首页

> 学术论文知识库

首页 学术论文知识库 问题

数学与生活获奖论文

发布时间:

数学与生活获奖论文

数学文化 人类共同的精神财富——数学,数学是人类智慧的结晶,它表达了人类思维中生动活泼的意念,表达了人类对客观世界深入细致的思考,以及人类追求完美和谐的愿望。 早在古希腊时代,哲学家柏拉图把数学看作是文化的最高理想。他说:“几何学可以将灵魂引向真理,并且创造出理性精神”。他认为学习数学不只是为了求真,也是为了求善、求美。他认为人通过研究几何同时也不断地塑造自己,使自己成为更高尚、更丰富、也更有力量的人。既人们在认识宇宙同时,也认识人类自己。在这个认识过程中,数学起着独特的作用。现在它几乎是任何科学都不可缺少的,它是现代科学技术的语言和工具,它的成果为众多学科所共识,积极推动着这些学科理论的建立和深化,它的思维方式和方法渗透到各学科,为这些学科的发展增添了活力。数学追求一种完全确定、完全可靠的知识。数学的对象必须是明确无误的概念,作为以推理为出发点的命题必须明确、清晰,推理过程的每一步骤都必须明确可靠、容不得半点的含糊,整个认识过程必须前后一贯而不容许自相矛盾。当然,任何一个法律文件、一篇有说服力的学术文章也必须概念清晰、逻辑严谨,但是数学对知识可靠性的要求更高、更明确。正因为如此,数学方法成为人们一种典范的认识方法,帮助人们正确地、客观地认识宇宙和人类自己。几千年来,人类的思想发生了巨大变化,人类的知识在不断地增长。而在由历史积累而形成的人类知识文化宝藏中,数学思想和方法却一直延续发展了几千年,表现出了强大的生命力。数学不断地追求最简单、最深层次这是认识的根本。用简洁的数学公式来表示复杂的事物、理解变化的客观规律。在科学技术领域内,人们现在己经能习惯地用非常简洁的数学公式来表示牛顿定律,以此来描述物体多种多样的运动,解释各种现象,同时借助于数学探求事物的机理,预测事物未来的发展变化,探求超出人类感官所及的宇宙的根本。人们借助计算机通过建立数学模型进行数学计算,在数学思想方法的启发和帮助下,解决各式各样的问题。人们在认识客观世界的探索中越来越相信,世界的合理性可以用数学来描述。数学不仅研究客观世界的数量关系和空间形式,而且也研究它自己。数学史中出现过的一个又一个悖论,记录了数学在研究自身的过程中所经历的一次又一次的危机,危机似乎动摇了数学的基础,而数学正是在不断严格地审视自己、不断地克服自身一个又一个矛盾的过程中夯实了自己的基础,使之变得更为扎实、牢靠。一些公理化体系就是数学对自己的基础出现多次“危机”后深思熟虑的结果。在探讨数学自身的过程中,也形成了像数理逻辑这样的数学新分支,推动了数学自身的发展。数学发展的历史正是体现了人类追求真理而不断探索的精神。数学的基础是逻辑和直觉、分析和推理、共性和个性,这种思维方式是数学外在的表现。而实质上也和其他文化领域一样,其自身的发展受到不同的时代精神、不同的思维方式的影响。反过来它也影响着人的精神和思维,影响一个民族文化进步。解析几何和微积分的创立,使变量成为数学的研究对象。数学思想、内容、方法上的革新,使数学的面貌焕然一新。而数学研究运动、变化的思想和方法,以及数学所取得的进展,对打破科学研究中形而上学的枷锁,把辩证法引入到科学的思维中,起到了推波助澜的作用。今天,恐怕没有一个有文化的人不懂得“增长速度”,“变化率”的含义,人们己经习惯从运动和变化的观点来研究事物。数学促进了几乎所有学科的发展,直接或间接地影响了每一个有文化的人的思维。影响人类的精神生活,提高和丰富了人类的整个精神文明水平。(2)数学对人的文化素养影响面对飞跃发展的科学技术,人必须具备必要的数学知识和技能,以训练心智、陶冶情操,更好的理解周围的世界,从而更客观的认识人类社会。例如“今年前六个月的居民存款比去年同期增速下降1个百分点。”“今天降水概率是50%”。“信息高速公路”、“数字信息”等他们的含义都是什么?数学对人的文化素质的影响,至少表现在如下几个方面:有利于培养严谨的思维方式。尽管大多数人将来不会成为数学家,但是条理性、逻辑性作为一种文化素质对人们将来从事任何一种职业都是需要的。同时,数学思维能力的培养对人的智力发展起着关键的作用。如圆是一个完美的图形,可用方程来表示,我们可以从这个方程中找出圆的所有美妙的性质,进一步还可以用方程来表示球,那么我们为什么不考虑下列方程以及。仅仅靠类比就使我们从三维空间进入了高维空间,从有形进入了无形,从现实进入了虚拟世界。有利于培养人的创新精神。数学是人类理性文明高度发展的结晶,又是人类创新的锐利工具。无论数学知识的应用或是数学知识的发展,都需要研究新问题,根据实际情况做出恰如其分的分析,并由此找到解决问题的途径。这就体现出人的巨大创造力。有利于培养科学的审美观。人对美的理解各不相同,但总之美和完善、完美、和谐、秩序……等相联系。而数学本身体现出的简洁美(抽象美、符号美、统一美等)、和谐美(对称美、形式美等)、奇异一,数学文化的存在价值在即将公布的高中数学课程标准中,数学文化是一个单独的板块,给予了特别的重视。许多老师会问为什么要这样做?一个重要的原因是,20世纪初年的数学曾经存在着脱离社会文化的孤立主义倾向,并一直影响到今天的中国。数学的过度形式化,使人错误地感到数学只是少数天才脑子里想象出来的“自由创造物”,数学的发展无须社会的推动,其真理性无须实践的检验,当然,数学的进步也无须人类文化的哺育。于是,西方的数学界有“经验主义的复兴”。怀特(White)的数学文化论力图把数学回归到文化层面。克莱因(Kline)的《古今数学思想》、《西方文化中的数学》、《数学:确定性的丧失》相继问世,力图营造数学文化的人文色彩。国内最早注意数学文化的学者是北京大学的教授孙小礼,她和邓东皋等合编的《数学与文化》,汇集了一些数学名家的有关论述,也记录了从自然辩证法研究的角度对数学文化的思考。稍后出版的有齐民友的《数学与文化》,主要从非欧几何产生的历史阐述数学的文化价值,特别指出了数学思维的文化意义。郑毓信等出版的专著《数学文化学》,特点是用社会建构主义的哲学观,强调“数学共同体”产生的文化效应。以上的著作以及许多的论文,都力图把数学从单纯的逻辑演绎推理的圈子中解放出来,重点是分析数学文明史,充分揭示数学的文化内涵,肯定数学作为文化存在的价值。二,数学:一种思想方法数学是研究量的科学。它研究客观对象量的变化、关系等,并在提炼量的规律性的基础上形成各种有关量的推导和演算的方法。数学的思想方法体现着它作为一般方法论的特征和性质,是物质世界质与量的统一、内容与形式的统一的最有效的表现方式。这些表现方式主要有:提供数量分析和计算工具;提供推理工具;建立数学模型。任何一种数学方法的具体运用,首先必须将研究对象数量化,进行数量分析、测量和计算。毛泽东同志曾指出:“对情况和问题一定要注意到它们的数量方面,要有基本的数量的分析。任何质量都表现为一定的数量,没有数量也就没有质量。”(注:《毛泽东选集》第4卷第1443页,人民出版社1990年版。)例如太阳系第八大行星——海王星的发现,就是由亚当斯(J. C. Adams)和勒维烈(U. J. Leverrier)运用万有引力定律,通过复杂的数量分析和计算,在尚未观察到海王星的情况下推理并预见其存在的。数学作为推理工具的作用是巨大的。特别是对由于技术条件限制暂时难以观测的感性经验以外的客观世界,推理更有其独到的功效,例如正电子的预言,就是由英国理论物理学家狄拉克根据逻辑推理而得出的。后来由宇宙射线观测实验证实了这一论断。值得指出的是,数学模型方法作为对某种事物或现象中所包含的数量关系和空间形式所进行的数学概括、描述和抽象的基本方法,已经成为应用数学最本质的思想方法之一。模型这一概念在数学上已变得如此重要,以致于许多数学家都把数学看成是“关于模型的科学”。怀特海(A. N. Whitehead )认为:“模式具有重要性的看法和文明一样古老……社会组织的结合力也依赖于行为模式的保持;文明的进步也侥幸地依赖于这些行为模式的变更。”(注:林夏水主编《数学哲学译文集》第350页,知识出版社1986年版。)并进一步指出:“数学对于理解模式和分析模式之间的关系,是最强有力的技术。”(注:林夏水主编《数学哲学译文集》第350页,知识出版社1986年版。)物理学家博尔茨曼(. Boltzmann)认为:“模型,无论是物理的还是数学的,无论是几何的还是统计的,已经成为科学以思维能力理解客体和用语言描述客体的工具。”这一观点目前不仅流行于自然科学界,还遍布于社会科学界。为自然界和人类社会的各种现象或事物建立模型,是把握并预测自然界与人类社会变化与发展规律的必然趋势。在欧洲,在人文科学和社会科学中称为结构主义的运动,雄辩地论证了所有各种范围的人类行为与意识都有形式的数学结构为基础。在美国,社会科学自夸有更坚实、定量的东西,这通常也是用数学模型来表示的。从模型的观点看,数学已经突破了量的确定性这一较狭义的范畴而获得了更广泛的意义。既然数学的研究对象已经不再局限于“量”而扩展为更广义的“模型”,那么,数学概念的本质也在发生嬗变。数学正成为一个动态的、变化的、泛化了的概念体系,其涵盖的科学对象也必然随之增加。数学在社会科学中的模型建构大都以结构分析为目标,即在高度简化与理想化的框架中去理解社会行为机制。在某些框架下,利用科学去预测与控制一个社会系统的一切变量的更高层次的目标已经实现。数学的模型方法把数学的思想方法功能转化成科学研究的实际力量。数学中有一个分支叫应用数学,主要就是研究如何从实际问题中提炼数学模型。这是一个对研究对象进行具体分析、科学抽象和做出判断与预见的过程。如对客观事物的必然现象,人们用确定性模型去描述,而对或然现象,人们建立了随机性模型。模糊数学被用于刻画弗晰现象。而各种突变现象,如地震、洪灾等,则可以由突变理论给出数学模型。三,数学:理性的艺术通常人们认为,艺术与数学是人类所创造的风格与本质都迥然不同的两类文化产品。两者一个处于高度理性化的巅峰,另一个居于情感世界的中心;一个是科学(自然科学)的典范,另一个是美学构筑的杰作。然而,在种种表面无关甚至完全不同的现象背后,隐匿着艺术与数学极其丰富的普遍意义。数学与艺术确实有许多相通和共同之处,例如数学和艺术,特别是音乐中的五线谱,绘画中的线条结构等,都是用抽象的符号语言来表达内容。难怪有人说,数学是理性的音乐,音乐是感性的数学。事实上,由于数学(特别是现代数学)的研究对象在很大程度上可以被看成“思维的自由想象和创造”,因此,美学的因素在数学的研究中占有特别重要的地位,以致在一定程度上数学可被看成一种艺术。对此,我们还可做出如下进一步的分析。艺术与数学都是描绘世界图式的有力工具。艺术与数学作为人类文明发展的产物,是人类认识世界的一种有力手段。在艺术创造与数学创造中凝聚着人类美好的理想和实现这种理想的孜孜追求。尽管艺术家与数学家使用着不同的工具,有着不同的方式,但他们工作的基本的目的都是为了描绘一幅尽可能简化的“世界图式”。艺术实践与数学活动的动机、过程、方法与结果,都是在其自身价值的弘扬中,不断地实现着对世界图式的有力刻画。这种价值就是在充分、完全地理解现实世界的基础上,审美地掌握世界。艺术与数学都是通用的理想化的世界语言。艺术与数学在描绘世界图式的过程中,还同时发展并完善着自身的表现形式,这种表现形式最基本的载体便是艺术与数学各自独特的语言体系。其共同特征有:(1)跨文化性。艺术与数学所表达的是一种带有普遍意义的人类共同的心声,因而它们可以超越时间和地域界限,实现不同文化群体之间的广泛传播和交流。(2)整体性。艺术语言的整体性来自于其艺术表现的普遍性和广泛性;数学语言的整体性来自于数学统一的符号体系、各个分支之间的有力联系、共同的逻辑规则和约定俗成的阐述方式。(3 )简约性。它首先表现为很高的抽象程度,其次是凝冻与浓缩。(4 )象征性。艺术与数学语言各自的象征性可以诱发某种强烈的情感体验,唤起某种美的感受,而意义则在于把注意力引向思维,升迁为理念,成为表现人类内心意图的方式。(5)形式化。在艺术与数学各自进行的代码与信息的意义交换中,其共同的特征就是达到了实体与形式的分隔。这样提炼出来的形式可以进行形式化处理。艺术与数学具有普适的精神价值。有人把精神价值划分为知识价值、道德价值和审美价值三种。艺术与数学同时具备这三种价值,这一事实赋予了艺术与数学精神价值以普适性。概括起来,其共同的特点有:(1)自律性。数学价值的自律性是与数学价值的客观性相联系的;艺术的价值也是不能由民主选举和个人好恶来衡量的。艺术与数学的价值基本上是在自身框架内被鉴别、鉴赏和评价的。(2)超越性。它们可以超越时空,显示出永恒。在艺术与数学的价值超越过程中,现实被扩张、被延伸。人被重新塑造,赋予理想。艺术与数学的超越性还表现为超前的价值。(3)非功利性。艺术与数学的非功利性是其价值判断有别于其他种类文化与科学的显著特征之一。(4)多样化、物化与泛化。在现代技术与商业化的冲击下,艺术与数学的价值也开始发生嬗变,出现了各自价值在许多领域内的散射、渗透、应用、交叉等现象。在人类思维的全谱系中,艺术思维和数学思维的主要特征决定了其主导思维各居于谱系的两端。但两种思维又有很多交叉、重叠和复合。特别是真正的艺术品和数学创造,一般都不是某种单一思维形式的产物,而是多种思维形式综合作用的结果。人类思维之翼在艺术思维与数学思维形成的巨大张力之间展开了无穷的翱翔,并在人类思维的自然延拓和形式构造中被编织得浑然一体,呈现出整体多样性的统一。人类思维谱系不是线性的,而是主体的、网络式的、多层多维的复合体。当我们想要探索人类思维的奥秘时,艺术思维与数学思维能够提供最典型的范本。其中能够找到包括人类原始思维直至人工智能这样高级思维在内的全部思维素材四,数学韵味——数学的美说到数学美,人们自然会联想到令人心驰神往的优美而和谐的黄金分割;雄伟壮丽的科学宫殿的欧几里得平面几何;数学皇冠上的明珠“哥德巴赫猜想”……数学美可以分为形式美和内在美。数学中的公式、定理、图形等所呈现出来的简单、整齐以及对称的美是形式美的体现。数学中有字符美和构图美还有对称美,数学中的对称美反映的是自然界的和谐性,在几何形体中,最典型的就是轴对称图形。数学中的简洁美,数学具有形式简洁、有序、规整和高度统一的特点,许多纷繁复杂的现象,可以归纳为简单的数学公式。数学的内在美有数学的和谐美,数量的和谐,空间的协调是构成数学美的重要因素。数学中的严谨美,严谨美是数学独特的内在美,我们通常用“滴水不漏”来形容数学。它表现在数学推理的严密,数学定义准确揭示概念的本质属性,数学结构系统的协调完备等等。总之,数学美的魅力是诱人的,数学美的力量是巨大的,数学美的思想是神奇的,数学是一个五彩缤纷的美的世界。美(有限美、神秘美等)会给学生以美的熏陶。数学所揭示的规律会加深学生对美的理解,而学习数学的过程也会使学生体验数学作为人类智慧的结晶所洋溢出的精神美。数学精神是一种理性精神,对完善人的精神品格有着不可估量的作用,主要体现在严谨求实、理智自率、直着求真、开拓创新等方面,通过解题实践既巩固了知识,培养了能力,同时也发展了坚持公正、终于科学、一丝不苟、不懈探索的优良品质,这都是造就人不断追求进取的品质所必备的前提。

