▲第一作者:宋丽娜、张伟、王颖;通讯作者:徐吉静教授 通讯单位:吉林大学
论文DOI:
针对锂氧气电池存在的反应动力学缓慢而导致能量转换效率低的问题,研究者通常开发高效、稳定的正极催化剂来降低电池的充电极化电压提高反应动力。该工作将Co单原子固定于掺杂N的碳球壳载体上,用于锂氧气电池的高效催化反应,实验发现Li2O2形成和分解路线与LiO2在单原子催化剂的吸附能有关。研究明确指出,在放电过程中,原子级分散的活性位点能够诱导放电产物的均匀成核和外延生长,最终形成有利的纳米花状放电产物。在充电过程中,CoN4活性中心对放电中间体LiO2弱的吸附能,诱导充电反应由两电子路径向单电子路径转变。 得益于高分散的Co-N单原子催化剂的能级结构和电子结构所发生的根本性变化,大幅提升了电池的充电效率和循环寿命。与同等含量的贵金属基催化剂相比,达到600 mV充放电极化电压的降低和218天的长寿命循环。
锂氧气电池具有锂离子电池10倍以上的理论容量密度,被誉为颠覆性和革命性电池技术 。然而该电池还处于研发的初级阶段,受限于ORR和OER电化学反应动力学缓慢,电池的实际容量、倍率性能、能量效率和循环寿命距产业化应用还有很大差距。因而开发高效稳定的催化剂,是提高电池反应动力和循环效率的迫切需要。原子级纳米晶具有最大化的原子利用效率和独特的结构特点,往往表现出不同于传统纳米催化剂的活性、选择性和稳定性,为调控电化学反应过程提供了多种可能。在锂氧电池中,电解液中可溶性LiO2中间体能够调控放电产物Li2O2的形成与分解路线。先前的研究结果表明[1],不同的生成路线与LiO2在催化剂的不同晶面上的吸附能有关。 因此,探究单原子催化剂的尺寸效应对LiO2吸附能的影响,可能是一种调整低供体数电解质中过氧化锂形成与分解路径的新思路。这一新发现将为高能量效率和长循环寿命的锂氧电池的设计提供更多的选择。
单原子催化剂(SACs)是一类非常重要的电催化剂,其独特的单分散结构集均相催化和多相催化剂的优点于一身,拥有最大的金属利用率、优异的催化活性和稳定性。同时,SACs的活性位点相对简单确定且易于调控,因而这种独特的结构和性能使得单原子催化剂成为了一个非常理想的催化机理研究和性能优化的材料平台。然而当单原子催化剂与锂空气电池相遇,会擦出怎样的火花呢?本文采用原位聚合技术,设计合成了Co单原子嵌入的氮掺杂碳空心球(N-HP-Co)用于锂氧气电池的研究,并对其充放电过程进行详细分析。其结果表明,受益于N-HP-Co最大化暴露的CoN4单原子活性位点及活性位点在碳球壳上的均匀分布,降低了对LiO2的吸附能力,有效的改变了电池的反应路径,使得电池反应动力学得到极大提高,大幅提升了电池性能。
▲图一 单原子催化剂的合成过程。
单原子催化剂由于活性位点均匀性的提高以及配位环境的高度可控性,在许多催化反应中都表现出较高的催化活性。因此将单原子Co催化剂应用于锂氧气电池中,来探究对Li2O2形成与分解反应路径的影响。我们采用原位聚合的方法,以二氧化硅作为模板,盐酸多巴胺作为碳源,并在900 °C的氮气氛围内热解。
▲图二 单原子催化剂的特性表征。a, b) 样品的SEM图像(a:1微米;b:200纳米);c) 样品的TEM图像(主图:200纳米;插图:10纳米);d) 样品的EDX元素分析(50纳米);e, f) 样品的HAADF-STEM图像(e:50纳米;f:2纳米);g) 样品及对比材料的XRD图像;h) 样品的N 1s XPS光谱;i) 样品及对比材料的氮气吸附曲线。
▲图三 单原子催化剂的原子结构分析。a) 样品的XANES光谱;b) 样品的傅里叶转换的Co-K边光谱;c, d)样品在k和R空间的EXAFS拟合曲线。
N掺杂的碳球壳作为载体是锚定Co单原子的关键步骤。高角度环形暗场球差电镜(HAADF)、能量色散谱(EDX)元素映像图表和X射线吸收光谱(XAS)测试等关键性表征技术证实了单原子Co的成功制备和CoN4高活性位点的存在。
▲图四 单原子催化剂的放电机理研究。a) 样品及对比材料的放电曲线;b) 样品及对比材料的CV曲线;c) 样品及对比材料的倍率性能;d, e, f) 样品及对比材料的放电产物的SEM图像及相应的XRD谱图(500纳米);h, i) 样品及对比材料的放电机理图。
受益于N-HP-Co SACs最大化暴露的CoN4单原子活性位点在碳球壳上的均匀分布,电极氧化还原反应动力学得到极大提升,加快了放电产物Li2O2的形成速率,大幅提升了电池的放电容量和倍率性能。与同等含量的贵金属催化剂相比,在相同的电流密度和容量下,N-HP-Co SACs具有更多的反应活性位点,因而更有利于生成纳米片状的Li2O2,并通过“外延生长方式”进一步组装形成有利的纳米花状Li2O2。这种特殊的放电机制有利于打破电荷传输限制和放电产物电化学绝缘的本质。
▲图五 单原子催化剂的充电特性。a) 样品及对比材料在不同充电阶段的紫外可见光谱图;b) 样品的充电机理图;c-h) 样品及对比材料上的不同结构对LiO2的吸附能。
为了更全面地了解CoN4单位点催化剂的充电机理,通过密度泛函理论(DFT)计算表明复杂的配位环境可以显著改变中心金属原子CoN4对LiO2*的吸附能力,从而调控反应的活性和选择性。可以看出,CoN4活性中心对放电中间体LiO2弱的吸附能,有利于提高LiO2在电解质中的溶解度,诱导充电反应过程由两电子路径向单电子路径转变。因而有利于提高电池的充电效率。
▲图六 锂空气电池的循环稳定性。a) 样品及对比材料的循环性能;b-e) 样品及对比材料在不同循环过程中放电产物的SEM图像(b, d:1微米;c, e:500纳米);f, g) 样品及对比材料在不同循环过程中的放电产物的XPS光谱。
单原子催化的锂空气电池可以有效的抑制副反应的发生,并展现出优异的循环稳定性,充分验证了催化剂对放电产物的精准调控对稳定电池体系的重要作用。
▲图七 单原子催化剂在循环过程中的稳定性。a) 样品在全圈循环后的XPS光谱;b) 样品在多圈循环后的EDX光谱(200纳米);c) 样品在多圈循环后的XANES光谱;d) 样品在多圈循环后的傅里叶转换的Co-K边光谱。
N-HP-Co 在50次的循环过程中,Co的单原子结构依然被保留。Co单原子在碳载体上的固有稳定性使它们在电化学反应中具有优异的耐久性,这一显著的优势与低成本的优势相结合,为金属单原子催化剂在锂氧电池反应路线的可调性提供了新的策略。
单原子催化剂的合成受到草莓生长过程的启发,采用二氧化硅为模板,原位聚合生成氮掺杂的Co单原子催化剂。由于单原子催化的本质特征,低配位环境和单原子与碳球壳之间的协同作用能够精准的调控锂氧气电池中放电产物的生成与分解路线。与同等含量的贵金属催化剂相比,单原子催化剂不仅能够调控放电产物的形貌,同时增加了放电容量,避免了过多的副反应的发生,极大地提高了电池的电催化性能。该研究提出的单原子催化正极的概念、设计、制备及催化机制,将为锂空气电池领域新型催化剂的发展提供新的研究思路和科学依据,具有鲜明的引领性和开创性特征。
参考文献 [1] Yao, W. T. et al. Tuning Li2O2 formation routes by facet engineering of MnO2 cathode catalysts. J. Am. Chem. Soc.,2019,141,12832-12838.
徐吉静,1981年7月出生于山东省单县,现任吉林大学,化学学院,无机合成与制备化学国家重点实验室,未来科学国际合作联合实验室,教授,博士生导师。光学晶体标准化技术委员会副秘书长。主要从事多孔新能源材料与器件领域的基础研究和技术开发工作,研究方向包括锂(钠、钾、锌)离子电池关键材料及器件,锂空气(硫、二氧化碳)电池等新型化学电源,外场(光、力、磁、热)辅助能量储存与转化新体系。近5年共发表SCI学术论文50余篇,其中包括第一作者/通讯作者论文:篇、 1篇、. 2篇、篇、Energy 篇、ACS Nano 1篇、ACS 篇。迄今为止,论文被他引4000余次,单篇最高引用360次,12篇论文入选ESI高引论文,研究成果被Nature、Science等作为亮点报道。获授权发明专利和国防专利10项。曾获科睿唯安“全球高被引学者”(2019年)、吉林省拔尖创新人才(2019年)、吉林省青年 科技 奖(2018年)和吉林大学学术带头人(2018年)等奖项或荣誉。
第1章锂元素的物理、化学性质参考文献第2章锂离子电池的基本概念与组装技术锂离子电池的工作原理和特点工作原理锂离子电池的主要特点锂离子电池的电化学性能锂离子电池的电动势电池开路电压锂离子电池的类型锂离子电池的设计电池设计的一般程序电池设计的要求电池性能设计型锂离子电池的结构设计电池保护电路设计锂离子电池监控器锂离子电池体系热变化与控制锂离子电池的基本组成及关键材料电极材料电池组装工艺与技术参考文献第3章正极材料正极材料的微观结构材料材料材料磷酸体系化合物正极材料的分类及电化学性能层状锂钴氧化物层状锂镍氧化物尖晶石型氧化物复合层状氧化物其他层状氧化物层状二硫族化物正极材料三硫族化物及相关材料磷酸盐体系有机导电聚合物材料正极材料的制备方法溶剂热法合成高温反应法溶胶-凝胶法低温固相反应法电化学合成法机械化学活化法参考文献第4章负极材料负极材料的发展金属锂及其合金碳材料氧化物负极材料其他负极材料复合负极材料负极材料的特点及分类负极材料的特点负极材料的分类晶体材料和非晶化合物石墨类碳材料无定形碳材料碳材料性能的改进方法锡基材料硅基材料合金材料复合物材料过渡金属氧化物其他纳米电极材料碳纳米材料纳米金属及纳米合金纳米氧化物其他类型材料锂金属氮化物锂钛复合氧化物Li4/3Ti5/膜电极材料薄膜电极材料的制备方法薄膜电极材料的分类参考文献第5章电解质第6章电极材料研究方法第7章锂离子电池的应用与展望参考文献
▲第一作者:宋丽娜、张伟、王颖;通讯作者:徐吉静教授 通讯单位:吉林大学
论文DOI:
针对锂氧气电池存在的反应动力学缓慢而导致能量转换效率低的问题,研究者通常开发高效、稳定的正极催化剂来降低电池的充电极化电压提高反应动力。该工作将Co单原子固定于掺杂N的碳球壳载体上,用于锂氧气电池的高效催化反应,实验发现Li2O2形成和分解路线与LiO2在单原子催化剂的吸附能有关。研究明确指出,在放电过程中,原子级分散的活性位点能够诱导放电产物的均匀成核和外延生长,最终形成有利的纳米花状放电产物。在充电过程中,CoN4活性中心对放电中间体LiO2弱的吸附能,诱导充电反应由两电子路径向单电子路径转变。 得益于高分散的Co-N单原子催化剂的能级结构和电子结构所发生的根本性变化,大幅提升了电池的充电效率和循环寿命。与同等含量的贵金属基催化剂相比,达到600 mV充放电极化电压的降低和218天的长寿命循环。
锂氧气电池具有锂离子电池10倍以上的理论容量密度,被誉为颠覆性和革命性电池技术 。然而该电池还处于研发的初级阶段,受限于ORR和OER电化学反应动力学缓慢,电池的实际容量、倍率性能、能量效率和循环寿命距产业化应用还有很大差距。因而开发高效稳定的催化剂,是提高电池反应动力和循环效率的迫切需要。原子级纳米晶具有最大化的原子利用效率和独特的结构特点,往往表现出不同于传统纳米催化剂的活性、选择性和稳定性,为调控电化学反应过程提供了多种可能。在锂氧电池中,电解液中可溶性LiO2中间体能够调控放电产物Li2O2的形成与分解路线。先前的研究结果表明[1],不同的生成路线与LiO2在催化剂的不同晶面上的吸附能有关。 因此,探究单原子催化剂的尺寸效应对LiO2吸附能的影响,可能是一种调整低供体数电解质中过氧化锂形成与分解路径的新思路。这一新发现将为高能量效率和长循环寿命的锂氧电池的设计提供更多的选择。
单原子催化剂(SACs)是一类非常重要的电催化剂,其独特的单分散结构集均相催化和多相催化剂的优点于一身,拥有最大的金属利用率、优异的催化活性和稳定性。同时,SACs的活性位点相对简单确定且易于调控,因而这种独特的结构和性能使得单原子催化剂成为了一个非常理想的催化机理研究和性能优化的材料平台。然而当单原子催化剂与锂空气电池相遇,会擦出怎样的火花呢?本文采用原位聚合技术,设计合成了Co单原子嵌入的氮掺杂碳空心球(N-HP-Co)用于锂氧气电池的研究,并对其充放电过程进行详细分析。其结果表明,受益于N-HP-Co最大化暴露的CoN4单原子活性位点及活性位点在碳球壳上的均匀分布,降低了对LiO2的吸附能力,有效的改变了电池的反应路径,使得电池反应动力学得到极大提高,大幅提升了电池性能。
