1901-1904年,在德国权威杂志《物理学年鉴》上发表了5篇有关热力学和黑体辐射等方面的研究。1905年3月,《关于光的产生和转变的一个启发性观点》,文中提出光量子学说和光电效应的基本定律,并在历史上第一次揭示了微观物体的波粒二象性,从而圆满地解释了光电效应。(为此获得1921年诺贝尔物理学奖)1905年4月,《分子尺度的新测定》(获苏黎世大学哲学博士学位)1905年5月,《根据分子运动论研究静止液体中悬浮微粒的运动》(有力地提供了原子真实存在布朗运动的证明)1905年6月,长篇文献《论动体的电动力学》(完整提出了著名的狭义相对论理论,开创了物理学的新纪元)1905年9月,《物体惯性和能量的关系》(提出了质量和能量的关系E=mc^2,为原子核能的释放和利用奠定了理论基础)1916年《广义相对论基础》(提出了大质量物体的存在可引起时空连续场的弯曲,为黑洞、大爆炸等新的宇宙论提供了理论依据)
《爱因斯坦文集》,《爱因斯坦晚年文集》,《爱因斯坦伦犹太人问题》《上帝的方程式:爱因斯坦,相对论和膨胀的宇宙》 只有以上四本,其他都是冠以“爱因斯坦”署名,别人撰写或者出版的
爱因斯坦的著作: 论文以及学术文章: 《由毛细管现象得到的推论》;《关于热平衡和热力学第二定律的运动论》;《分子大小的新测定法》;《论动体的电动力学》;《关于对性原理和由此得出的结论》;《我们关于辐射的本质和结论的观点的发展》;《广义相对论纲要和引力理论》;《广义相对论的基础》;《关于辐射的量子理论》;《引力方程和运动问题》;《卡鲁查电学理论的推广》;《关于理论物理学基础的考查》;《相对论和空间问题》;《关于一些基本概论的绪论》;《狭义和广义相对论浅说》;《以太和相对论》;《几何学和经验》;《非欧几里德几何和物理学》;《牛顿力学及其对理论物理学发展的影响》;《物理学的基本概念至其最近的变化》;《统一场论》 其他著作:《自述片断》——回忆青年时代的学习和科学探索的道路 《告文明世界书》——反对德国文化界名流为战争辩护的宣言的报告 《我的世界观》;《宗教和科学》;《麦克斯韦对物理实在观念发展的影响》;《物理学和实在》;《论教育》通俗册子;《物理学的进化》;《科学和宗教》;《量子力学和实在》;《为什么要社会主义》;《奥林匹亚科学院颂词》
《我眼中的世界》《相对论的意义》《爱因斯坦晚年文集》
阿尔伯特·爱因斯坦()犹太裔物理学家。他于1879年出生于德国乌尔姆市的一个犹太人家庭(父母均为犹太人),1900年毕业于苏黎世联邦理工学院,入瑞士国籍。1905年,获苏黎世大学哲学博士学位,爱因斯坦提出光子假设,成功解释了光电效应,因此获得1921年诺贝尔物理奖,同年,创立狭义相对论。1915年创立广义相对论。爱因斯坦为核能开发奠定了理论基础,在现代科学技术和他的深刻影响下与广泛应用等方面开创了现代科学新纪元,被公认为是继伽利略、牛顿以来最伟大的物理学家。1999年12月26日,爱因斯坦被美国《时代周刊》评选为“世纪伟人”。中文名:阿尔伯特·爱因斯坦外文名:Albert Einstein国籍:瑞士、美国民族:犹太人星座:双鱼座出生地:德国符腾堡王国乌尔姆市出生日期:1879年3月14日(星期五)逝世日期:1955年4月18日(星期一)(76岁)职业:物理学家,哲学家,数学家,政治家