只有一篇:个街头的扑克。有人和我提起来。正好我也接。索性在这里发出来大家研究一下。 他描述的局是这样的:用三种颜色的棋子,棋子共分三个颜色,红绿蓝。红的有6个,绿的有+L袋子里。让大家摸。一次只可以摸12出来。可以一次性的摸出来,也可以一个一个的摸出来。格外列了个表格。分别列着各种可能性。等等。上面的数字代表的是各种颜色的排列:列。随便那个颜色的棋子。有一种颜色是3个有一种颜色:+种颜色是5。个颜色是几个,只要颜色的数量吻合了。就构成了345: 除了摸到345组合。其他的组合好像都给于一定的奖励。具体怎么奖励的,那个小子没说明白。袋里有三种棋子红绿蓝。数量分别是6/7/8。你每把可以抓出12个棋子,而就是说一种颜色3,一种颜色4个另外一种颜色5。你都可以赢钱。摸到了345要罚款10。根据他说的好像是这个样子的。 正好我有个哥们也是玩这个的,但是玩法稍微有点变化。 但是我有个朋友他玩的是这样的一个街头摸棋子的局。道理和这个小子说的这个局的道理是一样的,局是这样的:用8白的旗子.还有8个黑的的棋子.放在一个口袋里.然后画一个表格。让大家来摸。凡是来摸的人都要交10元手续费。一次只可以摸出来5棋子。 如果摸出来的5全是白色的就给100。4全是白色的就给5元。摸到3个是白色的就5元。摸出其他的,就算白摸。 我曾经和他聊过。这样的局是坚决不需要出千的。直接就把你玩死了。不出千也能赢钱?是啊,这个不知道那个天才的倒霉蛋的数学家发明出来的好像。就是几率的问题。 这个局的几率是如何计算的呢?这么多年了我还记得:: 出5白色的概率是:8/166/145/134/12于~~A 156/145/138/12于~~B 出3白色的概率是:8/166/148/137/12于~~C 具体等于多少,因为手里没有计算机,那个有的话给个答案。对比一下答案。我用字母来代替。方便下边的解答。 如果按照摸1000次来计算的话.给大家一个公式,自己再计算一下: A乘100再加B乘50加C乘5~~=D 然后D再乘C~~~E E就是大家摸1000这个设局的人需要支付出来给大家的摸到了的奖金的钱 而他实际收入是10元乘1000。1万元:算看是不是暴利啊? 这样解说大家能明白吧? 而这个朋友说的那个是三个颜色的局。要是用概率计算的话,应该更复杂。怎么计算我就不会了,那个有心人闲着无聊可以自己算一下,我个人以为。但是局虽然不一样。道理都是通的。不用出千就可以赢死你的。所以以后在街头上遇到这样的局还是离远点好,否则这个东西会搞光你口袋里的钱的。 有句话咋说来着:存在就是有存在的道理。所以你不要被你的想当然的想法所左右。街头任何都不要去沾,拿那啥话说叫:没有金刚钻。不敢去揽瓷器活?是这个话吧?所以凡是敢把局摆到大街上的公众面前,都是你拿不走钱的。这个世界有傻子。但是绝对不是这些设局的人。那会是谁呢?你猜?

Me ,too.

生活中的数学在现实生活中,人们的生活越来越趋向于经济化,合理化.但怎样才能达到这样的目的呢? 一天,我就遇到了这样一道实际生活中的问题: 某报纸上报道了两则广告,甲商厦实行有奖销售:特等奖10000元1名,一等奖1000元2名,二等奖100元10名,三等奖5元200名,乙商厦则实行九五折优惠销售。请你想一想;哪一种销售方式更吸引人?哪一家商厦提供给销费者的实惠大? 面对问题我们并不能一目了然。我做了一个假设,假如有16人,其中8人愿意去甲家,6人喜欢去乙家,还有两人则认为去两家都可以。调查结果表明:甲商厦的销售方式更吸引人,但事实是否如此呢?在实际问题中,甲商厦每组设奖销售的营业额和参加抽奖的人数都没有限制。所以我们认为这个问题应该有几种答案。 一、苦甲商厦确定每组设奖,当参加人数较少时,少于213(1十2+10+200=213人)人,人们会认为获奖机率较大,则甲商厦的销售方式更吸引顾客, 二、若甲商厦的每组营业额较多时,它给顾客的优惠幅度就相应的小。因为甲商厦提供的优惠金额是固定的,共14000元(10000+2000+1000+1000= 14000)。假设两商厦提供的优惠都是14000元,则可求乙商厦的营业额为280000元(14000÷5%=280000)。 所以由此可得: (l)当两商厦的营业额都为280000元时,两家商厦所提供的优惠同样多. (2)当两商厦的营业额都不足280000元时,乙商厦的优惠则小于14000元,所以这时甲商厦提供的优惠仍是14000元,优惠较大。(3)当两家的营业额都超过280000元时,乙商厦的优惠则大于14000元,而甲商厦的优惠仍保持14000元时,乙商厦所提供的实惠大。 像这样的问题,我们在日常生活中随处可见。例如。有两家液化气站,已知每瓶液化气的质和量相同,开始定的价也相同.为了争取更多的用户,两站分别推出优惠政策.甲站的办法是实行七五折错售,乙站的办法是对客户自第二次换气以后以7折销售。两站的优惠期限都是一年.你作为用户,应该选哪家好? 这个问题与前面的问题有很大相同之处。只要通过你所需要的罐数来分析讨论,这样,问题便可迎刃而解了。 随着市场经济的逐步完善,人们日常生活中的经济活动越来越丰富多彩.买与卖,存款与保险,股票与债券,……都已进入我们的生活.同时与这一系列经济活动相关的数学,利比和比例,利息与利率,统计与概率。运筹与优化,以及系统分析和决策,都将成为数学课程中的“座上客”。作为跨世纪的小学生,我们不仅要学会数学知识,而且要会应用数学知识去分析、解决生活中遇到的问题。这样才能更好地适应社会的发展和需要。