▲图一 单原子催化剂的合成过程。
单原子催化剂由于活性位点均匀性的提高以及配位环境的高度可控性,在许多催化反应中都表现出较高的催化活性。因此将单原子Co催化剂应用于锂氧气电池中,来探究对Li2O2形成与分解反应路径的影响。我们采用原位聚合的方法,以二氧化硅作为模板,盐酸多巴胺作为碳源,并在900 °C的氮气氛围内热解。
▲图二 单原子催化剂的特性表征。a, b) 样品的SEM图像(a:1微米;b:200纳米);c) 样品的TEM图像(主图:200纳米;插图:10纳米);d) 样品的EDX元素分析(50纳米);e, f) 样品的HAADF-STEM图像(e:50纳米;f:2纳米);g) 样品及对比材料的XRD图像;h) 样品的N 1s XPS光谱;i) 样品及对比材料的氮气吸附曲线。
▲图三 单原子催化剂的原子结构分析。a) 样品的XANES光谱;b) 样品的傅里叶转换的Co-K边光谱;c, d)样品在k和R空间的EXAFS拟合曲线。
N掺杂的碳球壳作为载体是锚定Co单原子的关键步骤。高角度环形暗场球差电镜(HAADF)、能量色散谱(EDX)元素映像图表和X射线吸收光谱(XAS)测试等关键性表征技术证实了单原子Co的成功制备和CoN4高活性位点的存在。
▲图四 单原子催化剂的放电机理研究。a) 样品及对比材料的放电曲线;b) 样品及对比材料的CV曲线;c) 样品及对比材料的倍率性能;d, e, f) 样品及对比材料的放电产物的SEM图像及相应的XRD谱图(500纳米);h, i) 样品及对比材料的放电机理图。
受益于N-HP-Co SACs最大化暴露的CoN4单原子活性位点在碳球壳上的均匀分布,电极氧化还原反应动力学得到极大提升,加快了放电产物Li2O2的形成速率,大幅提升了电池的放电容量和倍率性能。与同等含量的贵金属催化剂相比,在相同的电流密度和容量下,N-HP-Co SACs具有更多的反应活性位点,因而更有利于生成纳米片状的Li2O2,并通过“外延生长方式”进一步组装形成有利的纳米花状Li2O2。这种特殊的放电机制有利于打破电荷传输限制和放电产物电化学绝缘的本质。
▲图五 单原子催化剂的充电特性。a) 样品及对比材料在不同充电阶段的紫外可见光谱图;b) 样品的充电机理图;c-h) 样品及对比材料上的不同结构对LiO2的吸附能。
为了更全面地了解CoN4单位点催化剂的充电机理,通过密度泛函理论(DFT)计算表明复杂的配位环境可以显著改变中心金属原子CoN4对LiO2*的吸附能力,从而调控反应的活性和选择性。可以看出,CoN4活性中心对放电中间体LiO2弱的吸附能,有利于提高LiO2在电解质中的溶解度,诱导充电反应过程由两电子路径向单电子路径转变。因而有利于提高电池的充电效率。
▲图六 锂空气电池的循环稳定性。a) 样品及对比材料的循环性能;b-e) 样品及对比材料在不同循环过程中放电产物的SEM图像(b, d:1微米;c, e:500纳米);f, g) 样品及对比材料在不同循环过程中的放电产物的XPS光谱。
单原子催化的锂空气电池可以有效的抑制副反应的发生,并展现出优异的循环稳定性,充分验证了催化剂对放电产物的精准调控对稳定电池体系的重要作用。
▲图七 单原子催化剂在循环过程中的稳定性。a) 样品在全圈循环后的XPS光谱;b) 样品在多圈循环后的EDX光谱(200纳米);c) 样品在多圈循环后的XANES光谱;d) 样品在多圈循环后的傅里叶转换的Co-K边光谱。
N-HP-Co 在50次的循环过程中,Co的单原子结构依然被保留。Co单原子在碳载体上的固有稳定性使它们在电化学反应中具有优异的耐久性,这一显著的优势与低成本的优势相结合,为金属单原子催化剂在锂氧电池反应路线的可调性提供了新的策略。
单原子催化剂的合成受到草莓生长过程的启发,采用二氧化硅为模板,原位聚合生成氮掺杂的Co单原子催化剂。由于单原子催化的本质特征,低配位环境和单原子与碳球壳之间的协同作用能够精准的调控锂氧气电池中放电产物的生成与分解路线。与同等含量的贵金属催化剂相比,单原子催化剂不仅能够调控放电产物的形貌,同时增加了放电容量,避免了过多的副反应的发生,极大地提高了电池的电催化性能。该研究提出的单原子催化正极的概念、设计、制备及催化机制,将为锂空气电池领域新型催化剂的发展提供新的研究思路和科学依据,具有鲜明的引领性和开创性特征。
参考文献 [1] Yao, W. T. et al. Tuning Li2O2 formation routes by facet engineering of MnO2 cathode catalysts. J. Am. Chem. Soc.,2019,141,12832-12838.
徐吉静,1981年7月出生于山东省单县,现任吉林大学,化学学院,无机合成与制备化学国家重点实验室,未来科学国际合作联合实验室,教授,博士生导师。光学晶体标准化技术委员会副秘书长。主要从事多孔新能源材料与器件领域的基础研究和技术开发工作,研究方向包括锂(钠、钾、锌)离子电池关键材料及器件,锂空气(硫、二氧化碳)电池等新型化学电源,外场(光、力、磁、热)辅助能量储存与转化新体系。近5年共发表SCI学术论文50余篇,其中包括第一作者/通讯作者论文:篇、 1篇、. 2篇、篇、Energy 篇、ACS Nano 1篇、ACS 篇。迄今为止,论文被他引4000余次,单篇最高引用360次,12篇论文入选ESI高引论文,研究成果被Nature、Science等作为亮点报道。获授权发明专利和国防专利10项。曾获科睿唯安“全球高被引学者”(2019年)、吉林省拔尖创新人才(2019年)、吉林省青年 科技 奖(2018年)和吉林大学学术带头人(2018年)等奖项或荣誉。
4、楼主:大家讨论梁山那么多好汉怎么解决生理欲望问题?
化学电池化学电池将化学能直接转变为电能的装置。主要部分是电解质溶液、浸在溶液中的正、负电极和连接电极的导线。依据能否充 电复原,分为原电池和蓄电池两种 化学电池的种类 化学电池按工作性质可分为:一次电池(原电池);二次电池(可充电电池);铅酸蓄电池。其中:一次电池可分为:糊式锌锰电池、纸板锌锰电池、碱性锌锰电池、扣式锌银电池、扣式锂锰电池、扣式锌锰电池、锌空气电池、一次锂锰电池等。二次电池可分为:镉镍电池、氢镍电池、锂离子电池、二次碱性锌锰电池等。铅酸蓄电池可分为:开口式铅酸蓄电池、全密闭铅酸蓄电池。 1.锌锰电池 锌二氧化锰电池(简称锌锰电池) 又称勒兰社(Leclanche)电池,是法国科学家勒兰社(Leclanche,1839-1882)于1868年发明的由锌(Zn)作负极,二氧化锰(MnO2)为正极,电解质溶液采用中性氯化铵(NH4Cl)、氧化锌(ZnCl2)的水溶液,面淀粉或浆层纸作隔离层制成的电池称锌锰电池,由于其电解质溶液通常制成凝胶状或被吸附在其它载体上而呈现不流动状态,故又称锌锰干电池。按使用隔离层区分为糊式和板式电池两种,板式又按电解质液不同分铵型和锌型电池纸板电池两种。 干电池用锌制筒形外壳作负极,位于中央的顶盖上有铜帽的石墨棒作正极,在石墨棒的周围由内向外依次是A:二氧化锰粉末(黑色)------用于吸收在正极上生成的氢气(以防止产生极化现象);B:用饱和了氯化铵和氯化锌的淀粉糊作为电解质溶液。 电极反应式为:负极(锌筒):Zn +– 2e === Zn(NH3)2Cl2↙+2H+ 正极(石墨):2NH4+ === 2NH3 ↑+ H2↑ H2O + 2MnO2 + 2e === 2MnOOH+ 2OH- 总反应:Zn + 2NH4Cl + 2MnO2 === Zn(NH3)2Cl2↙+2MnOOH 干电池的电压大约为,不能充电再生。 2.碱性锌锰电池 20世纪中期在锌锰电池基础上发展起来的,是锌锰电池的改进型。电池使用氢氧化钾(KOH)或氢氧化钠(NaOH)的水溶液做电解质液,采用了与锌锰电池相反的负极结构,负极在内为膏状胶体,用铜钉做集流体,正极在外,活性物质和导电材料压成环状与电池外壳连接,正、负极用专用隔膜隔开制成的电池。 3.铅酸蓄电池 1859年法国普兰特(Plante)发现,由正极板、负极板、电解液、隔板、容器(电池槽)等5个基本部分组成。用二氧化铅作正极活性物质,铅作负极活性物质,硫酸作电解液,微孔橡胶、烧结式聚氯乙烯、玻璃纤维、聚丙烯等作隔板制成的电池。 铅蓄电池可放电也可以充电,一般用硬橡胶或透明塑料制成长方形外壳(防止酸液的泄漏);设有多层电极板,其中正极板上有一层棕褐色的二氧化铅,负极是海绵状的金属铅,正负电极之间用微孔橡胶或微孔塑料板隔开(以防止电极之间发生短路);两极均浸入到硫酸溶液中。放电时为原电池,其电极反应为: 负极:Pb + SO42-- 2e === PbSO4 正极:PbO2 + 4H+ + SO42- + 2e === PbSO4 + 2H2O 总反应式为:Pb + PbO2 + 2H2SO4 ====== 2PbSO4 + 2H2O 当放电进行时,硫酸溶液的的浓度将不断降低,当溶液的密度降到 时应停止使用进行充电,充电时为电解池,其电极反应如下: 阳极:PbSO4 + 2H2O- 2e === PbO2 + 4H+ + SO42- 阴极:PbSO4 + 2e === Pb + SO42- 总反应式为:2PbSO4 + 2H2O ====== Pb + PbO2 + 2H2SO4 当溶液的密度升到时,应停止充电。 上述过程的总反应式为: 放电 Pb + PbO2 + 2H2SO4 ====== 2PbSO4 + 2H2O 充电 4.锌银电池 一般用不锈钢制成小圆盒形,圆盒由正极壳和负极壳组成,形似纽扣(俗称纽扣电池)。盒内正极壳一端填充由氧化银和石墨组成的正极活性材料,负极盖一端填充锌汞合金组成的负极活性材料,电解质溶液为KOH浓溶液。电极反应式如下: 负极:Zn + 2OH- -2e=== ZnO + H2O 正极:Ag2O + H2O + 2e === 2Ag + 2OH- 电池的总反应式为:Ag2O + Zn ====== 2Ag + ZnO 电池的电压一般为,使用寿命较长。 5.镉镍电池和氢镍以及金属氢化物镍电池 二者均采用氧化镍或氢氧化镍作正极,以氢氧化钾或氢氧化钠的水溶液作电解质溶液,金属镉或金属氢化物作负极。金属氢化物电池为20世纪80年代末,利用吸氢合金和释放氢反应的电化学可逆性发明制成,是小型二次电池主导产品。 6.锂电池 锂电池是一类以金属锂或含锂物质作为负极材料的化学电源的总称通称锂电池,分为一次锂电池和二次锂电池。 7.锂离子电池 指能使锂离子嵌入和脱嵌的碳材料代替纯锂作负极,锂的化合物作正极,混合电解液作电解质液制成的电池。锂离子电池是1990年有日本索尼公司研制出并首先实现产品化。国内外已商品化的锂离子电池正极是LiCoO2,负极是层状石墨,电池的电化学表达式为(—) C6▏1mol/L LiPF6-EC+DEC▏LiCoO2(+) 8.氢氧燃料电池 这是一种高效、低污染的新型电池,主要用于航天领域。其电极材料一般为活化电极,具有很强的催化活性,如铂电极、活性碳电极等。电解质溶液一般为40%的KOH溶液。电极反应式如下: 负极:2H2 + 4OH- -4e=== 4H2O 正极:O2 + 2H2O + 4e=== 4OH- 总反应式:2H2 + O2 === 2H2O 9.熔融盐燃料电池 这是一种具有极高发电效率的大功率化学电池,在加拿大等少数发达国家己接近民用工业化水平。按其所用燃料或熔融盐的不同,有多个不同的品种,如天然气、CO、---熔融碳酸盐型、熔融磷酸盐型等等,一般要在一定的高温下(确保盐处于熔化状态)才能工作。 下面以CO---Li2CO3 + Na2CO3---空气与CO2型电池为例加以说明: 负极反应式:2CO + 2CO32--4e === 4CO2 正极反应式:O2 + 2CO2 + 4e=== 2CO32- 总反应式为:2CO + O2 === 2CO2 该电池的工作温度一般为6500C 10.海水电池 1991年,我国科学家首创以铝---空气---海水为材料组成的新型电池,用作航海标志灯。该电池以取之不尽的海水为电解质,靠空气中的氧气使铝不断氧化而产生电流。