金作为助催化剂的光催化性能高于Pt。这一现象可以通过PtPd合金的热力学结果来理解,而反应动力学在光催化制氢中也起着重要作用。因此,利用热力学和动力学相结合的方法来研究改进析氢活性的PtPd共催化剂的性质和机理是很有必要的。

氢能产业链研究分析论文

行业主要上市公司:美锦能源(000723);厚普股份(300471);中国石化(600028);卫星化学(002648);嘉化能源(600273);亿华通(688339)等

本文核心数据:氢能源板块上市公司研发费用;氢能源相关论文发表数量

全文统计口径说明:1)论文发表数量统计以“hydrogen energy”为关键词,选择“中国”、“论文”筛选。2)统计时间截至2022年8月17日。3)若有特殊统计口径会在图表下方备注。

氢能技术概况

1、氢能源的界定及分类

(1)氢能源的界定

氢能是氢在物理与化学变化过程中释放的能量。氢能是氢的化学能,氢在是宇宙中分布最广泛的物质,它构成了宇宙质量的75%,储量丰富。氢能被视为21世纪最具发展潜力的清洁能源,随着世界范围内对绿色经济发展重视程度的提升,氢能源的需求和应用领域不断扩展。

(2)氢能源的分类

按照氢气的来源,通常将氢能源分为三类,即灰氢、蓝氢和绿氢。

2、技术全景图:四大环节构成

氢能产业主要由制氢、储氢、运氢、加氢和用氢四大环节构成。为发挥氢能重要能源载体作用,需大力推动氢能产业每个环节的技术发展。其中电解水制氢、液态/固态储氢、液态有机储氢、氢燃料电池等先进技术研究对氢能产业规模化应用具有重要意义。

氢能产业技术发展历程:始于上世纪50年代

中国的氢能与燃料电池技术研究始于上世纪50年代。20世纪80年代以来,相继启动了863计划和973计划,加速以研究为基础的技术商业化项目,氢能和燃料电池均被纳入其中。“十三五”期间,氢能与燃料电池开始步入快车道。2016年以来相继发布《能源技术革命创新行动计划(2016-2030年)》、《节能与新能源汽车产业发展规划(2012-2020年)》、《中国制造2025》等顶层规划。2019年两会期间,氢能首次写入政府工作报告。2020年4月,氢能被写入《中华人民共和国能源法》(征求意见稿)。2021年,“十四五”规划指出要在氢能与储能等前沿科技和产业变革领域,组织实施未来产业孵化与加速计划,谋划布局一批未来产业。2022年发布第一个氢能源专项规划——《氢能产业发展中长期规划(2021-2035 年)》,为中国氢能源产业发展作为指引。

氢能产业技术政策背景:政策加持技术水平提升

近些年来,我国提出了一系列氢能产业技术发展相关政策,包括氢气制备、储运、应用和燃料电池等关键技术,使得氢能产业技术水平稳步提升。

氢能产业技术发展现状

1、氢能产业技术科研投入现状

(1)国家重点专项

为推进氢能技术发展及产业化,国家重点研发计划启动实施“氢能技术”重点专项。2018-2022年,“氢能技术”重点专项数量逐年增加。2018年仅9项技术专项,到2022年,“氢能技术”重点专项围绕氢能绿色制取与规模转存体系、氢能安全存储与快速输配体系、氢能便捷改质与高效动力系统及“氢能万家”综合示范4个技术方向,拟启动24项重点专项。

(2)A股上市企业研发费用

目前,中国氢能市场正处于发展初期,行业整体研发投入水平不算太高。从A股市场来看,2017-2021年,我国氢能源板块上市公司研发总费用逐年增长,2022年第一季度,氢能源板块上市公司研发总费用约亿元。

2、氢能产业技术科研创新成果

(1)论文发表数量

从氢能相关论文发表数量来看,2010年至今我国氢能相关论文发表数量呈现逐年递增的趋势,可见氢能科研热度持续走高。截至2022年8月,我国已有80825篇氢能相关论文发表。

注:统计时间截至2022年8月。

(2)技术创新热点

通过创新词云可以了解氢能产业技术领域内最热门的技术主题词,分析该技术领域内最新重点研发的主题。通过智慧芽提取该技术领域中最近5000条专利中最常见的关键词,其中,催化剂、燃料电池、制氢系统、电解水、电解槽等关键词涉及的专利数量较多,说明氢能领域近期的研发和创新重点集中于燃料电池和制氢等领域。

