首页

> 学术论文知识库

首页 学术论文知识库 问题

在线杂志图片

发布时间:

在线杂志图片

网络之大,想找啥都有!经常看一些好的设计网站,可以给到我们很多灵感,对提高审美也有很大的好处。那么今天就给大家说说服装设计师都上什么网站寻找灵感和资讯呢?

时尚156为读者提供二流的时尚,同时也为时尚行业输送人才。作为最好的在线时尚杂志之一,时尚156传达了最新的潮流、个人风格的变化和先锋时尚。从男士和女士系列中发现精致明亮的时尚系列产品。它是单一主题下的动态时尚精华,散发出朦胧的时尚气息,激发出惊艳的形象展示。如果你还没有为此欢呼,请沉浸在“每日博客”的诱人想法中,这是一个天才艺术家的展览,或者浏览“产品功能”部分,其中也有一些有趣的文章。

杂志

英国人Stephanie J在2005年12月创办了这家杂志,它是在线按季度出版的杂志。是这类杂志中的第一个,同时以它的风格、激情和友好倾向打动读者。它传递着“富有创造性的草根内容”,包括不同个性的作品展示——从手工制作者,到时装设计专业毕业生。这个杂志培养了大量的全球博主、独立设计师、摄影师、造型师以及任何具有创作理念的人。是款式贴士、最佳潮流、时尚和DIY教程颇有生气的混合体,总是给读者对时尚圈“独立的”清新视角。它对小公司和单一艺术家的支持为其赢来了许多赞美,以及来自忠实博主的支持。

潮流趋势网

POP潮流趋势网是一个拥有时尚、专业、高端、领先的时尚设计信息资源的网站。涵盖了独立时装设计师的作品,时装周秀高清图片,时尚杂志书籍。从色彩、面料、图案印花、风格、灵感、主题、轮廓等方面为设计师提供前沿时尚潮流策划报告和市场分析,适合从事时尚研发的从业者。

服装品牌官网。服装设计师会经常去香奈儿、YSL、LV等大牌官网看最新款的服装,来获得灵感和资讯。

我认为是新时尚的潮流,因为他的这种妆造在新杂志的拍摄封面上,今后他的这种造型和妆容将是今后的时尚流行标,而且在照片上的表现力也是非常优秀的,受到了很多人的喜爱与认可。

一个优秀的服装设计师创作灵感来自于自己的大脑,他不会随意截取网络上的图片。但是平面设计网站可以激发初学者的创作灵感,让他们感受到海量的资讯。

米娜时尚杂志图片在线

1.《VOGUE服饰与美容》——中国时尚杂志的翘楚推荐理由:《VOGUE服饰与美容》杂志秉承《VOGUE》一贯的理念:聘用最专业的编辑人员;结合世界上最优秀的设计师;起用最具才华的摄影师与模特来创造市场上最高质量的杂志。《VOGUE服饰与美容》的定位与其他杂志不同,她是中国唯一的一本面向年轻时尚女性读者的百分之百展现时装、美容和时尚生活方式的杂志。2.《瑞丽服饰美容》——专业服装美容杂志推荐理由:《瑞丽服饰美容》主要内容简介:最有节日气氛的漂亮穿搭30Davs、复古淑女BAG让冬天气质出众、来自瑞丽的邀请函——做今年最美的你、顶级美妆课堂、圣诞双生花、好感妆容、相信裸妆的“杀伤力”、美容最优品、159款华丽限量品等。3.《世界时装之苑》——专业时尚品牌推荐理由:《世界时装之苑》为世界著名杂志《ELLE》的中文版介绍流行时装、内容涵盖生活不同层面,为女性提供全方位的流行时尚情报,包括全球最新的潮流时装、美容产品以及流行趋势,网罗最新和最丰富的资讯,覆盖现代女性时尚生活各方面的需要--饮食、旅游、健美、事业和人际关系等,以跨媒体实现开放、时尚、创新娱乐的理念,第一时间将流行情报带给读者。4.《米娜mina》——人气女性服装杂志推荐理由:《米娜mina》杂志系由日本著名出版业者主妇之友出版社独家授权在中国大陆地区发行的全新形态女性休闲时尚杂志,也是一本“专注于自己的流行”的时尚杂志。她致力于推荐从日本原宿街头兴起的“混搭”休闲服饰风格,这股潮流风格,不仅影响了近几年的日本、也给台湾和香港的年轻人诠释了一种全新的时尚概念。

时尚杂志排名榜第1名:VOGUE《VOGUE》杂志成立于1892年,是世界上最重要的杂志品牌之一,被公认为全世界最领先的时尚杂志。《VOGUE》杂志介绍世界妇女时尚,包括美容、服装、服饰、珠宝、保健、健美、旅行、艺术、待客、名人轶事和娱乐等方面的内容。时尚杂志排名榜第2名:ELLE世界时装之苑ELLE是全球最畅销的时尚类女性杂志。《 ELLE》出版遍布全球,内容涵盖生活不同层面,为女性提供全方位的流行时尚情报,包括全球最新的潮流时装、美容产品以及流行趋势,网罗最 新和最丰富的资讯,覆盖现代女性时尚生活各方面的需要--饮食、旅游、健美、事业和人际关系等,以跨媒体实现开放、时尚、创新娱乐的理念,第一时间将流行情报带给读者。

1.《Vogue》《VOGUE》是由美国康泰纳仕集团出版发行的一本期刊。创刊于1892年,是世界上历史悠久广受尊崇的一本综合性时尚生活类杂志,杂志内容涉及时装、化妆、美容、健康、娱乐和艺术等各个方面,被奉为世界的Fashion Bible(时尚圣典)。《VOGUE》在其他国家及地区推出了更多版本:包括澳大利亚版 (1959年)、意大利版 (1965年)、巴西版(1975年)、德国版(1979年)、西班牙版 (1988年)、韩国版 (1996年)、俄罗斯版(1998年)以及日本版(1999年)等 。(以上图片分别是中国、日本和西班牙版的《VOGUE》杂志)值得一提的是,2005年9月中国版VOGUE《Vogue服饰与美容》正式在中国创刊,发行至今深受中国时尚女性喜爱。2.《ELLE》ELLE法语翻译成中文名字是“她”的意思,1945年,由Helene Lazareff在法国巴黎创立,面世后广受好评。ELLE已融入到女性生活的方方面面。以时尚导向,是女性化的、现代的、积极向上、亲切的、潮流而又充满生活气息。1945年,《ELLE》诞生于法国巴黎。艾莲娜・拉札蕾芙(Hélène Lazareff)的最初目标是创造一个主要是时装、美容和生活的女性周刊,提供一个时代前瞻性的、可供选择的潮流出版物。之后,ELLE已经超出时尚杂志的范畴,成为一个国际性的时尚品牌。譬如箱包。3.《Harper's Bazaar》《时尚芭莎》(英语:Harper's Bazaar)是本美国时尚杂志,最早于1867年出版。其由赫斯特国际集团出版,定位为“第一次采买时装的女人,从休闲到时尚”的风格首选杂志,目标客群为上层阶级与上中层阶级成员。该杂志为月刊,汇聚了摄影师、艺术家、设计师与作家,以“精致”的观点探讨时尚、美丽与流行文化的世界。《时尚芭莎》中国版在2002年3月正式发行,由美国赫斯特国际集团授权中国时尚集团(Trends Group)出版。《时尚芭莎》现已成为最能体现时代风尚的权威引领者,而作为一本成功的杂志,《时尚芭莎》又凭借其在大众以及媒体间的号召力和知名度成功牵引做成了“芭莎慈善之路”。通过分享杰出的时装品味和女性力量,打造卓越的社会影响力。