其电极反应式如下: 负极:4Al – 12e === 4Al3+ 正极:3O2 + 6H2O + 12e === 12OH- 总反应式为:4Al + 3O2 + 6H2O === 4Al(OH)3 这种电池的能量比普通干电池高20---50倍! 新型化学电池 (1碱性氢氧燃料电池 这种电池用30%-50%KOH为电解液,在100°C以下工作。燃料是氢气,氧化剂是氧气。其电池图示为 (―)C|H2|KOH|O2|C(+) 电池反应为 负极 2H2 + 4OH―4e=4H2O 正极 O2 + 2H2O + 4e=4OH 总反应 2H2 + O2=2H2O 碱性氢氧燃料电池早已于本世纪60年代就应用于美国载人宇宙飞船上,也曾用于叉车、牵引车等,但其作为民用产品的前景还评价不一。否定者认为电池所用的电解质KOH很容易与来自燃料气或空气中的CO2反应,生成导电性能较差的碳酸盐。另外,虽然燃料电池所需的贵金属催化剂载量较低,但实际寿命有限。肯定者则认为该燃料电池的材料较便宜,若使用天然气作燃料时,它比唯一已经商业化的磷酸型燃料电池的成本还要低。 (2) 磷酸型燃料电池 它采用磷酸为电解质,利用廉价的炭材料为骨架。它除以氢气为燃料外,现在还有可能直接利用甲醇、天然气、城市煤气等低廉燃料,与碱性氢氧燃料电池相比,最大的优点是它不需要CO2处理设备。磷酸型燃料电池已成为发展最快的,也是目前最成熟的燃料电池,它代表了燃料电池的主要发展方向。目前世界上最大容量的燃料电池发电厂是东京电能公司经营的11MW美日合作磷酸型燃料电池发电厂,该发电厂自1991年建成以来运行良好。近年来投入运行的100多个燃料电池发电系统中,90%是磷酸型的。市场上供应的磷酸型发电系统类型主要有日本富士电机公司的50KW或100KW和美国国际燃料电池公司提供的200KW。 富士电机已提供了70多座电站,现场寿命超过10万小时。 磷酸型燃料电池目前有待解决的问题是:如何防止催化剂结块而导致表面积收缩和催化剂活性的降低,以及如何进一步降低设备费用。 化学电源的重大意义: 化学能转换为电能的原理的发现和各式各样电池装置的发明,是贮能和供能技术的巨大进步,是化学对人类的一项重大贡献,极大地推进了现代化的进程,改变了人们的生活方式,提高了人们的生活质量。
沈万慈 李新禄 邹麟 康飞宇 郑永平
(清华大学材料科学与工程系,新型炭材料研究室,北京 100084)
摘要 中国具有丰富的天然石墨资源,对天然石墨进行改性处理以应用到高能锂离子电池中是中国石墨产业升级的有效途径之一。对高纯微晶石墨进行了整形和表面包覆碳膜的处理,首次循环效率提高至,循环稳定性也得到了明显改善。试验表明,表面包覆的微晶石墨是一种优良的锂离子二次电池复合负极材料。采用H2SO4-GIC石墨层间化合物技术对鳞片石墨进行预膨胀处理,在石墨颗粒内形成亚微米-纳米空隙,提高了石墨制品的放电容量、快速充放电能力及循环寿命,特别适用于高能锂离子电池的发展要求[1~11]。
关键词 天然石墨;表面包覆;预膨胀;负极材料;锂离子电池。
第一作者简介:沈万慈,清华大学材料科学与工程系教授,长期从事石墨和新碳材料的研究和开发。E-mail:。
一、前言
中国石墨产品可分为鳞片石墨和微晶石墨两大类,鳞片石墨是指石墨晶质大于1μm,层片结构发达,但原矿品位低,一般含碳量在10%以下;微晶石墨又称为无定形石墨、隐晶石墨、土状石墨,晶质小于1μm,其特点在于由小晶粒团聚而成为聚晶体,原矿品位高,一般含碳量在50%以上,郴州鲁塘矿矿石含碳量达到80%以上。
微晶石墨用作锂离子电池的负极材料具有较高的嵌锂容量和循环稳定性,并且资源丰富、价格低廉,对天然微晶石墨进行改性处理以应用到高能锂离子电池中是中国石墨产业升级的有效途径之一。同样,鳞片石墨也可以用于锂离子电池的负极材料,但是必须要解决石墨在储电过程中的胀缩问题,否则它会直接影响电池的使用寿命。
二、微晶石墨的整形
微晶石墨颗粒内部是由许许多多取向无序的晶粒组成的,因此在微晶石墨球形化的过程中,极易产生粉碎现象,大多数颗粒被粉碎成10μm以下的细小颗粒。这些细小颗粒对石墨的负极性能是不利的。锂离子电池用天然石墨要求比表面积小、振实密度高、颗粒均匀,以提高其负极性能,这就要求颗粒粒度分布窄、表面光洁、球形度高。天然石墨必须经过粉体深加工,使其达到锂离子电池的使用要求,然而,通过普通机械粉碎方式很难达到这些要求。本文以化学法提纯后的微晶石墨为原料(其纯度C≥),对搅拌磨系统的微晶石墨整形效果进行了研究。表1是本研究中使用的微晶石墨的碳含量和粒度。
表1 试验中使用的微晶石墨
搅拌磨为无锡市鑫达粉体机械有效公司生产的SX-8型小型搅拌球磨机。搅拌桶容积8L,标准处理量3L。
(一)天然微晶石墨的整形加工
采用湿法搅拌磨整形:球形氧化锆磨球,直径3mm;料浆浓度20%;球料比为20∶1(质量比);填充率为1/2;添加聚丙烯酸铵(或六偏磷酸钠)作为助磨剂,比例为(相对于石墨的质量)。实验采用不同的技术参数,如表2所示。
表2 天然微晶石墨球形化处理实验条件参数
表3 整形前后微晶石墨的比表面积和粒度
(二)整形实验结果
从表3中可以看到,研磨后的微晶石墨比表面积有所下降,这是经搅拌磨整形后,微晶石墨颗粒形状更接近于球形,在相同的情况下,球形颗粒的比表面积更小。同时经搅拌磨整形后的石墨颗粒粒径有所下降,这说明搅拌磨在整形过程中有一定的粉碎作用。
(三)电化学性能
将制备好的石墨分别与聚二氟乙烯(PVDF)(质量百分数10%)混合均匀后用二甲基吡咯烷酮(NMP)溶解调成糊状均匀涂覆在铜箔上,烘干轧制后得到100μm左右厚度的膜。取直径为12mm的膜作为实验电极。电极膜片经过150℃真空干燥24 h后,在氩气手套箱中组装成实验纽扣电池(型号2025)。电解液为1 mol/L—LiPF6/EC-DEC(1∶1)(Merck Co.),隔膜为Celgard#2500。以锂片为对电极,采用恒电流充放电方法测试电化学性能,采用从到1C不等的放电速度,放电截止电压为0V,充电截止电压为3V。电池测试系统为兰电 CT2001A。
搅拌磨整形后的微晶石墨首次嵌锂容量和可逆容量分别由370 mA·h/g、284 mA·h/g增加到386 mA·h/g、308 mA·h/g,首次效率提高到。由此可见,微晶石墨的可逆容量并不算高,较鳞片石墨平均320 mA·h/g略低,但是微晶石墨有各向异性的结构特征,在重复充放电过程中显示了良好的循环性能,因此微晶石墨作为锂离子二次电池将更有优势,关键是提高首次循环效率。
三、微晶石墨的表面包覆
从机理上说,表面修饰主要是减少了石墨表面的活性点,降低了SEI形成的库仑消耗,优化了SEI膜的性能,从而降低了不可逆容量损失。同时预先在石墨表面形成一层碳膜,有利于防止电解液在石墨表面的分解,提高石墨负极的稳定性。但是表面碳膜的致密程度直接影响到改性的效果,致密均匀的碳膜就能有效地阻挡溶剂化离子的共插入,同时在炭化的过程中还能生成一些纳米级的孔,为锂离子的插入提供了更多的通道。
(一)微晶石墨的表面包覆工艺
包覆石墨制备工艺采用浸渍法,即将球形鳞片石墨与酚醛树脂按一定的配比混合均匀,加入乙醇溶剂调节黏度,得到符合分散工艺要求的浆料。经搅拌、过滤、烘干等工序后在石墨颗粒表面包覆上一层酚醛树脂,包覆后仍然为分散的椭球或球形的颗粒。再经过高温炭化后,制备出树脂炭包覆鳞片石墨。
包覆用的酚醛树脂采用液态线性酚醛树脂,型号为917(北京福润达树脂厂),固含量。去除乙醇溶剂后做热失重分析(热重分析仪 STA 409C)。实验表明,在1000℃时,树脂失重为61%,得到39%的热解炭。包覆用的石墨为搅拌磨整形和PCS系统球形化后的天然微晶石墨。
表4 微晶石墨在不同包覆量下的循环性能比较
图1 微晶石墨在不同包覆量下的循环容量曲线
(二)表面包覆的实验结果与讨论
表4列出了不同包覆量的循环性能比较。可以看出,在微晶石墨表面包覆树脂并经1000℃炭化后,其首次循环效率有所提高,循环稳定性也得到了改善。
从图1可以看出,表面包覆是对微晶石墨的电化学性能的有效改性方法,不仅能够提高首次效率,同时包覆后的微晶石墨显示了更好的循环性能,说明表面包覆的微晶石墨是一种良好的锂离子二次电池复合负极材料。
图2 GICs处理后循环性能
四、鳞片石墨用于锂离子电池负极材料
项目组在研究将天然鳞片石墨用作负极材料时,发现天然石墨由于石墨化程度高,其充放电容量要比人工制造的中间相炭微球(MCMB)高。MCMB容量在300 mA·h左右,而鳞片石墨为340 mA·h左右。但考虑循环性能时,鳞片石墨负极要差,多次充放电后,容量损失大。究其原因,主要是充放电时石墨晶体有10% 左右的涨缩量,鳞片石墨集中在一个方向上的多次涨缩使得负极膜损坏,造成性能下降。针对这一问题,本研究提出用石墨层间化合物(GICs)原理处理,在石墨颗粒内形成微米-纳米空隙,预制晶格涨缩空间,以提高循环性能。此项技术的关键在于缓慢有序的脱插,使插入物气体的逸出只在石墨内造成微米-纳米级的孔隙,而不能发生明显的体积膨胀,通常采用H2SO4-GIC、MClx-GICs或其他受主型GICs,在100~300℃低温的条件下经12~72 h的缓和脱插处理,而后对脱插后的石墨微粉进行微粒表面改性,包覆处理,制成负极材料。这样制得的负极材料既有鳞片石墨的高容量,又具有良好的循环性能(图2)。目前产品在电池上已进行产品性能检测。
五、总结与展望
我国锂离子电池产业仍将保持年平均30%以上的增长速度,2005年国内小型锂离子电池全年产量超过10亿只,石墨负极材料年需求量为5000~10000 t,世界需求量在2×104t左右,而目前供应量缺口很大。随着电动汽车的迅速发展,锂电池负极材料的需求将更加旺盛。
鉴于天然石墨资源丰富、价格低廉,并且具有较高的嵌锂容量,对天然微晶石墨进行改性处理以应用到高能锂离子电池中是国内石墨产业升级的有效途径之一。综合考虑造价和性能,在锂离子电池负极材料中天然石墨最具发展潜力,但是石墨存在着一些有待解决的问题,如首次循环的不可逆容量损失、循环稳定性等问题。天然石墨改性技术的不断发展,包括球形化处理、表面包覆树脂、插层/脱插的微膨化处理等,提高了石墨制品的放电容量、快速充放电能力、循环寿命等,改性天然石墨将成为高能锂离子电池负极的首选材料。
参考文献和资料
[1]何明,盖国胜,沈万慈,等.制粉工艺对天然微晶石墨锂离子阳极材料结构与性能的影响.电池,2002,32(4):197-200
[2]何明,陈湘彪,康飞宇,等.树脂炭包覆微晶石墨的制备及其电化学性能.电池,2003,33(5):281-284
[3]陈湘彪,刘旋,沈万慈.包覆鳞片石墨嵌锂行为的研究.电池,2004,34(6):394-396
[4]张静,郑永平,沈万慈,等.GICs技术改性天然石墨作为锂离子电池负极材料的研究.电池,2006,36(4):257-259
[5]沈万慈,等.一种锂离子电池石墨阳极膜制品及其制备方法和应用.专利号:ZL 97 1
[6]沈万慈,等.炭包覆石墨微粉的制备方法.专利号:ZL
[7]Andersson A M,Abraham D P,Haasch R,et characterization of electrodes from high power lithium-ion .,2002,149(10):A1358-1369
[8]Broussely developments on lithium ion batteries at Sources,1999,81/82:140-143
[9]张万红,岳敏.锂离子动力电池及其负极材料的研究现状及发展方向.新材料产业,2006,9:54-59
[10]张世超.锂离子电池关键材料产业技术现状与发展趋势新材料产业.新材料产业,2006,3:32-36
[11]董建,周伟,刘旋,等.微晶石墨作为阳极材料对二次锂离子电池电化学性能的影响.炭素技术,1999,(1):1-6
An Investigation on Natural Graphite Used as an Anode Materials for Lithium-ion Batteries
Shen Wanci,Li Xinlu,Zou Lin,Kang Feiyu,Zheng Yongping
(The Laboratory of New Carbon Materials,Department of Material Science and Engineering,Tsinghua University,Beijing 100084,China)