(3)专利聚焦领域

从氢能专利聚焦的领域看,目前氢能产业专利聚焦领域较明显,其主要聚焦于催化剂、燃料电池、制氢系统、电解水、电解槽等。

注:图中格子数量表示每家公司的专利覆盖率,每个格子代表相同数量的专利。

主要氢能产业环节技术分析

1、前端制氢环节:可再生能源电解制氢是氢源终极方案

制氢环节技术主要包括化石能源制氢和可再生能源制氢。其中,利用化石能源制氢并未摆脱能源对石油、煤炭和天然气的依赖,仍会产生大量碳排放;即使是加上CCUS捕集制备的蓝氢,一旦甲烷在制备过程中发生泄漏,对气候的影响比碳排放更大。而利用可再生能源进行电解水制氢,生产过程基本不会产生温室气体。

2、中端储运氢环节:固态储运安全性更好

储运氢气的方式主要分为气态储运、液态储运和固态储运。相比于气氢储运和液氢储运,固态储运在安全性方面优势明显。

3、后端加氢及氢燃料电池

(1)加氢:站内制氢成本优势大

加氢基础设施是氢能利用和发展的中枢环节,是氢能产业发展的核心配套设施。根据氢气来源不同,加氢站可分为外供氢加氢站和站内制氢加氢站。相较于外供氢而言,站内制氢能够大幅减小氢气的运输成本。

(2)氢燃料电池:质子交换膜燃料电池是主流发展方向

按电解质的种类不同,燃料电池可分为碱性燃料电池、质子交换膜燃料电池、硝酸型燃料电池、碳酸型燃料电池、固体氧化物燃料电池等。其中,质子交换膜燃料电池是当前燃料电池的主流技术发展方向。

氢能产业技术发展痛点及突破

1、氢能产业技术发展痛点

(1)高成本是制约氢能大规模发展的关键

当前,经济性为氢能产业发展最大的挑战因素,即使是成本相对较低的氢气($),除了转化成氨用作肥料以外,绝大多数氢能应用场景都比现有化石能源技术昂贵。解决氢能产业在绿氢制备、储运氢、加氢站建设、燃料电池电堆等关键环节的经济性问题,是未来氢能大规模发展必须要攻克的一道难题。

(2)制氢技术:先进电解技术发展不成熟

目前国内电解水制氢的成熟技术为碱性电解水制氢技术,碱性水电解槽难以响应瞬态负载,因而难以与波动大的可再生电力配合。另外,PEM电解水制氢技术也面临着匹配可再生能源电力而进行的电解槽设计、控制技术以及电源系统设计等尚不成熟的局面。

2、氢能产业技术发展突破

(1)先进电解技术:PEM电解槽设计改进突破

PEM电解槽设计改进策略方向包括更轻更稳定的端板和双极板、经济且耐腐蚀的集电器等。据Yagya N Regmi博士的研究小组研究发现,PEM电解中发生不含铂族金属催化的析氧反应在短期内是无法实现的,因此,尽可能使铱的质量活性最大化才是目前的可行策略。

(2)氢能储运:固态储氢和潜液式液氢泵突破储运氢技术瓶颈

氢能储运技术突破在于提高储氢密度和安全性,以及降低运输成本。固态储氢是利用物理或化学吸附将氢气储存在固体材料之中。固态储氢具有体积储氢密度高、安全性更好的优势,因此是一种有前景的储氢方式。因此,固态储氢得到了越来越多的研究和关注,主要工作集中在储氢材料的研发与改性等方面。以氢枫能源的镁基固态储氢为例,镁基固态储氢具有资源、性能及技术优势。

液氢泵为液氢储运的重要部件,用于对液体氢气进行传输分配。从氢能全产业链来看,氢气输配成本和初始资本支出为降本的最主要环节。潜液式液氢泵取代了外置泵,减少了氢蒸发,去掉了气氢压缩机;且用液氢的冷源省去制冷系统。此外,潜液式液氢泵大流量液氢泵直接加注,不用高压储罐,去除级联储存;最终的结果是减少初始投资和运行成本,使氢气的售价与汽油、柴油比肩。

氢能产业技术发展方向及趋势:氢能各环节技术加快突破

氢能供应体系发展路径以实现绿色经济高效便捷的氢能供应体系为目标,中国将在氢的制储运加各环节上逐渐突破。从长远看,随着用氢需求的扩大,结合可再生能源的分布式制氢加氢一体站、经济高效的集中式制氢、液氢等多种储运路径并行的方案将会是主要的发展方向。

「前瞻碳中和战略研究院」聚焦碳中和领域的政策、技术、产品等开展研究,瞄准国际科技前沿,服务国家重大战略需求,围绕“碳中和”开展有组织、有规划科研攻关,促进碳中和技术成果转化和推广应用,为企业创新找到技术突破口,为各级政府提供碳达峰、碳中和的战略路径管理咨询和技术咨询。院长徐文强博士毕业于美国加州大学伯克利分校,二十余年来一直深耕于低碳清洁能源和绿色材料领域的基础研究、产品开发和产业化,拥有55项专利、33篇论文,并已将30多种产品推向市场,创造商业价值50+亿元,专注于氢能、太阳能、储能等清洁能源研究。