1、时尚杂志 2004年9月22日,代表休闲混搭风的《米娜时尚国际中文版》 创刊了!这将是跳出传统、 崇尚混搭的休闲时尚在上海在内地引导潮流的开始! 《米娜时尚国际中文版》 杂志系由日本著名出版业者主妇之友出版社独家授权在中国大陆地区 发行的全新形态女性休闲时尚杂志,也是一本“专注于自己的流行” 的时尚杂志。她致力于推荐从日本原宿街头兴起的“混搭” 休闲服饰风格,这股潮流风格,不仅影响了近几年的日本、 也给台湾和香港的年轻人诠释了一种全新的时尚概念。今天, 她的面世,也将为中国的时尚青年带来一股清新之风。 米娜就像这样一个女孩:年轻不造作,柔美不浓艳;时尚但很个性; 时髦却不盲从;注重细节;充满梦想,热爱都市生活, 是因为可爱而美丽的人气女性。“米娜时尚” 的出现为混搭风提供了很好的诠释平台, 在充斥着针对都市白领女性上班着装指导的女性杂志市场上, 米娜时尚国际中文版的出现对于中国都市女性来说, 不只是在欧美时尚杂志之外多了一种选择而已, 而是更能贴近亚洲女性对Fashion的实际需求。 传统的时髦的形象仅仅取决于如何“穿”,但是“混搭” 的概念将让流行变得更为个性与自信, 她的诀窍就是由简单的单品作为时髦的元素, 用最简单的几项成就出时髦的风格。 多层次的穿搭展现年轻化的流行感,细肩带上衣加背心、 牛仔裤套短裙等只要是穿”与“搭”的完美配合,就能塑造出个性、 时尚、活力的迷人造型! 也是白领女性在通勤装职业装外的绝佳选择! 她注重与读者之间的零距离感,全面吸收和融合了日本、 港台地区和国内女性的时尚文化精髓,内容兼具时髦性、 指导性和实用性。她主要分为三大版块:FASHION 是服饰潮流的时髦课堂, 在这里演绎的是春夏秋冬的浪漫色彩与流行元素以及东京人气时装编 辑精心打造的亚洲流行趋势。在BEAUTY版块里, 米娜每期会特别推荐明星保养品,切实传授美颜、瘦身、 美发等众多扮靓技巧,立志成为读者的私人美容顾问, 让你时刻呈现mina girl独有的自然美态。《mina》的LIFE STYLE里尽数明星与品牌、料理和风格店家、人物、话题、 音乐戏剧以及人气星座,米娜每期都会搜寻东京、 台湾和国内风格独特的主题餐厅、温馨可爱的概念店、 简约时尚的家具设计和音乐电影信息,是读者贴心的娱乐风向标。 杂志除了展示新型的流行风外,每期还搜集最多、最快、 最好的流行资讯,以品牌为主打,无论欧美精品、日本人气品牌、 台湾香港个性品牌,都以品牌切入深入报导, 并有人气模特亲身示范,mina准确传达品牌的设计节奏、 着装风格、情调意境等多种元素,演绎不同季节的流行趋势与元素, mina总是让读者走在时尚最前沿,让读者找到自信与个性, 提升品位与美感! 随着生活的多元化,时尚的概念也在发生着变化, 很多追求品位的人士,或从事时尚类工作的或艺术家、设计师们, 他们都是mina的忠实爱戴者, 正慢慢地在向自由自在的混搭风靠拢, 穿着时并不特别看重当季的流行款式中某一单品, 而是能用衣橱里过季的不同单品透过色彩与混搭穿出下一季的流行趋 势,不经意的时髦,就像他们的生活观念一样,自由得很! 而且这样的时髦只属于他们自己! 并从DIY与搭配技巧中锻炼出好品位! mina想要向读者传达的信息,就是学会搭配, 做自己的stylist,越来越享受着多层次搭配带来的乐趣。 这样一本国际化的时尚杂志无疑为广大中国都市女性和时尚一族在传 统的女性时尚杂志之外提供了一种全新形态的新选择。在台湾,《 mina》已经获得在同类杂志中销售量、 广告量双料第一的绝佳成绩。扎根上海、聚焦北京、广州的《 mina》国际中文版所倡导的柔美、 质感和充满活力的时尚必将成为国内都市时尚女性的潮流指标。 2、韩国艺人 出生日期: 12月10日 出生地点:韩国 国家或地区:韩国 血型:A 身高:165 厘米 体重:49 公斤 别名昵称: Mina 沈敏雅(原名) 宗教:基督教 梦中情人:努力向上/有进取心的人 兴趣:冲浪/滑雪/跳舞 喜欢的食物:牛排/意大利面 学历:毕业于申兴大学保健行政学科 家庭情况:3女 中 老大 出道时间:2002年 10月 曾出版的专辑:2张 最特殊经历:2002韩日世界杯的“世界杯小姐” Mina原名沈敏雅,是02年世界杯期间代表韩国的“Miss Worldcup”(世界杯小姐), 世界杯结束后尽管受到周围不少人对她的关注, 但是并没有一下子成为耀眼的明星。 然而她一直以来都做着当歌手的梦并且一直默默的努力着。 终于在去年有线音乐频道的《Shocking M》舞台上首次亮相,就以其动感魅力十足的舞蹈、 性感的身材以及撩人的嗓音牢牢地抓住了所有人的视线, 以其性感的劲歌热舞迅速赢得广大年轻歌迷的喜爱。 她说“我的目标是成为韩国的Jennifer Lopez”,现在终于开始了实现她的梦想的第一步。主打曲目《 电话情缘》是将女子组合Kiss的歌曲进行重新制作的歌曲, 是相当劲爆火辣的电子舞曲。” 米娜与中国演艺经济公司KONA签约中国活动相关合约, 正式进军中国。 米娜在中国以一首《接电话》走进千家万户,并获得了“ 中国海外最佳舞曲歌手”奖。为了更好的发展中国活动, 米娜发表第四张专辑,并在中韩两国同时发售。 米娜不仅演艺事业发展的红红火火, 在体育运动方面还有着卓越的表现。在韩国, 米娜身为明星滑板队的队员,夺得了女明星滑板队的冠军, 并代表韩国明星攀登了喜马拉雅。

时尚杂志在线阅读图片

您是否仍然因为不知道该在哪里改善自己的时尚气质而感到沮丧?在之前,它们可能是一个困扰您的难题。但是在之后,面对曾经在您看来具有高水平气质的人,您也可以微笑着叹息,有一天,宫殿在位,您最终将成为收集全球名人物品,一口气捕捉所有时尚。改善服装非常简单,只需选择这些时尚应用即可。

Closet,一个简单的在线服装柜。在这里,您可以搜索自己喜欢的所有商品,自由制作和搭配,然后保存它们,直到找到最适合的款式和搭配。这个程序更适合时尚新手,尤其是不知道自己的造型几何的女孩。Deepfashion,此应用程序的名称只是白色,它是最牛皮的时尚应用程序。它可以让您了解外国时尚博主如何穿上它们,而无需翻墙。它分为欧洲,美国,日本和韩国风格。界面非常简单舒适,并且搭配非常全面。任何样式,任何路线都可以在这里找到。

Hypebeast,如果您是最喜欢的时装品牌,您可以在这里进行最新,最快的时装品牌咨询。人们,那么这个应用程序就是为您而生的。它可以告诉您最新的趋势,以及您喜欢的新样式的最新趋势。整个界面非常干净,操作非常简单。作为专注于寻找相同风格名人的应用,愿望清单确实是一个宝藏级应用。在这里,您可以找到最热门的热门节目或电影综艺明星的相同型号,而且它们都是官方链接,因此您不能不知所措地购买它,也不能上当,就像最近的热门节目“当机”《爱的着陆》,每集中的女主角形象都可以轻松找到。想要粉红色杂志的同一款吗?使用这些应用程序就足够了。

包包,毕竟可以治愈所有疾病,总是可以轻松得到女孩的青睐。Ibag是一款可全面解释手袋设计和历史的应用程序。在这里,您可以更全面地了解每个喜欢的包包的过去和现在。这完全是一个关于行李控制的百科全书,让您可以照做。改善服装非常简单,只需选择这些时尚应用即可。Runway是由vogue推出的在线表演应用程序。您可以直接在这里看到很多知名的高画质图片。从当季的热门唱片到经典的回顾展,所有时装秀都一口气用尽了。您可以毫不费力地了解国际流行趋势,从而轻松掌握最新的流行趋势信息。