1900年8月爱因斯坦毕业于苏黎世联邦工业大学;12月完成论文《由毛细管现象得到的推论》,次年发表在莱比锡《物理学杂志》上并入瑞士籍。 1901年3月21日,取得瑞士国籍。在这一年5-7月完成电势差的热力学理论的论文。 1904年9月,由专利局的试用人员转为正式三级技术员。 1905年3月,发展量子论,提出光量子假说,解决了光电效应问题。4月向苏黎世大学提出论文《分子大小的新测定法》,取得博士学位。5月完成论文《论动体的电动力学》,独立而完整地提出狭义相对性原理,开创物理学的新纪元。 1906年4月,晋升为专利局二级技术员。11月完成固体比热的论文,这是关于固体的量子论的第一篇论文。 1908年10月兼任伯尔尼大学编外讲师。1910年10月,完成关于临界乳光的论文1915年11月,提出广义相对论引力方程的完整形式,并且成功地解释了水星近日点运动。 爱因斯坦1916年3月,完成总结性论文《广义相对论的基础》。5月提出宇宙空间有限无界的假说。8月完成《关于辐射的量子理论》,总结量子论的发展,提出受激辐射理论。
1、烟雾探测器
由于镅的原子核不稳定,一旦裂开,质量似乎就消失了一些,因为碎片的质量比原来的原子核小。其实,镅原子的质量根本没有消失。这是爱因斯坦告诉我们的。
2、平坦的公路
在爱因斯坦的博士论文中探讨了在不同溶液中测量分子的新方法,这些方法后来成为胶体化学的基本方法。建材工程师在建造公路时,就是利用他的研究成果。
3、电脑显示器
在短促的瞬间,电子正从显像管的阴极发射出来,好像在飞驰过程中获得了能量,积聚在显示屏上———这正好符合爱因斯坦的狭义相对论。发明电脑显示器的工程师必须使显示器符合“相对论效应”,否则控制电子飞驰的磁铁就会在显示屏上产生模糊图像,使你无法工作,当然,精彩的电脑游戏也玩不起来了。
4、精准的激光
每一件商品条形码也得益于爱因斯坦的激光理论,只有激光才能准确读出条形码中的编码。
5、太阳能电池
光电池能够把太阳能转成电能,爱因斯坦在90年前发表的一篇论文里就首次正确地分析过这一转换原理。
他发现光子具有能量。某些光子携带的能量足以克服将电子集中于某种金属的“粘性”,这就是著名的光电效应。
6、数码相机
从镜头飞进来的光子会把半导体里的电子挤走,这同样利用了宝贵的光电效应。
7、药物
许多药物制造得益于爱因斯坦那篇有关布朗运动的论文。
英国植物学家罗伯特·布朗最先观察到,悬浮的液体中的微粒永远不停地做无规则运动。爱因斯坦则利用布朗运动创立了将微观数量和宏观数量联系在一起的统计法。
8、全球定位系统
GPS(全球定位系统)能帮助你与搜索人员取得联系。100年前爱因斯坦发现,如果想把发生在不同地点的多个事件联系在一起考虑,那么传统的时间概念就不够充分。
毫不夸张地说,根据爱因斯坦创立的科学理论而衍生出的发明创造,几乎涵盖了现代文明的每一个角落。电脑游戏、公共汽车、数码照相机……我们衣食住行的每个细节都闪现着爱因斯坦的影子。
拓展资料:
阿尔伯特·爱因斯坦(,1879年3月14日—1955年4月18日),出生于德国符腾堡王国乌尔姆市,毕业于苏黎世大学,犹太裔物理学家。
爱因斯坦1879年出生于德国乌尔姆市的一个犹太人家庭(父母均为犹太人),1900年毕业于苏黎世联邦理工学院,入瑞士国籍。1905年,获苏黎世大学哲学博士学位,爱因斯坦提出光子假设,成功解释了光电效应,因此获得1921年诺贝尔物理奖,1905年创立狭义相对论。1915年创立广义相对论。1955年4月18日去世,享年76岁。
爱因斯坦为核能开发奠定了理论基础,开创了现代科学技术新纪元,被公认为是继伽利略、牛顿以来最伟大的物理学家。1999年12月26日,爱因斯坦被美国《时代周刊》评选为“世纪伟人”。
也可以这么认为吧。但是在当时的那个年代应该没有民科这种说法。只是放在现在是这么叫的。
汗,都是0202的筒子,谢老师啊,这又是写的情诗又是写论文的搞不定啊
自然辩证法是马克思主义的自然观和自然科学观。想要了解更多的请访问
2楼谢老师,估计楼主是交大的。因为这个idea只有你想得出来!