生活数学获奖小论文题目

1、 数学中的研究性学习2、数字危机3、中学数学中的化归方法4、高斯分布的启示5、a2 b2≧2ab的变形推广及应用6、网络优化7、泰勒公式及其应用8、浅谈中学数学中的反证法9、数学选择题的利和弊10、浅谈计算机辅助数学教学11、论研究性学习12、浅谈发展数学思维的学习方法13、关于整系数多项式有理根的几个定理及求解方法14、数学教学中课堂提问的误区与对策15、中学数学教学中的创造性思维的培养16、浅谈数学教学中的“问题情境”17、市场经济中的蛛网模型18、中学数学教学设计前期分析的研究19、数学课堂差异教学20、浅谈线性变换的对角化问题21、圆锥曲线的性质及推广应用22、经济问题中的概率统计模型及应用23、通过逻辑趣题学推理24、直觉思维的训练和培养25、用高等数学知识解初等数学题26、浅谈数学中的变形技巧27、浅谈平均值不等式的应用28、浅谈高中立体几何的入门学习29、数形结合思想30、关于连通性的两个习题31、从赌博和概率到抽奖陷阱中的数学32、情感在数学教学中的作用33、因材施教 因性施教34、关于抽象函数的若干问题35、创新教育背景下的数学教学36、实数基本理论的一些探讨37、论数学教学中的心理环境38、以数学教学为例谈谈课堂提问的设计原则39、不等式证明的若干方法40、试论数学中的美41、数学教育与美育42、数学问题情境的创设43、略谈创新思维44、随机变量列的收敛性及其相互关系45、数字新闻中数学应用46、微积分学的发展史47、利用几何知识求函数最值48、数学评价应用举例49、数学思维批判性50、让阅读走进数学课堂51、开放式数学教学52、浅谈中学数列中的探索性问题53、论数学史的教育价值54、思维与智慧的共享——从建构主义到讨论法教学55、微分方程组中的若干问题56、由“唯分是举”浅谈考试改革57、随机变量与可测函数58、二阶变系数齐次微分方程的求解问题59、一种函数方程的解法60、积分中值定理的再讨论对原函数存在条件的试探分块矩阵的若干初等运算函数图像中的对称性问题泰勒公式及其应用微分中值定理的证明和应用一元六次方程的矩阵解法‘数学分析’对中学数学的指导作用

新颖的数学论文题目有:

1、数学模型在解决实际问题中的作用。

2、中学数学中不等式的证明。

3、组合数学与中学数学。

4、构造方法在数学解题中的应用。

5、高中新教材中数学教学方法探讨。

6、组合数学恒等式的证明方法。

7、浅谈中学数学教育。

8、浅谈中学不等式的几何证明方法。

9、数学教育中学生创造性思维能力的培养。

10、高等数学在初等数学中的应用。

11、向量在几何中的应用。

12、情境认识在数学教学中的应用。

13、高中数学应用题的编制和一些解题方法。

14、浅谈反证法在中学教学中的应用。

15、探索证明线段相等的方法。

16、几个带参数的二阶边界值问题的正解的存在性研究。

17、关于丢番图方程1+x+y=z的一类特殊情况的研究。

18、变限积分函数的性质及应用。

19、有限集上函数的迭代及其应用。

20、小学课堂环境改着的行动研究。

21、网络环境下小学数学主题教学模式应用研究。

22、培养小学生数学学习兴趣的教学策略研究。

23、小学五年级儿童数学学习策略干预对改善其执行功能的研究。

24、小学生数学创新思维的培养。

25、促进小学生数学课堂参与的数学策略研究。

26、使学生真正成为学习的主人。

27、改革课堂教学的着力点。

28、谈素质教育在小学数学教学中的实施。

29、素质教育与小学数学教育改革。

30、浅谈学生数学思维能力的培养。

浅谈中学数学中的反证法数学选择题的利和弊浅谈计算机辅助数学教学论研究性学习浅谈发展数学思维的学习方法关于整系数多项式有理根的几个定理及求解方法

一、数学适应源于生活,用于创设问题情境 生活中充满了数学,数学就在我们周围,让学生学习数学,可从他们已有的经验和已有的知识出发,有目的的,合理地创设出一些贴近学生生活实际的问题情境,把生活中的实际问题抽象成有兴趣的数学问题,只要引起学生的兴趣,就会大大增加学生的求知欲,学生就会主动地去开启智慧之门。例如,在学习归一应用题时,我出示了这样一道习题,让学生练习。“使用139全球通手机,月租费50元,每分钟通话费元;而某一人用136神州行手机,没有月租费,每分钟通话费元,而这个人用136手机,每月计费150元以上,若他要换用全球通手机合算吗?”这些题目,是学生从示接触过的,又很贴近学一的现实生活。通过让学生业计算,既是让学生对所学知识的巩固,对现实生活的了解,又很好地创造了生活的新方法,激发了学生学习的兴趣。又例如,在学习“圆的面积”的时候,可以设置疑问。“为什么自来水的管道是圆形的而不是长方形的”、“你们有没有见过正方形的自来水管”,这样一个带有生活常识的问题。一提出,学生马上对它充满兴趣,交头接耳,议论纷纷,这样使教材的内容融入趣味的生活情节中,让学生带着兴趣去学习新知识,使学生尝试成功的喜悦,诱发学生再次学习的兴趣。 二、数学知识用于生活,使学生了解生活实际在数学教学中,除了要讲清概念外,使学生正确理解各个知识点和概念,更要注意知识的实用性,在练习的过程中,要把数学知识用到实际中来,要从多方面来考虑数学问题,来打开学开学生的眼界,增加学生信息量,了解生活的实际。如美国第三次全国进展评估中有这样一个试题是:每辆卡车可载36名士兵,现在有1128个士兵需要用卡车送到练营地,问需要多少辆卡车?乍一看,这是个很简单的除法应用题,测试的结果也表明,有70%的学生正确地完成了计算,即得出了36除1128商是31,余数为12。然而,在此基础上,只有23%的学生给出了32这一正确的答案,这说明了什么问题呢?这说明了学生没有把这一问题看成是真正的问题,没有从实际生活的角度去想这个问题,而只是把题目看成是虚构的数学问题,为了练习而杜撰的故事。他们所做的事就是进行计算把得数写出来,这也是一些学生的通病,只注重机械练习,而很少考虑其他问题。这只是数学教学中的小小一例,在教学中还有很多这样的例子,这就给了我们一个启示:我们的数学要加强真实感要把所学的知识用于解决实际问题,学数学要为生活服务,从而来增加学生的数学意识。 三、从数学实践活动入手,拓展数学视野开展数学实践活动,可以让学生体验到数学在生活中的应用,对于培养学生学习数学的兴趣、爱好、有着十分积极的意义。例如,在教学中,让学生到操场上去走走、跑跑、测测、量量,让学生感受50米、100米、400米的距离,并让学生辨别步测与目测的差别;让学生到食堂去看看、称称,根据各种水果、蔬菜的重量,使学生去感受100克、1千克、10千克的实际重量等等,这些活动深受学生的喜爱,不仅可获得数学知识,还能培养学生的数学意识,对数学学习充满乐趣。 一、走进生活,用数学眼光去观察和认识周围的事物:世界之大,无处不有数学的重要贡献。培养学生的数学意识以及运用数学知识解决实际问题的能力,既是数学教学目标之一,又是提高学生数学素质的需要。在教学中,要使学生接触实际,了解生活,明白生活中充满了数学,数学就在你自己的身边。例如在“比例的意义和基本性质”的导入中,我设计了这样一段:你们知道在我们人体上的许多有趣的比例吗?将拳头翻滚一周,它的长度与脚底长度的比大约是1:1,脚底长与身高长的比大约是1:7……知道这些有趣的比有很多用处,到商店买袜子,只要将袜子在你的拳头上绕一周,就会知道这双袜子是否合适你穿;如果你是一个侦探,只要发现罪犯的脚印,就可以估计出罪犯的身高……这些都是用身体的比组成了一个个有趣的比例,今天我们就来研究“比例的意义和基本性质”;此外教师还可结合学生年龄特点,设计一些“调查”、“体验”、“操作”等实践性强的作业,让学生在活动中巩固所学知识,提高各方面的能力:如教学“单价、数量、总价”三者关系应用题前可布置学生做一回小小调查员,完成下列表格:品名黄瓜白菜萝卜猪肉单价(元)数量(千克)总价(元)这样做,使学生对所学知识有了感性认识,减缓他们在学习上坡度,对他们深刻理解单价、数量、总价三者之间的关系有很大帮助。再如学习了三角形的稳定性后,可让学生观察生活中哪些地方运用了三角形的稳定性;学习了圆的知识后,让学生从数学的角度说明为什么车轮的形状是圆的,三角形的行不行?还可以让学生想办法找出锅盖、脸盆的圆心在哪儿;……这样大大丰富了学生所学的知识,让学生真正认识到周围处处有数学,数学就在我们生活中间,并不神秘,同时也在不知不觉中感悟数学的真谛,进而激起从小爱数学、学数学、用数学的情感,促进学生的思维向科学的思维方式发展,培养学生自觉地把所学的知识应用于实际生活的意识。 二、感悟生活,架构数学与生活的桥梁:“人人学有用的数学,有用的数学应当为人人所学”成了数学教学改革实验的口号。教学中我联系生活实际,拉近学生与数学知识之间的距离,用具体生动、形象可感的生活事例解释数学问题。1、运用生活经验解决数学问题在上“用字母表示数”一课的内容时,我用CAI课件演示李蕾同学拾金不昧的情景,紧接着播出一则“失物招领启事”:失物招领李蕾同学在校园升旗台附近拾到人民币A元,请失主前来少先队大队部认领。校少先队大队部 学生惊奇于数学课上老师怎么讲起了失物招领的事呢?我和学生通过分析、讨论A元所表示的意义,师:A元可以是1元钱吗?生1:A元可以是1元钱,表示拾到1元钱。师:A元可以是5元钱吗?生2:可以!表示拾到5元钱。师:A元还可以是多少钱呢?生3:还可以是85元,表示拾到85元钱。师:A元还可以是多少钱呢?生4:还可以是元,表示拾到5角钱。……师:那么A元可以是0元吗?生5:绝对不可以,如果是0元,那么这个失物招领启事就和大家开了一个大玩笑!师:为什么不直接说出拾到多少元,而用A元表示呢?……由于学生容易认识具体、确定的对象,而用字母表示的数是不确定的、可变的,因此开始学习学生往往难以理解。本题中的“失物招领启事”是学生所熟悉的活动,激发了学生学习新知的欲望,学生便能不由自主地参与到解题过程中去。在讨论交流中,集思广益,使学生在愉快的氛围理解了新知,并对所学的知识更理解,掌握地更牢固;另一方面也提高了人际交往能力,增强了相互帮助、合作的意识,受到良好的思想教育,也锻炼了学生对社会的洞察力。2、运用数学知识解决实际问题例如学习了长方形、正方形面积的计算及组合图形的计算后,我尝试着让学生运用所学知识解决生活中的实际问题。如:老师家有一间两室一厅的住房,如图:你能帮帮他算一算这两室一厅的住的面积有多大?要计算面积有多大我们先要测量哪些长度的面积?在给出一定的数据后让学生们计算;接下来我还让学生们回家测算一下自己家的实际居住面积。在这样一个实际测算的过程中,既提高了兴趣,又培养了实际测量、计算的能力,让学生在生活中学、在生活中用。 如,学过了100以内加减法之后,创设了“买汽车”的教学情境:微型汽车大削价,小林花去100元买了几辆汽车,他买了几辆汽车,是哪几辆?通过观察、思考、讨论,在我的鼓励指导下,同学们用式子有序地依次表示为:(1)把100元分解为两个数的和:(2)把100元分解为3个数的和:50+50=100 40+60=100 30+70=10020+80=100 60+20+20=100 50+20+30=100 40+40+20=100 30+30+40=100 (3)把100元分解为4个数的和(4)把100元分解为5个数的和40+20+20+20=100 20+20+20+20+20=100 30+30+20+20=100 学生以发现者的心态去探索、去求新、去寻觅独创性的答案,这也正验证了苏霍姆林斯基所说的:“在人的心灵深处,都有一种根深蒂固的需要,这就是希望自己是一个发现者、研究者、探索者。”这种图文并茂的应用题,使学生感到不是在解应用题,而是在解生活中的问题,锻炼了学生捕捉信息的能力,增强了应用题的应用味:漫画的形式更贴近于儿童的实际生活,学生从图中获得各种汽车价钱的信息,又从文字中获取“小林花去100元”的信息,由于问题具有现实意义,但又不能刻板地归为哪一种类型,要想解决“买了几辆汽车,是哪几辆?”的问题,联系生活实际,就能得到不同的解法。整个学习活动给学生提供了广阔的思维空间,让学生经历观察、分析、概括和归纳等学习过程。不仅巩固了100以内认识和加法,而且促进数学的交流,学生的分析、解决问题的能力得到培养,有利于因材施教,体现不同的人学习不同层次的数学,使学生感受到数学与生活的密切联系,体验到生活中处处有数学,感受数学的趣味与作用。 三、创造生活,解决生活中的数学问题两步应用题之后的教学,我让学生“创作”应用题,学生们积极思考,发挥自己的想象力:“一份鸡翅8元,一个汉堡包比它贵4元,我吃了一份鸡翅和一个汉堡包,你们说我用了多少元?”;“我的妈妈上午买了一斤青菜,买的萝卜是青菜的两倍,请问我的妈妈一共买了几斤菜?;《西游记》有62集,《西游记续集》比它多5集,《西游记续集》有多少集?”学生们编应用题时眉飞色舞的神态,夸张的动作,幽默风趣的语言常常引起哄堂大笑。由于题材来自学生所熟知的事物,学生发言积极、语言流畅,思维呈多极化和多元化,得出“雪融化后是春天而不是水”的新思路,因创造而倍感兴奋,更体会到生活中处处有数学。再如学习了“按比例分配”的知识后,让学生帮助爸爸妈妈算一算本住宅楼每户应付的水费(电费)是多少;学习了“利息”的知识后,算一算自己在银行存储的钱到期后可以拿多少本息;再如学习完“比例尺”一节的知识后,让学生绘制“我给未来的校园设计平面图”、“我给生活小区设计平面图”等等,其对图表内容的丰富和社会关注程度令人感叹!生活是教育的中心,“生活即教育”的理论为小学数学教学的改革开辟了广袤的原野。“让学生在生活中学数学” 使学生对数学有一种亲近感,感到数学与生活同在,增强了学生学习数学的主动性,发展了求异思维,培养了学生理论联系实际的学风和勇于探究、大胆创新、不断进取的精神,让学生亲自体会参与应用所学知识去解决实际问题的乐趣。 7回答者: wys575780554 - 二级 2010-10-5 10:06 我来评论>> 提问者对于答案的评价:xiexie相关内容• 数学小论文 生活中的数学 2010-11-1 • 数学小论文 生活中的数学 题材 14 2010-10-8 • 数学小论文,初一的.题目是生活中的数学.急 216 2010-2-3 • 给个生活中的数学1000字左右的数学论文 3 2010-10-13 • 急~!!!怎样写围绕生活中的数学小论文啊,说说怎样写就行 132 2008-3-9 更多相关问题>> 查看同主题问题: 数学 论文 论文 主题 等待您来回答更多0回答 关于十七届五中全会的论文如何撰写?要求写成学术论文型的。在哪可以... 0回答 写论文 怎么知道查什么书 分析成本作假的方法,找出治理的方法 0回答 5 关于学习中国旅游地理的心得,是我选修的论文 要求1500字左右....谁有... 2回答 关于能源危机的论文 0回答 10 数学小论文主题可以有哪些 1回答 20 求一篇8000字的数控技术专业的毕业设计论文 1回答 泰山的传说故事 1回答 15 长城的传说故事 没有感兴趣的问题?试试换一批其他回答 共 6 条有一次,妈妈烙饼,锅里能放两张饼。我就想,这不是一个数学问题吗?烙一张饼用两分钟,烙正、反面各用一分钟,锅里最多同时放两张饼,那么烙三张饼最多用几分钟呢?我想了想,得出结论:要用3分钟:先把第一、第二张饼同时放进锅内,1分钟后,取出第二张饼,放入第三张饼,把第一张饼翻面;再烙1分钟,这样第一张饼就好了,取出来。然后放第二张饼的反面,同时把第三张饼翻过来,这样3分钟就全部搞定。 我把这个想法告诉了妈妈,她说,实际上不会这么巧,总得有一些误差,不过算法是正确的。看来,我们必须学以致用,才能更好的让数学服务于我们的生活。 回答者: 编号89757001 - 二级 2010-10-4 21:42 烃,嶷,以,雕黪搂,同,专区时以 峻峭,凤, 回答者: .* 2010-10-5 12:18 活动意义 1、让学生知道数学与生活是密切联系的; 2、让学生体验数学与生活是能够联系的; 3、让学生展示数学与生活是怎么联系的; 4、让学生释放数学与生活相联系的能力。 参与对象 鼓楼区各小学1-6年级学生及指导教师。活动内容 高年段(五、六年级)活动内容: 1、应用数学知识为校园、教室、自己的家或者公共场所进行一项局部设计。设计要求:(1)要实用。或者改善周围环境,或者改进空间结构,或能改变传统认识。(2)有价值。设计的效果应该比原来更科学合理,更方便实用,更新颖美观,更富有创意。(3)有数学。设计要体现出设想、测量、计算、实际验证等具有数学意义、数学内容和有效数据真实资料,写一份图文并茂的《×××设计报告》。 2、应用数学知识做一个自己喜欢的专项研究,内容不限。写一份体现数学作用、研究数据真实、图文并茂的《×××研究报告》。