Abstract:The resource of natural graphite is rich in will be an effective way to upgrade national graphite industry if natural graphite after modification may be used in lithium ion the research,microcrystalline graphite with high purity was sphericalized and coated with a carbon film on the initial cycle efficiency was improved to be and the cycle stability was remarkably experi ments proved that microcrystalline graphite with carbon coating was an excellent anode material for lithium-ion addition,H2SO4-GIC technique was used to prepare the natural flake graphite powder with was found that sub-micro and nano pores formed in the graphite samples,that improved the reversible capacity,rate capacity and cycle product meet well the requirement of lithium-ion battery.
Key word:natural graphite,surface coating,mild-exfoliation,anode material,lithium-ion battery.
锂离子电池原理如下充电过程,锂离子从正极板内脱嵌出来.进入电解液穿过隔膜,最后镶嵌进负极板内;放电过程.锂离子从负极板内脱嵌出来,进入电解液穿过隔膜,最后镶嵌进正极板内。业内形象的称之为“摇椅”电池,充电锂离子摇到了负极.放电又摇回了正极。这张图片来源于网络,阳极主成份是钻酸锂,阴极主成份是碳,电解质为聚合物。1.正极板的主要成分不同.形成了前面提到的钻酸锂、磷酸铁锂、锰酸锂和三元锂四大类,例如钻酸锂电心的正极是LICoO2加导电剂和粘合剂,涂在铝箔上形成正极板。铝箔是集流体,等同于铅酸电池的阳极板栅和汇流排.铝箔与铝箔间用超声波焊接。由阳极主材料分类,锂电池有四种:钻酸锂、磷酸铁锂(有时简称铁锂)、锰酸锂和三元锂四种。目前,关于阳极主材料的研究仍在继续,品种还在增加。2.负极板,锂离子电池一般用碳材料(主要是石墨)作负极,是层状石墨加导电剂及粘合剂涂在铜箔基带上:这里,铜箔是集流体,等同于铅酸电池的阴极板栅和汇流排,铜箔与铜箔间用点焊机焊接。3.电解液是含锂离子的.成分比较复杂,多用代号表示,第一代电解液:PC+DME+IMLiPF6,与石墨负极匹配性差,易发生溶剂共嵌入。第二代电解液:EC+DMC(orDEC)+lMLlPF6,低温性能差。第三代电解液:EC+DMC(DEC)+EMC+lMLiPF6.电导率可达10-2S.cm-1.>50%。目前工作大多集中在选择添加剂方面,以提高电池首次充放电效率,提高SEI(该代号后文化成中有解释)稳定性。
喜欢就 关注我们吧,订阅更多最新消息
全文速览
针对锂金属不均匀沉积造成的锂枝晶生长以及死锂疯狂聚集等问题,本工作利用平行排列的具有多孔结构的轻质碳骨架,在电镀过程中为锂沉积提供足够的空间和连续的导电网络,从而来均匀化锂离子分布,使电极/电解液的界面处的电流密度分布均匀,达到抑制锂枝晶生长以及缓解金属锂循环过程中的体积膨胀的目的。作者对其复合金属负极进行了一系列电化学性能的测试,所测结果表明该复合锂金属负极所组成的对称电池在 mAh cc, mAh cm -2 的条件下可稳定循环4800 h而没有明显的电压滞后现象。此外,以该复合锂电极为负极,NCM811为正极所组装的全电池也展现出了优异的循环稳定性以及高的倍率性能。更重要的是,低温性能测试结果表明,该复合金属锂负极在低温下依然具有优异的可逆性以及循环稳定性。在此基础上,作者还通过理论计算很好地验证了实验结果,进一步证明了该平行排列的多孔结构有利于促进锂离子的均匀沉积,实现锂金属负极的稳定循环
背景介绍
金属锂表现出的高理论比容量(3860 mAh g -1 )和超低电化学电势( V),一直是二次电池领域人们为之神往的圣杯。然而,锂金属负极中的枝晶生长以及固态电解质界面的不稳定性成为它趋向完美的严重阻碍。锂枝晶的生长以及界面的不稳定会造成金属锂的可持续利用率降低,甚至会刺穿隔膜造成电池爆炸等安全性问题。因此,控制金属锂的均匀沉积是实现锂电池实际应用的重要途径之一。目前,已经有许多策略致力于稳定锂金属负极,其中一个重要的方向就是通过构建合适的功能性的3D集流体框架,促进锂离子的均匀沉积,实现无枝晶的锂金属负极。相比3D的金属集流体,碳集流体以其优异的的化学稳定性、柔韧性及可延展性而被广泛研究,但是其本身的疏锂性以及有限的比表面积阻止了其进一步的发展。因此,本工作从这两个方面出发设计了平行排列且具有多孔结构的碳骨架(PAPCFs)来稳定锂金属负极。
图文解析
图1展示了PAPCFs和CCFs上的结构和初始锂沉积的特性。(a-b) SEM 图像和 (c) 通过使用 PAPCFs 的 DFT 模型计算的 N2 吸附-解吸等温线和累积孔体积 ( nm); (d-e) 在 PAPCFs 和 CCFs 电极上镀有 mA h cm -2 锂时的SEM 图,PAPCFs在镀锂后仍然显现出平整光滑的表面,而普通的CCFs则出现了疏松的锂枝晶,表明了PAPCFs对调控锂沉积有重要的意义。 PAPCFs 和 CCFs 电极界面信息的有限元模拟。(g) 分别用于 PAPCFs 和 CCFs 电极的 18 24 µm 2 半电池电沉积系统下具有恒定反应电流和电极表面的电流密度矢量分布,轮廓中的箭头代表锂离子的运动。 (h) 分别具有多孔结构和不具有多孔结构的 PAPCFs 电极在 18 24 µm 2 半电池电沉积系统下的平衡的锂离子浓度分布。在相同几何尺寸下,高比表面积将降低电极表面上的局部电流密度。因此,多孔电极上的电流密度设置为无孔电极上的一半。 (f) 多孔和非多孔电极中沿 Y 方向的一维横截面的锂离子浓度分布。 Y 方向表示垂直于电极。 (i) PAPCFs 在初始状态调节低浓度梯度和均匀的 Li + 通量分布,实现均匀的锂沉积的示意图。
Fig. 1 The structure and initial Li deposition characteristic on PAPCFs and contrastive CCFs. (a-b) SEM images and (c) N2 adsorption-desorption isotherm and cumulative pore volume ( nm) calculated by the use of DFT-model of PAPCFs. (d, e) SEM images for Li deposition morphology with mA h cm-2 of Li plated on PAPCFs and CCFs electrode. Finite element simulation for the interface information of PAPCFs and CCFs electrodes. (g) Current density vector profiles with constant-reaction-current electrode surfaces at 18 24 µm2 half cell electrodeposition system for PAPCFs and CCFs electrode, respectively. The arrows in the profiles stand for the movement of Li-ion. (h) Equilibrium Li-ion concentration profiles at 18 24 µm2 half cell electrodeposition system for PAPCFs electrode with and without porous structure, respectively. The high surface area will reduce the local current density on the electrode surface under the same geometry dimensions. Therefore, the current density on the porous electrode is set as a half of that on the non-porous electrode. (f) 1D cross-sectional Li-ion concentration profiles along Y direction in porous and non-porous electrodes. The Y direction is perpendicular to the electrode. (i) Schematic diagrams of PAPCFs to regulate low concentration gradient and even Li+ flux distribution for uniform Li deposition at initial state.
图2 展示了Li@PAPCFs复合负极的镀锂/脱锂稳定性与循环过程中的形貌演变。(a) 三种对称电池(Li@PAPCFs、Li@CCFs 和 Li 箔)在 1 mA cm -2 和 2 mA h cm -2 下的时间-电压曲线。(b-d) Li@PAPCFs 和 (e-g) Li@CCFs 在 200 次循环后的 SEM 图以及截面图(状态 A)。Li@PAPCFs 对称电池 (h) 在 4 mA cm -2 的电流密度下和 2 mA h cm -2 的容量下和 (i) 在 2 mA cm -2 的电流密度下和 4 mA h cm -2 的容量下的时间-电压图。 从所有的时间-电压曲线可知,该PAPCFs在不同的电流密度以及不同的容量下始终表现出最小的极化,说明具有平行排列且具有丰富孔结构的PAPCFs在重复的镀锂/脱锂循环过程中保持了优异的结构稳定性并始终维持着稳定的固体电解质膜。此外,其高的表面积很好地均匀了锂离子流,抑制了枝晶的生长。
Fig. 2 The Li plating/stripping stability and morphology evolution of Li@PAPCFs. (a) Voltage profiles in three types of symmetrical cells (Li@PAPCFs, Li@CCFs, and Li foil) at 1 mA cm-2 and 2 mA h cm-2. Insert: Magnified voltage profiles at the 100th, 200th, and 500th cycle, respectively. Top view and cross section of SEM images of (b-d) Li@PAPCFs and (e-g) Li@CCFs after 200 cycles (state A). Voltage profiles of Li@PAPCFs symmetrical cell (h) at 4 mA cm-2 and 2 mA h cm-2 and (i) at 2 mA cm-2 and 4 mA h cm-2. Insert: Magnified voltage profiles at specific a certain cycles.
