首页

> 学术论文知识库

首页 学术论文知识库 问题

中学三角形毕业论文

发布时间:

中学三角形毕业论文

三角形全等的判定公理及推论有: (1)“边角边”简称“SAS” (2)“角边角”简称“ASA” (3)“边边边”简称“SSS” (4)“角角边”简称“AAS” (5 )“斜边直角边”简称“HL”(直角三角形)注意:在全等的判定中,没有AAA和SSA,这两种情况都不能唯一确定三角形的形状。

数形结合就是运用图形来简化解题思路,数与形是数学中的两个最古老,也是最基本的研究对象,它们在一定条件下可以相互转化。 中学数学研究的对象可分为两大部分,一部分是数,一部分是形,但数与形是有联系的,这个联系称之为数形结合,或形数结合。我国著名数学家华罗庚曾说过:“数形结合百般好,隔裂分家万事非。”“数”与“形”反映了事物两个方面的属性。我们认为,数形结合,主要指的是数与形之间的一一对应关系。数形结合就是把抽象的数学语言、数量关系与直观的几何图形、位置关系结合起来,通过“以形助数”或“以数解形”即通过抽象思维与形象思维的结合,可以使复杂问题简单化,抽象问题具体化,从而起到优化解题途径的目的。 作为一种数学思想方法,数形结合的应用大致又可分为两种情形:或者借助于数的精确性来阐明形的某些属性,或者借助形的几何直观性来阐明数之间某种关系,即数形结合包括两个方面:第一种情形是“以数解形”,而第二种情形是“以形助数”。“以数解形”就是有些图形太过于简单,直接观察却看不出什么规律来,这时就需要给图形赋值,如边长、角度等等。 数形结合的思想方法是数学教学内容的主线之一,应用数形结合的思想,可以解决以下问题: 一、解决集合问题:在集合运算中常常借助于数轴、Venn图来处理集合的交、并、补等运算,从而使问题得以简化,使运算快捷明了。 二、解决函数问题:借助于图象研究函数的性质是一种常用的方法。函数图象的几何特征与数量特征紧密结合,体现了数形结合的特征与方法。 三、解决方程与不等式的问题:处理方程问题时,把方程的根的问题看作两个函数图象的交点问题;处理不等式时,从题目的条件与结论出发,联系相关函数,着重分析其几何意义,从图形上找出解题的思路。 四、解决三角函数问题:有关三角函数单调区间的确定或比较三角函数值的大小等问题,一般借助于单位圆或三角函数图象来处理,数形结合思想是处理三角函数问题的重要方法。 五、解决线性规划问题:线性规划问题是在约束条件下求目标函数的最值的问题。从图形上找思路恰好就体现了数形结合思想的应用。 六、解决数列问题:数列是一种特殊的函数,数列的通项公式以及前n项和公式可以看作关于正整数n的函数。用数形结合的思想研究数列问题是借助函数的图象进行直观分析,从而把数列的有关问题转化为函数的有关问题来解决。 七、解决解析几何问题:解析几何的基本思想就是数形结合,在解题中善于将数形结合的数学思想运用于对点、线、曲线的性质及其相互关系的研究中。 八、解决立体几何问题:立体几何中用坐标的方法将几何中的点、线、面的性质及其相互关系进行研究,可将抽象的几何问题转化纯粹的代数运算。多做几个类似的题目啊....找本专题什么的强化一下就可以了