Voguemini是权威的在线时尚杂志vogue,它也是随时让您了解当前流行趋势的一种方式。应用程序,无论是国际明星还是国内的,您都可以在这里看到自己想知道的内容。关键是,对于追星人来说,它也可以是一个神奇的应用程序,让您可以从远处追逐星星。改善衣服非常简单。选择这些时尚应用程序就足够了。如果您喜欢阅读杂志,但又不想花钱在家里堆放杂志,或者根本买不起,那么您可以尝试下载杂志迷,因为日本有很多杂项杂志供您免费阅读。对于日本的其他控制来说,这是必不可少的选择。非常适合学生聚会或年轻的仙女。引入的应用只是一小部分。大多数人不了解许多实用和高级的应用程序。正是因为它们足够小,所以每次推销都必须是一家精品店。

其实我觉得最推荐的应该就是小红书,里面有很多的穿搭,而且里面的衣服都比较便宜,很多博主还会在下面发一些链接,很值得去购买。

可以看时尚杂志的APP有不少,我觉得不错的有:小红书、杂志迷pro、时尚杂志、nothing、红板报等等。aqui te amo。

一般都是会选择小红书app,其实里面是有很多的穿搭博主的一些创造推荐的,而且也是可以在里面学习到更多的一些创造方法。

无线电杂志图片

无线电专业性强一些,初学者看着深奥.家电维修一月一期,保存方便,但信息量少.电子报(四川的)订的人多,信息量大,一周一刊,可以常看,广告也新,适合维修人员看.保存不易,容易丢.北京还有北京电子报,不如电子报通俗.电子报好一些.

F结尾是支持EMT64技术的,J就是加入防溢出功能,0、5结尾为32位的处理器,以1、6结尾是在0、5型号处理器上加入支持EMT64技术A采用Northwood核心,FSB为400。B与A的区别在于FSB为533,C与B、A的区别在于FSB为800,E为采用Prescott核心的P4 C版Pentium/Celeron-M的区别如下:以0结尾的型号为FSB为533的DOTHAN核心的Pentium-M和采用DOTHAN核心、L2缓存为1M的Celeron-M,以5结尾的为FSB为400的DOTHAN核心的Pentium-M。以3结尾的则为超低电压版的Pentium/Celeron-M,以8结尾的则为低电压版的Pentium-M