以上数据参考前瞻产业研究院《氢能产业技术趋势前瞻及投资价值战略咨询报告》。

导语: “双碳”目标下,发展清洁能源是保障我国能源安全的根本之道。氢能是全球公认的低碳、零排放能源。随着《氢能产业发展中长期规划(2021-2035年)》的出台,各地正积极谋划氢能产业的布局。本文对氢能产业链进行梳理分析,为各地政府的氢能产业招商和布局,以及有意向布局氢能业务的企业提供参考。

氢能产业的发展概况

氢能是指氢在物理与化学变化过程中释放的能量,可用于储能、发电、各种交通工具用燃料、家用燃料等。我国是世界上最大的制氢国,年制氢产量约 3300万吨,其中,达到工业氢气质量标准的约 1200 万吨。可再生能源装机量全球第一,在清洁低碳的氢能供给上具有巨大潜力。目前,国内氢能产业呈现积极发展态势,已初步掌握氢能制备、储运、加氢、燃料电池和系统集成等主要技术和生产工艺,在部分区域实现燃料电池 汽车 小规模示范应用。

从全国各地布局看,长三角、珠三角、环渤海和川渝鄂四个氢能产业集聚区正在形成。据不完全统计,全国有超过25个氢能主题园区。其中北京、上海、武汉、佛山四个城市具备较雄厚的产业基础。

氢能产业链的基本构成

氢能产业链条长,技术密集。其整体可以分为氢能制取、氢能储运、氢能应用三大环节。包括上游氢能制造,中游氢能储存运输,下游交通领域、储能领域、工业领域应用。其中,制氢技术和基础设施是氢能产业发展的基础与核心(如:加氢站建设、燃料电池研发与制造等)。

制氢技术方面: 我国现阶段氢能生产有化石能源、工业副产氢、可再生能源电解制氢等。其中,化石能源制氢以煤、天然气为原材料,其技术成熟、成本相对低,但制氢气过程存在碳排放问题,且存在有硫、磷等危害性杂质;工业副产氢以焦炉煤气、氯碱尾气等工业副产提纯制氢,目前无法作为大规模集中化的氢能供应来源;可再生能源电解制氢的电解水制氢,因成本较高,尚未实现规模化应用。除此之外,生物质制氢、太阳能光催化分解水制氢、核能制氢等技术处于试验和开发阶段。

氢能储运分为储氢技术、加氢站两个方面: 储氢技术从纵向看分为气态储氢、液态储氢、固态储氢三种。从横向看分为物理储氢、化学储氢、吸附储氢。气态储氢技术成熟,是较长时间内的主流储氢方式,其中高压气态储氢最为成熟。液态储氢分为低温液态储氢、有机液态储氢,目前只在航天领域应用。固态储氢是利用固体对氢气的物理吸附或化学反应作用,将氢气储存于固体材料中。在国内,固态储氢已在分布式发电中得到示范应用;加氢站主要包括站内制氢技术和外供氢技术,三大核心设备有压缩机、储氢瓶、加氢机。

氢能应用方面: 主要包括氢燃料电池、交通领域、工业及能源领域、建筑领域。氢燃料电池与锂电池不同,其本质是一种电化学反应发电装置,拥有较高的经济效应,且无有害气体排放与噪声污染;交通领域方面,氢燃料车分为氢内燃机 汽车 、氢燃料电池车两种。目前我国遵循“氢燃料电池商用车先发展、氢燃料电池车乘用车后发展”的特点。2020年销售的氢燃料电池 汽车 公交客车、公路客车等客车占比达,物流车、牵引车等货车占比;工业及能源领域,主要包括氢能冶金、天然气掺氢、固定式电源/电站等;建筑领域主要为微型热电连供。

重点上市企业概况及布局动向

据不完全统计,氢能全产业链规模以上工业企业超过 300 家。国内主要从事制氢的上市公司有华东能源、华昌化工、宝丰能源等。从事储氢、加氢站的上市包括厚普股份、中材 科技 等。

此外,在燃料电池系统装机市场处于寡头竞争格局。亿华通、潍柴动力、爱德曼、国鸿重塑、 探索 汽车 为国内燃料电池系统装机市场的TOP 5,市占率综合接近7成。

氢能产业部分上市企业概况

氢能产业部分上市企业布局动向

附:氢能发展规划政策

关于合作

深圳招商引资实战平台精准服务各地招商引资工作十余年,落地项目2000亿,积累了丰富的企业资源、项目资源,并形成了独有的招商实战实操模式,能够为各地政府在产业定位、产业链招商图谱绘制、产业招商策略路径制定、目标企业筛选和匹配、招商委托等方面提供全方位支持。