1证明一个三角形是直角三角形 2用于直角三角形中的相关计算 3有利于你记住余弦定理,它是余弦定理的一种特殊情况。中国最早的一部数学著作——《周髀算经》的开头,记载着一段周公向商高请教数学知识的对话: 周公问:“我听说您对数学非常精通,我想请教一下:天没有梯子能上去,地也没法用尺子去一段一段丈量,那么如何才能得到关于天地得到数据呢?” 商高回答说:“数的产生来源于对方和圆这些形体饿认识。其中有一条原理:当直角三角形‘矩’得到的一条直角边‘勾’等于3,另一条直角边‘股’等于4的时候,那么它的斜边‘弦’就必定是5。这个原理是大禹在治水的时候就总结出来的呵。” 从上面所引的这段对话中,我们能清楚地看到,我国古代的人民早在多少千年以前就已经发现并应用勾股定理这一重要懂得数学原理了。稍懂平面多少何饿读者都清楚,所谓勾股定理,就是指在直角三角形中,两条直角边的平方和等于斜边的平方 用勾(a)和股(b)分别表示直角三角形得到两条直角边,用弦(c)来表示斜边,则可得: 勾2+股2=弦2 亦即: a2+b2=c2 勾股定理在西方被称为毕达哥拉斯定理,相传是古希腊数学家兼哲学家毕达哥拉斯于公元前550年第一发现的。其实,我国古代得到人民对这一数学定理的发现和应用,远比毕达哥拉斯早得多。如果说大禹治水因年代久远而无法确切考证的话,那么周公与商高的对话则能确定在公元前1100年左右的西周时期,比毕达哥拉斯要早了五百多年。其中所说的勾3股4弦5,正是勾股定理的一个应用特例(32+42=52)。所以现在数学界把它称为勾股定理,应该是非常恰当的。 在稍后一点的《九章算术一书》中,勾股定理得到了更加规范的一般性表达。书中的《勾股章》说;“把勾和股分别自乘,然后把它们的积加起来,再进行开方,便能得到弦。”把这段话列成算式,即为: 弦=(勾2+股2)(1/2) 即: c=(a2+b2)(1/2) 定理: 如果直角三角形两直角边分别为a,b,斜边为c,那么a^平方+b^平方=c^平方; 即直角三角形两直角边的平方和等于斜边的平方。 如果三角形的三条边a,b,c满足a^2+b^2=c^2,如:一条直角边是3,一条直角边是四,斜边就是3*3+4*4=X*X,X=5。那么这个三角形是直角三角形。(称勾股定理的逆定理) 来源: 毕达哥拉斯树是一个基本的多少何定理,传统上认为是由古希腊的毕达哥拉斯所证明。据说毕达哥拉斯证明了这个定理后,即斩了百头牛作庆祝,因此又称“百牛定理”。在中国,《周髀算经》记载了勾股定理的一个特例,相传是在商代由商高发现,故又有称之为商高定理;三国时代的赵爽对《周髀算经》内的勾股定理作出了详细注释,作为一个证明。法国和比利时称为驴桥定理,埃及称为埃及三角形。我国古代把直角三角形中较短得直角边叫做勾,较长的直角边叫做股,斜边叫做弦。 文章来源: 原文链接: 满意请采纳

中学数学中的数形结合比较明显的地方当然是函数这一块了,函数中的值域,最值,单调性以及函数的工具导数这几方面比较具体,你可以找些具体的题目,在高三总复习资料上对应的部分一定有的。希望可以帮到你。