论动体的电动力学爱因斯坦根据范岱年、赵中立、许良英编译《爱因斯坦文集》编辑大家知道,麦克斯韦电动力学——象现在通常为人们所理解的那样——应用到运动的物体上时,就要引起一些不对称,而这种不对称似乎不是现象所固有的。比如设想一个磁体同一个导体之间的电动力的相互作用。在这里,可观察到的现象只同导休和磁体的相对运动有关,可是按照通常的看法,这两个物体之中,究竟是这个在运动,还是那个在运动,却是截然不同的两回事。如果是磁体在运动,导体静止着,那么在磁体附近就会出现一个具有一定能量的电场,它在导体各部分所在的地方产生一股电流。但是如果磁体是静止的,而导体在运动,那么磁体附近就没有电场,可是在导体中却有一电动势,这种电动势本身虽然并不相当于能量,但是它——假定这里所考虑的两种情况中的相对运动是相等的——却会引起电流,这种电流的大小和路线都同前一情况中由电力所产生的一样。堵如此类的例子,以及企图证实地球相对于“光煤质”运动的实验的失败,引起了这样一种猜想:绝对静止这概念,不仅在力学中,而且在电动力学中也不符合现象的特性,倒是应当认为,凡是对力学方程适用的一切坐标系,对于上述电动力学和光学的定律也一样适用,对于第一级微量来说,这是已经证明了的。我们要把这个猜想(它的内容以后就称之为“相对性原理”)提升为公设,并且还要引进另一条在表面上看来同它不相容的公设:光在空虚空间里总是以一确定的速度 C 传播着,这速度同发射体的运动状态无关。由这两条公设,根据静体的麦克斯韦理论,就足以得到一个简单而又不自相矛盾的动体电动力学。“光以太”的引用将被证明是多余的,因为按照这里所要阐明的见解,既不需要引进一个共有特殊性质的“绝对静止的空间”,也不需要给发生电磁过程的空虚实间中的每个点规定一个速度矢量。这里所要闸明的理论——象其他各种电动力学一样——是以刚体的运动学为根据的,因为任何这种理论所讲的,都是关于刚体(坐标系)、时钟和电磁过程之间的关系。对这种情况考虑不足,就是动体电动力学目前所必须克服的那些困难的根源。一 运动学部分§1、同时性的定义设有一个牛顿力学方程在其中有效的坐标系。为了使我们的陈述比较严谨,并且便于将这坐标系同以后要引进来的别的坐标系在字面上加以区别,我们叫它“静系”。如果一个质点相对于这个坐标系是静止的,那么它相对于后者的位置就能够用刚性的量杆按照欧儿里得几何的方法来定出,并且能用笛卡儿坐标来表示。如果我们要描述一个质点的运动,我们就以时间的函数来给出它的坐标值。现在我们必须记住,这样的数学描述,只有在我们十分清楚地懂得“时间”在这里指的是什么之后才有物理意义。我们应当考虑到:凡是时间在里面起作用的我们的一切判断,总是关于同时的事件的判断。比如我说,“那列火车7点钟到达这里”,这大概是说:“我的表的短针指到 7 同火车的到达是同时的事件。”也许有人认为,用“我的表的短针的位置”来代替“时间”,也许就有可能克服由于定义“时间”而带来的一切困难。事实上,如果问题只是在于为这只表所在的地点来定义一种时间,那么这样一种定义就已经足够了;但是,如果问题是要把发生在不同地点的一系列事件在时间上联系起来,或者说——其结果依然一样——要定出那些在远离这只表的地点所发生的事件的时问,那么这徉的定义就不够 了。当然,我们对于用如下的办法来测定事件的时间也许会成到满意,那就是让观察者同表一起处于坐标的原点上,而当每一个表明事件发生的光信号通过空虚空间到达观察者时,他就把当时的时针位置同光到达的时间对应起来。