近年来,随着氢能的能源属性日渐凸显,将氢能参照汽油等类似能源进行管理,还原其能源属性,完善标准体系和安全监管的呼声也越来越高。3月23日,业内期盼已久的氢能源属性在当日出台的《氢能产业发展中长期规划(2021 2035年)》中被明确,氢能也由此迎来了发展的风口。 熟悉氢能的人都知道,由于氢气被作为危险化学品列管,制氢和加氢装置只能建在化工园区内。化工园区通常地处偏远,不仅氢能用量有限,项目审批流程也很长,极大限制了氢能项目的布局和应用。从加氢站建设的角度来看,针对其安全距离的要求使得加氢站占地面积增加,导致土地成本飙升,这也使氢能难以大规模在城市核心区域布局。制氢和加氢的基础设施不足,直接制约了包括氢燃料电池 汽车 在内的氢能下游的推广应用,进而影响了氢能产业链的 健康 发展。 此次《规划》的出台,对氢能业而言无疑是“久旱逢甘霖”。《规划》指出“氢能是未来国家能源体系的重要组成部分”,首次明确了氢的能源属性,成为我国氢能产业发展的重要制度基础,并将对氢能产业发展发挥重要指导作用。清洁低碳氢能源的生产和使用也将成为“双碳”战略的重要实现路径。 氢能是一种来源丰富、绿色低碳、应用广泛的二次能源,正逐步成为全球能源转型发展的重要载体之一。从全球来看,以燃料电池为代表的氢能开发利用技术取得重大突破,全球氢能全产业链关键核心技术趋于成熟,一些主要发达国家和经济体已将氢能视为能源转型的重要战略选择,不断拓宽清洁氢气供应的市场份额。 从国内看,我国是世界上最大的制氢国,年制氢量约3300万吨,其中达到工业氢气质量标准的约1200万吨。我国可再生能源装机量居于世界首位,在清洁低碳氢能源供给上具有巨大潜力。我国也已初步掌握了氢能制备、储运、加注及燃料电池开发等关键技术,还在部分区域开展了燃料电池 汽车 示范应用。 为拓展石油和化工行业氢能应用场景,中国石油和化学工业联合会在2021年就专门成立了氢能专委会,旨在立足氢能源,从六个方面重点促进我国氢能产业发展。一是深入了解氢能行业发展现状和亟待解决的问题,利用联合会平台及时发声,推动行业 健康 发展。二是促进氢能全产业链、上下游协同发展。三是推动氢能关键共性技术的研发、示范和推广。四是推动氢能产业标准的完善与应用。五是反映行业重大利益诉求。六是在国际合作、技术孵化、产融服务上下功夫。这些都与此次出台的《规划》内容不谋而合。 《规划》还明确提出,要围绕氢能高质量发展重大需求,准确把握氢能产业创新发展方向,聚焦短板弱项,适度超前部署一批氢能项目,持续加强基础研究、关键技术和颠覆性技术创新。石化等相关行业要聚焦关键核心技术、聚焦创新支撑平台、聚焦专业人才队伍、聚焦国际合作机遇,建立完善更加协同高效的创新体系,不断提升氢能产业的竞争力和创新力。 相信有国家对氢能发展的顶层设计和相关行业协会的群策群力,氢能产业一定能抓住 历史 机遇,走上 健康 发展的新征程,助力“双碳”目标如期实现。 (朱良伟为中国石油和化学工业联合会国际交流和外企委员会副秘书长)