小学生获奖数学论文

如何培养学生数学学习兴趣兴趣是学生学习的基础,是推动学生学习动力;是获得成功的强烈欲望,它在学习活动中起着十分重要的作用。教学实践表明,学生如果对数学知识充满好奇心,对学会知识有自信心,那么他们总是主动积极、心情愉快的进行学习。因此,在数学课堂教学中,我们要时刻注意发掘教材孕伏的智力因素,审时度势,把握时机,因势利导地为学生创造良好的教学情境 ,激发学生的兴趣,让学生在学习数学中愉快地探索。下面本人结合《三角形内角和》一课,谈几点体会。 一、开讲生趣 俗话说:“良好的开端是成功的一半”。一堂课的开头虽然只有短短几分钟,但它却往往影响一堂课的成败。因此,教师必须根据教学内容和学生实际,精心设计每一节课的开头导语,用别出心裁的导语来激发学生的学习兴趣,让学生主动地投入学习。如“三角形内角和”的引入部分,我先要求学生拿出自己预先准备的三个不同的三角形(直角、锐角和钝角三角形),各自用量角器量出每个三角形中三个角的度数,然后分别请几个学生报出不同三角形的两个角的度数,我当即说出第三个角的度数。一开始,有几位同学还不服气,认为可能是巧合,又举例说了几个,都被我一一猜对了,这时学生都感到惊奇,教师的答案怎么和他们量出的答案会一致的。“探个究竟”的兴趣因此油然而生。 二、授中激趣 开讲生趣仅作为导入新课的“引子”,那成功之路,至多只行了一半。还需要在讲授新课中适时地激发学生的兴趣,恰到好处地诱导,充分挖掘知识的内在魅力,以好奇心为先导,引发学生强烈的求知欲。比如上例新授部分,在板书课题后,接着又让全班学生动手做一个实验:分别把各自手里的三个三角形(锐角、钝角、直角三角形)的三个角剪下,再分别把每个三角形的三个角拼在一起,并言之有趣地激励学生:看谁最先发现其中的“奥秘”;看谁能争取到向大家作“实验成功的报告”。这时,学生心中激起了层层思考的涟漪,课堂气氛既紧张又活跃,发言争先恐后。还有的学生通过把正方形的纸沿对角线对折,变成两个完全一样的三角形,因为正方形有4个直角,是360 °,所以每个三角形的内角和是180°好方法。显然,此时不但学生对三角形内角和是180°的性质有了感性的基础,而且教师对这一性质的讲解也已到了“心有灵犀一点通”的最佳时刻。 三、设疑引趣 学起于思,思源于疑。“疑”是学生学习数学知识中启动思维的起点。在数学教学中,作为教师要善于提出具有引发学生思考的问题,使学生见疑生趣,产生有趣解疑的求知欲和求成心。 比如“三角形内角和”在新授结束后 师:(出示一个大三角形)它的内角和是多少度? 生:180 °。 师:(出示一个很小的三角形 )它的内角和是多少度? 生:180 °。 师:把大三角形平均分成两份。它的(指均分后的一个小三角形)内角和是多少度?(生有的答90 °,有的180 °。) 师:哪个对?为什么? 生:180°,因为它还是一个三角形。 师:每个小三角形的度数是180°,那么这样的两个小三角形拼成一个大三角形,内角和是多少度? 这时学生的答案又出现了180°和360°两种。师:究竟谁对呢? 学生个个脸上露出疑问,经过一翻激烈的讨论探究后,学生开始举手回答。 生1:180 °,因为两个三角形拼在一起,就变成了一个三角形了,每个三角形的内角和总是180 °。 生2 :我发现两个小三角形拼成一个大三角形,拼接在一起的两条边上的两个角没有了,就比原来两个三角形少180 °,所以大三角形的内角和还是180°,不是360°。 师:表扬:你真聪明。演示 : 这里教师通过提出两个具有思考性的问题,层层设疑,使学生探究知识的兴趣波澜起伏,时刻处在紧张而又兴奋的学习状态中。 四、练中有趣 练习是巩固所学知识,形成技能技巧的必要途径,是教学的一个重要环境。但也往往被呆板的练习形式、乏味的练习内容,把在学习新知识中激发出来的学习兴趣,而无情淹没,使学生愉快的心情、振奋的精神受到严重的扼杀和抑制。因此课堂练习要设计得精彩有趣,教学中教师根据所学内容,设计不同形式的练习。 1、练习形式要注意层次性。 设计不同类型、不同层次的练习题,从模仿性的基础练习到提示的变式练习再到拓展性的思考练习,降低习题的坡度,照顾不同层次的学生,使学生始终保持高昂的学习热情。比如“三角形内角和”中在运用规律解题时, 先已知两角求第三角;再已知直角三角形的一锐角求另一角,感知直角三角形的两锐角之和是90°;最后已知三角形的一角,且另两角相等,求另两角的度数,或已知三角形三个角的度数均相等,求三角形的三个角的度数。以上设计,通过有层次的练习,不断掀起学生认知活动的高潮,学生学起来饶有兴趣,没有枯燥乏味之感。 2、练习形式要注意科学性和趣味性。 布鲁纳说过:“学习的最好刺激,是对所学材料的兴趣。”教学时可适当选编一些学生喜闻乐见的、有点情节又贴进学生生活经验以及日常生活中应用较广泛的题目,通过少量的趣题和多种形式的题目,使学生变知之为乐知。比如,本课在完成基本题后,让学生在自己的本子上画出一个三角形,要求其中两个内角都是直角。在学生画来画去都无从下手时,个个手抓脑袋,冥思苦想。这时教师说出“画不出来”的理由,学生们恍然大悟。 五、课尾留趣 一节课的前半节,是学生接受知识的最佳时刻,但一到后半节,学生注意力容易分散,这时设计一些有趣的数学活动、游戏,不仅可以使大脑得到适当休息,又能吸引学生的注意力,达到“课业结束趣犹在”的效果。