相似三角形的毕业论文

关于勾股定理 勾股定理是几何学中的明珠,所以它充满魅力,千百年来,人们对它的证明趋之若骛,其中有著名的数学家,也有业余数学爱好者,有普通的老百姓,也有尊贵的政要权贵,甚至有国家总统。也许是因为勾股定理既重要又简单,更容易吸引人,才使它成百次地反复被人炒作,反复被人论证。1940年出版过一本名为《毕达哥拉斯命题》的勾股定理的证明专辑,其中收集了367种不同的证明方法。实际上还不止于此,有资料表明,关于勾股定理的证明方法已有500余种,仅我国清末数学家华蘅芳就提供了二十多种精彩的证法。这是任何定理无法比拟的。 在这数百种证明方法中,有的十分精彩,有的十分简洁,有的因为证明者身份的特殊而非常著名。 在国外,尤其在西方,勾股定理通常被称为毕达哥拉斯定理.这是由于,他们认为最早发现直角三角形具有“勾2+股2=弦2”这一性质并且最先给出严格证明的是古希腊的数学家毕达哥拉斯(Pythagoras,约公元前580-公元前500). 实际上,在更早期的人类活动中,人们就已经认识到这一定理的某些特例.除我国在公元前1000多年前发现勾股定理外,据说古埃及人也曾利用“勾三股四弦五”的法则来确定直角.但是,这一传说引起过许多数学史家的怀疑.比如,美国的数学史家M·克莱因教授曾经指出:“我们也不知道埃及人是否认识到毕达哥拉斯定理.我们知道他们有拉绳人(测量员),但所传他们在绳上打结,把全长分成长度为3、4、5的三段,然后用来形成直角三角形之说,则从未在任何文件上得到证实.”不过,考古学家们发现了几块大约完成于公元前2000年左右的古巴比伦的泥版书,据专家们考证,其中一块上面刻有如下问题:“一根长度为30个单位的棍子直立在墙上,当其上端滑下6个单位时,请问其下端离开墙角有多远?”这是一个三边为3:4:5三角形的特殊例子;专家们还发现,在另一块版板上面刻着一个奇特的数表,表中共刻有四列十五行数字,这是一个勾股数表:最右边一列为从1到15的序号,而左边三列则分别是股、勾、弦的数值,一共记载着15组勾股数.这说明,勾股定理实际上早已进入了人类知识的宝库. 证明方法: 先拿四个一样的直角三角形。拼入一个(a+b)的正方形中,中央米色正方形的面积:c2 。图(1)再改变三角形的位置就会看到两个米色的正方形,面积是(a2 , b2)。图(2)四个三角形面积不变,所以结论是:a2 + b2 = c2 勾股定理的历史: 商高是公元前十一世纪的中国人.当时中国的朝代是西周,是奴隶社会时期.在中国古代大约是战国时期 西汉的数学著作 《周髀 算经》中记录着商高同周公的一段对话.商高说:"…故折矩,勾广三,股修四 ,经隅五."商高那段话的意思就是说:当直角三角形的两条直角边分别为3(短边)和4(长边)时,径 隅(就是弦)则为5.以后人们就简单地把这个事实说成"勾三股四弦五".这就是著名的勾股定理. 关于勾股定理的发现,《周髀算经》上说:"故禹之所以治天下者,此数之所由生也.""此数"指的是"勾 三股四弦五",这句话的意思就是说:勾三股四弦五这种关系是在大禹治水时发现的. 赵爽: •东汉末至三国时代吴国人 •为《周髀算经》作注,并著有《勾股圆方图说》. 赵爽的这个证明可谓别具匠心,极富创新意识.他用几何图形的截,割,拼,补来证明代数式之间的恒 等关系,既具严密性,又具直观性,为中国古代以形证数,形数统一,代数和几何紧密结合,互不可分的 独特风格树立了一个典范.以后的数学家大多继承了这一风格并且代有发展.例如稍后一点的刘徽在证明 勾股定理时也是用的以形证数的方法,只是具体图形的分合移补略有不同而已. 中国古代数学家们对于勾股定理的发现和证明,在世界数学史上具有独特的贡献和地位.尤其是其中 体现出来的"形数统一"的思想方法,更具有科学创新的重大意义.事实上,"形数统一"的思想方法正 是数学发展的一个极其重要的条件.正如当代中国数学家吴文俊所说:"在中国的传统数学中,数量关系 与空间形式往往是形影不离地并肩发展着的......十七世纪笛卡儿解析几何的发明,正是中国这种传统思 想与方法在几百年停顿后的重现与继续." 中国最早的一部数学著作——《周髀算经》的开头,记载着一段周公向商高请教数学知识的对话: 周公问:"我听说您对数学非常精通,我想请教一下:天没有梯子可以上去,地也没法用尺子去一段 一段丈量,那么怎样才能得到关于天地得到数据呢?" 商高回答说:"数的产生来源于对方和圆这些形体的认识.其中有一条原理:当直角三角形'矩' 得到的一条直角边'勾'等于3,另一条直角边'股'等于4的时候,那么它的斜边'弦'就必定是5.这 个原理是大禹在治水的时候就总结出来的。

学生可以通过数学家的 故事 了解数学的发生和发展,有助于培养兴趣、开阔视野、开拓创新,更深刻体会数学对人类文明发展的作用。今天我在这给大家整理了数学家的 故事大全 ,接下来随着我一起来看看吧!

数学家的故事 ( 一 )

泰勒斯(古希腊数学家、天文学家)来到埃及,人们想试探一下他的能力,就问他是否能测量金字塔高度.泰勒斯说可以,但有一个条件——法老必须在场.第二天,法老如约而至,金字塔周围也聚集了不少围观的老百姓.秦勒斯来到金字塔前,阳光把他的影子投在地面上.每过一会儿,他就让人测量他影子的长度,当测量值与他身高完全吻合时,他立刻在大金字塔在地面上的投影处作一记号,然后再丈量金字塔底到投影尖顶的距离.这样,他就报出了金字塔确切的高度.在法老的请求下,他向大家讲解了如何从“影长等于身长”推到“塔影等于塔高”的原理.也就是今天所说的相似三角形定理.