氢能技术的发展研究论文

1前言 石油和天然气两种处于自然状态的烃类化合物能源具有不可再生性,随着化石燃料耗量的日益增加,终将要枯竭,这就迫切需要寻找一种不依赖化石燃料、储量丰富的新的能源。氢能 就是这种能源,且氢能的研究同时还迎合了工业化国家日趋严格的环保政策,因而各国对氢能的研究变的日益活跃起来。 氢原子序数为1,常温常压呈气态,超低温、高压下又可成为液态。作为能源, 氢有以下特点: 1)氢是构成了宇宙质量的75%,存储量大。 2)氢的发热值高,是汽油发热值的3倍。 3)氢燃烧性好,点燃快,3%-97%范围内均可燃。 4)氢循环使用性好,燃烧反应生成的水可用来制备氢,循环使用。 5)氢利用形式多,可以产生热能、可用于燃料电池,或转换成固态氢作结构材料。 美国著名石油专家埃克诺米迪斯博士预测:主宰未来世界的能源将是氢能。 2氢能的主要应用领域 二航天 早在M战期间,氢即用作A-2火箭液体推进剂。1970年美国”阿波罗”登月飞船使用的起飞火箭也是用液氢作燃料。 目前科学家们正研究一种”固态氢”宇宙飞船。固态氢既作为飞船的结构材料,又作为飞船的动力燃料,在飞行期间,飞船上所有的非重要零部件都可作为能源消耗掉,飞船就能飞行更长的时间。 交通 在超声速飞机和远程洲际客机上以氢作动力燃料的研究已进行多年,目前已进人样机和试飞阶段。据欧洲空客公司预测,到2004年,欧洲生产的飞机将部分采用液氢为燃料。德国戴姆勒一奔驰航空航天公司以及俄罗斯航天公司从1996年开始试验,其进展证实,在配备有双发动机的喷气机中使用液态氢,其安全性有足够保证。 美、德、法等国采用氢化金属贮氢,而日本则采用液氢作燃料组装的燃料电池示范汽车,已进行了上百万公里的道路运行试验,其经济性、适应性和安全性均较好。美国和加拿大计划从加拿大西部到东部的大铁路上采用液氢和液氧为燃料的机车。 :民用 除了在汽车行业外,燃料电池发电系统在民用方面的应用也很广泛。氢能发电、氢介质储能与输送,以及氢能空调、氢能冰箱等,有的已经实现,有的正在开发,有的尚在探索中。燃料电池发电系统的开发目前也开发的如火如茶:以PEMFC为能量转换装置的小型电站系统和以SOFC为主的大型电站等均在开发中。 :其它 以氢能为原料的燃料电池系统除了在汽车、民用发电等方面的应用外,在军事方面的应用也显得尤为重要,德国、美国均已开发出了以PEMFC为动力系统的核潜艇,该类型潜艇具有续航能力强,隐蔽性好,无噪声等优点,受到各国的青睐。 3 氢能应用的主要问题 :氢气制备 氢气能否广泛使用,制氢工艺是基础,目前主要的制氢工艺主要包括: 1)采用矿物燃料、核能、太阳能、水能、风能及潮汐能等方式电解水制备氢气是目前的主要研究方向,其中以利用太阳能制氢的研究最多也最有前途; 2)热化学循环分解水制氢方法是在水反应系统中加人中间物,经历不同的反应阶段,最终将水分解为氢和氧,且中间物不消耗; 3)光化学制氢是在有光照催化剂作用下,促使水解制得氢气; 4)矿物燃料制氢是利用化学方法将矿物中的氢元素提取出来的方法,如煤的焦化、煤的气化等; 5)生物质制氢是在将生物体中的氢元素通过裂解或者气化的方法提取出来的方法; 6)各种化工过程副产品氢气的回收,如氯碱工业、冶金工业等。水电解制氢、生物质制氢等制氢方法,现已形成规模,其中,低价电解水制氢方法在今后仍将是氢能规模制备的主要方法,目前应用中尚需要降低电耗。 :氢气一运输 工业实际应用中大致有五种贮氢方法,即: (1)常压贮存,如湿式气柜、地下储仓; (2)高压容器,如钢制压力容器和钢瓶; (3)液氢贮存:采用液氢贮存,就必须先制备液氢,生产液氢一般可采用三种液化循环,其中带膨胀机的循环效率最高,在大型氢液化装置上被广泛采用;节流循环,效率不高,但流程简单,运行可靠,所以在小型氢液化装置中应用较多。氦制冷氢液化循环消除了高压氢的危险,运转安全可靠,但氦制冷系统设备复杂,故在氢液化中应用不多。 (4)金属氢化物:当用贮氢合金制成的容器冷却和压人氢时,氢即被储存;加热这一贮存系统或降低其内部压力,氢就会释放出来。 目前金属氢化物合金体系主要有:l)LaNi5系合金;2)MnNi5系合金等;3)TiMn系合金;4)TiMn系合金(ABZ);5)镁系合金;6)纳米碳等。 (5)除管道输送外,高压容器和液氢槽车也是目前工业上常规应用的氢气输送方法。 