但是这种对应关系有一个缺点,正如我们从经验中所已知道的那样,它同这个带有表的观察者所在的位置有关。通过下面的考虑,我们得到一种此较切合实际得多的测定法。如果在空间的A点放一只钟,那么对于贴近 A 处的事件的时间,A处的一个观察者能够由找出同这些事件同时出现的时针位置来加以测定,如果.又在空间的B点放一只钟——我们还要加一句,“这是一只同放在 A 处的那只完全一样的钟。” 那么,通过在 B 处的观察者,也能够求出贴近 B 处的事件的时间。但要是没有进一步的规定,就不可能把 A 处的事件同 B 处的事件在时间上进行比较;到此为止,我们只定义了“ A 时间”和“ B 时间”,但是并没有定义对于 A 和 B 是公共的“时间”。只有当我们通过定义,把光从 A 到 B 所需要的“时间”,规定为等于它从 B 到 A 所需要的“时间”,我们才能够定义 A 和 B 的公共“时间”。设在“A 时间”tA ,从 A 发出一道光线射向 B ,它在“ B 时间”, tB 。又从 B 被反射向 A ,而在“A时间”t`A回到A处。如果tB-tA=t’A-t’B那么这两只钟按照定义是同步的。我们假定,这个同步性的定义是可以没有矛盾的,并且对于无论多少个点也都适用,于是下面两个关系是普遍有效的:1 .如果在 B 处的钟同在 A 处的钟同步,那么在 A 处的钟也就同B处的钟同步。2 .如果在 A 处的钟既同 B 处的钟,又同 C 处的钟同步的,那么, B 处同 C 处的两只钟也是相互同步的。这样,我们借助于某些(假想的)物理经验,对于静止在不同地方的各只钟,规定了什么叫做它们是同步的,从而显然也就获得了“同时”和“时间”的定义。一个事件的“时间”,就是在这事件发生地点静止的一只钟同该事件同时的一种指示,而这只钟是同某一只特定的静止的钟同步的,而且对于一切的时间测定,也都是同这只特定的钟同步的。根据经验,我们还把下列量值2|AB|/(t’A-tA)=c当作一个普适常数(光在空虚空间中的速度)。要点是,我们用静止在静止坐标系中的钟来定义时间,由于它从属于静止的坐标系,我们把这样定义的时间叫做“静系时间”。§2 关于长度和附间的相对性下面的考虑是以相对性原理和光速不变原理为依据的,这两条原理我们定义,如下。1 .物理体系的状态据以变化的定律,同描述这些状态变化时所参照的坐标系究竞是用两个在互相匀速移动着的坐标系中的哪一个并无关系。2 .任何光线在“静止的”坐标系中都是以确定的速度 c运动着,不管这道光线是由静止的还是运动的物体发射出来的。由此,得光速=光路的路程/时间间隔这里的“时间间隔”,是依照§1中所定义的意义来理解的。设有一静止的刚性杆;用一根也是静止的量杆量得它的长度是l.我们现在设想这杆的轴是放在静止坐标系的 X 轴上,然后使这根杆沿着X轴向 x 增加的方向作匀速的平行移动(速度是 v )。我们现在来考查这根运动着的杆的长度,并且设想它的长度是由下面两种操作来确定的:a )观察者同前面所给的量杆以及那根要量度的杆一道运动,并且直接用量杆同杆相叠合来量出杆的长度,正象要量的杆、观察者和量杆都处于静止时一样。b )观察者借助于一些安置在静系中的、并且根据§1作同步运行的静止的钟,在某一特定时刻 t ,求出那根要量的杆的始末两端处于静系中的哪两个点上。