小学数学论文 让数学教学回归本色 ——面对当今小学数学课堂教学诸多现象引发的思考及探索温岭市新河小学 李玲飞 摘要 本文先对当前小学数学课堂教学中存在的问题进行深入地剖析,用案例呈现的方式列举了数学教学中在情境创设、课堂活动、课堂提问、教学过程铺设等方面存在的问题,再用案例呈现出小学数学课堂教学本应保留的特色,即数学问题应多一点,思考感悟应多一点,思维交流应多一点,更应关注学生数学能力的提高。笔者想与广大教师共勉:沉下心来,实实在在、扎扎实实地教学,还数学教学本应有的特色。 关键词 小学数学课堂教学 数学问题 思考感悟 思维交流 在新课程实施过程中,刻意追求形式之风存在于不少的数学课堂,使得数学教学极具“观赏性”,显示出一派“喜人”的景象。特别是一些公开课、展示课,教师几乎是使出浑身解数,创设情境、实践操作、小组讨论、合作交流等,层出不穷,学生的学习兴趣被激发得兴致盎然,学生的参与热情被调动得淋漓尽致,这似乎说明数学课程标准理念已经落到实处了。但形式的背后露出浮华,折射出一些值得思考的问题:数学问题少了,思考感悟少了,思维交流少了,能力提高少了。倘若不冷静反思,则很容易使数学教学步入“歧途”。当务之急是要让数学课堂回归本色,实实在在、扎扎实实地教。 一、华丽情境少一些,数学问题多一些 《数学课程标准》指出,数学教学要紧密联系学生的生活实际,从学生的生活经验和已有知识出发,创设生动有趣的情境。的确,在数学教学中,好的问题情境能拨动学生思维之弦,激发求知欲、唤起好奇心,使看似抽象、枯燥的数学知识富有吸引力,让数学课堂充满诗意。因此,情境创设已经成为当前数学教师煞费苦心的一件事,他们往往为了突出“新、奇、趣”,挖空心思地创设华丽的情境,然而结果却引发了不少问题。 案例(一):《倒数的认识》教学片断 师:(出示汉字吞、呆。)你知道这些汉字的部首调换位置后各是什么字? 生1:“吞”字上下部首调换应是“吴”字。 生2: “呆”调换部首是“杏”。 师:下面老师可要出一些比较难的题目,你们敢挑战吗? 请把我说的句子倒过来念。 师:“客上天然居”! 生:“居然天上客”! 师:“人过大佛寺”! 生:“寺佛大过人”! 师:在我们的数学中也有这种有趣的现象,它就是我们今天要学习的倒数。 这个案例中的情境可用“漂亮、华丽”来形容,教师充分挖掘语文中的教学资源,通过汉字的倒写、句子的倒念来激发学生的学习兴趣,使学生初步感知倒数这一概念。但这是否就是一个好的情境?它蕴含了多少数学问题,激发了学生多少数学思考?回答是否定的。在“倒数的认识”学习之后,少数学生把“6”的倒数写成了“9”,“”的倒数写成了“”。这应该说是教学价值的误导。 案例(二):《通分》一课的教学片断 师:下面是小明一家对自家小花园的设计方案。 妈妈:这块地的种牡丹,种杜鹃。 爸爸:这块地的种桃花,种郁金香。 小明:这块地的种月季,种菊花。 师:根据他们的设计方案,你知道他们各人最喜欢什么花?为什么? 生1:妈妈最喜欢牡丹。因为和相比,它们的分母相同,就比分子,分子大的那个分数就大,> ,所以说妈妈最喜欢牡丹。 生2:爸爸最喜欢桃花。因为和相比,它们的分子相同,就比分母,分母小的分数就大,>,所以说爸爸最喜欢桃花。 师:那小明最喜欢什么花? [没有学生举手] 师:为什么不能做出判断? 生:因为和的分子、分母都不相同,不好比较。 师:看来我们过去学过的知识都没法解决这个问题,今天我们就一起来学习新的知识“通分”。 这个情境的创设,既符合学生的心理特征,调动了学习兴趣,又让学生复习了同分母、同分子分数比较大小的旧知。情境的创设充分调动起了学生原有的生活经验或数学背景,激发起由情境引起的数学意义的思考,从而让学生有机会经历“问题情境——建立模型——解释或应用”这一重要的数学活动过程。 一个好的数学问题情境应具有衍生性,也就是通过这个情境能够产生一连串、环环相扣、由浅入深的问题。因此,我们在创设情境的时候,要思考这样的情境是否存在“华而不实”的状况,它蕴含了多少数学问题,激发了多少数学思考。我们要让所创设的情境,数学问题多一些,思考价值高一些。 二、低效活动少一些,思考感悟多一些 爱因斯坦曾经说过:教育应该使提供的东西,让学生作为一种宝贵的礼物来享受,而不是作为一种艰苦的任务来负担。而课堂活动不但可以促进教师教学行为的转变,而且可以让学生体验到数学学习并不是让人生畏、令人讨厌的,而是其乐融融、美妙至极的一件乐事。但是,现实很多的课堂活动学生的“手”动了,“心”却未动,操作多了,气氛活跃了,可思考、感悟少了。 案例(一): 《三角形任意两边的和大于第三边》的教学片断 教师创设了这样一个情境:小明上学时究竟是走中间的直路较近,还是分别绕道位于直路两侧的邮局和商店较近?然而,尽管从一开始被提问的学生就能立即对上述问题正确作答,大多数学生并能依据“两点间直线最短”对此作出必要的论证,但任课教师却仍然坚持要求学生去量一量来验证结论,并重新提出“三角形任意两边的和大于第三边”这一猜想。 这个案例让我们首先来思考“究竟什么是真正的活动”,我想真正有效的活动应是带有一定目的性、指向结果的,并又能达成一定“过程性目标”的探究活动。而在这案例中学生对活动的结果已经一目了然了,还有活动的动力和积极性吗?当然唯一的“过程性目标”也会大打折扣。 案例(二):《万以内数的大小比较》的教学片断 这节课老师创设了三轮两组同学抽数排数的游戏,让学生在比赛中感悟并总结出万以内数大小比较的方法。 第一轮比赛,规定将每次抽到的数字依次从低位到高位排列起来。让学生逐步懂得,个位、十位、百位上的数再大,但千位上数小,这个数就小。游戏中学生深刻地体悟到数的大小与数位的关系,逐步体会到高位上数字的决定性作用。 第二轮比赛,规定将每次抽到的数字依次从高位到低位排列起来。在游戏的过程中,学生领会到,千位上数大的那个数就大,千位上的数相同,百位上数大的那个数就大……让学生更加深刻地体会到“高位”的决定性作用。 第三轮比赛,规定每次抽到的数字由抽签者自己决定放在哪一位上。这样,不但使学生对比较大小与数位及每一位数字大小的关系有比较深刻、全面的认识,又培养了他们思考问题的缜密性。 教师将整堂课的知识点巧妙地蕴含在三轮游戏比赛中,让学生在一次次轻松、刺激的比赛中来感悟并总结出比较万以内数大小的方法。正所谓“课伊始,趣已生;课进行,趣正浓;课结束,趣犹存”。学生在活动中有感而发,活动让学生更高效、活泼地掌握和内化了数学知识。 我们说:“数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探究和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验”。因此我认为好的数学活动应该是寓教于乐,让学生在活动中感悟数学、总结方法、揭示数学的本质,使思维更加灵动、活跃。 三、空泛提问少一些,思维交流多一些 “思维从问题开始”,在课堂教学中,教师巧妙地设置科学的问题,是师生间进行信息和情感交流的重要途径,是师生的思想认识产生共鸣的纽带;更重要的是可以激发学生学习的兴趣,促进思维,提高课堂教学的效率。有位教育家说:“教学的艺术在于如何恰当地提出问题和巧妙的作答。”提问的艺术越高,对激发学生的求知欲和创造欲就越好。而新课程下的很多课堂提问成为了公开课的一种装饰,提出的问题没有质量,教师对学生的回答只是随意的应和,不加以科学的、深度的引导,使得师生间没有思维得交流,造成课堂从表面看轰轰烈烈,但是却少了学生对问题的深入思考和思维的有效提升,提问的积极作用也就转化成了消极作用。 案例(一):《1亿有多大》教学片断 师:前面我们已经认识了“亿”这个计量单位,你们能想象出1亿有多大吗? 生1:我猜想1亿栋楼房摞起来可以冲到月球上去。 师:你的想法真奇特!但是1亿栋楼房能摞起来吗? 生2:我猜想1亿张纸摞起来大约有姚明那么高吧! 师:比姚明要高多了! 生3:我猜想我的指甲里大约1亿个细菌吧? 师:是吗?那你可要讲卫生哟! 生4:我猜想1亿张纸摞起来可以冲到天空上去吧,1亿粒米大约有一个房间那么多吧。 师:同学们,你们的猜测有很大胆,到底谁猜得比较对呢,今天我们就一起来研究“1亿有多大”。 这位老师设想是先让学生猜一猜,再通过讨论、比较哪个接近1亿,从而建立起“1亿有多大”这一概念。但是由于教师提的问题过于空泛、教师的引导没有数学含量,以至学生只能瞎猜,而没有数学思考。这样的设计活跃气氛尚可,但时间上的代价太大,更严重的是造成一些原本善于思考的同学受其影响也随口说说、不着边际 案例(二): 《圆的面积》练习课教学片断 教师出示习题:用一根31.4米长的绳子,在草地上围出一个平面图形,怎样围面积最大? 生1:平面图形我们学过的太多了,有长方形、正方形、三角形、平行四边形、梯形和圆形。 生2:要使围成的图形面积最大,三角形和梯形肯定不划算,因为计算它们的面积都要除以2。 师:若围成平行四边形呢? 生4:也不行,因为S平行四边形=底×高,若以一条边为底,那么这条底上对应的高一定比这一条边短,这样所得的面积肯定比同底的长方形小。 生5:看来只能考虑长方形、正方形和圆形。 师:有道理,在这三种平面图形中,你估计哪个图形的面积最大?你有什么新的发现?互相讨论讨论! 这个案例中教师组织了学生进行了智慧型的对话,很快排除了几种面积较小的图形的可能性,将目标锁定在三种图形上。再通过进一步放手让学生去讨论,学生很快在对话交流中发现了规律。出乎意料的是,学生还发现了在周长相等的情况下,长、宽的米数越接近面积就越大这一规律。 我认为教师的课堂提问要做到切口适量,具有数学含量,提一些看似简单却能揭示规律的有价值的问题。教师更要组织学生进行有效的对话,利用集体的智慧,取长补短,更要在学生回答出现偏差时及时地引导,学会与学生思维交流。这样既能让学生经历规律的生成过程,又有利于培养学生思维的严谨性和概括性。 四、过程铺设少一些,能力提升多一些 新课程目标注重学生自己的探索与发现,强调经历数学学习的全过程,体验充分,数学思考,但又不能放松对基本知识与基本技能的训练。因此在教学中教师往往尽可能想做到面面俱到,每个过程的铺设都尽可能“全”和“齐”,但结果却是重了形式而少了实质,少了学生数学综合能力的提升。 案例(一):四年级下册《三角形面积练习课》教学片断 师出示:三角形的面积为12平方厘米,底为6厘米 (1)学生计算三角形的高 (2)学生画三角形 (3)反馈(投影展示) 这个案例中,教师练习的设计本身是很好的,但由于教师预设后面还有很多的练习,所以当学生画好后,教师校对了就结束了。而没有对学生所画的进行比较,让学生发现它们的共同点,得出等底等高的特征;然后可以让学生思考面积为12平方厘米的三角形除了底为6厘米高为4厘米以外,还有哪些可能?从而得出底和高相乘的积是24的三角形面积都是12,增加学生思维的含量,合理渗透数学思想方法。否则练习再多、再新也只是“蜻蜓点水”的教学流程。 案例(二):“长方体的表面积和体积计算”复习课教学片断 教师设计了这样一道题“一个长方体,它的底面是边长为5厘米的正方形,高是10厘米。这个长方体的表面积是多少?” 生1:(5×5+5×lO+5×10) ×2。 生2:5×5×2+5×lO×4。 师:还有更简便的计算方法吗? (学生一个个瞪大眼睛,面面相觑) 生3:我想出了一种简便方法:5×5×lO。 生4:他错了,他求的是长方体的体积。 师鼓励生3:你是怎么想的?请你说出来给大家听听,好吗? 生3很自信地说:每个侧面可以看作2个底面,那么四个侧面就有8个底面,再加上下2个底面,一共是10个底面,算式就是:5×5×lO。 师:非常有创新,真是太简便了。 生5:5×lO×5这种计算方法也很简便。 师:这种方法跟刚才的一样吗? 生6:跟刚才的一样,只是交换了两个因数。 生5解释:上下两个底面合并起来是1个侧面,再加上四个侧面一共是5个侧面,算式就是:5×lO×5。 多么好的诠释啊!大家不由地鼓起掌来。学生在老师的大力表扬、热情鼓励下,创造性思维得到迸发,体验到了成功的满足与喜悦,更重要的是学生的数学综合能力得到提高。 特级教师朱乐平说的好:不要对一节课求全责备。在我们的课堂教学中,不能定太多的、过于丰富的目标,要从课堂整体入手,考虑每节课的特点,或注重学生自己探索发现、过程体验,或注重基础知识的落实,基本技能的训练,这样才能较为全面地落实数学课程教学目标,当然学生数学综合能力的提升也能得到落实。 什么是数学,它应该是具有高度的抽象性、严密的逻辑性和广泛的应用性。作为新时代的数学教师,我们应时刻反思自己:在滚滚而来的改革中,我们应坚守什么?舍弃什么?关注什么?有没有带着冠冕堂皇的帽子、心安理得地进行着“不着边际”的教学活动?应该做到不管外面的风向如何,潮流如何,都要有自己的思想,去粗取精、去虚求实、与时俱进。让我们还它那份质朴与宁静,让它生命的本色重见阳光! 参考文献: 《小学数学教学月刊》 《新课程》 《小学教学研究》 《小学数学教育》