金属氢化物贮氢装置的开发 在氢的制备和贮存、输送问题解决后,下一步的研究就是氢化物贮氢装置的开发,目前主要包括以下两类: 固定式贮氢装置 固定式贮氢器其服务场合多种多样,容量则以大中型为主。美国开发的以合金为基体中型固定式贮氢器;日本则用贮氢合金开发了叠式固定装置;德国用TiMn2型多元合金开发的贮罐是由32个独立贮罐并联而成,容量为目前世界上最大的;我国浙江大学分别用(MmCaCu)(NiA1)5增压型贮氢合金、MINi4. 5 Mn0. 5合金分别开发了两种固定式装置。 移动式贮氢装置 移动式贮氢器除了携带运输氢气外,还可用于燃料电池氢燃料的存储。作为移动式装置要兼顾贮存与输送,因此要求重量轻、贮氢量大等问题。其中金属氢化物贮氢器不需附加设备(如裂解及净化系统),安全性高,适于车船方面应用;用常温型合金,质量贮能密度与 15 M Pa高压钢瓶基本相同,但体积可小得多。如德国海军的混合推进系统在潜艇,氧以液氧形式贮存,氢则以TIFe合金贮存。 目前工作的方向 在PEMFC已有技术基础上,除继续加强大功率PEMFC的关键技术研究外,还应注意PEMFC系统工程关键技术开发和系统技术集成,这是PEMFC发电系统走向实用化过程的关键。 在航空领域则要是解决氢能的贮存和生产成本问题,目前的一个研究趋势是开始将传统的机翼设计成为可以容纳更多液态氢的新型构造。 在汽车领域的问题主要是存在贮氢密度小和成本高两大障碍:以储氢合金贮氢为动力的汽车连续行驶的路程受限制,而以液氢为动力的主要是由于液氢供应系统费用过高而受到限制。 氢在航天动力方面已广泛应用,例如大容量镍氢电池等,但氢能的大规模的应用还有待解决以下关键问题:l)廉价的制氢技术;2)安全可靠的贮氢和输氢方法。 4 未来氢能经济社会的特色 随着科学技术的进步和氢能系统技术的全面进展,氢能应用范围必将不断扩大,氢能将深人到人类活动的各个方面,因而我们可以勾勒出未来氢能经济社会的一副大致图画: l)、化石能源(石油、煤炭、天然气)封存,留作化工原料; 2)、建立居家小型电站,取消远距离高压输电,通过管道网,送氢气至千家万户。 3)、各种类型空气一氢燃料电池成为普遍采用的发电工具。 4)、取缔内燃机动力,汽车、火车、飞机改用燃料电池,消灭了一切能源污染隐患和内燃机车噪音源。 5)、每个城市和家庭有能源供应和回收的完善循环系统。 6)取消火力发电,核电站、水利发电站、风力发电站、潮汐发电完成正常的电力供应后,剩余电力用于电解水制氢,作为储备能源。 5 我国发展氢能的对策 氢能的研究和应用是历史不可逆转的潮流,各国政府目前均对此展开了大量的研究,我国在这方面也投入了不少的人力、物力、财力,并取得了一定的成果,但我们也应该看到目前我们与工业化国家的差距,根据我国的国情制定相应的氢能发展战略,个人认为应包括以下的几点: (1)电解水制氢是获取氢源的重要途径,目前因耗电量大、电价高导至氢气成本高,推广使用受到限制,开发新型电解水制氢工艺,降低能耗也是一个重要的议题。 (2)各种新的制氢方法如从HZS制氢、从生物质制氢及用热化学法水分解制氢以及化工产品中副产品氢气的回收等应予以重视; (3)储氢材料的研究国内进行了较多的研究,但是目前很少有实用化的报道,因而开展科技成果的转化以及新型储氢和输氢装置的研究也尤为重要; (4)氢能未来应用的主要领域还是在燃料电池方面,我国开展这方面的研究也已经有一定基础,但主要是集中在研究燃料电池组件方面,对于系统集成等研究报道不多,同时由于资金和技术方面等因素,目前与国外还是有较大的差距,因而应加大投资力度,迎头赶上。 (5)氢能开发最有前景的方式是与太阳能结合,因而对于太阳能电池系统及材料的研究也应当引起足够的重视。 6结语 就环境保护和市场需求而言,洁净和成本是两个关键参数,光有洁净而成本过高就没有市场,因而目前降低氢能的利用成本成为当务之急,各工业化国家对这方面的研究都十分重视,其中美国政府决定今后五年为开发氢能拨款 17亿美元,力争到 2040年以前使每天的石油消耗量减少 1100万桶。世界上40家重要的汽车厂商中,已有25家决定考虑采用氢能,以适应日益严格的环保政策。因而虽然目前困难重重,但在不久的将来我们可以预见氢能的利用一定能够走进我们生活的方方面面。