用那根已经使用过的在这种情况下是静止的量杆所量得的这两点之间的距离,也是一种长度,我们可以称它为“杆的长度”。由操作 a )求得的长度,我们可称之为“动系中杆的长度”。根据相对性原理,它必定等于静止杆的长度 l 。由操作 b )求得的长度,我们可称之为“静系中(运动着的)杆的长度”。这种长度我们要根据我们的两条原理来加以确定,并且将会发现,它是不同于 l的。通常所用的运动学心照不宣地假定了:用上面这两种操作所测得的长度彼此是完全相等的,或者换句话说,一个运动着的刚体,于时期 t ,在几何学关系上完全可以用静止在一定位置上的同一物体来代替。此外,我们设想,在杆的两端(A和B),都放着一只同静系的钟同步了的钟,也就是说,这些钟在任何瞬间所报的时刻,都同它们所在地方的“静系时间”相一致;因此,这些钟也是“在静系中同步的”。我们进一步设想,在每一只钟那里都有一位运动着的观察者同它在一起,而且他们把§1中确立起来的关于两只钟同步运行的判据应用到这两只钟上。设有一道光线在时 间tA从 A 处发出,在时间tB于 B 处被反射回,并在时间t`A返回到 A 处。考虑到光速不变原理,我们得到:tB-tA=rAB/(c-v) 和 t’A-tB=rAB/(c+v)此处 rAB表示运动着的杆的长度——在静系中量得的。因此,同动杆一起运动着的观察者会发现这两只钟不是同不进行的,可是处在静系中的观察者却会宣称这两只钟是同步的。由此可见,我们不能给予同时性这概念以任何绝对的意义;两个事件,从一个坐标系看来是同时的,而从另一个相对于这个坐标系运动着的坐标系看来,它们就不能再被认为是同时的事件了。
1901-1904年,在德国权威杂志《物理学年鉴》上发表了5篇有关热力学和黑体辐射等方面的研究。1905年3月,《关于光的产生和转变的一个启发性观点》,文中提出光量子学说和光电效应的基本定律,并在历史上第一次揭示了微观物体的波粒二象性,从而圆满地解释了光电效应。(为此获得1921年诺贝尔物理学奖)1905年4月,《分子尺度的新测定》(获苏黎世大学哲学博士学位)1905年5月,《根据分子运动论研究静止液体中悬浮微粒的运动》(有力地提供了原子真实存在布朗运动的证明)1905年6月,长篇文献《论动体的电动力学》(完整提出了著名的狭义相对论理论,开创了物理学的新纪元)1905年9月,《物体惯性和能量的关系》(提出了质量和能量的关系E=mc^2,为原子核能的释放和利用奠定了理论基础) 1916年《广义相对论基础》(提出了大质量物体的存在可引起时空连续场的弯曲,为黑洞、大爆炸等新的宇宙论提供了理论依据)
这是我们一起认识的第5个科学家
几十亿年以前
有两颗像太阳一样的恒星
互相围绕着运转
很久以后
两颗恒星相继死亡
形成了两个黑洞
大约13亿年以前
这两个黑洞相互发生碰撞
最终合并到一起
并产生了剧烈的时空震荡
黑洞碰撞产生的一丝涟漪
以光速向四面八方传播
但这不是光
因为黑洞吸收了所有的光
当这丝涟漪到达本超星系团时
地球上正处于恐龙时代
当它到达银河系时
人类正在过着茹毛饮血的生活
100多年前当他经过地球附近星团时
爱因斯坦发表了广义相对论
提出了引力波的概念
2015年9月14日
它经过了地球
两个名为LIGO的探测器
捕捉到了他的存在
整个科学界沸腾了
爱因斯坦一百年前的预测
终于在现实中找到了
麦克斯韦预言电磁波
到赫兹发现电磁波只用了20多年
而爱因斯坦预言引力波
到人类找到引力波
用去了整整一百年