生产商 处理器名称 架构 主频(MHz) 倍频(MHz) 核心数量 制造工艺(nm) 电压 前端总线 一级缓存(KB) 二级缓存(KB) 三级缓存(KB) NX bit 支持64位 核心代号 Intel Celeron 478 1700 17 1 180 400 8 128 0 否 否 Willamette Intel Celeron 478 1800 18 1 180 400 8 128 0 否 否 Willamette Intel Celeron 478 2000 20 1 130 400 8 128 0 否 否 Northwood Intel Celeron 478 2100 21 1 130 400 8 128 0 否 否 Northwood Intel Celeron 478 2200 22 1 130 400 8 128 0 否 否 Northwood Intel Celeron 478 2300 23 1 130 400 8 128 0 否 否 Northwood Intel Celeron 478 2400 24 1 130 400 8 128 0 否 否 Northwood Intel Celeron 478 2500 25 1 130 400 8 128 0 否 否 Northwood Intel Celeron 478 2600 26 1 130 400 8 128 0 否 否 Northwood Intel Celeron 478 2700 27 1 130 400 8 128 0 否 否 Northwood Intel Celeron 478 2800 28 1 130 400 8 128 0 否 否 Northwood Intel Celeron 325J 775 2533 19 1 90 533 16 256 0 是 否 Prescott Intel Celeron 330J 775 2667 20 1 90 533 16 256 0 是 否 Prescott Intel Celeron 335J 775 2800 21 1 90 533 16 256 0 是 否 Prescott Intel Celeron 22 1 90 533 16 256 0 否 否 Prescott Intel Celeron 340J 775 2933 22 1 90 533 16 256 0 是 否 Prescott Intel Celeron 23 1 90 533 16 256 0 否 否 Prescott Intel Celeron 345J 775 3067 23 1 90 533 16 256 0 是 否 Prescott Intel Celeron D 17 1 90 533 16 256 0 否 否 Prescott Intel Celeron D 18 1 90 533 16 256 0 否 否 Prescott Intel Celeron D 19 1 90 533 16 256 0 否 否 Prescott Intel Celeron D 325J 775 2533 19 1 90 533 16 256 0 是 否 Prescott Intel Celeron D 19 1 90 533 16 256 0 是 是 Prescott Intel Celeron D 20 1 90 533 16 256 0 否 否 Prescott Intel Celeron D 330J 775 2667 20 1 90 533 16 256 0 是 否 Prescott Intel Celeron D 20 1 90 533 16 256 0 是 是 Prescott Intel Celeron D 21 1 90 533 16 256 0 否 否 Prescott Intel Celeron D 335J 775 2800 21 1 90 533 16 256 0 是 否 Prescott Intel Celeron D 21 1 90 533 16 256 0 是 是 Prescott Intel Celeron D 22 1 90 533 16 256 0 否 否 Prescott Intel Celeron D 340J 775 2933 22 1 90 533 16 256 0 是 否 Prescott Intel Celeron D 22 1 90 533 16 256 0 是 是 Prescott Intel Celeron D 23 1 90 533 16 256 0 否 否 Prescott Intel Celeron D 345J 775 3067 23 1 90 533 16 256 0 是 否 Prescott Intel Celeron D 23 1 90 533 16 256 0 是 是 Prescott Intel Celeron D 24 1 90 533 16 256 0 否 否 Prescott Intel Celeron D 24 1 90 533 16 256 0 是 是 Prescott Intel Celeron M 12 1 130 400 64 512 0 否 否 Banias Intel Celeron M 13 1 130 400 64 512 0 否 否 Banias Intel Celeron M 14 1 130 400 64 512 0 否 否 Banias Intel Celeron M 15 1 130 400 64 512 0 否 否 Banias Intel Celeron M 13 1 90 400 64 1024 0 否 否 Dothan Intel Celeron M 350J 479 1300 13 1 90 400 64 1024 0 是 否 Dothan Intel Celeron M 14 1 90 400 64 1024 0 否 否 Dothan Intel Celeron M 360J 479 1400 14 1 90 400 64 1024 0 是 否 Dothan Intel Celeron M 15 1 90 400 64 1024 0 是 否 Dothan Intel Celeron M 16 1 90 400 64 1024 0 是 否 Dothan Intel Celeron M ULV 333 479 900 9 1 130 400 64 512 0 否 否 Banias Intel Celeron M ULV 353 479 900 9 1 90 400 64 512 0 否 否 Dothan Intel Celeron M ULV 10 1 90 400 64 512 0 是 否 Dothan Intel Celeron M ULV 10 1 90 400 64 1024 0 是 否 Dothan Intel Pentium 4 478 1500 15 1 180 400 8 256 0 否 否 Willamette Intel Pentium 4 478 1600 16 1 180 400 8 256 0 否 否 Willamette Intel Pentium 4 478 1700 17 1 180 400 8 256 0 否 否 Willamette Intel Pentium 4 478 1800 18 1 180 400 8 256 0 否 否 Willamette Intel Pentium 4 478 1900 19 1 180 400 8 256 0 否 否 Willamette Intel Pentium 4 478 2000 20 1 180 400 8 256 0 否 否 Willamette Intel Pentium 4 478 2200 22 1 130 400 8 512 0 否 否 Northwood Intel Pentium 4 478 2267 17 1 130 533 8 512 0 否 否 Northwood Intel Pentium 4 478 2400 24 1 130 400 8 512 0 否 否 Northwood Intel Pentium 4 478 2500 25 1 130 400 8 512 0 否 否 Northwood Intel Pentium 4 478 2533 18 1 130 533 8 512 0 否 否 Northwood Intel Pentium 4 478 2600 26 1 130 400 8 512 0 否 否 Northwood Intel Pentium 4 478 2667 20 1 130 533 8 512 0 否 否 Northwood Intel Pentium 4 478 2800 21 1 130 533 8 512 0 否 否 Northwood Intel Pentium 4 478 3067 23 1 130 533 8 512 0 否 否 Northwood Intel Pentium 4 20 1 90 533 16 1024 0 否 否 Prescott Intel Pentium 4 22 1 90 533 16 1024 0 否 否 Prescott Intel Pentium 4 14 1 90 800 16 1024 0 否 否 Prescott Intel Pentium 4 520J 775 2800 14 1 90 800 16 1024 0 是 否 Prescott Intel Pentium 4 14 1 90 800 16 1024 0 是 是 Prescott Intel Pentium 4 15 1 90 800 16 1024 0 否 否 Prescott Intel Pentium 4 530J 775 3000 15 1 90 800 16 1024 0 是 否 Prescott Intel Pentium 4 15 1 90 800 16 1024 0 是 是 Prescott Intel Pentium 4 16 1 90 800 16 1024 0 否 否 Prescott Intel Pentium 4 540J 775 3200 16 1 90 800 16 1024 0 是 否 Prescott Intel Pentium 4 16 1 90 800 16 1024 0 是 是 Prescott Intel Pentium 4 17 1 90 800 16 1024 0 否 否 Prescott Intel Pentium 4 550J 775 3400 17 1 90 800 16 1024 0 是 否 Prescott Intel Pentium 4 17 1 90 800 16 1024 0 是 是 Prescott Intel Pentium 4 18 1 90 800 16 1024 0 否 否 Prescott Intel Pentium 4 560J 775 3600 18 1 90 800 16 1024 0 是 否 Prescott Intel Pentium 4 18 1 90 800 16 1024 0 是 是 Prescott Intel Pentium 4 570J 775 3800 19 1 90 800 16 1024 0 是 否 Prescott Intel Pentium 4 19 1 90 800 16 1024 0 是 是 Prescott Intel Pentium 4 15 1 90 800 16 2048 0 是 是 Prescott Intel Pentium 4 16 1 90 800 16 2048 0 是 是 Prescott Intel Pentium 4 17 1 90 800 16 2048 0 是 是 Prescott Intel Pentium 4 18 1 90 800 16 2048 0 是 是 Prescott Intel Pentium 4 19 1 90 800 16 2048 0 是 是 Prescott Intel Pentium 4 A 478 1800 18 1 130 400 8 512 0 否 否 Northwood Intel Pentium 4 A 478 2000 20 1 130 400 8 512 0 否 否 Northwood Intel Pentium 4 A 478 2800 21 1 90 533 16 1024 0 否 否 Prescott Intel Pentium 4 A 478 2400 18 1 90 533 16 1024 0 否 否 Prescott Intel Pentium 4 B 478 2400 18 1 130 533 8 512 0 否 否 Northwood Intel Pentium 4 C with HT 478 