一些数学家生前献身于数学,死后在他们的墓碑上,刻着代表着他们生平业绩的标志。

古希腊学者阿基米德死于进攻西西里岛的罗马敌兵之手(死前他还在主:“不要弄坏我的圆”。)后,人们为纪念他便在其墓碑上刻上球内切于圆柱的图形,以纪念他发现球的体积和表面积均为其外切圆柱体积和表面积的三分之二。

德国数学家高斯在他研究发现了正十七边形的尺规作法后,便放弃原来立志学文的打算

而献身于数学,以至在数学上作出许多重大贡献。甚至他在遗嘱中曾建议为他建造正十七边形的棱柱为底座的墓碑。

16世纪德国数学家鲁道夫,花了毕生精力,把圆周率算到小数后35位,后人称之为鲁

道夫数,他死后别人便把这个数刻到他的墓碑上。

瑞士数学家雅谷·伯努利,生前对螺线(被誉为生命之线)有研究,他死之后,墓碑上

就刻着一条对数螺线,同时碑文上还写着:“我虽然改变了,但却和原来一样”。这是一句既刻划螺线性质又象征他对数学热爱的双关语

数学家的故事 ( 二 )

丘成桐

丘成桐1949年出生于广东汕头,老家在梅州蕉岭,在香港长大。父亲曾在香港香让学院及香港中文大学的前身崇基学院任教。父教母慈,童年的丘成桐无忧无虑,成绩优异。但在他14岁那年,父亲突然辞世,一家人顿时失去经济来源。尽管丘成桐不得不一边打工一边学习,却仍然以优异成绩考入香港中文大学数学系。

他的父亲在他14岁时去世,家境贫寒。他中学的时候逃学一年,曾经成绩很差,差一点落榜。19岁的时候来到美国伯克利,“21岁 毕业 时就注定要改变数学的面貌”。这不是我的话,这是几年前加州大学洛杉矶分校希望把丘教授聘请过来的时候,系里讨论时一个年纪很大的几何学家引用陈省身先生说的一句话。他10年之后成为数学界的一代天骄。从他入学伯克利到在世界数学家大会做一小时 报告 还不到10年。当年他只有28岁,也是在那一年,陈景润先生被邀请做45分钟的报告。这期间他证明了卡拉比猜想、正质量猜想,开创了一个崭新的领域:几何分析。

1981年,他32岁时,获得了美国数学会的维布伦(Veblen)奖——这是世界微分几何界的最高奖项之一;1983年,他被授予菲尔兹(Fields)奖章——这是世界数学界的最高荣誉;1994年,他又荣获了克劳福(Crawford)奖。

除此之外,他还获得过美国国家科学奖章和加利福尼亚州最优秀的科学家的称号,是美国科学院院士、哈佛大学名誉博士、中国科学院外籍院士、香港中文大学名誉博士……  大学期间,他以三年时间修完全部必修课程,还阅读了大量课外资料。他的突出成绩和钻研精神为当时的美籍教授萨拉夫所赏识,萨拉夫力荐他到美国加利福尼亚大学伯克利分校攻读博士研究生。七十年代左右的伯克利分校是世界微分几何的中心,云集了许多优秀的几何学家和年轻学者。在这里,丘成桐得到IBM奖学金,并师从著名微分几何学家陈省身。

命运是公平的,奖章、荣誉,授予了那个在教室中坚持到最后的人。这,并没有让丘成桐止步不前,他继续进行着大量繁杂的研究工作,并不断取得成就。

坚韧、坚持、锲而不舍,这就是丘成桐的精神。当然,也不是每个有着这样精神的人都能取得丘成桐一样的成就的。数学需要勤奋,更需要天才。正如著名数学家尼伦伯格所说,丘成桐“不仅具备几何学家的直观能力,而且兼有分析家的才能”。著名数学家郑绍远先生回忆说,对于许多艰深的数学问题,丘成桐已思考近20年,虽然仍未解决,他还是没有轻易放弃思考。