他用超越时代的智慧
开启了20世纪的物理学革命
爱因斯坦如今已经家喻户晓
只要上过学的人都知道他是一个天才物理学家
小时候的爱因斯坦却显得不那么聪明
4岁时还不会说话
家里人甚至担心他是一个低能儿
一直到上中学,除了数学很好
其他的学科都一塌糊涂
最后这位20世纪最伟大的科学家
竟然在中学时被劝退了
1895年
16岁的爱因斯坦
退学后直接投考联邦工业大学
第一次没有考上
因为除了物理和数学
其他科目都考的很差
于是他在附近找了一个中学重新学习
1896年
爱因斯坦终于考进瑞士的联邦工业大学
1900年,爱因斯坦大学毕业
一直找不到工作
后来在一个朋友的帮助下
待业一年的爱因斯坦
在伯尼尔专利局当了一个技术员
在专利局的几年时间里
他和朋友组成了一个学习小组
讨论科学和哲学的前沿问题
爱因斯坦也有了专门的时间
深入思考物理学前沿问题
终于到了1905年
这是一个很著名的年份
被称为爱因斯坦奇迹年
在这一年
爱因斯坦一共发表了6篇文章
每一篇都是有可能获得诺贝尔奖的
准确的说
至少能获得四个诺贝尔奖
这6篇论文横跨三大领域
首先是分子测量和布朗运动方面的
在他发表论文之前还没有人观测到分子
所以对于分子论充满了质疑
爱因斯坦通过研究布朗运动
给出了具体的
测算分子质量以及阿伏伽德罗常数的方法
成为论证分子论的有力武器
另一篇是关于光电效应的
爱因斯坦也因这篇论文获得了诺贝尔奖
这篇论文是20世纪量子论革命的导火索
从大胆和创新的意义上来说
这是六篇论文中最革命的一篇
甚至超过了相对论
这是爱因斯坦自己的评价
剩下的两篇就是狭义相对论
也就是大家所熟知的E=MC²的来源
这个公式也是制造原子弹的理论源泉
到了1915年爱因斯坦提出了广义相对论
给出了引力方程的完整形式
牛顿万有引力理论认为万有引力是瞬时形成的
不受时间和空间限制
进入20世纪之后
随着观察手段的提升
牛顿万有引力不能完全解释物理现象
爱因斯坦的广义相对论
对牛顿万有引力理论进行了重新诠释
认为引力是由于质量引起的时空扭曲形成的引力场
引力波是时空弯曲时候的涟漪
通过波的形式对外辐射
引力波的速度和光速一样
也是需要时间传播的
但是引力波本身很小
又随着距离的增加越来越弱
很难被观测到
所以直到2015年才第一次被观测到
不过他的广义相对论一提出
就有一系列预言
在短短几年内就得到各种天文观测的支持
广义相对论预言的引力红移的现象
在几年后就被天文观测证实
关于引力场使光线偏转的预言最为引人注目
几年后被两支天文学家队伍同时观测到
这些预言被实际观测陆续的证实
让广义相对论的理论在没有探测到引力波时
就获得了广泛的认同
1955年爱因斯坦病逝
按照他的遗愿
没有举行盛大的葬礼
火化时只有几个最亲近的朋友在场
并且不设墓碑
法国物理学家郎之万评价他:
在我们这一时代的物理学家中
爱因斯坦将位于最前列
他现在是
将来也还是
人类宇宙中头等光辉的一颗巨星
很难说
他究竟是同牛顿一样伟大
还是比牛顿更伟大
不过可以肯定的说
他的伟大是可以同牛顿相比拟的
在我们的世界里现在发现的有四种基本力
万有引力
电磁力
强相互作用力
弱相互作用力
无论什么样的现象
都可以用这四种基本力解释
科学家们现在孜孜不倦的在 探索 一种可能
就是这四种力能否解释为同一种力
爱因斯坦在人生的最后十几年时间里
其他的物理学家基本都在研究量子力学
而他几乎是独自一个人在研究这种可能性
也就是统一场理论