2400 12 1 130 800 8 512 0 否 否 Northwood Intel Pentium 4 C with HT 478 2600 13 1 130 800 8 512 0 否 否 Northwood Intel Pentium 4 C with HT 478 2800 14 1 130 800 8 512 0 否 否 Northwood Intel Pentium 4 E with HT 478 2800 14 1 90 800 16 1024 0 否 否 Prescott Intel Pentium 4 E with HT 478 3000 15 1 90 800 16 1024 0 否 否 Prescott Intel Pentium 4 E with HT 478 3200 16 1 90 800 16 1024 0 否 否 Prescott Intel Pentium 4 E with HT 478 3400 17 1 90 800 16 1024 0 否 否 Prescott Intel Pentium 4 Extreme Edition 478 3200 16 1 130 800 8 512 2048 否 否 Gallatin Intel Pentium 4 Extreme Edition 478 3400 18 1 130 800 8 512 2048 否 否 Gallatin Intel Pentium 4 Extreme Edition 775 3400 18 1 130 800 8 512 2048 否 否 Gallatin Intel Pentium 4 Extreme Edition 775 3467 13 1 130 1066 8 512 2048 否 否 Gallatin Intel Pentium 4 Extreme Edition 775 3733 14 1 90 1066 16 2048 0 是 是 Prescott Intel Pentium 4 with HT 478 3000 15 1 130 800 8 512 0 否 否 Northwood Intel Pentium 4 with HT 478 3067 23 1 130 533 8 512 0 否 否 Northwood Intel Pentium 4 with HT 478 3200 16 1 130 800 8 512 0 否 否 Northwood Intel Pentium 4 with HT 478 3400 17 1 130 800 8 512 0 否 否 Northwood Intel Pentium D 14 2 90 800 16 1024 0 是 是 Smithfield Intel Pentium D 15 2 90 800 16 1024 0 是 是 Smithfield Intel Pentium D 16 2 90 800 16 1024 0 是 是 Smithfield Intel Pentium Extreme Edition 16 2 90 800 16 1024 0 是 是 Smithfield Intel Pentium M 479 900 9 1 130 400 64 1024 0 否 否 Banias Intel Pentium M 479 1100 11 1 130 400 64 1024 0 否 否 Banias Intel Pentium M 479 1200 12 1 130 400 64 1024 0 否 否 Banias Intel Pentium M 479 1300 13 1 130 400 64 1024 0 否 否 Banias Intel Pentium M 479 1400 14 1 130 400 64 1024 0 否 否 Banias Intel Pentium M 479 1600 16 1 130 400 64 1024 0 否 否 Banias Intel Pentium M 479 1700 17 1 130 400 64 1024 0 否 否 Banias Intel Pentium M 478 1700 17 1 130 400 64 1024 0 否 否 Banias Intel Pentium M 15 1 130 400 64 1024 0 否 否 Banias Intel Pentium M 15 1 90 400 64 2048 0 否 否 Dothan Intel Pentium M 16 1 90 400 64 2048 0 否 否 Dothan Intel Pentium M 12 1 90 533 64 2048 0 是 否 Dothan Intel Pentium M 17 1 90 400 64 2048 0 否 否 Dothan Intel Pentium M 13 1 90 533 64 2048 0 是 否 Dothan Intel Pentium M 18 1 90 400 64 2048 0 否 否 Dothan Intel Pentium M 14 1 90 533 64 2048 0 是 否 Dothan Intel Pentium M 20 1 90 400 64 2048 0 否 否 Dothan Intel Pentium M 15 1 90 533 64 2048 0 是 否 Dothan Intel Pentium M 21 1 90 400 64 2048 0 否 否 Dothan Intel Pentium M 16 1 90 533 64 2048 0 是 否 Dothan Intel Pentium M 17 1 90 533 64 2048 0 是 否 Dothan Intel Pentium M LV 13 1 130 400 64 1024 0 否 否 Banias Intel Pentium M LV 14 1 90 400 64 2048 0 否 否 Dothan Intel Pentium M LV 15 1 90 400 64 2048 0 是 否 Dothan Intel Pentium M LV 16 1 90 400 64 2048 0 是 否 Dothan Intel Pentium M ULV 11 1 130 400 64 1024 0 否 否 Banias Intel Pentium M ULV 10 1 90 400 64 2048 0 否 否 Dothan Intel Pentium M ULV 11 1 90 400 64 2048 0 否 否 Dothan Intel Pentium M ULV 733J 479 1100 11 1 90 400 64 2048 0 是 否 Dothan Intel Pentium M ULV 12 1 90 400 64 2048 0 是 否 Dothan Intel Xeon 603 1400 14 1 180 400 8 256 0 否 否 Foster Intel Xeon 603 1500 15 1 180 400 8 256 0 否 否 Foster Intel Xeon 603 1700 17 1 180 400 8 256 0 否 否 Foster Intel Xeon 603 1800 18 1 130 400 8 512 0 否 否 Prestonia Intel Xeon 603 2000 20 1 130 400 8 512 0 否 否 Prestonia Intel Xeon 603 2000 20 1 180 400 8 256 0 否 否 Prestonia Intel Xeon 604 2000 20 1 130 400 8 512 0 否 否 Prestonia Intel Xeon 603 2200 22 1 130 400 8 512 0 否 否 Prestonia Intel Xeon 603 2400 24 1 130 400 8 512 0 否 否 Prestonia Intel Xeon 603 2600 26 1 130 400 8 512 0 否 否 Prestonia Intel Xeon 603 2800 28 1 130 400 8 512 0 否 否 Prestonia Intel Xeon 603 2800 28 1 130 400 8 512 2048 否 否 Gallatin Intel Xeon 603 3000 30 1 130 400 8 512 0 否 否 Prestonia Intel Xeon 604 2000 15 1 130 533 8 512 0 否 否 Prestonia Intel Xeon 604 2400 18 1 130 533 8 512 0 否 否 Prestonia Intel Xeon 604 2400 18 1 130 533 8 512 1024 否 否 Gallatin Intel Xeon 604 2667 20 1 130 533 8 512 0 否 否 Prestonia Intel Xeon 604 2800 21 1 130 533 8 512 0 否 否 Prestonia Intel Xeon 604 2800 21 1 130 533 8 512 1024 否 否 Gallatin Intel Xeon 604 3067 23 1 130 533 8 512 0 否 否 Prestonia Intel Xeon 604 3067 23 1 130 533 8 512 1024 否 否 Gallatin Intel Xeon 604 3200 24 1 130 533 8 512 1024 否 否 Gallatin Intel Xeon 604 3200 24 1 130 533 8 512 2048 否 否 Gallatin Intel Xeon 604 2800 14 1 90 800 16 1024 0 是 是 Nocona Intel Xeon 604 3000 15 1 90 800 16 1024 0 是 是 Nocona Intel Xeon 604 3200 16 1 90 800 16 1024 0 是 是 Nocona Intel Xeon 604 3400 17 1 90 800 16 1024 0 是 是 Nocona Intel Xeon 604 3600 18 1 90 800 16 1024 0 是 是 Nocona Intel Xeon 604 2800 14 1 90 800 16 2048 0 是 是 Irwindale Intel Xeon 604 3000 15 1 90 800 16 2048 0 是 是 Irwindale Intel Xeon 604 3200 16 1 90 800 16 2048 0 是 是 Irwindale Intel Xeon 604 3400 17 1 90 800 16 2048 0 是 是 Irwindale Intel Xeon 604 3600 18 1 90 800 16 2048 0 是 是 Irwindale Intel Xeon MP 603 1400 14 1 180 400 8 256 512 否 否 Foster Intel Xeon MP 603 1500 15 1 180 400 8 256 512 否 否 Foster Intel Xeon MP 603 1500 15 1 130 400 8 512 1024 否 否 Gallatin Intel Xeon MP 603 1600 16 1 180 400 8 256 1024 否 否 Foster Intel Xeon MP 603 1900 19 1 130 400 8 512 1024 否 否 Gallatin Intel Xeon MP 603 2000 20 1 130 400 8 512 1024 否 否 Gallatin Intel Xeon MP 603 2000 20 1 130 400 8 512 2048 否 否 Gallatin Intel Xeon MP 603 2200 22 1 130 400 8 512 2048 否 否 Gallatin Intel Xeon MP 603 2500 25 1 130 400 8 512 1024 否 否 Gallatin Intel Xeon MP 603 2700 27 1 130 400 8 512 2048 否 否 Gallatin Intel Xeon MP 603 2800 28 1 130 400 8 512 2048 否 否 Gallatin Intel Xeon MP 603 3000 30 1 130 400 8 512 4096 否 否 Gallatin