今天,我在一本书中看到一个数学小问题:“小明一共有10个气球,如果一分钟放一个气球,他放10个气球一共用了几分钟?”我故意考考妹妹,刚上四年级的妹妹不假思索地说:“这个简单,10分钟呗。”我大笑一声,喊到:“错!” “嗯?为什么呢?”我耐心地解释着:“答案是9分钟,因为先放第一个气球,一分钟后,放第二个气球,一直放到第9个气球,所以,第九分钟后放第10个气球。”妹妹听了恍然大悟,说到:“原来如此,我上当了!”细心地妈妈在一旁听到了我们这番有趣的对话,笑着说:“其实,生活中还有好多像这样的问题,比如爬楼梯、排队、坐座位……,我来考你一个吧!妹妹从一楼到二楼用了9秒钟,那么她从1楼走到15楼要多少秒呢?”我拿出笔和约,认真地做了起来:妹妹从一楼到二楼用了9秒,妹妹走到十五楼,也就是走了十四层,14*9=126秒。我把答案告诉了妈妈,她笑着说:“不错,思路很清晰,很会思考!”是啊,生活中处处有数字,只要我们有一双善于观察的眼睛和一个善于思索的头脑,那么,许多问题就能迎刃而解。

让学生学习生活中的数学 ——我校开展数学实践活动的做法及体会 自主、合作、探究是新课程学习方式的三个基本维度,适时有效地开展数学实践活动,让学生在实践中自主、自悟、自得,从而将书本知识内化为自己的知识、技能,有利于培养学生学习数学的兴趣,促进学生个性、特长和谐发展,从而全面提高学生的综合素质。下面谈谈我校开展数学实践活动的做法及体会。 (一)一 选取内容要符合学生年龄特点,可操作性强。 数学实践活动是一项实践性较强的活动,是教师结合学生生活经验和知识背景。引导学生自主探索和合作交流的学习活动。这个活动必须建立在学生原有知识的基础上,是其年龄段感兴趣,做得了的。只有这样,学生才能在活动中更好地积累经验,感悟、理解数学知识的内涵。发展解决问题的策略,体会学习与现实生活的联系,调动学习情感,为今后更有效地学习打好基础。 本学期我们在一年级学生中开展了“问题银行”活动,提供探究性学习场所,让学生敢问、会问、善问,并以各自不同的方式理解和解答问题。学生通过同学间的合作、问爸爸妈妈、爷爷奶奶、找课外书等途径,让学生从以往什么都是“老师说”的怪圈中跳出来,从小养成积极思考,敢于探索的良好品质。活动中,同学共提出不同问题100多条,一年四班黄悦同学一人提出八个问题,表现出了良好的问题意识和求异思维能力。二年级开展了“我家的数字”活动,同学们通过度一度,量一量,对书本上介绍的长度单位的认识由抽象到直观。并通过电脑合成、手抄报等形式展示了各自的才能 三年级“寻找家中的周长”;四年级“生日派对方案”;五年级“我的设计”;六年级“走出课堂、走进银行”等,这些活动,符合学生的年龄特点,是课堂学习的延伸和拓展。反过来又给课堂教学带来了主动、生动、互动的效果,使课堂教学从“掌握型”走向“创新型”,为同学的自主学习探究学习开辟了广阔天地。 二活动过程中,及时交流,互相启发,逐步完善。 数学实践活动是一项综合性很强的活动过程。再小的活动都不可能一下子完成。要经历确定活动目标、内容——拟定活动计划——组织具体实施——交流反馈评价等程序。在活动过程中,既要放手让学生去体验,去创造,又要及时反馈、及时指导,还要有一定的时间保证。例如,在学完《圆的认识》后,为使学生能灵活、正确使用圆规画圆,进一步了解圆心、直径、半径等名词,鼓励学生画一幅以圆为主流的平面图。学生作业交上来后,有简笔画、水彩画、想象画、漫画等,种类繁多,色彩鲜艳。但构思比较简单,主题欠鲜明,只是大大小小圆的组合,寓意欠深刻。遇到这种情况,老师并不急于品头论足,而是适时组织同学在小组、全班范围交流创作的意念、创作过程及创作体会。从而感受别人思维的不同。互向启发,逐步完善自己的作品。最后,一批主题鲜明,构思新颖,时代感强的作品脱颖而出。这样,活动让学生经历了失败、尝试了方法、体验了过程,这就是收获!更重要的是,一次又一次的实践活动给学生带来了学习方式的变革以及知识、能力方面的提高与发展。 三关注过程与方法、情感与态度而不仅仅是结果。 综合实践活动是教师指导下的学生自己进行的合作学习活动。实践活动的开展,是让学生通过自己的亲身经历来了解、关注,并试着去分析解决自己所关注的问题。这些问题在我们看来可能是幼稚的,没有意义的,而有些问题是他们根本无法解决的。但我们更明白,综合实践活动的根本目的不是只为了让学生真正解决某个实际问题,更不是要一个完美的解决办法。而是注重在关注并试图解决这个问题的过程中,学生是怎样发现问题的,是怎样思考并试图解决问题的,在关注这个问题的过程中有所体验,有所感悟,学生的身心、情感、思维、态度都有了哪些变化。通过实践活动来认识自己,关爱生活、发展自己,这才是开展实践活动的目标所在。《数学课程标准》中指出:“教师应该充分利用学生已有的生活经验,引导学生把所学的数学知识应用到现实中去,以体会数学在现时生活中的应用价值。”在学习《统计表、统计图的整理和复习》时,我们组织学生,以小组为单位,通过网络、调查访问、翻阅书报、杂志、课外书获得信息,巧妙地制成统计图或统计表。在这一活动中,数学知识不再是脱离生活的各种练习,而是充分体现实践活动的再创造。情感体验伴随着活动的始终。 因此,他们敏锐的新闻触觉,扎实的数学基础知识、良好的审美观念等,展现了现代孩子超人的想象力和创造力,体现了学生的创新意识和创新品质。另外,在每次活动中,我们都十分关注学生的个体差异。注意保护每一个孩子的自尊心和自信心,让学生在活动中互相交流,在评价中点燃思维的火花,拓展知识的视野,了解斑斓的世界,共享成功的喜悦。 (二)一 师生互动,有助于教师观念更新 在综合实践活动中,居高临下的师道尊严受到冲击。综合实践活动毕竟是一个崭新的课题,它面向的不仅仅是学生,而是更广阔的生活世界,在纷杂的世界里,学生是学生,教师也是学生。而在某些方面,学生比老师更富有想象,创新能力更强。这就意味着老师要向学生学习,让师生关系真正走向平等。使老师对自己的教学认真反思,调整自己,以适应新的形势。六年级同学的《环市中路行车情况统计表》、《我国搜寻飞行员王伟派出舰船、飞机数量统计图》等,表现了现代孩子对社会的关注。他们已不再只是向老师学习加、减、乘、除运算的小不点,而是关注社会大家庭的一分子。 在综合实践活动中,老师作用的最大发挥,是为学生在自由空间的自由展现创设良好的氛围,提供广阔的空间。给学生信心,相信学生自己有能力,能做好。老师自己要虚心,不先入为主,不存偏见,设身处地,为学生着想,为学生的终身发展着想。尊重学生个性,尊重人与人的差异,使每个学生在自己原有的基础上,有所提高,有所发展,而不能强求一律,厚此薄彼,建立真正平等的师生关系。二 学身边的数学,学生有浓厚的兴趣 数学实践活动是数学活动的教学,是师生之间,生生之间互动与共同发展的过程。在这个过程中,要重视学生参与的情感体验,让学生在活动中感受数学,体验数学的作用,培养学生自觉地把数学应用于实际的意识和态度,使数学真正成为学生手中的工具,体会到数学巨大的应用价值。二年级学过长度单位厘米、分米、米后,通过量一量家人的身高,家用电器的长、宽等,培养了学生的数感,提高了学生应用知识的能力。三年级“寻找家中的周长”,五年级的“我的设计”等把现实生活中的实际问题转化为数学问题,使学生的实践应用能力得到提高。这样学生不仅可以把书本上的知识与实际联系,体会到数学的社会价值,还可以学到书本上学不到的知识,在实践中使知识得到升 华。学生觉得,他们今天的学习与生活密切相关,真正实现了愿学、乐学、会学。 三 综合利用知识,有助于学生综合能力的提高 《数学课程标准》指出:“有效的数学活动不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。”学生通过数学实践活动了解数学与生活的广泛联系,学会综合运用所学的知识和方法解决简单的实际问题,加深对所学知识的理解,获得运用数学解决问题的思考方法。综合起来。能培养学生这几方面的能力:一是收集信息、整理信息的能力;二是与他人合作交流的能力;三是利用所学知识解决实际问题的能力等。更重要的是,在数学实践活动中,学生经历观察、操作、实验、调查、推理等活动,在合作与交流的过程中,获得了良好的情感体验,感受数学知识间的相互联系,体会数学的作用。促进学生全面、持续和谐地发展。这是21世纪拔尖人才所必须的素质,也是《数学课程标准》所倡导的新的学习方式。学科实践活动作为一种新的学习内容及方式,对于我们来说是一个崭新的课题。在实践和探索中我们认识到,学生的学习不仅是知识的积累,更应在知识应用中强调灵活应用的意识;不仅要让学生主动地获取知识,还要让学生去发现和研究问题;不仅要让学生运用知识解决实际问题,更要在寻求问题解决的过程中激发学生的创新潜能,感悟学习思想和方法。