图3展示了NMC111-Li@PAPCFs、NMC111-Li@CCFs和NMC111-Li全电池的电化学性能。(a) 在电流密度为 1 C时,第 1 次和第 10 次循环的比容量-电压曲线。(b)GITT测试,从图中可以明显地看出NMC111-Li@PAPCFs的平均 D app, Li在相同的测试环境下最高,表明Li@PAPCFs具有更好的Li + /电子传导性以及更好的界面稳定性;(c)不同倍率下的电化学性能。 (d) 1 C下的长循环稳定性。
Fig. 3 The electrochemical performance of NMC111-Li@PAPCFs, NMC111-Li@CCFs, and NMC111-Li full cells. (a) Voltage profiles at 1 C for the 1st and 10th cycle. (b) GITT tests of the D app, Li along with the galvanostatic charge-discharge process of 4th cycle at C. (c) Rate performance at the different rates. (d) Long-term cycle stability at 1 C.
图4是 Li@PAPCFs 和其对应的全电池的低温性能。 Li@PAPCFs 对称电池在(a)1 mA cm -2 和 2 mA h cm -2 下0 的时间-电压曲线,(b) mA cm -2 和 1 mA h cm -2 下-15 的时间-电压曲线。 PAPCFs 在预先镀有10 mA h cm -2 后(Li@PAPCFs)(c-e) 和在 0 电镀/剥离循环后的SEM图和截面图(f-h)。NMC111-Li@PAPCFs 在(i)不同倍率和温度下的容量保持率,(j) C不同温度下的充放电曲线。(k) NMC111-Li@CCFs 与 NMC111-Li@PAPCFs 在不同倍率和温度下的容量保持率。 NMC111-Li@PAPCFs 在电流密度为1 C时,温度为 (l) 0 和 (m) -15 时的长循环稳定性。
Fig. 4 LT tolerance of Li@PAPCFs and the corresponding full cell. Voltage profiles of Li@PAPCFs symmetrical cell (a) for 0 at 1 mA cm-2 and 2 mA h cm-2 and (b) for -15 at mA cm-2 and 1 mA h cm-2. Insert: Magnified voltage profiles at specific a certain cycles. Top view and cross section of SEM images of Li@PAPCFs (c-e) after the initial Li plating of 10 mA h cm-2 and (f-h) after the plating/stripping cycles at 0 . (i) Capacity retention ( C r) of NMC111-Li@PAPCFs at different rates and temperatures vs. 25 . (j) Charge-discharge profiles at C for different temperatures. (k) C r of NMC111-Li@CCFs vs. NMC111-Li@PAPCFs at different rates and temperatures. Long-term cycle stability of NMC111-Li@PAPCFs at (l) 0 for 1 C and (m) -15 for C.
总结与展望
从商业无纺布中提取的可再生、可伸缩的3D轻质碳骨架可以很好地实现Li的均匀成核和沉积,使HLCA在长期循环甚至低温条件下依然能够实现保持完整的结构,同时也能维持稳定的电极/电解液界面。其中,碳骨架的平行排列可以均匀化Li + 分布;其大的比表面积可以大大降低有效电流密度,缓解电极界面的浓度梯度,从而形成稳定的富含LiF的 SEI 层。其对称电池和全电池的循环稳定性优于目前所报道的亲碳或亲锂修饰的碳宿主,表明HLCA的内在排列模式和微观结构对实现具有高稳定性以及高安全性的锂金属负极的重要性。本工作从实用角度出发,为一系列可充电金属电池提供了一种很有前途的碳主体材料。
作者介绍
吴兴隆 ,东北师范大学教授,教育部“青年长江学者”,课题组的研究领域包括纳米能源材料(用于锂离子电池、钠离子电池和电化学电容器等)、新型电化学储能器件、锂离子电池回收与再利用。已在《Adv. Mater.》(5篇)、《Energy Environ. Sci.》、《Sci. Bull.》、《Adv. Energy Mater.》(5篇)、《Adv. Funct. Mater.》、《Energy Storage Mater.》(2篇)、《Nano Energy》、《Small》(3篇)和《J. Mater. Chem. A》(12篇)等学术期刊发表通讯/第一作者论文110余篇。14篇论文被评选为ESI高引论文,文章被引用超过11000次,H指数为57;已获授权发明专利17项;负责了锂离子电池正极材料从实验室到中试,再到小规模工业化生产定型,开发了多款高性能锂离子电池产品。主持了国家自然科学基金委重大研究计划和吉林省省 科技 厅等十余项研究课题。曾获得教育部自然科学研究成果一等奖和中国科学院 科技 成果转化二等奖等 科技 奖励。
参考文献
Chao-Ying Fan, Dan Xie, Xiao-Hua Zhang, Wan-Yue Diao, Ru Jiang, Xing-Long Wu, Homogeneous Li + Flux Distribution Enables Highly Stable and Temperature-Tolerant Lithium Anode. Adv. Funct. Mater. 2021, 2102158.
以下是锂电池原理及结构:锂离子电池以碳材料为负极,以含锂的化合物作正极,没有金属锂存在,只有锂离子,这就是锂离子电池。锂离子电池是指以锂离子嵌入化合物为正极材料电池的总称。锂离子电池的充放电过程,就是锂离子的嵌入和脱嵌过程。在锂离子的嵌入和脱嵌过程中,同时伴随着与锂离子等当量电子的嵌入和脱嵌(习惯上正极用嵌入或脱嵌表示,而负极用插入或脱插表示)。在充放电过程中,锂离子在正、负极之间往返嵌入/脱嵌和插入/脱插,被形象地称为“摇椅电池”。
▲第一作者:宋丽娜、张伟、王颖;通讯作者:徐吉静教授 通讯单位:吉林大学
论文DOI:
针对锂氧气电池存在的反应动力学缓慢而导致能量转换效率低的问题,研究者通常开发高效、稳定的正极催化剂来降低电池的充电极化电压提高反应动力。该工作将Co单原子固定于掺杂N的碳球壳载体上,用于锂氧气电池的高效催化反应,实验发现Li2O2形成和分解路线与LiO2在单原子催化剂的吸附能有关。研究明确指出,在放电过程中,原子级分散的活性位点能够诱导放电产物的均匀成核和外延生长,最终形成有利的纳米花状放电产物。在充电过程中,CoN4活性中心对放电中间体LiO2弱的吸附能,诱导充电反应由两电子路径向单电子路径转变。 得益于高分散的Co-N单原子催化剂的能级结构和电子结构所发生的根本性变化,大幅提升了电池的充电效率和循环寿命。与同等含量的贵金属基催化剂相比,达到600 mV充放电极化电压的降低和218天的长寿命循环。
锂氧气电池具有锂离子电池10倍以上的理论容量密度,被誉为颠覆性和革命性电池技术 。然而该电池还处于研发的初级阶段,受限于ORR和OER电化学反应动力学缓慢,电池的实际容量、倍率性能、能量效率和循环寿命距产业化应用还有很大差距。因而开发高效稳定的催化剂,是提高电池反应动力和循环效率的迫切需要。原子级纳米晶具有最大化的原子利用效率和独特的结构特点,往往表现出不同于传统纳米催化剂的活性、选择性和稳定性,为调控电化学反应过程提供了多种可能。在锂氧电池中,电解液中可溶性LiO2中间体能够调控放电产物Li2O2的形成与分解路线。先前的研究结果表明[1],不同的生成路线与LiO2在催化剂的不同晶面上的吸附能有关。 因此,探究单原子催化剂的尺寸效应对LiO2吸附能的影响,可能是一种调整低供体数电解质中过氧化锂形成与分解路径的新思路。这一新发现将为高能量效率和长循环寿命的锂氧电池的设计提供更多的选择。
单原子催化剂(SACs)是一类非常重要的电催化剂,其独特的单分散结构集均相催化和多相催化剂的优点于一身,拥有最大的金属利用率、优异的催化活性和稳定性。同时,SACs的活性位点相对简单确定且易于调控,因而这种独特的结构和性能使得单原子催化剂成为了一个非常理想的催化机理研究和性能优化的材料平台。然而当单原子催化剂与锂空气电池相遇,会擦出怎样的火花呢?本文采用原位聚合技术,设计合成了Co单原子嵌入的氮掺杂碳空心球(N-HP-Co)用于锂氧气电池的研究,并对其充放电过程进行详细分析。其结果表明,受益于N-HP-Co最大化暴露的CoN4单原子活性位点及活性位点在碳球壳上的均匀分布,降低了对LiO2的吸附能力,有效的改变了电池的反应路径,使得电池反应动力学得到极大提高,大幅提升了电池性能。
▲图一 单原子催化剂的合成过程。
单原子催化剂由于活性位点均匀性的提高以及配位环境的高度可控性,在许多催化反应中都表现出较高的催化活性。因此将单原子Co催化剂应用于锂氧气电池中,来探究对Li2O2形成与分解反应路径的影响。我们采用原位聚合的方法,以二氧化硅作为模板,盐酸多巴胺作为碳源,并在900 °C的氮气氛围内热解。
▲图二 单原子催化剂的特性表征。a, b) 样品的SEM图像(a:1微米;b:200纳米);c) 样品的TEM图像(主图:200纳米;插图:10纳米);d) 样品的EDX元素分析(50纳米);e, f) 样品的HAADF-STEM图像(e:50纳米;f:2纳米);g) 样品及对比材料的XRD图像;h) 样品的N 1s XPS光谱;i) 样品及对比材料的氮气吸附曲线。
▲图三 单原子催化剂的原子结构分析。a) 样品的XANES光谱;b) 样品的傅里叶转换的Co-K边光谱;c, d)样品在k和R空间的EXAFS拟合曲线。
N掺杂的碳球壳作为载体是锚定Co单原子的关键步骤。高角度环形暗场球差电镜(HAADF)、能量色散谱(EDX)元素映像图表和X射线吸收光谱(XAS)测试等关键性表征技术证实了单原子Co的成功制备和CoN4高活性位点的存在。
▲图四 单原子催化剂的放电机理研究。a) 样品及对比材料的放电曲线;b) 样品及对比材料的CV曲线;c) 样品及对比材料的倍率性能;d, e, f) 样品及对比材料的放电产物的SEM图像及相应的XRD谱图(500纳米);h, i) 样品及对比材料的放电机理图。
受益于N-HP-Co SACs最大化暴露的CoN4单原子活性位点在碳球壳上的均匀分布,电极氧化还原反应动力学得到极大提升,加快了放电产物Li2O2的形成速率,大幅提升了电池的放电容量和倍率性能。与同等含量的贵金属催化剂相比,在相同的电流密度和容量下,N-HP-Co SACs具有更多的反应活性位点,因而更有利于生成纳米片状的Li2O2,并通过“外延生长方式”进一步组装形成有利的纳米花状Li2O2。这种特殊的放电机制有利于打破电荷传输限制和放电产物电化学绝缘的本质。
▲图五 单原子催化剂的充电特性。a) 样品及对比材料在不同充电阶段的紫外可见光谱图;b) 样品的充电机理图;c-h) 样品及对比材料上的不同结构对LiO2的吸附能。
为了更全面地了解CoN4单位点催化剂的充电机理,通过密度泛函理论(DFT)计算表明复杂的配位环境可以显著改变中心金属原子CoN4对LiO2*的吸附能力,从而调控反应的活性和选择性。可以看出,CoN4活性中心对放电中间体LiO2弱的吸附能,有利于提高LiO2在电解质中的溶解度,诱导充电反应过程由两电子路径向单电子路径转变。因而有利于提高电池的充电效率。
▲图六 锂空气电池的循环稳定性。a) 样品及对比材料的循环性能;b-e) 样品及对比材料在不同循环过程中放电产物的SEM图像(b, d:1微米;c, e:500纳米);f, g) 样品及对比材料在不同循环过程中的放电产物的XPS光谱。
单原子催化的锂空气电池可以有效的抑制副反应的发生,并展现出优异的循环稳定性,充分验证了催化剂对放电产物的精准调控对稳定电池体系的重要作用。
▲图七 单原子催化剂在循环过程中的稳定性。a) 样品在全圈循环后的XPS光谱;b) 样品在多圈循环后的EDX光谱(200纳米);c) 样品在多圈循环后的XANES光谱;d) 样品在多圈循环后的傅里叶转换的Co-K边光谱。
N-HP-Co 在50次的循环过程中,Co的单原子结构依然被保留。Co单原子在碳载体上的固有稳定性使它们在电化学反应中具有优异的耐久性,这一显著的优势与低成本的优势相结合,为金属单原子催化剂在锂氧电池反应路线的可调性提供了新的策略。
单原子催化剂的合成受到草莓生长过程的启发,采用二氧化硅为模板,原位聚合生成氮掺杂的Co单原子催化剂。由于单原子催化的本质特征,低配位环境和单原子与碳球壳之间的协同作用能够精准的调控锂氧气电池中放电产物的生成与分解路线。与同等含量的贵金属催化剂相比,单原子催化剂不仅能够调控放电产物的形貌,同时增加了放电容量,避免了过多的副反应的发生,极大地提高了电池的电催化性能。该研究提出的单原子催化正极的概念、设计、制备及催化机制,将为锂空气电池领域新型催化剂的发展提供新的研究思路和科学依据,具有鲜明的引领性和开创性特征。
参考文献 [1] Yao, W. T. et al. Tuning Li2O2 formation routes by facet engineering of MnO2 cathode catalysts. J. Am. Chem. Soc.,2019,141,12832-12838.