丘成桐对中国的数学事业一直非常关心。从1984年起,他先后招收了十几名来自中国的博士研究生,要为中国培养微分几何方面的人才。他的做法是,不仅要教给学生一些特殊的技巧,更重要的是教会他们如何领会数学的精辟之处。他的学生田刚,也于1996年获得了维布伦奖,被公认为世界最杰出的微分几何学家之一。

数学是奇妙的,只有锲而不舍才能探求其中真谛。对于丘成桐这样的数学家来说,这种探求不但是人生的意义,也是人生的乐趣。

丘先生绝对不是一个完人,但绝对是一个伟大的数学家。你可以不喜欢这个人,但你不可能不喜欢他的数学,他证明了许多妙不可言的定理。大家如果学数学,读到研究生的话你就会知道他的定理非常美妙,他的卡拉比猜想毫无疑问是数学中最深刻的定理之一,尤其是在超弦理论中应用之广不可思议,我想当年丘教授自己都没有想到。

他个性坚强,永不服输,永不言弃,著述等身,得奖无数。这些也带给他许许多多的误解。因为少年得志,20几岁就功成名就,有人说他目中无人、傲慢至极。当然,有这样的成就也让他有傲慢的资本。我把他跟陈省身一比。陈省身先生,大家跟他相处久了就知道也傲慢,只是他们以不同的形式表达他们的傲慢,丘成桐是直截了当,数学和为人是他衡量你的标准,他看你的话,你数学不好,他不愿意跟你多谈,你做事情不入他的眼,他不愿意搭理你。

先生是微笑不语,什么人他都可以很平和地相处,但是这微笑中就蕴含着尊敬或者是不屑,你自己可以感觉出来。他们都是真正的君子,都是我最敬佩的伟大的数学家,他们都尊重真正的君子和真正的数学家。我想这是他们真正可贵的地方。

30年来,丘先生不仅时刻把握着数学与物理跳动的脉搏,引导着世界数学发展的潮流,还一直怀着一颗赤子之心,关心和帮助着中国数学的进步。他培养了众多的华人数学家。他的学生和博士后在国外各个重要的大学里都有。

数学家的故事 ( 三 )

数学奇才——耐普尔

记得四大发明吗?它们是印度-阿拉伯记号,十进制小数,对数和计算机。其中的对数是十七世纪由耐普尔发明的。他1550年出生在苏格兰首府爱丁堡,从小喜欢数学和科学,以其天才的四个成果被载入数学史。其中的对数的发明使整个欧洲沸腾了。拉普拉斯认为“对数的发现以其节省劳力而延长了天文学家的寿命。”可以说对数的发现使现代化提前了至少二百年。下面我要给大家讲两个他的小故事:

一次,他宣称他的黑毛公鸡能为他证实:他的哪一个仆人偷了他的东西。仆人们被一个接一个地派进暗室,要他们拍公鸡的背,仆人们不知道耐普尔用烟黑涂了公鸡的背,自觉有罪的那个仆人,怕挨着那个公鸡,回来时手是净的。

还有一次耐普尔因他的邻居的鸽子吃他的粮食而感到烦脑。他恫吓道:如果他邻居不限制鸽子,让它们乱飞,他就要没收些鸽子。邻居认为他的鸽子是根本不可能被捉住的,就告诉耐普尔,如果他能捉住他们,尽管捉好了。第二天,邻居看到他的那些鸽子在耐普尔的草坪上蹒跚地走着,十分惊讶,耐普尔镇静自若地把它们装进一只大口袋。原来,耐普尔在他的草坪上各处撒了些用白兰地酒泡过的豌豆,使这些鸽子醉了。

数学家笛卡儿

笛卡儿最杰出的成就是在数学发展上创立了解析几何学。在笛卡儿时代,代数还是一个比较新的学科,几何学的思维还在数学家的头脑中占有统治地位。笛卡儿致力于代数和几何联系起来的研究,于1637年,在创立了坐标系后,成功地创立了解析几何学。他的这一成就为微积分的创立奠定了基础。解析几何直到现在仍是重要的数学 方法 之一。