数学小论文获奖

贴近课内,加上奥数、笑话

贴近实际,内容新颖,体现课改就容易得奖 如:.<找千克和克> 国庆假期中, 和妈妈一起去超市购物,准备找找千克和克.走进超市,首先来到了饼干柜旁,这么多琳琅满目的饼干中, 选择了 最喜欢闲趣饼干, 仔细看了看,终于在角落里找到了"净含量100克",说明这包饼干不含袋子的重量是100克,那要是有10包这样的饼干不就是1千克了. 接着 们又来到买米的地方, 发现一袋米要10千克,如果 们家每天吃2千克的话, 家每个月就要吃60千克,也就是这样的6袋米了. 后来 又看到了16个鸡蛋大约有1千克,一个菠萝大约2千克,一个西瓜大约3千克 今天, 收获真多啊, 感受到了数学中学到的千克和克这个知识,在生活中数学真的很重要. 2.<一个小小的数学误会> 很多人都以为阿拉伯数字是阿拉伯人发明的,可是 一直对他很怀疑,果不出 所料,今天数学课上老师介绍了阿拉伯数字的真正的来历.原来这是一个误会!阿拉伯数字真正的发明者是印度人,因为当时阿拉伯人的航海业很发达 ,他们把数字从印度传到了阿拉伯,欧洲人从他们的书上了解了这种简便的记数方法,就认为是他们发明的,所以称它为阿拉伯数字,后来这个误会又传到了中国. 最后, 很想对印度人说:"谢谢你们给 们人类带来了这么大的方便,就因为这样, 很喜欢数学.不仅数字王国很神奇,而且数学的历史知识更是丰富. 5.<发现> 三(4) 何超 今天, 在家发现了一个数学问题. 发现一杯可乐800克,一杯绿茶500克,一杯冰红茶不知道多少克,于是 又补充了一个信息-------冰红茶比可乐少200克,要求三杯一共多少克呢?于是, 按照老师教的方法算:800-200=600,再600+500=1100,最后1100+800=1900,所以一共1900克. 认为在日常生活中还有许许多多的数学问题,希望小朋友们能多多观察身边的数学问题. 6.<巧妙的加法和减法> 加法和减法在 们的生活中是缺一不可的.身边有许多事情都要用到加法和减法.比如在学校里,统计分数,统计认数-------生活中,妈妈上街买菜付钱;在家里,计算一个月的开支也要用加减法.这一切的一切都与加减法有关,所以加减法在 们生活中起了十分重要的作用. 加法与减法真奇妙啊! 7.<去天目湖的途中> 三(4) 壮怡 现在, 们数学课正在解决两步计算的实际问题. 今天是星期天, 们全家去天目湖玩,在去天目湖的路上, 就想到了这样一个问题. 当公交车靠第一站时, 看见有8个人上了车,而第二站上了3个人,那如果第三站上车的人数是第一站和第二站人数的两倍,那第三站一共上了几个人呢? 小朋友们,你们会解决这个问题吗?用 们学到的知识试一试吧. 8.<24时记时法> 三(3) 叶飞洋 24时记时法真是无所不能,不信就看看下面 是怎样过周末的吧::首先,7:30起床,然后7:45---8:00洗脸,8:00---8:15吃早饭,8:15---9:15做作业,9:15---10:30看电视,10:30---11:00吃中饭,11:00---15:00睡午觉,15:00---16:00玩,16:00---17:30看动画片,17:30---18:00吃晚饭,18:00---20:00看电视,20:00---21:00打电脑,21:00睡觉.24时记时法是不是很伟大呢?如果你也有这样的想法,也一定要写一篇这样的日记哦! 9.积少成多 今天下午, 和妈妈来到超市买东西。 当 们买完所需的东西之后,刚要离开, 看见货架上正好摆着火腿肠,于是 让妈妈买些火腿肠,妈妈同意了。可是刚走几步, 又看见货架上摆着一包一包的,同样品牌,同样重量,里面有10根,每包元。到底买一包一包的呢,还是买一根一根的? 犹豫了。突然, 的脑子一转,有了,只要比较一下,哪一种合算就买哪一种。于是 开始算起来:零卖的如果买10根,每根4角,就是40角,等于4元,而整包的要元,多了3毛钱,所以 决定买散装的。 把 计算的过程说给妈妈听,妈妈听了直夸 爱动脑。 数学报 今天, 们又发了小学生数学报,这期报纸真的很精彩。 上面讲了怎样让书香伴你左右,茅以升如何苦练记忆力的和阿拉伯数字的由来等数学小常识,翻开一面,有许多数学的小窍门,如:如何找规律,怎样牢记知识,翻开另一面有一些数学小故事,从中 获得了很多课堂上学不到的内容。 所以, 觉得每一次看数学报都能让 掌握到更多的知识, 很喜欢它。 《数学的奥妙》 湖塘桥中心小学 张娜 数学在 们的生活中是无处不在的。比如:在菜市场买菜要付多少元钱?在超市里买东西一共要付多少元?......还有,认识了千克和克,你就可以自己算一算称的东西的价钱了。怎么样,数学是不是很重要? 所以, 要提醒你---一定要学好数学哦! 数学又是很奥妙的,它可以让 们知道一些未知数。所以有的小朋友觉得数学有点难,有时还要请家教。 但是数学也是很灵活的。除了 刚才提到的以外,生活中的数学还有很多种呢! 《宝贝丁丁背口诀》 湖塘桥中心小学三(2)班 李昊岚 星期天,宝贝丁丁在背口诀,当他背到“三八”时,却打住了。 这时正巧姐姐走过来,丁丁连忙问:“请问:三八?……” 姐姐气呼呼的说道:“你才‘三八’呢!还没多大就学会骂人了!” 正在厨房做饭的妈妈闻声答道:“三八妇女节呀”。 在一旁偷偷的笑了,其实她们都误会了:丁丁既不是在骂人,也不是在记节日,而是在背口诀呀:) 哈哈…….. 《比一比,谁用的单位多?》 湖塘桥中心小学三(2)班 曹可斐 早上, 从长大约2米的床上爬起来; 拿起一枝长大约6厘米的牙刷开始刷牙; 接着,拿起一块长40厘米,宽20厘米的毛巾开始洗脸。 洗漱结束后, 拿了一只重大约100克的碗盛满稀饭; 吃完后, 背着重大约2千克的书包来到学校,开始了40分钟的早读课; 两节课后, 们都站在高大约7米的国旗杆下做操。 好了, 就说这么多,你能比 说得更多更流利吗? 《称体重》 湖塘桥中心小学三(1)班 盛徐婕 今天是10月15日星期六, 和爸爸到南大街逛商场。 早上8点多钟, 们就乘车来到了南大街。正巧,站台边有一位老爷爷,他的身边有一台“会说话”的秤。 看到 走过来,老爷爷笑着说:“小朋友,称体重吗? 有点好奇地问:“称一次要多少钱呀?” 老爷爷爽快的回答:“称一次只要1元,而且还可以量出身高呢!” 想:这真是一举两得呀! 于是, 在秤上站稳。老爷爷把开关打开,只觉得有个软软的东西往 的头顶上一碰,随后,机器上打印出一张小长方形的纸条,上面写着:“体重:公斤 身高厘米”呀!这半年 长高了4厘米,可是体重呢? 这时, 记起数学课上老师说过,“千克”还有一个名字就叫“公斤”,没想到今天被 遇见了,而且 知道 的体重增加了2千克呢! 回来的路上, 好开心啊! 一定要把身体锻炼的棒棒的! 有趣的数学题 三(3) 苏逸 今天, 从书上看到一道很有意思的题目,现在介绍给小朋友. 小赵、小丁、小张分别是教师、医生和律师,只知道:(1)小赵比教师年纪大;(2)小张和教师不同岁;(3)小赵和律师是朋友,你能推断谁是教师,谁是律师,谁是医生吗? 根据(1)小赵比教师年纪大和(3)小赵和律师是朋友,可以推断小赵既不是教师,也不是律师,所以小赵是医生,再根据(2)小张和教师不同岁和小赵是医生可以看出小张是律师,所以剩下的小丁是个教师。 这道题目很简单, 运用了排除法,比如:根据条件(1)和(3)就可以看出,小赵既不是教师,也不是律师。以次类推就可以得出答案。在 们学习数学的过程中, 们只要掌握方法,就可以解决一切难题,想不到从数学中也能得到乐趣。 运动中的数字 三(3) 朱 皓 11月24日, 校迎来了一年一度的运动会。 田径有24米往返跑,60米,100米,200米,400米,800米,1200米,1500米,2000米,还有垒球和跳远。 发现它们都是用时间和长度做单位计算的,输和赢都是靠数字来决定的。 运动也离不开数学呀! <看书的收获> 今天, 看了一本书<科学的故事>,心里感到很沉重. 里面讲了一个数学家,他家很穷,但很好学,就把他送到学校里去读书,可他不认真,一直玩,一天老师找他谈话:"你吃的饭,上学所花的钱,都是你父亲辛辛苦苦的劳动成果,你现在不好好学习,对得起谁啊?"他受到了很多的启发,他想:长大了, 要当一个天文学家,文学家. 但后来,他受到了一位从日本留学回来的老师的影响,又把兴趣转到了数学上,你们知道他是谁吗? 他就是 国著名的数学家苏步青. 吸烟有害健康 爸爸每天抽一报香烟,每包香烟20支, 了解到每支香烟能使人缩短寿命3分钟,那每天就会缩短 20x3=60分钟=1小时的寿命,每年就要缩短365天x1小时=365小时的寿命.所以, 对爸爸说:"吸烟有害健康啊------." 自 介绍 hi!大家好! 叫长方形, 的身体长得长长的, 有4条边,4个直角. hello!大家好! 叫正方形, 的身体长的方方的, 也有4条边,可是, 的4条边相同, 还有4个直角. 们长的有很多相同的地方:都有4条边,对边都相等,都有4个直角;长的有点不同之处是:正方形的每条边都相等. 瞧, 们长的多漂亮啊! 长方形和正方形 生活中有许多长方形和正方形. 桌子的面是正方形, 家的床的面也是正方形,钟的面还是正方形....... 再来说说长方形,书的面是长方形,门的面是长方形,椅子的面还是长方形..... 你们瞧,长方形和正方形在 们生活中多么的常见,如果你和 一样,去观察一下周围,你会发现许多有趣的数学小知识的,不信,你试试. 周长的作用 生活中有许许多多的长方形和正方形,他们都有周长,那周长有什么作用呢? 发现,在 们的生活中它的本领可真大.比如, 们要为长方形的花坛造个篱笆,如果不知道周长的话,工人们就需要去围一围,这样一次又一次,如果太短还得加长,如果太长,还得重来,你们看这样多浪费啊!所以只要知道周长,量一下,一次就行了,既节省时间,又节省木材,多方便啊! 如果你对周长感兴趣的话,自己也可以去生活中找找看,把它记录下来,和其他小朋友们一起分享! 各种各样的图形 们世界上有着各种各样的图形,有三角形,正方形,长方形,圆形,梯形等等. 在日常生活中,有的图形都有着不同的特点,譬如:正方形,它的四条边都是相等的,而且它的四个角都是直角.生活中正方形的物品很多,如电视机的面,窗户的面,柜子的面.还有三角形,也有很多种,其中比较特殊的是直角三角形,就是 们的一副三角尺: 发现一个三角形,它两条边相等,一个角是直角;另一个三角形,有一条边是另一条边的一半,一个角也是直角.在日常用品中, 发现三角形的东西要比正方形,长方形的少, 在家只找到空调架子和花架是三角形的. 你们会把这些不同的图形组成什么有趣的图形吗?试试看,你会发现很有趣的. 们家的书房 们家的书房是长方形的,它的长有7米,宽有4米,坐南朝北呈列着. 一进门,正对着的是一张大的紫红色的书桌,它也是长方形的,大约长有米,宽有米,那是 爸爸的书桌,旁边还有一张小一点的长方形的书桌,大约长2米,宽1米, 妈妈经常在这看书. 另外靠着墙边有一排沙发和一个茶几,墙角是一个空调和一个饮水机和书柜,它们也都是长方形的 最后, 发现 在 们家的书房中竟然没有看到一个正方形,真奇怪! 这就是 家的书房,欢迎小朋友来 家玩!