徐吉静,1981年7月出生于山东省单县,现任吉林大学,化学学院,无机合成与制备化学国家重点实验室,未来科学国际合作联合实验室,教授,博士生导师。光学晶体标准化技术委员会副秘书长。主要从事多孔新能源材料与器件领域的基础研究和技术开发工作,研究方向包括锂(钠、钾、锌)离子电池关键材料及器件,锂空气(硫、二氧化碳)电池等新型化学电源,外场(光、力、磁、热)辅助能量储存与转化新体系。近5年共发表SCI学术论文50余篇,其中包括第一作者/通讯作者论文:篇、 1篇、. 2篇、篇、Energy 篇、ACS Nano 1篇、ACS 篇。迄今为止,论文被他引4000余次,单篇最高引用360次,12篇论文入选ESI高引论文,研究成果被Nature、Science等作为亮点报道。获授权发明专利和国防专利10项。曾获科睿唯安“全球高被引学者”(2019年)、吉林省拔尖创新人才(2019年)、吉林省青年 科技 奖(2018年)和吉林大学学术带头人(2018年)等奖项或荣誉。
能耐极寒和酷热的新型锂离子电池开发成功
能耐极寒和酷热的新型锂离子电池开发成功,美国加州大学圣地亚哥分校工程师开发了一种锂离子电池,该电池在极寒和酷热的温度下表现良好,能耐极寒和酷热的新型锂离子电池开发成功。
近期,加州大学圣地亚哥分校(UCSD)的工程师们开发出了一种新型锂离子电池,据称这种电池在极冷和高温下都能表现良好,同时仍能储存大量能量。
根据研究人员的说法,这一“壮举”是通过开发一种新型电解质实现的。这种电解质不仅可以在较宽的温度范围内坚挺耐用,而且可以与高能阳极和阴极兼容。上述研究成果已于近期发表在了《美国国家科学院院刊》(PNAS)上。
UCSD雅各布斯工程学院纳米工程学教授、该研究的资深作者Zheng Chen表示,基于这项技术开发的车用电池,即使在寒冷气候下也能让电动汽车行驶更远。此外,它们还可以减少对冷却系统的需求,以防止车辆的电池组在炎热气候下过热。
Chen 解释说:“高温对于汽车电池来说是一个重大挑战。在电动汽车中,电池组通常位于底盘,更靠近炎热的道路。此外,电池在运行过程中会因电流通过而升温。如果电池不能承受这种高温,它们的性能将迅速下降”。
在测试中,该电池在-40°C和50°C下分别保留了和的能量容量。在这些温度下,它们还分别具有和的高库伦效率,这意味着电池在停止工作之前可以进行更多的充放电循环。
上述优异的性能都要归功于Chen和同事们开发的独特电解质。它由二丁醚与锂盐混合而成的液体溶液制成。二丁醚的一个特点是其分子与锂离子的结合较弱。换句话说,当电池运行时,电解质分子很容易释放锂离子。
研究人员在之前的一项研究中发现,这种微弱的分子相互作用可以提高电池在零下温度下的性能。另外,二丁醚很容易吸收热量,因为它在高温下保持液态(沸点为141°C)。
附加优势
此外,这种电解质的另一个特别之处在于它与锂硫电池兼容,锂硫电池是一种可充电电池,其阳极由锂金属制成,阴极由硫制成。锂硫电池是下一代电池技术的重要组成部分,因为它拥有更高的能量密度和更低的成本。
据了解,锂硫电池每公斤存储的能量是当今锂离子电池的两倍,这可以使电动汽车的续航里程增加一倍,而不会增加电池组的重量。此外,与传统锂离子电池阴极中使用的钴相比,硫的储量更为丰富。
但锂硫电池也存在问题。阴极和阳极都是超活性的。硫阴极非常活泼,在电池运行过程中会溶解;在高温下,这个问题会变得更严重。锂金属阳极容易长出枝晶,会导致电池短路,甚至有起火风险。因此,锂硫电池最多只能循环使用几十次。
“如果你想要一个高能量密度的电池,你通常需要使用非常苛刻、复杂的化学物质,”Chen说,“高能量意味着更多的反应发生,这意味着更少的稳定性,更多的降解。制造一种稳定的高能电池本身就是一项艰巨的任务,试图在更大的温度范围内做到这一点更具挑战性。”
UCSD研究团队开发的二丁醚电解质可以防止这些问题。即使在极端温度下,他们测试的电池也比典型的锂硫电池有更长的循环寿命。Chen说,“我们的电解液有助于改善阴极侧和阳极侧,同时提供高导电性和稳定性”。
美国加州大学圣地亚哥分校工程师开发了一种锂离子电池,该电池在极寒和酷热的温度下表现良好,同时还能储存大量电能。本周发表在《美国国家科学院院刊》上的一篇论文描述了这种耐温度变化的电池。
加州大学圣地亚哥分校雅各布斯工程学院纳米工程教授、该研究的资深作者陈政说,这种电池可让寒冷气候下的电动汽车一次充电就能行驶更远;还可减少对冷却系统的.需求,以防止车辆的电池组在炎热气候下过热。
研究人员在冰点以下温度测试电池。图片来源:David Baillot/加州大学圣地亚哥分校
在测试中,概念验证电池在-40℃和50℃下分别保留了和的电能容量。在这些温度下,它们还分别具有和的高库仑效率,这意味着电池在停止工作之前可进行更多的充电和放电循环。
研究人员此次开发了一种更好的电解质,这种电解质既耐寒又耐热,而且与高能阳极和阴极兼容。电解质由二丁醚与锂盐混合而成的溶液制成。二丁基醚的一个特点是其分子与锂离子的结合较弱,当电池运行时,电解质分子很容易释放锂离子。
这种电解质的另一个特别之处在于它与锂硫电池兼容。锂硫电池是下一代电池技术的重要组成部分,因为它们有望实现更高的能量密度和更低的成本。但锂硫电池的阴极和阳极都具有超强反应性。在高温下,锂金属阳极容易形成称为枝晶的针状结构,可刺穿电池的某些部分,导致电池短路。结果,锂硫电池只能持续数十次循环。
二丁基醚电解质可防止这些问题,即使在高温和低温下也是如此。他们测试的电池比典型的锂硫电池具有更长的循环寿命。研究团队还通过将硫阴极接枝到聚合物上来设计更稳定的硫阴极。这可以防止更多的硫溶解到电解液中。
团队表示,下一步研究工作将包括扩大电池化学成分、优化电池以使其在更高的温度下工作以及进一步延长循环寿命。
一种新型锂离子电池既可以在零下 40°C 的低温下工作,也可以在 50°C 的高温下工作。这种新型电池阴极使用硫制作,电池可以储存更多的能量。这是来自加州大学圣地亚哥分校(UCSD)的一项新研究。
这种电池可以增加电动汽车在寒冷温度下的行驶里程。此外,它们还可以用于卫星、航天器、高空无人机和潜艇。UCSD 纳米工程教授陈政(Zheng Chen)表示:通过大幅扩展锂电池的可操作窗口,我们可以为电动汽车之外的应用提供更强大的电化学物质。
目前来看,电池用石墨阳极和锂金属氧化物阴极,这种组合不能很好地处理极端温度。高温会加剧电池内部本已高度活跃的化学环境,引发分解电解质和其他电池材料的副反应,导致不可逆转的损害。与此同时,低温会使液体电解质变稠,所以锂离子在其中缓慢移动,导致电能损耗和充电缓慢。
对电池进行绝缘或从内部加热的方法有助于解决低温问题。研究人员之前还对电解质进行设计以扩大电池温度范围,但这可以提高低温或高温下的性能,而不是同时提高性能。
陈政教授团队的研究《Solvent selection criteria for temperature-resilient lithium–sulfur batteries》刊登在了 7 月 5 日的《美国国家科学院院刊》(PNAS)上,他们表示新型耐极端温度电池的核心是找到一种新电解质。
他们通过将锂盐溶解在二丁醚溶剂中来制造电解质。与现有的用于电池的碳酸乙烯溶剂不同,新材料在零下 100°C 的温度下不会结冰,也不容易蒸发。此外,其溶剂分子与锂离子结合较弱,所以锂离子在其中移动更自由,即使在冰点温度下。
UCSD 团队通过将硫附着在塑料基材上来解决硫阴极降解问题。同时,新的电解质允许锂离子的均匀传输,因此它们没有机会粘在一起并形成枝晶。
在团队测试中,原型电池持续了 200 次循环,并在 -40°C 下还能保持超过 87% 的原始容量。在 50°C 时,电池的容量增加了 15%,陈政教授表示,因为更高的温度会增加电荷转移和锂离子通过电解质并扩散到电极上,因而推动了电池容量和能量极限 。
该研究的第一作者、UCSD 纳米工程博士后研究员 Guorui Cai 准备了一个电池袋电池(battery pouch cell),用于在低于冰点的温度下进行测试。
这种电解质的另一个特别之处在于它与锂硫电池兼容,锂硫电池是一种可充电电池,其阳极由锂金属制成,阴极由硫制成。锂硫电池是下一代电池技术的重要组成部分,因为这种电池具有更高的能量密度和更低的成本。
它们每公斤存储的能量是当今锂离子电池的两倍——这可以使电动汽车的续航里程增加一倍,而不会增加电池组的重量。此外,与传统锂离子电池阴极中使用的钴相比,硫的来源更丰富且问题更少。
但锂硫电池存在另一些问题——其阴极和阳极都过于活跃。硫正极非常活泼,以至于它们在电池运行期间会溶解。这个问题在高温下会变得更糟。锂金属阳极容易形成称为枝晶的针状结构,可以刺穿电池的某些部分,导致电池短路。因此,锂硫电池只能持续数十次循环。
「如果你想要一个能量密度高的电池,你通常需要使用非常精确、复杂的化学物质,」陈政说道。「高能量意味着更多的反应正在发生,这意味着稳定性更低,降解更多。制造稳定的高能电池本身就是一项艰巨的任务——试图在很宽的温度范围内做到这一点更具挑战性。」
UCSD 研究小组开发的二丁醚电解质可以防止这些问题,即使在高温和低温下也是如此。他们测试的电池比典型的锂硫电池具有更长的循环寿命。「我们的电解质有助于改善阴极和阳极侧,同时提供高导电性和界面稳定性,」陈政介绍说。
该团队还通过将硫阴极接枝到聚合物上来设计更稳定的硫阴极。这可以防止更多的硫溶解到电解液中。
接下来的步骤包括扩大电池化学成分,优化它以在更高的温度下工作,并进一步延长循环寿命。
UCSD 纳米工程教授陈政。
容量的增加不一定是一件好事,因为这同时也会使电池负担过重。为了解决这个问题,研究人员必须进一步改进电池的化学成分,以便它能够维持更多的充电周期。他们还计划通过更多的细胞工程来提高能量密度。目前,新电池的密度仅比今天的锂离子电池略高一点,与锂硫理论上的承诺相差无几。「我们至少可以将能量密度提高 50%,」陈政表示。「这就是希望,这就是承诺。」