1958年,美国德克萨斯州仪器公司的工程师基尔比(Jack Kilby)在一块半导体硅晶片上将电阻、电容等分立元件集成在里面,制成世界上第一片集成电路。也正因为这件事,2000年的诺贝尔物理奖颁发给了已退休的基尔比。1959年,美国仙童公司的诺伊斯用一种平面工艺制成半导体集成电路,从此开启了集成电路比黄金还诱人的时代。其后,摩尔、诺宜斯、葛洛夫这三个“伙伴”离开原来的仙童公司,一起开创事业——筹建一家他们自已的公司。三人一致认为,最有发展潜力的半导体市场是计算机存储器芯片市场。吸引他们成立新公司的另一个重要原因是:这一市场几乎完全依赖于高新技术,你可以尽可能地在一个芯片上放最多的电路,谁的集成度高,谁就能成为这一行业的领袖。基于以上考虑,摩尔为新公司命名为:Intel,这个字是由“集成/电子(Integrated Electronics)"两个英文单词组合成的,象征新公司将在集成电路市场上飞黄腾达,结果就真的如此,看来在摩尔有生之年,请他起个名字一定发达。当时,这三位创业者说服风险资本家阿瑟.罗克给他们投资了200万美元;还找到了他们创业的最佳地点,就是原联合碳化物电子公司的大楼,这可比惠普的车库要强多了。公司创建不久,三位创建人就与公司职员(这时是1968年底,英特尔公司已约定,他们将不拘泥于任何特定的技术或产品生产线,用诺宜斯的话来说就是“对当今所有技术进行快镜拍摄,从中发现哪种技术行得通,哪种技术最卓有成效,就开发哪种技术”,公司有的是时间、才能和资金,所以他们不能草率行事。诺宜斯说:“没能任何合同规定我们必须保证某一生产线的生产。我们也不受任何旧技术的约束。” 英特尔公司发现:当电子在集成电路块的细微部位上出现或消失时,可以将若干比特(bites,资料的最小计量单位)信息非常廉价地储存在微型集成电路硅片上,他们首先将这种发现应用在商业上。1969年的春天,在公司成立一周年以后,英特尔公司生产了第一批产品,即双极处理64比特存储芯片。不久,公司又推出256比特的MOS存储器芯片。一个小小的Intel公司,以它的两种新产品的问世而打入了整个计算机存储器市场——这是一个辉煌的开端,而其他的一些公司直到1980年才能生产MOS芯片和双极芯片。 随着日本公司加入竞争,内存的生意越来越艰难。尽管当时有很多美国人抱怨日本人公司以低于成本的价格向美国倾销产品,但一个不可否认的事实是,日本在芯片制造上的速度和质量是无与伦比的。这时候,英特尔公司面对有史以来最大的生存危机。不过最终他们作出一个令人钦佩的决断:放弃内存,全力投入微处理器业务。 说到微处理器业务,其实最初是件很偶然的事情:英特尔的一家客户(Busicom,一家现已不存在的日本厂商)要求英特尔为其专门设计一些处理芯片。在研究过程中,英特尔的研究员霍夫(Hoff)问自已:对于集成电路,能否在外部软件的操纵下以简单的指令进行复杂的工作呢?为什么不可将这个计算机上的所有逻辑集成到一个芯片上并在上面编制简单通用的程序呢?这其实就是今天所有微处理器的原理。但日本公司对此毫无兴趣。在同事的帮助及公司支持下,霍夫把中央处理器的全部功能集成在一块芯片上,再加上存储器;完善了这种后来被称为4004的芯片,也就是世界上第一片微处理器。1971年英特尔诞生了第一个微处理器——4004。该芯片其实是为Busicom calculator专门设计制造的,但已经可以看到个人电脑的影子在里面了。据说当时有一位留着长发的美国人在无线电杂志上读到I4004的消息,立即就想能用这个CPU来开发个人使用的操作系统。结果经过一番仔细折腾之后,发现I4004的功能实在是太弱,而他想实现的系统功能与Basic语言并不能在上面实现只好作罢,这个人就是比尔.盖茨——微软公司的老板。不过从此之后,他对英特尔的动向非常关注,终于在1975年成就了微软公司(Microsoft Corporation)接下来到了8008,8008的运算能力比4004强劲2倍。1974年,一本无线电杂志刊登了一种使用8008作处理器的机器,叫做“Mark-8(马克八号)”,这也是目前已知的最早的家用电脑了。虽然从今天的角度看来,“Mark-8”非常难以使用、控制、编程及维护,但是这在当时却是一种伟大的发明。下一代产品叫做8080,8080被用于当时一种品牌为Altair(牵牛星,这个名字来源于当时电视节目里一个流行的科幻剧)的电脑上。这也是有史以来第一个知名的个人电脑。当时这种电脑的套件售价是395美金,短短数月的时间里面,销售业绩达到了数万部,创造了个人电脑销售历史的一个里程碑。4004的集成度只有2300个晶体管,功能其实比较弱,且计算速度较慢,以致只能用在Busicom计算器上,更不用说进行复杂的数学计算了。不过比起第一台电子计算机ENIAC来说,它已经轻巧太多太多了。而且最大的历史意义是,它是第一个通用型处理器,这在当时专用集成电路设计横行的时代是难得的突破。所谓专用集成电路设,就是为不同的应用设计独特的产品,一旦应用条件变化,就需要重新设计;当然在商业盈利上,对设计公司是很有好处的。但是英特尔公司的目光并没有这么短浅,霍夫做出大胆的设想:使用通用的硬件设计加上外部软件支持来完成不同的应用,这就是最初的通用微处理器的设想。英特尔公司很快对这个设想进行了论证,发现确实可行,而且这种产品的好处就在于采用不同的软件支持就能完成不同的工作,这比重新设计专用的集成电路要简单得多。看到这种产品将来的广阔前景,英特尔公司马上投入了设计工作并很快推出了产品——世界上第一块微处理器Intel 4004。其实4004处理只能处理4位数据,但内部指令是8位的。4004拥有46条指令,采用16针直插式封装。数据内存和程序内存分开,1K数据内存,4K程序内存。运行时钟频率预计为1M,最终实现达到了740kHz,能进行二进制编码的十进制数学运算。这款处理器很快得到了整个业界的承认,蓝色巨人IBM还将4004装备在IBM 1620机器上。在4004发布后不久,英特尔连续的发布了几款CPU:4040、8008,但市场反响平平,不过却为开发8位微处理器打下了良好基础。1974年,英特尔公司又在8008的基础上研制出了8080处理器、拥有16位地址总线和8位数据总线,包含7个8位寄存器(A,B,C,D,E,F,G,其中BC,DE,HL组合可组成16位数据寄存器),支持16位内存,同时它也包含一些输入输出端口,这是一个相当成功的设计,还有效解决了外部设备在内存寻址能力不足的问题。1978年,8086处理器诞生了。这个处理器标志着x86王朝的开始,为什么要纪念英特尔x86架构25周年?主要原因是从8086开始,才有了目前应用最广泛的PC行业基础。虽然从1971年,英特尔制造4004至今,已经有32年历史;但是从没有像8086这样影响深远的神来之作。还有一个更关键的因素,是时IBM研究新的PC机来打击苹果的个人电脑。IBM公司需要选择一款强大,易于扩展的处理器来驱动,英特尔的x86处理器取得了绝对的胜利,成为IBM PC的新“大脑”。这个历史的选择也将英特尔公司日后带入了财富500强大公司的行列,并被财富杂志称之为:“七十大商业奇迹之一(Business Triumphs of the Seventies)” IBM公司的PC大获成功,不但带旺了英特尔的生意,还造就了另外一个商业奇迹——微软公司。比尔.盖茨搭车销售了DOS操作系统,为今天称霸软件行业攫取了第一桶金。不但如此,因为IBM公司的远见,开放了PC架构的授权,康柏(今天已经变成HP的一部分)等第三方的制造商也大获其利。甚至台湾等经济的腾飞都与这次历史的联合有着必然的联系,无论从历史,还是产业的眼光来阅读,这个事件都非常值得称颂!事实上,IBM在PC XT选用的是8088这个型号。以技术的观点来看,8088其实是8086的一个简版,其内部指令是16位的,但是外部是8位数据总线;相对于8086内部数据总线(CPU内部传输数据的总线)、外部数据总线(CPU外部传输数据的总线)均为16位,地址总线为20位,可寻址1MB内存的规格来说,是稍差了一点,但是已经足以胜任DOS系统和当时的应用程序了。8086集成万只晶体管,时钟频率为,同时还生产出与之配合的数学协处理器8087,这两种芯片使用相同的指令集,可以互相配合提升科学运算的效率。 当然现在的CPU都内建数学协处理器,因此不再需要额外的数学协处理器芯片,但是七十年代的技术限制,一般只能将数学协处理器做成另外一个芯片,供用户选择。这样的好处是减少了制造的成本,提高了良品率,更降低速度不敏感的用户的支出:他们可以暂时不买数学协处理器,直到需要的时候买一个回来插到IC插座里即可。1982年,英特尔发布了80286处理器,也就是俗称的286。这是英特尔第一个可以运行所有为其撰写的处理器,在发布后的六年中,全球一共交付了一千五百万台基于286的个人电脑。80286芯片集成了万只晶体管、16位字长,时钟频率由最初的6MHz逐步提高到20MHz。其内部和外部数据总线皆为16位,地址总线24位。与8086相比,80286寻址能力达到了16MB,可以使用外存储设备模拟大量存储空间,从而大大扩展了80286的工作范围,还能通过多任务硬件机构使处理器在各种任务间来回快速切换,以同时运行多个任务,其速度比8086提高了5倍甚至更多。IBM公司将80286用在技术更为先进AT机中,与IBM PC机相比,AT机的外部总线为16位(PC XT机为8位),内存一般可扩展到16MB,可支持更大的硬盘,支持VGA显示系统,比PC XT机在性能上有了重大的进步。 但是这时候,IBM公司内部发生了很大的分歧:内部很多人反对快速转换到286计算机的销售,因为286 PC会对IBM的小型机与之前的PC XT销售有影响,他们希望缓慢过渡。但是intel公司并不能等,80286处理器已经批量生产了,不可能堆在仓库里等IBM慢慢消化;这时候生产兼容IBM PC的康柏公司就钻了一个空子——快速推出286的PC机,一举打败IBM成为PC市场的新霸主。微处理器决定了计算机的性能和速度,谁能制造出性能卓越的高速PC,谁便能领导计算机的新潮流,这就是游戏规则。IBM的人最初顺应的这个规则,因此在PC市场大获成功,但是到了286时代,却又放弃了正确的选择,真是让人为之叹惋。80386进入了32位元的世代 1985年,英特尔再度发力推出了80386处理器。386集成了27万5千只晶体管,超过了4004芯片的一百倍。并且386还是英特尔第一种32位处理器,同时也是第一种具有“多任务”功能的处理器——这对微软的操作系统发展有着重要的影响,所谓“多任务”就是说处理器可以在同时处理几个程序的指令。不过就如过渡到286一样,英特尔遇到了很大压力。当时有一种流行的观点认为,286已经足够了,根本没有必要生产386电脑,在销售上开始并不如意。但是英特尔的领导人并不这样认为,在宣传上采纳很多新的手法,借鉴了很多消费类产品的办法,让人耳目一新;另一方面,也对386芯片区分出不同的规格,去适应不同的用户需求。尤其是后来推出的80386SX芯片,内部数据总线为32位,与80386相同,但是外部数据总线为16位,既有386的优点,又有286的成本优势,取得了很大的市场成功;同时原本的386芯片改称为386DX,以区别386SX。 386时代,Intel在技术有了很大的进步。80386内部内含万个晶体管,时钟频率为,其后又提高到20MHz、25MHz、33MHz等。80386DX的内部和外部数据总线都是32位,地址总线也是32位,可寻址高达4GB内存。它除具有实模式和保护模式外,还增加了一种叫虚拟模式的工作方式,可同时模拟多个8086处理器来提供多任务能力。1989年,英特尔发布了486处理器。486处理器是英特尔非常成功的商业项目。很多厂商也看清了英特尔处理器的发展规律,因此很快就随着英特尔的营销战而转型成功。