数学小论文一 关于“0” 0,可以说是人类最早接触的数了。我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”这样说显然是不正确的。我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。” “任何数除以0即为没有意义。”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少。一个整体无法分成0份,即“没有意义”。后来我才了解到a/0中的0可以表示以零为极限的变量(一个变量在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变量在变化过程中其绝对值永远大于任意大的已定正数)。从中得到关于0的又一个定理“以零为极限的变量,叫做无穷小”。 “105、203房间、2003年”中,虽都有0的出现,粗“看”差不多;彼此意思却不同。105、2003年中的0指数的空位,不可删去。203房间中的0是分隔“楼(2)”与“房门号(3)”的(即表示二楼八号房),可删去。0还表示…… 爱因斯坦曾说:“要探究一个人或者一切生物存在的意义和目的,宏观上看来,我始终认为是荒唐的。”我想研究一切“存在”的数字,不如先了解0这个“不存在”的数,不至于成为爱因斯坦说的“荒唐”的人。作为一个中学生,我的能力毕竟是有限的,对0的认识还不够透彻,今后望(包括行动)能在“知识的海洋”中发现“我的新大陆”。 数学小论文二 各门科学的数学化 数学究竟是什么呢?我们说,数学是研究现实世界空间形式和数量关系的一门科学.它在现代生活和现代生产中的应用非常广泛,是学习和研究现代科学技术必不可少的基本工具. 同其他科学一样,数学有着它的过去、现在和未来.我们认识它的过去,就是为了了解它的现在和未来.近代数学的发展异常迅速,近30多年来,数学新的理论已经超过了18、19世纪的理论的总和.预计未来的数学成就每“翻一番”要不了10年.所以在认识了数学的过去以后,大致领略一下数学的现在和未来,是很有好处的. 现代数学发展的一个明显趋势,就是各门科学都在经历着数学化的过程. 例如物理学,人们早就知道它与数学密不可分.在高等学校里,数学系的学生要学普通物理,物理系的学生要学高等数学,这也是尽人皆知的事实了. 又如化学,要用数学来定量研究化学反应.把参加反应的物质的浓度、温度等作为变量,用方程表示它们的变化规律,通过方程的“稳定解”来研究化学反应.这里不仅要应用基础数学,而且要应用“前沿上的”、“发展中的”数学. 再如生物学方面,要研究心脏跳动、血液循环、脉搏等周期性的运动.这种运动可以用方程组表示出来,通过寻求方程组的“周期解”,研究这种解的出现和保持,来掌握上述生物界的现象.这说明近年来生物学已经从定性研究发展到定量研究,也是要应用“发展中的”数学.这使得生物学获得了重大的成就. 谈到人口学,只用加减乘除是不够的.我们谈到人口增长,常说每年出生率多少,死亡率多少,那么是否从出生率减去死亡率,就是每年的人口增长率呢?不是的.事实上,人是不断地出生的,出生的多少又跟原来的基数有关系;死亡也是这样.这种情况在现代数学中叫做“动态”的,它不能只用简单的加减乘除来处理,而要用复杂的“微分方程”来描述.研究这样的问题,离不开方程、数据、函数曲线、计算机等,最后才能说清楚每家只生一个孩子如何,只生两个孩子又如何等等. 还有水利方面,要考虑海上风暴、水源污染、港口设计等,也是用方程描述这些问题再把数据放进计算机,求出它们的解来,然后与实际观察的结果对比验证,进而为实际服务.这里要用到很高深的数学. 谈到考试,同学们往往认为这是用来检查学生的学习质量的.其实考试手段(口试、笔试等等)以及试卷本身也是有质量高低之分的.现代的教育统计学、教育测量学,就是通过效度、难度、区分度、信度等数量指标来检测考试的质量.只有质量合格的考试才能有效地检测学生的学习质量. 至于文艺、体育,也无一不用到数学.我们从中央电视台的文艺大奖赛节目中看到,给一位演员计分时,往往先“去掉一个最高分”,再“去掉一个最低分”.然后就剩下的分数计算平均分,作为这位演员的得分.从统计学来说,“最高分”、“最低分”的可信度最低,因此把它们去掉.这一切都包含着数学道理. 我国著名的数学家关肇直先生说:“数学的发明创造有种种,我认为至少有三种:一种是解决了经典的难题,这是一种很了不起的工作;一种是提出新概念、新方法、新理论,其实在历史上起更大作用的、历史上著名的正是这种人;还有一种就是把原来的理论用在崭新的领域,这是从应用的角度有一个很大的发明创造.”我们在这里所说的,正是第三种发明创造.“这里繁花似锦,美不胜收,把数学和其他各门科学发展成综合科学的前程无限灿烂.” 正如华罗庚先生在1959年5月所说的,近100年来,数学发展突飞猛进,我们可以毫不夸张地用“宇宙之大、粒子之微、火箭之速、化工之巧、地球之变、生物之谜、日用之繁等各个方面,无处不有数学”来概括数学的广泛应用.可以预见,科学越进步,应用数学的范围也就越大.一切科学研究在原则上都可以用数学来解决有关的问题.可以断言:只有现在还不会应用数学的部门,却绝对找不到原则上不能应用数学的领域. 数学小论文三 数学是什么 什么是数学?有人说:“数学,不就是数的学问吗?” 这样的说法可不对。因为数学不光研究“数”,也研究“形”,大家都很熟悉的三角形、正方形,也都是数学研究的对象。 历史上,关于什么是数学的说法更是五花八门。有人说,数学就是关联;也有人说,数学就是逻辑,“逻辑是数学的青年时代,数学是逻辑的壮年时代。” 那么,究竟什么是数学呢? 伟大的革命导师恩格斯,站在辩证唯物主义的理论高度,通过深刻分析数学的起源和本质,精辟地作出了一系列科学的论断。恩格斯指出:“数学是数量的科学”,“纯数学的对象是现实世界的空间形式和数量关系”。根据恩格斯的观点,较确切的说法就是:数学——研究现实世界的数量关系和空间形式的科学。 数学可以分成两大类,一类叫纯粹数学,一类叫应用 数学。 纯粹数学也叫基础数学,专门研究数学本身的内部规律。中小学课本里介绍的代数、几何、微积分、概率论知识,都属于纯粹数学。纯粹数学的一个显著特点,就是暂时撇开具体内容,以纯粹形式研究事物的数量关系和空间形式。例如研究梯形的面积计算公式,至于它是梯形稻田的面积,还是梯形机械零件的面积,都无关紧要,大家关心的只是蕴含在这种几何图形中的数量关系。 应用数学则是一个庞大的系统,有人说,它是我们的全部知识中,凡是能用数学语言来表示的那一部分。应用数学着限于说明自然现象,解决实际问题,是纯粹数学与科学技术之间的桥梁。大家常说现在是信息社会,专门研究信息的“信息论”,就是应用数学中一门重要的分支学科, 数学有3个最显著的特征。 高度的抽象性是数学的显著特征之一。数学理论都算有非常抽象的形式,这种抽象是经过一系列的阶段形成的,所以大大超过了自然科学中的一般抽象,而且不仅概念是抽象的,连数学方法本身也是抽象的。例如,物理学家可以通过实验来证明自己的理论,而数学家则不能用实验的方法来证明定理,非得用逻辑推理和计算不可。现在,连数学中过去被认为是比较“直观”的几何学,也在朝着抽象的方向发展。根据公理化思想,几何图形不再是必须知道的内容,它是圆的也好,方的也好,都无关紧要,甚至用桌子、椅子和啤酒杯去代替点、线、面也未尝不可,只要它们满足结合关系、顺序关系、合同关系,具备有相容性、独立性和完备性,就能够构成一门几何学。 体系的严谨性是数学的另一个显著特征。数学思维的正确性表现在逻辑的严谨性上。早在2000多年前,数学家就从几个最基本的结论出发,运用逻辑推理的方法,将丰富的几何学知识整理成一门严密系统的理论,它像一根精美的逻辑链条,每一个环节都衔接得丝丝入扣。所以,数学一直被誉为是“精确科学的典范”。 广泛的应用性也是数学的一个显著特征。宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,生物之谜,日用之繁,无处不用数学。20世纪里,随着应用数学分支的大量涌现,数学已经渗透到几乎所有的科学部门。不仅物理学、化学等学科仍在广泛地享用数学的成果,连过去很少使用数学的生物学、语言学、历史学等等,也与数学结合形成了内容丰富的生物数学、数理经济学、数学心理学、数理语言学、数学历史学等边缘学科。 各门科学的“数学化”,是现代科学发展的一大趋势。

小数报杯数学小论文是省级奖项。小数报杯数学小论文是由江苏省教育厅所举办的。省级奖指以省、自治区、直辖市政府名义颁发的奖项或教育系统颁发的代表全省教育的最高奖项等。包括由省教育厅、省人力资源和社会保障厅、省教育工会颁发的。

小学生数学报怎么查获奖证书

小学生数学报指导老师获奖证书下载方法:一是打开浏览器,收索教师职称证书,点击下载,然后可以下载了

小学生数学报奖状找《小学数学报》报纸编辑要。如果不能得到下载的话,可以先去询问相关工作人员,实在不行的话就自己用相机进行拍摄,得到其相关的奖状相片即可。要在浏览器或者在QQ浏览器里面才能下载。

这不是很简单啊,找《小学生数学报》这家报纸编辑要啊,打电话或发邮件

相关百科

热门百科

首页
发表服务