化学电池化学电池将化学能直接转变为电能的装置。主要部分是电解质溶液、浸在溶液中的正、负电极和连接电极的导线。依据能否充 电复原,分为原电池和蓄电池两种 化学电池的种类 化学电池按工作性质可分为:一次电池(原电池);二次电池(可充电电池);铅酸蓄电池。其中:一次电池可分为:糊式锌锰电池、纸板锌锰电池、碱性锌锰电池、扣式锌银电池、扣式锂锰电池、扣式锌锰电池、锌空气电池、一次锂锰电池等。二次电池可分为:镉镍电池、氢镍电池、锂离子电池、二次碱性锌锰电池等。铅酸蓄电池可分为:开口式铅酸蓄电池、全密闭铅酸蓄电池。 1.锌锰电池 锌二氧化锰电池(简称锌锰电池) 又称勒兰社(Leclanche)电池,是法国科学家勒兰社(Leclanche,1839-1882)于1868年发明的由锌(Zn)作负极,二氧化锰(MnO2)为正极,电解质溶液采用中性氯化铵(NH4Cl)、氧化锌(ZnCl2)的水溶液,面淀粉或浆层纸作隔离层制成的电池称锌锰电池,由于其电解质溶液通常制成凝胶状或被吸附在其它载体上而呈现不流动状态,故又称锌锰干电池。按使用隔离层区分为糊式和板式电池两种,板式又按电解质液不同分铵型和锌型电池纸板电池两种。 干电池用锌制筒形外壳作负极,位于中央的顶盖上有铜帽的石墨棒作正极,在石墨棒的周围由内向外依次是A:二氧化锰粉末(黑色)------用于吸收在正极上生成的氢气(以防止产生极化现象);B:用饱和了氯化铵和氯化锌的淀粉糊作为电解质溶液。 电极反应式为:负极(锌筒):Zn +– 2e === Zn(NH3)2Cl2↙+2H+ 正极(石墨):2NH4+ === 2NH3 ↑+ H2↑ H2O + 2MnO2 + 2e === 2MnOOH+ 2OH- 总反应:Zn + 2NH4Cl + 2MnO2 === Zn(NH3)2Cl2↙+2MnOOH 干电池的电压大约为,不能充电再生。 2.碱性锌锰电池 20世纪中期在锌锰电池基础上发展起来的,是锌锰电池的改进型。电池使用氢氧化钾(KOH)或氢氧化钠(NaOH)的水溶液做电解质液,采用了与锌锰电池相反的负极结构,负极在内为膏状胶体,用铜钉做集流体,正极在外,活性物质和导电材料压成环状与电池外壳连接,正、负极用专用隔膜隔开制成的电池。 3.铅酸蓄电池 1859年法国普兰特(Plante)发现,由正极板、负极板、电解液、隔板、容器(电池槽)等5个基本部分组成。用二氧化铅作正极活性物质,铅作负极活性物质,硫酸作电解液,微孔橡胶、烧结式聚氯乙烯、玻璃纤维、聚丙烯等作隔板制成的电池。 铅蓄电池可放电也可以充电,一般用硬橡胶或透明塑料制成长方形外壳(防止酸液的泄漏);设有多层电极板,其中正极板上有一层棕褐色的二氧化铅,负极是海绵状的金属铅,正负电极之间用微孔橡胶或微孔塑料板隔开(以防止电极之间发生短路);两极均浸入到硫酸溶液中。放电时为原电池,其电极反应为: 负极:Pb + SO42-- 2e === PbSO4 正极:PbO2 + 4H+ + SO42- + 2e === PbSO4 + 2H2O 总反应式为:Pb + PbO2 + 2H2SO4 ====== 2PbSO4 + 2H2O 当放电进行时,硫酸溶液的的浓度将不断降低,当溶液的密度降到 时应停止使用进行充电,充电时为电解池,其电极反应如下: 阳极:PbSO4 + 2H2O- 2e === PbO2 + 4H+ + SO42- 阴极:PbSO4 + 2e === Pb + SO42- 总反应式为:2PbSO4 + 2H2O ====== Pb + PbO2 + 2H2SO4 当溶液的密度升到时,应停止充电。 上述过程的总反应式为: 放电 Pb + PbO2 + 2H2SO4 ====== 2PbSO4 + 2H2O 充电 4.锌银电池 一般用不锈钢制成小圆盒形,圆盒由正极壳和负极壳组成,形似纽扣(俗称纽扣电池)。盒内正极壳一端填充由氧化银和石墨组成的正极活性材料,负极盖一端填充锌汞合金组成的负极活性材料,电解质溶液为KOH浓溶液。电极反应式如下: 负极:Zn + 2OH- -2e=== ZnO + H2O 正极:Ag2O + H2O + 2e === 2Ag + 2OH- 电池的总反应式为:Ag2O + Zn ====== 2Ag + ZnO 电池的电压一般为,使用寿命较长。 5.镉镍电池和氢镍以及金属氢化物镍电池 二者均采用氧化镍或氢氧化镍作正极,以氢氧化钾或氢氧化钠的水溶液作电解质溶液,金属镉或金属氢化物作负极。金属氢化物电池为20世纪80年代末,利用吸氢合金和释放氢反应的电化学可逆性发明制成,是小型二次电池主导产品。 6.锂电池 锂电池是一类以金属锂或含锂物质作为负极材料的化学电源的总称通称锂电池,分为一次锂电池和二次锂电池。 7.锂离子电池 指能使锂离子嵌入和脱嵌的碳材料代替纯锂作负极,锂的化合物作正极,混合电解液作电解质液制成的电池。锂离子电池是1990年有日本索尼公司研制出并首先实现产品化。国内外已商品化的锂离子电池正极是LiCoO2,负极是层状石墨,电池的电化学表达式为(—) C6▏1mol/L LiPF6-EC+DEC▏LiCoO2(+) 8.氢氧燃料电池 这是一种高效、低污染的新型电池,主要用于航天领域。其电极材料一般为活化电极,具有很强的催化活性,如铂电极、活性碳电极等。电解质溶液一般为40%的KOH溶液。电极反应式如下: 负极:2H2 + 4OH- -4e=== 4H2O 正极:O2 + 2H2O + 4e=== 4OH- 总反应式:2H2 + O2 === 2H2O 9.熔融盐燃料电池 这是一种具有极高发电效率的大功率化学电池,在加拿大等少数发达国家己接近民用工业化水平。按其所用燃料或熔融盐的不同,有多个不同的品种,如天然气、CO、---熔融碳酸盐型、熔融磷酸盐型等等,一般要在一定的高温下(确保盐处于熔化状态)才能工作。 下面以CO---Li2CO3 + Na2CO3---空气与CO2型电池为例加以说明: 负极反应式:2CO + 2CO32--4e === 4CO2 正极反应式:O2 + 2CO2 + 4e=== 2CO32- 总反应式为:2CO + O2 === 2CO2 该电池的工作温度一般为6500C 10.海水电池 1991年,我国科学家首创以铝---空气---海水为材料组成的新型电池,用作航海标志灯。该电池以取之不尽的海水为电解质,靠空气中的氧气使铝不断氧化而产生电流。其电极反应式如下: 负极:4Al – 12e === 4Al3+ 正极:3O2 + 6H2O + 12e === 12OH- 总反应式为:4Al + 3O2 + 6H2O === 4Al(OH)3 这种电池的能量比普通干电池高20---50倍! 新型化学电池 (1碱性氢氧燃料电池 这种电池用30%-50%KOH为电解液,在100°C以下工作。燃料是氢气,氧化剂是氧气。其电池图示为 (―)C|H2|KOH|O2|C(+) 电池反应为 负极 2H2 + 4OH―4e=4H2O 正极 O2 + 2H2O + 4e=4OH 总反应 2H2 + O2=2H2O 碱性氢氧燃料电池早已于本世纪60年代就应用于美国载人宇宙飞船上,也曾用于叉车、牵引车等,但其作为民用产品的前景还评价不一。否定者认为电池所用的电解质KOH很容易与来自燃料气或空气中的CO2反应,生成导电性能较差的碳酸盐。另外,虽然燃料电池所需的贵金属催化剂载量较低,但实际寿命有限。肯定者则认为该燃料电池的材料较便宜,若使用天然气作燃料时,它比唯一已经商业化的磷酸型燃料电池的成本还要低。 (2) 磷酸型燃料电池 它采用磷酸为电解质,利用廉价的炭材料为骨架。它除以氢气为燃料外,现在还有可能直接利用甲醇、天然气、城市煤气等低廉燃料,与碱性氢氧燃料电池相比,最大的优点是它不需要CO2处理设备。磷酸型燃料电池已成为发展最快的,也是目前最成熟的燃料电池,它代表了燃料电池的主要发展方向。目前世界上最大容量的燃料电池发电厂是东京电能公司经营的11MW美日合作磷酸型燃料电池发电厂,该发电厂自1991年建成以来运行良好。近年来投入运行的100多个燃料电池发电系统中,90%是磷酸型的。市场上供应的磷酸型发电系统类型主要有日本富士电机公司的50KW或100KW和美国国际燃料电池公司提供的200KW。 富士电机已提供了70多座电站,现场寿命超过10万小时。 磷酸型燃料电池目前有待解决的问题是:如何防止催化剂结块而导致表面积收缩和催化剂活性的降低,以及如何进一步降低设备费用。 化学电源的重大意义: 化学能转换为电能的原理的发现和各式各样电池装置的发明,是贮能和供能技术的巨大进步,是化学对人类的一项重大贡献,极大地推进了现代化的进程,改变了人们的生活方式,提高了人们的生活质量。
▲第一作者:宋丽娜、张伟、王颖;通讯作者:徐吉静教授 通讯单位:吉林大学
论文DOI:
针对锂氧气电池存在的反应动力学缓慢而导致能量转换效率低的问题,研究者通常开发高效、稳定的正极催化剂来降低电池的充电极化电压提高反应动力。该工作将Co单原子固定于掺杂N的碳球壳载体上,用于锂氧气电池的高效催化反应,实验发现Li2O2形成和分解路线与LiO2在单原子催化剂的吸附能有关。研究明确指出,在放电过程中,原子级分散的活性位点能够诱导放电产物的均匀成核和外延生长,最终形成有利的纳米花状放电产物。在充电过程中,CoN4活性中心对放电中间体LiO2弱的吸附能,诱导充电反应由两电子路径向单电子路径转变。 得益于高分散的Co-N单原子催化剂的能级结构和电子结构所发生的根本性变化,大幅提升了电池的充电效率和循环寿命。与同等含量的贵金属基催化剂相比,达到600 mV充放电极化电压的降低和218天的长寿命循环。
锂氧气电池具有锂离子电池10倍以上的理论容量密度,被誉为颠覆性和革命性电池技术 。然而该电池还处于研发的初级阶段,受限于ORR和OER电化学反应动力学缓慢,电池的实际容量、倍率性能、能量效率和循环寿命距产业化应用还有很大差距。因而开发高效稳定的催化剂,是提高电池反应动力和循环效率的迫切需要。原子级纳米晶具有最大化的原子利用效率和独特的结构特点,往往表现出不同于传统纳米催化剂的活性、选择性和稳定性,为调控电化学反应过程提供了多种可能。在锂氧电池中,电解液中可溶性LiO2中间体能够调控放电产物Li2O2的形成与分解路线。先前的研究结果表明[1],不同的生成路线与LiO2在催化剂的不同晶面上的吸附能有关。 因此,探究单原子催化剂的尺寸效应对LiO2吸附能的影响,可能是一种调整低供体数电解质中过氧化锂形成与分解路径的新思路。这一新发现将为高能量效率和长循环寿命的锂氧电池的设计提供更多的选择。
单原子催化剂(SACs)是一类非常重要的电催化剂,其独特的单分散结构集均相催化和多相催化剂的优点于一身,拥有最大的金属利用率、优异的催化活性和稳定性。同时,SACs的活性位点相对简单确定且易于调控,因而这种独特的结构和性能使得单原子催化剂成为了一个非常理想的催化机理研究和性能优化的材料平台。然而当单原子催化剂与锂空气电池相遇,会擦出怎样的火花呢?本文采用原位聚合技术,设计合成了Co单原子嵌入的氮掺杂碳空心球(N-HP-Co)用于锂氧气电池的研究,并对其充放电过程进行详细分析。其结果表明,受益于N-HP-Co最大化暴露的CoN4单原子活性位点及活性位点在碳球壳上的均匀分布,降低了对LiO2的吸附能力,有效的改变了电池的反应路径,使得电池反应动力学得到极大提高,大幅提升了电池性能。