(一)主题的写法[2]毕业论文只能有一个主题(不能是几块工作拼凑在一起),这个主题要具体到问题的基层(即此问题基本再也无法向更低的层次细分为子问题),而不是问题所属的领域,更不是问题所在的学科,换言之,研究的主题切忌过大。因为涉及的问题范围太广,很难在一本硕士学位论文中完全研究透彻。通常,硕士学位论文应针对某学科领域中的一个具体问题展开深入的研究,并得出有价值的研究结论。(二)题目的写法毕业论文题目应简明扼要地反映论文工作的主要内容,切忌笼统。由于别人要通过你论文题目中的关键词来检索你的论文,所以用语精确是非常重要的。论文题目应该是对研究对象的精确具体的描述,这种描述一般要在一定程度上体现研究结论,因此,我们的论文题目不仅应告诉读者这本论文研究了什么问题,更要告诉读者这个研究得出的结论。(三)摘要的写法毕业论文的摘要,是对论文研究内容的高度概括,其他人会根据摘要检索一篇硕士学位论文,因此摘要应包括:对问题及研究目的的描述、对使用的方法和研究过程进行的简要介绍、对研究结论的简要概括等内容。摘要应具有独立性、自明性,应是一篇完整的论文。(四)引言的写法一篇毕业论文的引言,大致包含如下几个部分:1、问题的提出;2、选题背景及意义;3、文献综述;4、研究方法;5、论文结构安排。