80486处理器集成了125万个晶体管,时钟频率由25MHz逐步提升到33MHz、40MHz、50MHz及后来的100Mhz。 80486也是英特尔第一个内部包含数字协处理器的CPU,并在x86系列中首次使用了RISC(精简指令集)技术,从而提升了每时钟周期执行指令的速度。486还采用了突发总线方式,大大提高了处理器与内存的数据交换速度。由于这些改进,80486的性能比带有80387数学协处理器的80386快了4倍有余。 英特尔将区格用户的策略再次应用在486产品上,因此486分为有数学协处理器的486DX和无数学协处理器的486SX两种,486SX的价格要便宜一些。后来486在倍频上规格有所改进,就出现了486DX2、486DX4的新“变种”。以DX2来举例,其涵义是处理器内部工作频率为外频的2倍,这样缓解处理器内部高速与外部总线的慢速的矛盾。Pentium,第一款与数字无关的处理器 1993年,英特尔发布了Pentium(奔腾)处理器。本来按照惯常的命名规律是80586,但是因为实际上“586”这样的数字不能注册成为商标使用,因此任何竞争对手都可以用586来混淆概念,扰乱市场。事实上在486发展末期,就已经有公司将486等级的产品标识成586来销售了。因此英特尔绝对使用自造的新词来作为新产品的商标——Pentium。Pentium处理器集成了310万个晶体管,最初推出的初始频率是60MHz、66MHz,后来提升到200MHz以上。第一代的Pentium代号为P54C,其后又发布了代号为P55C,内建MMX(多媒体指令集)的新版Pentium处理器。如果购买了最初60MHz、66MHz Pentium的用户比较倒霉,不但其Socket插座与其后推出的Socket 7不同,不能升级以外;更有极大可能是有内部缺陷的产品:早期的几批产品存在浮点运算错误的问题,虽然英特尔开始称这样的错误只是非常小一部分用户才会遇到,但是因为市场反应哗然,一时之间造成了很大的销售停滞。最后,当时的英特尔总裁安迪葛洛夫于1993年11月29日向全球用户诚意道歉,并承诺回收产品而告终。据后来的统计数字表明回收成本高达4亿美金,这在当时是十分冒险的行为,对于公司的资金实力是一个生死存亡的考验;但最终的结果是重新赢得了消费者的信任,Pentium再度成为市场上最畅销的产品。Pentium MMX是英特尔在Pentium内核基础上改进,最大的特点是增加了57条MMX指令。这些指令专门用来处理音视频相关的计算,目的是提高CPU处理多媒体数据的效率。MMX指令非常成功,在之后生产的各型CPU都包括这些指令集。据Tom’s Hardware测试,即使最慢的Pentium MMX 166MHz也比Pentium 200MHz普通版要快。1995年秋天,英特尔发布了Pentium Pro处理器。Pentium PRO是英特尔首个专门为32位服务器、工作站设计的处理器,可以应用在高速辅助设计、机械引擎、科学计算等领域。英特尔在Pentium PRO的设计与制造上又达到了新的高度,总共集成了550万个晶体管,并且整合了高速二级缓存芯片。Pentium PRO透露出英特尔对企业市场的雄心,不过作为第一代产品,还是有很多商榷的地方。最有趣的一件事情是,Pentium PRO执行16位程序的效能还不及同频率Pentium的水平;当然这不是一个错误,只是在当时16位程序数量还很多,32位软件尚未成为主流的情形下就显得太过超前。1997年英特尔发布了Pentium II处理器。其内部集成了750万个晶体管,并整合了MMX指令集技术,可以更快更流畅的播放影音Video,Audio以及图像等多媒体数据。Pentium II首次引入了封装(Single Edge Contact)技术,将高速缓存与处理器整合在一块PCB板上。通过Pentium II,用户可以透过因特网来捕捉、编辑、共享数码图片给自己的朋友和家人;甚至在影片上加入一些文字、音乐、效果等;可以使用视频电话等最新的多媒体技术。而之前的处理器在效能上就逊色很多了;因此在行销宣传上,英特尔特别凸现Pentium II的多媒体能力,这也很大促进了多媒体技术的流行。1999年,英特尔发布了Celeron(赛扬)处理器。简单的说,Celeron与Pentium II并没有本质上的不同,因为它们的内核是一样的,最大的区别在于高速缓存上。最初的Celeron是没有二级缓存的,目的是降低成本来夺取低端市场的份额,就像当年在386、486上,制造386SX、486SX简化版的做法一样。但是很遗憾的是,完全没有二级缓存的Celeron处理器效能极差,消费者并不买帐,因此很快英特尔就调整战略:将Celeron处理器的二级缓存设定为只有Pentium II的一半(也就是128KB),这样既有合理的效能,又有相对低廉的售价;这样的策略一直延续到今天。不过很快有人发现,使用双Celeron的系统与双Pentium II的系统差距不大,而价格却便宜很多,结果造成了Celeron冲击高端市场的局面。后来英特尔决定取消Celeron处理器的SMP功能,才解决了这个问题。可以看出,Celeron与Pentium II是英特尔决定将高低产品线用不同的品牌区分的开始,事实也证明这种市场策略的成功。Pentium II Xeon,PRO的继承者1998年英特尔发布了Pentium II Xeon(至强)处理器。Xeon是英特尔引入的新品牌,取代之前所使用的Pentium Pro品牌。这个产品线面向中高端企业级服务器、工作站市场;是英特尔公司进一步区格市场的重要步骤。Xeon主要设计来运行商业软件、因特网服务、公司数据储存、数据归类、数据库、电子,机械的自动化设计等。 Pentium II Xeon处理器不但有更快的速度,更大的缓存,更重要的是可以支持多达4路或者8路的SMP对称多CPU处理功能。1999年英特尔发布了Pentium III处理器。从Pentium III开始,英特尔又引入了70条新指令(SIMD,SSE),主要用于因特网流媒体扩展(提升网络演示多媒体流、图像的性能)、3D、流式音频、视频和语音识别功能的提升。Pentium III可以使用户有机会在网络上享受到高质量的影片,并以3D的形式参观在线博物馆、商店等。1999年,英特尔发布了Pentium III Xeon处理器。作为Pentium II Xeon的后继者,除了在内核架构上采纳全新设计以外,也继承了Pentium III处理器新增的70条指令集,以更好执行多媒体、流媒体应用软件。除了面对企业级的市场以外,Pentium III Xeon加强了电子商务应用与高阶商务计算的能力。在缓存速度与系统总线结构上,也有很多进步,很大程度提升了性能,并为更好的多处理器协同工作进行了设计。 Pentium 4、Celeron,一统江湖的风云 2000年英特尔发布了Pentium 4处理器。用户使用基于Pentium 4处理器的个人电脑,可以创建专业品质的影片,透过因特网传递电视品质的影像,实时进行语音、影像通讯,实时3D渲染,快速进行MP3编码解码运算,在连接因特网时运行多个多媒体软件。这是目前空前强大的个人电脑处理器产品,仍然在继续销售中。 Pentium 4处理器集成了4200万个晶体管,到了改进版的Pentium 4(Northwood)更是集成了5千5百万个晶体管;并且开始采用微米进行制造,初始速度就达到了(gigahertz),相当于从旧金山到纽约只花了13秒的车程(当然,没人有这么快的汽车)。 Pentium 4还引入了NetBurst新结构,以下是NetBurst结构带来的好处: 1.较快的系统总线(Faster System Bus); 2.高级传输缓存(Advanced Transfer Cache); 3.高级动态执行(Advanced Dynamic Execution) (包含执行追踪缓存Execution Trace Cache、高级分支预测Enhanced Branch Prediction) 4.超长管道处理技术(Hyper Pipelined Technology); 5.快速执行引擎(Rapid Execution Engine); 6.高级浮点以及多媒体指令集(SSE2)等等。 当程序指令与数据一开始进入处理时,就会进入系统总线队列。Pentium 3处理器外频FSB设定在133Mhz,每时钟周期传输64位数据,提供8字节*133Mhz=1066MB/s的数据带宽;而Pentium 4处理器的系统总线虽然仅为100Mhz,同样是64位数据带宽,但由于其利用了与AGP4X相同的原理“四倍速”(即FSB400)技术,因此可传输高达3200MB/秒的数据传输速度。因此,Pentium 4处理器传输数据到系统的其他部分比目前所有的x86处理器都快,也打破了Pentium 3处理器受系统总线瓶颈的限制。其后英特尔又不断改进系统总线技术,推出了FSB533、FSB800的新规格,将数据传输速度进一步提升。并且在最新的Pentium 4处理器,英特尔已经支持双通道DDR技术,让内存与处理器传输速度也有很大的改进。 Pentium 4还提供的SSE2指令集,这套指令集增加144个全新的指令,在128bit压缩的数据,在SSE时,仅能以4个单精度浮点值的形式来处理,而在SSE2指令集,该资料能采用多种数据结构来处理: 4个单精度浮点数(SSE)2个双精度浮点数(SSE2)16字节数(SSE2)8个字数(word)数(SSE2)4个双字数(SSE2)2个四字数(SSE2)1个128位长的整数(SSE2) Pentium 4也有对应型号的Celeron处理器,来应对低端市场。Itanium,64位元的时代来临 2001年英特尔发布了Itanium(安腾)处理器。Itanium处理器是英特尔第一款64位元的产品。这是为顶级、企业级服务器及工作站设计的,在Itanium处理器中体现了一种全新的设计思想,完全是基于平行并发计算而设计(EPIC)。对于最苛求性能的企业或者需要高性能运算功能支持的应用(包括电子交易安全处理、超大型数据库、电脑辅助机械引擎、尖端科学运算等)而言,Itanium处理器基本是PC处理器中唯一的选择。Itanium 2处理器是以Itanium架构为基础所建立与扩充的产品。提供了二位元的相容性,可与专为第一代Itanium处理器优化编译的应用程序兼容,并大幅提升了50%~100%的效能。Itanium 2具有的系统总线带宽、高达3MB的L3缓存,据英特尔称Itanium 2的性能,足足比Sun Microsystems的硬件平台高出50%。Pentium M,移动、网络、节能的铁骑 2003年英特尔发布了Pentium M处理器。以往虽然有移动版本的Pentium II、III,甚至是Pentium 4-M产品,但是这些产品仍然是基于台式电脑处理器的设计,再增加一些节能,管理的新特性而已。即便如此,Pentium III-M和Pentium 4-M的能耗远高于专门为移动运算设计的CPU,例如全美达的处理器。 英特尔Pentium M处理器结合了855芯片组家族与Intel PRO/Wireless2100网络联机技术,成为英特尔Centrino(迅驰)移动运算技术的最重要组成部分。Pentium M处理器可提供高达的主频速度,并包含各种效能增强功能,如:最佳化电源的400MHz系统总线、微处理作业的融合(Micro-OpsFusion)和专门的堆栈管理器(Dedicated Stack Manager),这些工具可以快速执行指令集并节省电力。 更关键的是,Pentium M处理器加上的无线WiFi技术,就构成了英特尔Centrino(迅驰)移动运算技术的整套解决方案。这样不仅具备了节能、长续航时间的优点,更领导了目前流行的无线网络风尚。因此,IBM、Sony、HP等各大笔记本电脑厂商已经全面转用Pentium M处理器来制造自己的主流产品。