▲图一 单原子催化剂的合成过程。
单原子催化剂由于活性位点均匀性的提高以及配位环境的高度可控性,在许多催化反应中都表现出较高的催化活性。因此将单原子Co催化剂应用于锂氧气电池中,来探究对Li2O2形成与分解反应路径的影响。我们采用原位聚合的方法,以二氧化硅作为模板,盐酸多巴胺作为碳源,并在900 °C的氮气氛围内热解。
▲图二 单原子催化剂的特性表征。a, b) 样品的SEM图像(a:1微米;b:200纳米);c) 样品的TEM图像(主图:200纳米;插图:10纳米);d) 样品的EDX元素分析(50纳米);e, f) 样品的HAADF-STEM图像(e:50纳米;f:2纳米);g) 样品及对比材料的XRD图像;h) 样品的N 1s XPS光谱;i) 样品及对比材料的氮气吸附曲线。
▲图三 单原子催化剂的原子结构分析。a) 样品的XANES光谱;b) 样品的傅里叶转换的Co-K边光谱;c, d)样品在k和R空间的EXAFS拟合曲线。
N掺杂的碳球壳作为载体是锚定Co单原子的关键步骤。高角度环形暗场球差电镜(HAADF)、能量色散谱(EDX)元素映像图表和X射线吸收光谱(XAS)测试等关键性表征技术证实了单原子Co的成功制备和CoN4高活性位点的存在。
▲图四 单原子催化剂的放电机理研究。a) 样品及对比材料的放电曲线;b) 样品及对比材料的CV曲线;c) 样品及对比材料的倍率性能;d, e, f) 样品及对比材料的放电产物的SEM图像及相应的XRD谱图(500纳米);h, i) 样品及对比材料的放电机理图。
受益于N-HP-Co SACs最大化暴露的CoN4单原子活性位点在碳球壳上的均匀分布,电极氧化还原反应动力学得到极大提升,加快了放电产物Li2O2的形成速率,大幅提升了电池的放电容量和倍率性能。与同等含量的贵金属催化剂相比,在相同的电流密度和容量下,N-HP-Co SACs具有更多的反应活性位点,因而更有利于生成纳米片状的Li2O2,并通过“外延生长方式”进一步组装形成有利的纳米花状Li2O2。这种特殊的放电机制有利于打破电荷传输限制和放电产物电化学绝缘的本质。
▲图五 单原子催化剂的充电特性。a) 样品及对比材料在不同充电阶段的紫外可见光谱图;b) 样品的充电机理图;c-h) 样品及对比材料上的不同结构对LiO2的吸附能。
为了更全面地了解CoN4单位点催化剂的充电机理,通过密度泛函理论(DFT)计算表明复杂的配位环境可以显著改变中心金属原子CoN4对LiO2*的吸附能力,从而调控反应的活性和选择性。可以看出,CoN4活性中心对放电中间体LiO2弱的吸附能,有利于提高LiO2在电解质中的溶解度,诱导充电反应过程由两电子路径向单电子路径转变。因而有利于提高电池的充电效率。
▲图六 锂空气电池的循环稳定性。a) 样品及对比材料的循环性能;b-e) 样品及对比材料在不同循环过程中放电产物的SEM图像(b, d:1微米;c, e:500纳米);f, g) 样品及对比材料在不同循环过程中的放电产物的XPS光谱。
单原子催化的锂空气电池可以有效的抑制副反应的发生,并展现出优异的循环稳定性,充分验证了催化剂对放电产物的精准调控对稳定电池体系的重要作用。
▲图七 单原子催化剂在循环过程中的稳定性。a) 样品在全圈循环后的XPS光谱;b) 样品在多圈循环后的EDX光谱(200纳米);c) 样品在多圈循环后的XANES光谱;d) 样品在多圈循环后的傅里叶转换的Co-K边光谱。
N-HP-Co 在50次的循环过程中,Co的单原子结构依然被保留。Co单原子在碳载体上的固有稳定性使它们在电化学反应中具有优异的耐久性,这一显著的优势与低成本的优势相结合,为金属单原子催化剂在锂氧电池反应路线的可调性提供了新的策略。
单原子催化剂的合成受到草莓生长过程的启发,采用二氧化硅为模板,原位聚合生成氮掺杂的Co单原子催化剂。由于单原子催化的本质特征,低配位环境和单原子与碳球壳之间的协同作用能够精准的调控锂氧气电池中放电产物的生成与分解路线。与同等含量的贵金属催化剂相比,单原子催化剂不仅能够调控放电产物的形貌,同时增加了放电容量,避免了过多的副反应的发生,极大地提高了电池的电催化性能。该研究提出的单原子催化正极的概念、设计、制备及催化机制,将为锂空气电池领域新型催化剂的发展提供新的研究思路和科学依据,具有鲜明的引领性和开创性特征。
参考文献 [1] Yao, W. T. et al. Tuning Li2O2 formation routes by facet engineering of MnO2 cathode catalysts. J. Am. Chem. Soc.,2019,141,12832-12838.
徐吉静,1981年7月出生于山东省单县,现任吉林大学,化学学院,无机合成与制备化学国家重点实验室,未来科学国际合作联合实验室,教授,博士生导师。光学晶体标准化技术委员会副秘书长。主要从事多孔新能源材料与器件领域的基础研究和技术开发工作,研究方向包括锂(钠、钾、锌)离子电池关键材料及器件,锂空气(硫、二氧化碳)电池等新型化学电源,外场(光、力、磁、热)辅助能量储存与转化新体系。近5年共发表SCI学术论文50余篇,其中包括第一作者/通讯作者论文:篇、 1篇、. 2篇、篇、Energy 篇、ACS Nano 1篇、ACS 篇。迄今为止,论文被他引4000余次,单篇最高引用360次,12篇论文入选ESI高引论文,研究成果被Nature、Science等作为亮点报道。获授权发明专利和国防专利10项。曾获科睿唯安“全球高被引学者”(2019年)、吉林省拔尖创新人才(2019年)、吉林省青年 科技 奖(2018年)和吉林大学学术带头人(2018年)等奖项或荣誉。
1、铅酸蓄电池(电动车专用) 不管电量消耗多少,及时充电是上策。2、深放、深充:使用7个月后来一次完全放电 铅酸电池如果长期处于不完全放电状态,则每6个月应当给它一次完全放电的机会,以保持电池极板物质的活性。深放:可在星期五晚上11点12点把电动车前大灯打开放电(直放到前大灯不亮了才行),不用当心睡到早上8点去看看放完没,放完了就查上充电器深充12-16个小时。直放到完全放电可以长距离运行知道控制欠压保护、自动截止时为止。3、冬夏季适当减少运行里程 冬夏季节电池若超出使用温度范围,电池充放电能力受限,容量降低。4、停车期间 不要在温度过低环境下长时间存放或烈日下暴晒。5、补充电池的水份 现在厂家将密封免维护铅酸电池转变为密封可维护,延长铅酸电池寿命和恢复创造了条件,用户可以在‘三包“期以后到售后可到当地经销商那维护下电池,能延长电池寿命30%(没条件也可自己补充蒸流水)。(一)对电池不利的因素对电池不利的因素很多,主要发生在充电阶段、80%的电池原本还不刻坏、主要就是用车上带的普通充电器就因充上电到笫二天要不骑时才拿掉充电器。(1)、“二超“放电阶段主要是放电电流超值,即长期超过电流放电;放电的第二个过是过放电,即超过电池允许的放电量,叫做“二超”,对电池寿命非常有害。“两过”、“两欠”充电阶段则有“两过”、“两欠”。(1)“两过”: 第一过充电(充满绿灯后还在充着电);第二过电池长时间存放不用,又不定期补充充电。(2)“两欠”:一欠是铅酸电池欠充,电池经常充不满,极板硫化后得不到及时还原,是铅酸电池极其忌讳的;另一欠是电池组内各单格电池之间欠均衡,致使一组电池内各单块电池之间放电程度和充电程度的差距越拉越大,欠充的越发欠充、过放越发过放。影响整个电池组的寿命,也给自己经济支出加大。“两过”和“两欠”是电池的大敌,不可小看。但“两过”和“两欠”却是人们自己造成的,问题也较复杂,有多方面的原因,从选型、使用维护、控制器和充电器的配套合理性、电池故障原因的及时检测等,它们是互相联系的。(二)需要注意的其他问题1、首先是充电器的选择 充电器必须与电池类型、容量、充电模式等完全相符;充电器必须有保护功能,保证偶尔长时间在充电状态下不会损坏电池。2、控制器的保护功能 控制器的限压(也就是欠压保护功能)、过流保护功能是否及时有效。如果控制器电路在异常情况下不能及时切断电源,则电池必定因过放电而受损,或经常熔断电池盒内设置的熔丝管。3、按时充电 和镍系列、锂电池不同,用铅酸电池电源,要养成当天使用当天充电的习惯,每天骑行自行车不管多远距离,回来都要充满待用。千万不可等电池电量用尽以后再充电。电池在长期停用前一定要先充满电,然后在规定的环境中存放。虽然不用,每个月也要补充充电一次,这是保护和延长铅酸电池寿命的重要措施。4、电池过熟 如果是因为放电电流过大造成的,原因可能有以下几种:a、负载过重,长时间大负载运行;b、车体本身阻力如轮轴问题、轴承问题、制动问题,以及车轮与车架摩擦等;c、坡度过陡;d、电池容量偏小;e、电机问题;f、输电线路问题。电池容量偏小是电池过热的原因之一,建议增大容量,降低工作电流。
据我所知国内尚无商品化的电动汽车。同济大学由德国归国的万钢教授主持研制电动汽车。中国汽车技术研究中心史广奎研究员在研制混合动力汽车。国外就是丰田、本田在国内汽车展上能看到。在德国、法国街上能看到电动汽车。 茜茜918补充:听说奇瑞的电动汽车试验续驶里程达到了200公里,这很了不起,由此推测;电池应是镍-氢电池或锂电池(而不是一般国内一些厂厂家试制电动汽车采用的铅酸蓄电池),那样的话,成本会很高,很难单靠厂家将其普及开来;而如果采用铅酸蓄电池,续驶里程会很低(几十公里就要充电),不适用。至于电机国内完全可以生产。应该说,由电池驱动的非公路行驶的电动汽车在我们国家很早就有了,工厂的“电瓶车”,现在一些旅游区的“电瓶车”,还有游乐场的电动车,都是电动车,那些电瓶、电机都是国内生产的(容易了解生产厂家)。但我想你不是搞一个玩具型的电动车吧! 电动汽车普及率最高的法国,其电动汽车的推广,是依赖于法国的能源发展战略。在日本,每一辆电动汽车要政府补助100万元(车价很高)。 国内生产厂家研制电动汽车的意义在于,在技术上不能与国外拉下太多。
网上海了去了···偶就是这专业毕业的 简单点的就是摘录点关于汽车维修的或新能源相关的知识,在找几个典型维修实例 之后再找点未来发展之类的屁话·· 这就是好文章