数学家冯·诺依曼

20世纪最杰出的数学家之一的冯·诺依曼。众所周知,1946年发明的电子计算机,大大促进了科学技术的进步,大大促进了社会生活的进步。鉴于冯·诺依曼在发明电子计算机中所起到关键性作用,他被西方人誉为"计算机之父".1911年一1921年,冯·诺依曼在布达佩斯的卢瑟伦中学读书期间,就崭露头角而深受老师的器重。在费克特老师的个别指导下并合作发表了第一篇数学论文,此时冯·诺依曼还不到18岁。

数学家的故事 ( 四 )

欧拉是数学史上著名的数学家,他在数论、几何学、天文数学、微积分等好几个数学的分支领域中都取得了出色的成就。不过,这个大数学家在孩提时代却一点也不讨老师的喜欢,他是一个被学校除了名的小学生。

事情是因为星星而引起的。 当时,小欧拉在一个教会学校里读书。有一次,他向老师提问,天上有多少颗星星。老师是个神学的信徒,他不知道天上究竟有多少颗星,圣经上也没有回答过。其实,天上的星星数不清,是无限的。我们的肉眼可见的星星也有几千颗。这个老师不懂装懂,回答欧拉说:“天上有多少颗星星,这无关紧要,只要知道天上的星星是上帝镶嵌上去的就够了。” 欧拉感到很奇怪:“天那么大,那么高,地上没有扶梯,上帝是怎么把星星一颗一颗镶嵌到一在幕上的呢?上帝亲自把它们一颗一颗地放在天幕,他为什么忘记了星星的数目呢?上帝会不会太粗心了呢?” 他向老师提出了心中的疑问,老师又一次被问住了,涨红了脸,不知如何回答才好。老师的心中顿时升起一股怒气,这不仅是因为一个才上学的孩子向老师问出了这样的问题,使老师下不了台,更主要的是,老师把上帝看得高于一切。小欧拉居然责怪上帝为什么没有记住星星的数目,言外之意是对万能的上帝提出了怀疑。在老师的心目中,这可是个严重的问题。在欧拉的年代,对上帝是绝对不能怀疑的,人们只能做思想的奴隶,绝对不允许自由思考。小欧拉没有与教会、与上帝"保持一致",老师就让他离开学校回家。但是,在小欧拉心中,上帝神圣的光环消失了。他想,上帝是个窝囊废,他怎么连天上的星星也记不住?他又想,上帝是个独裁者,连提出问题都成了罪。他又想,上帝也许是个别人编造出来的家伙,根本就不存在。

回家后无事,他就帮助爸爸放羊,成了一个牧童。他一面放羊,一面读书。他读的书中,有不少数学书。爸爸的羊群渐渐增多了,达到了100只。原来的羊圈有点小了,爸爸决定建造一个新的羊圈。他用尺量出了一块长方形的土地,长40米,宽15米,他一算,面积正好是600平方米,平均每一头羊占地6平方米。正打算动工的时候,他发现他的材料只够围100米的篱笆,不够用。若要围成长40米,宽15米的羊圈,其周长将是110米(15+15+40+40=110),父亲感到很为难,若要按原计划建造,就要再添10米长的材料;要是缩小面积,每头羊的面积就会小于6平方米。小欧拉却向父亲说,不用缩小羊圈,也不用担心每头羊的领地会小于原来的计划。他有办法。父亲不相信小欧拉会有办法,听了没有理他。小欧拉急了,大声说,只有稍稍移动一下羊圈的桩子就行了。父亲听了直摇头,心想:“世界上哪有这样便宜的事情?”但是,小欧拉却坚持说,他一定能两全齐美。父亲终于同意让儿子试试看。小欧拉见父亲同意了,站起身来,跑到准备动工的羊圈旁。他以一个木桩为中心,将原来的40米边长截短,缩短到25米。父亲着急了,说:“那怎么成呢?那怎么成呢?这个羊圈太小了,太小了。”小欧拉也不回答,跑到另一条边上,将原来15米的边长延长,又增加了10米,变成了25米。经这样一改,原来计划中的羊圈变成了一个25米边长的正方形(25+25+25+25=100)。然后,小欧拉很自信地对爸爸说:“现在,篱笆也够了,面积也够了。”