无线电杂志封面图片

混合式电视机于1953年底正式被报道,当时由美国无线电杂志出版的《电视与电影》杂志上报道了这一技术的最新进展。1954年,美国电视厂商RCA在美国东部地区推出了第一台混合式电视机,并在1955年正式上市。

《无线电》:《无线电》杂志是中国电子刊物中创刊最早、发行量最大的杂志(累计发行量已超过3亿册)。自1955年1月创刊以来,我们秉承“普及电子技术知识,培养电子科技人才”的宗旨,为普及、推广应用电子技术作出了重大贡献,为中国的电子事业培养了几代人才。《高保真音响》:杂志创刊于1994年,是一本全国发行的大型豪华本月刊,栏目众多,内容丰富,图文并茂,深受读者喜爱。《集邮》:杂志创刊于1955年,是全世界发行量最大的邮刊。《摩托车》:杂志创办于1985年,月发行量11万册,全年总发行量为130万册,是全国创刊最早,发行量最大的摩托车类科普期刊,被评为全国汽车行业科普类一等优秀期刊。《通信世界》:周刊是立足中国通信业、为通信业服务的综合性行业权威期刊,荣获中国期刊方阵“双效”期刊、信息产业部优秀科技期刊称号。每周一出版,单期发行量超过10万份,是中国通信业发行量最大、出版周期最短的刊物。《电信技术》:创刊于1954年,是我国电信领域创刊最早、历史最长的杂志。1989年以来连续5次荣获邮电部、信息产业部优秀科技期刊一等奖、2次荣获全国优秀期刊称号,2001年首批入选“中国期刊方阵”,被新闻出版署授予“双效期刊”。《电信科学》:于1956年创刊,现已成为通信领域颇具影响力和权威性的杂志,入选全国中文核心期刊,并在通信行业科技期刊质量检查评比中荣获优秀期刊一等奖,曾荣获中国科学技术协会优秀科技期刊,第二届全国优秀科技期刊奖,入选“中国期刊方阵”,并被国内外多家数据库和科技文摘期刊收录。《通信学报》:是由中国通信学会主办的学术性刊物,创刊于1980年10月,面向国内外公开发行,及时反映中国通信科学技术发展水平,交流国内外通信科技新成果,促进学术进步和人才成长,探索新理论、新技术。《信息与家庭》:《信息与家庭·风范》向北京移动全球通高端客户提供他们需要的最新最精的资讯,搭建北京移动与其高端客户之间沟通的桥梁。《信息与家庭·风范》是一本引领高端客户消费观念、“具有精英意识消费文化”的高档杂志。《互联网天地》:杂志是由工业和信息化部主管、中国互联网协会和人民邮电出版社联合主办的综合科技刊物,是唯一一本传播网络消费信息、互联网技术和应用业务,同时适时反映中国互联网业发展趋势的综合性权威月刊。《童趣》:成立于1994年的童趣出版有限公司是我国第一家合资出版企业,其出版的《米老鼠》杂志在中国已拥有超过300万的读者。《尚漫》:《尚漫》是一本代表顶级水准的原创漫画杂志,集结国内最优秀原创漫画作品,与i尚漫网站及无线平台一起致力于带给读者最优质的漫画体验,为广大漫画爱好者搭建全方位中国原创漫画新空间。

wifi之母是海蒂·拉玛。

海蒂·拉玛的研究方向原本是用于二战期间的军事武器“鱼雷”。鉴于鱼雷的操作原理通常是通过无线信号来引导,而信号都是在一个单独的频道上来传输。

这样敌方也可以运用同样的方式来干扰信号达到躲避。海蒂在当时无线信号频率的基础上扩展了多个无线电频率,解决了单独无线信号频道的技术瓶颈,为21世纪大热的3G移动通信技术奠定了基础,因此被称为wifi之母。

人物评价:

海蒂·拉玛是出身显赫的、与各国军方高层私交甚好的好莱坞影星;福布斯旗下的《美国发明与科技遗产》杂志曾经以海蒂为封面,这大概是该杂志有史以来最美丽的封面了。

她演绎了世界上首部“露点”电影、经历了6次婚姻、还两次因在商店顺手牵羊而入狱,更重要的是,她还能在60多年前提出“跳频”技术和一系列无线信号技术的全新概念,其中“跳频”技术更为21世纪大热的3G移动通信技术奠定了基础。

无线电杂志出的混合式电视机是在1936年出的。1936年,国际无线电电界出版了一本名为《无线电技术周刊》的电视研究杂志,其中提及了混合式电视机的研究和应用。

相关百科

热门百科

首页
发表服务