不过直到最后也没有成功
如今前沿的科学家们还在努力
期待能够先统一两种或者三种基本力
也许未来
读这篇文章的你能够完成这一壮举
明天爱玩杂技的晨晨爸爸将带来
四两拨千斤
爱因斯坦是真厉害啊!!1905年的五篇论文发表在最权威的杂志上了,有些人一辈子发一篇就津津乐道啦,他一年就发表了五篇!!其中包括获得诺贝尔奖的光电效应,和狭义相对论,有些人说这五篇论文篇篇都能获得诺贝尔奖!!此时的他还只是一个图书管理员身份。。但是从狭义相对论推广到广义相对论用了十年时间,到1915年才发表!最后爱因斯坦致力于将引力场和磁场统一起来,但是到现在为止还没统一起来,这也是科学家在未来一段时间内潜心研究的问题……我们都加油吧!争取我们大陆能出位真正的诺贝尔奖获得者看着每年诺贝尔奖真是让人寒心啊……
爱因斯坦在1905年发表了四篇论文。这四篇论文中每一篇都足以获得一次诺贝尔奖,这些成就深远地影响了整个世界,爱因斯坦也由此变得举世闻名。在第一篇论文《关于光的产生和转化的一个启发性观点》里,爱因斯坦通过量子理论解释了光电效应,并最终证明了能量子以及光子(即光的粒子)的存在。
另外一个是布朗运动,还有一篇是关于原子大小的测定,我们从这些成果可以看出,爱因斯坦在20世纪最重要的两个物理学学术贡献中占了一半,除了相对论之外,量子力学、光电效应都从爱因斯坦开始。
在该年度发表的论文中,爱因斯坦深信原子真实存在,直到那时,原子对科学界来说还更多的是一个对方程有用的数学工具,而不是物理实体。假设热水是由很多不稳定的水分子组成的,水是热的,这些分子不稳定,到处移动,无规则地撞击花粉;爱因斯坦推论花粉的运动是碰撞的结果。爱因斯坦遇到的最大问题是需要结合热力学和经典力学来阐述他的观点,后者描述物体的运动,前者却研究大系统。
20世纪最伟大的物理学家阿尔伯特·爱因斯坦(Albert.Einstein)1879年3月14日出生在德国西南的乌耳姆城,一年后随全家迁居慕尼黑。爱因斯坦的父母都是犹太人,父亲赫尔曼·爱因斯坦和叔叔雅各布·爱因斯坦合开了一个为电站和照明系统生产电机、弧光灯和电工仪表的电器工厂。母亲玻琳是受过中等教育的家庭妇女,非常喜欢音乐,在爱因斯坦六岁时就教他拉小提琴。 爱因斯坦小时候并不活泼,三岁多还不会讲话,父母很担心他是哑巴,曾带他去给医生检查。还好小爱因斯坦不是哑巴,可是直到九岁时讲话还不很通畅,所讲的每一句话都必须经过吃力但认真地思考。 在四、五岁时,爱因斯坦有一次卧病在床,父亲送给他一个罗盘。当他发现指南针总是指着固定的方向时,感到非常惊奇,觉得一定有什么东西深深地隐藏在这现象后面。他一连几天很高兴的玩这罗盘,还纠缠着父亲和雅各布叔叔问了一连串问题。尽管他连“磁”这个词都说不好,但他却顽固地想要知道指南针为什么能指南。这种深刻和持久的印象,爱因斯坦直到六十七岁时还能鲜明的回忆出来。 爱因斯坦在念小学和中学时,功课属平常。由于他举止缓慢,不爱同人交往,老师和同学都不喜欢他。教他希腊文和拉丁文的老师对他更是厌恶,曾经公开骂他:“爱因斯坦,你长大后肯定不会成器。”而且因为怕他在课堂上会影响其他学生,竟想把他赶出校门。 爱因斯坦的叔叔雅各布在电器工厂里专门负责技术方面的事务,爱因斯坦的父亲则负责商业的往来。雅各布是一个工程师,自己就非常喜爱数学,当小爱因斯坦来找他问问题时,他总是用很浅显通俗的语言把数学知识介绍给他。在叔父的影响下,爱因斯坦较早的受到了科学和哲学的启蒙。 