楼主你好!很高兴能回答你的问题!国际油价破百之后,新能源再次被人们关注。然而,新能源在缓解能源危机这个大舞台上,到底能发挥多大的作用?哪些新能源又值得消费者期待呢? 面对高油价和潜在的石油供应危机,各国政府都把解决能源问题作为维护国家安全的战略问题提到议事日程中来。中国工程院博士冀星说,摆在各国政府面前的有两条道路:一是开源节流,寻求更多的石油供应渠道,并提高石油的使用效率;二是开发新能源。 为了促进新能源的开发利用,2006年1月1日,我国正式颁布实施了《可再生能源法》。该法将可再生能源的范围进行了限定,即风能、太阳能、水能、生物质能、地热能、海洋能等非化石能源。国家还出台了一系列政策和措施,旨在推动以秸秆、甘蔗、玉米等农林产品以及畜牧业生产废弃物等为代表的生物能源发展。 2007年,国家发改委发布的《能源发展“十一五”规划》,描绘出一幅未来5年我国能发展的蓝图。 乙醇汽油推广范围逐渐扩大 在众多新能源中,目前我国唯有乙醇汽油真正得到了推广,并且范围逐渐扩大。现在吉林、辽宁、黑龙江、河南、安徽五省及湖北、山东、江苏、河北、广西五省的部分地区都在使用乙醇汽油。 乙醇俗称酒精,车用乙醇汽油是把变性燃料乙醇和汽油按一定比例混配形成的一种新型汽车燃料。它基本不影响汽车的行驶性能,还可以减少有害气体的排放量。 虽然乙醇汽油的技术成熟,推广也一直稳步进行,但就在国务院2007年举行的一次关于可再生能源的会议上决定,我国将停止新建的粮食乙醇燃料项目。据了解,出台这一政策是为了保证粮食安全,保证玉米、小麦和其他农产品的种植比例平衡。农业部农村经济研究中心的有关专家认为,由于利用率最高、价格最为低廉,以木薯资源制造酒精前景广阔,我国燃料乙醇由此向非粮乙醇转折。 中国汽车技术研究中心高海洋博士认为,从长远角度讲,推广乙醇汽油是节约能源,提高环保质量的有力举措,但就试点情况来看,在全国范围推广则要在成本、价格、政策等方面加以规范,这需要整个供求市场的磨合,而不是一朝一夕的事。 生物柴油三年后进入正规加油站 生物柴油作为传统柴油的替代能源已经得到世界各国的重视,我国的中国石油、中国石化、中国海洋石油和中粮集团都设立了专门的机构研究生物柴油。有关方面预测,三年后生物柴油能进入正规加油站。 生物柴油是以动植物油脂为原料的可再生能源,与传统石化柴油相比,生物柴油具有润滑性能好,使用安全等优势,目前全球生物柴油的主要应用领域是为汽车提供动力燃料。使用生物柴油车辆无需改装,只要与普通柴油按照一定比例调和即可。 2006年,国家颁布《中华人民共和国可再生资源法》。虽然已有法规确定生物柴油的合法地位,但广大消费者近两年内还很难在正规加油站购买到。 据了解,国家对成品油的监管非常严格,而目前生物柴油的质量参差不齐,如果在加油站销售,质量无法保证。另外,产量太小也是制约生物柴油走进正规加油站的重要原因。国家发改委对生物柴油今后的推广已经有初步的计划,就是按照乙醇汽油的推广方式来分区域封闭式推广。 中国工程院博士冀星透露,根据国家发改委的整体规划和四大集团研究实验进度,预计三年后生物柴油才能进入正规加油站。 氢能源应用在车上有待时日 与生物质能源相比,氢能源的发展势头略显弱势,但世界各国的研究机构和汽车制造企业在研究开发氢技术方面都取得了一些成绩。美国的通用汽车公司把远期目标定位在氢能源车,“雪佛兰Sequel”是该公司最新一代的氢能源概念车。 氢能源是一种二次能源,目前主要的来源是利用水资源制取的。我国氢的来源极为丰富,制造提取的技术水平也有了一定的基础,水电解制氢、生物质气化制氢等制氢方法都已形成规模。 虽然氢能源来源广泛,但作为新能源在车辆上推广还有一定难度。首先,提取氢能源的成本极高;第二,需要对车辆进行较大改造;第三,大量提取氢能源的难度较大;第四,需要广泛建造氢加注站点。业内专家认为,获得大量廉价的氢,是实现氢能利用的根本。 太阳能汽车的美好前景 1999年,巴西圣保罗大学的科研人员设计出一款新型太阳能汽车,这种汽车全部使用太阳能作为能源,发动机和车轮之间没有传输装置,最高时速超过100公里。这是世界上有报道的第一款真正意义上的太阳能汽车。 2003年,由日本大学生制造的氢(hydrogen)和太阳能汽车成功穿越澳洲。该车从柏斯穿越沙漠行驶到悉尼,行程4084公里。汽车的排放物包括纯净水,悉尼市长特恩布尔在汽车抵达悉尼后,将水一饮而尽。 南京理工大学车辆工程系吴小平教授分析说,太阳能汽车进入商业时代,至少还要30-50年,但太阳能在汽车上的局部应用,10年之内应可见到。比如随着汽车上空调、多媒体等大量需要耗用发动机动力供电的电器设备的使用,燃油发动机已经越来越难以满足需要,那么用太阳能电池替代发动机的部分功能,就既可减少汽车尾气排放量,又可提高发动机工作效率。另外,高尔夫球场、风景区等对环保要求较高,而对动力要求不高的场所,可能会使用太阳能小车做工作车或游览车。 神秘的“可燃冰” 在全世界寻找替代能源的努力中,一种神秘的物质逐渐浮出水面,它就是深藏在海底的比石油、煤燃烧值高数倍,被称为后石油时代能源的“可燃冰”。 这种天然气水合物的晶体叫“可燃冰”,学名为“天然气水合物”,它透明无色,形似笼状的独特的冰结晶体,点火即燃烧,常温下分解出天然气,所以又叫“气冰”、“固体瓦斯”,是一种高能量的能源。我国在西海北部已经发现可燃冰的存在。 目前,很多国家都只是证明其在某一地区内含有“可燃冰”这种资源,但却很难说出具体的可采储量。由于“可燃冰”分布于海底,因此勘探起来有很大难度,至少现阶段世界各国都不能像探测石油、天然气一样,通过分析地质构造和进一步勘探确认“可燃冰”的探明可采储量。 “采集实物样本还具有一定的难度,‘可燃冰’的开发利用就更是难上加难。”专业人士指出,开发“可燃冰”非常危险,由于水化物是在低温高压下形成的。且开采时还有可能导致海床崩塌使甲烷大量释放,释放过程中一旦失控,难免酿成灾难。因此业界认为“可燃冰”成为新能源只是人类的一个希望。 电动汽车蓄势待发 电能汽车也称电动汽车,其工作原理是依靠蓄电池的电力使汽车发动机运转,使电能转化为机械能,从而驱动汽车。 电能汽车可以有效解决传统汽车燃油的污染问题,很多国家和机构都在研究电能汽车,而电能汽车的主要问题是蓄电池的蓄电能力大小,它直接影响着汽车的行驶速度和行驶距离。 现在,国内外各知名汽车厂商都开始下大力气开发电能汽车。 比亚迪首款电动汽车F3e使用电能驱动,没有排放,没有污染,甚至没有汽缸发动机的噪音,充足电以后以140-150公里/小时的速度可行驶570公里,这种环保汽车的远景变得越来越清晰。 电能汽车的发展将有效缓解能源危机,成为新能源动力车的重要组成部分。 编后 石油仍是当前最廉价的车用能源 除了燃料乙醇、生物柴油和氢能源以外,风能、太阳能、水能等都可以作为替代能源用于车辆,但目前它们还停留在概念的范畴,石油仍是当前最廉价的车用能源。 石油价格上涨已经变成了不可逆转的趋势。除非找到真正具有市场实用价值的替代能源,否则整个世界都将不可避免地沦为“石油的奴隶”。 寻找新能源的意义不在于最终完成了什么样的研发,而在于它给我们提供了一种全新的思路、一种可能。 希望我能够帮到你!呵呵~

相关百科

热门百科

首页
发表服务