父亲的生意做得并不好,但却是一个乐观和心地善良的人,家里每星期都有一个晚上要邀请来慕尼黑念书的穷学生吃饭,这样等于是救济他们。其中有一对来自立陶宛的犹太兄弟麦克斯和伯纳德,他们都是学医科的,喜欢阅读书籍、兴趣广泛。他们被邀请来爱因斯坦家里吃饭,并和羞答答、长着黑头发和棕色眼睛的小爱因斯坦交成了好朋友。 麦克斯可以说是爱因斯坦的“启蒙老师”,他借了一些通俗的自然科学普及读物给他看。麦克斯在爱因斯坦十二岁时,给了他一本施皮尔克的平面几何教科书。爱因斯坦晚年回忆这本神圣的小书时说:“这本书里有许多断言,比如,三角形的三个高交于一点,它们本身虽然并不是显而易见的,但是可以很可靠地加以证明,以致任何怀疑似乎都不可能。这种明晰性和可靠性给我留下了一种难以形容的印象。” 爱因斯坦还幸运地从一部卓越的通俗读物中知道了自然科学领域里的主要成果和方法,科普读物不但增进了爱因斯坦的知识,而且拨动了年轻人好奇的心弦,引起他对问题的深思。 爱因斯坦十六岁时报考瑞士苏黎世的联邦工业大学工程系,可是入学考试却告失败。他接受了联邦工业大学校长以及该校著名的物理学家韦伯教授的建议,在瑞士阿劳市的州立中学念完中学课程,以取得中学学历。 1896年10月,爱因斯坦跨进了苏黎世工业大学的校门,在师范系学习数学和物理学。他对学校的注入式教育十分反感,认为它使人没有时间、也没有兴趣去思考其他问题。幸运的是,窒息真正科学动力的强制教育,在苏黎世的联邦工业大学要比其他大学少得多。爱因斯坦充分的利用学校中的自由空气,把精力集中在自己所热爱的学科上。在学校中,他广泛的阅读了赫尔姆霍兹、赫兹等物理学大师的著作,他最着迷的是麦克斯韦的电磁理论。他有自学本领、分析问题的习惯和独立思考的能力。参考资料:
37、爱因斯坦的“相对论”发表之后,有人曾炮制了一本《百人驳相对论》,网罗了一批所谓名流对这一理论进行声势浩大的挞伐。可是,爱因斯坦自信自己的理论必然胜利,对哒伐不屑一顾。他说:“假如我的理论是错的,一个人反驳就够了,一百个零加起来还是零。”他坚定了必胜的信念,坚持研究,终于使“相对论”成为20世纪的伟大理论,为世人所瞩目。 感悟:自信,是建筑在对前途充满必胜心理基础之上的优秀心理素质。没有自信,就没有成功。爱因斯坦获得了巨大成功,首先是因为他自信。不过,光自信,不行动也不行。我们都知道,自信只是成功的一半,它毕竟还不是成功。 1905年3月14日,是爱因斯坦的生日。这一天,他的好朋友约他上咖啡馆,并为他准备了他向往已久的美味食品——伏尔加鱼子。可是,在餐桌上,爱因斯坦只顾热烈地评论着惯性定律,倒把特意为他准备的伏尔加鱼子忘得一干二净。当同伴问他吃了什么时,他一脸茫然,说:“不知道。啊,那难道是鱼子吗?” 又有一次,爱因斯坦担任了普林斯顿高级研究所主任后的一天,这天下班后,爱因斯坦便匆匆地往家里赶,可是走到半路,他忽然觉得连自己的家在哪里也不知道,只好打电话到办公室询问秘书小姐,最后得由秘书小姐领他回家。大家知道这件事后,都觉得好笑,但同时更加深了对这位“不谙世事”的科学家的敬意。 感悟:爱因斯坦之所以成为举世闻名的科学巨匠,是因为他对科学研究孜孜不倦,在勤奋、专注的钻研中,达到了忘我的境界,因而常常闹出了一些笑话。平常人做平常事也应该专注。如果专注于某一件事情,哪怕它很小,只要你努力做得更好,总会有不寻常的收获。
爱小提琴 艺术科学两不误
至少输入5个字