父亲照着小欧拉设计的羊圈扎上了篱笆,100米长的篱笆真的够了,不多不少,全部用光。面积也足够了,而且还稍稍大了一些。父亲心里感到非常高兴。孩子比自己聪明,真会动脑筋,将来一定大有出息。

父亲感到,让这么聪明的孩子放羊实在是可惜了。后来,他想办法让小欧拉认识了一个大数学家伯努利。通过这位数学家的推荐,1720年,小欧拉成了巴塞尔大学的大学生。这一年,小欧拉13岁,是这所大学最年轻的大学生。

数学家的故事 ( 五 )

大家可能都听说过“华氏不等式”,华氏不等式是我国著名数学家的杰作,今天就让我们来看一看华罗庚的故事吧~

华罗庚是一位自学成才的数学家。仅仅是初中毕业的他,却在《科学》杂志上发表了一篇论文,也得到了数学家熊庆来的赏识,在各方的帮助下华罗庚进入清华园工作,开始了他的数学研究之路。

1936年,在熊庆来教授的推荐下,华罗庚前往英国 留学 。著名数学家哈代对华罗庚非常的赏识,他对华罗庚说:“你可以在两年之内获得博士学位。”令人惊讶的是,华罗庚却说:“我并不想获得博士学位,我只想做一个求学者,我来剑桥是求学问的,不是为了学位。”在两年研究数学的过程中,他集中精力研究堆垒素数论,并就华林问题、他利问题、奇数哥德巴赫问题发表18篇论文,得出了著名的“华氏定理”,向全世界显示了中国数学家出众的智慧与能力。

关于 数学家的故事相关 文章 :

★ 关于数学家的小故事5篇

★ 关于我国数学家的小故事5篇

★ 关于数学家的励志故事大全

★ 关于数学家华罗庚的小故事5篇

★ 数学家的小故事2020最新

★ 数学家励志小故事大全

★ 关于数学的故事有哪些

★ 数学家的小故事2020汇集

★ 数学家的数学小故事

★ 关于数学家的故事手抄报

哇塞,这么多专业术语,咋翻译啊...

三角形全等的判定公理及推论有: (1)“边角边”简称“SAS” (2)“角边角”简称“ASA” (3)“边边边”简称“SSS” (4)“角角边”简称“AAS” (5 )“斜边直角边”简称“HL”(直角三角形)注意:在全等的判定中,没有AAA和SSA,这两种情况都不能唯一确定三角形的形状。

三角形数学论文范文

三角学与天文学 早期三角学不是一门独立的学科,而是依附于天文学,是天文观测结果推算的一种方法,因而最先发展起来的是球面三角学.希腊、印度、 *** 数学中都有三角学的内容,可大都是天文观测的副产品.测量天体之间的距离不是一件容易的事. 天文学家把需要测量的天体按远近不同分成好几个等级.离我们比较近的天体,它们离我们最远不超过100光年(1光年=万亿1012公里),天文学家用三角视差法测量它们的距离.三角视差法是把被测的那个天体置于一个特大三角形的顶点,地球绕太阳公转的轨道直径的两端是这个三角形的另外二个顶点,通过测量地球到那个天体的视角,再用到已知的地球绕太阳公转轨道的直径,依靠三角公式就能推算出那个天体到我们的距离了.稍远一点的天体我们无法用三角视差法测量它和地球之间的距离,因为在地球上再也不能精确地测定它们的视差了. 〔河内天体的距离又称为视差,恒星对日地平均距离(a)的张角叫做恒星的三角视差(p),则较近的恒星的距离D可表示为:sinπ=a/D〕 若π很小,π以角秒表示,且单位取秒差距(pc),则有:D=1/π 用周年视差法测定恒星距离,有一定的局限性,因为恒星离我们愈远,π就愈小,实际观测中很难测定.三角视差是一切天体距离测量的基础,至今用这种方法测量了约10,000多颗恒星.因此从天文学中又衍生出了三角学,而三角学则为天文研究奠定了基础. 三角学起源于古希腊.为了预报天体运行路线、计算日历、航海等需要,古希腊人已研究球面三角形的边角关系,掌握了球面三角形两边之和大于第三边,球面三角形内角之和大于两个直角,等边对等角等定理.印度人和 *** 人对三角学也有研究和推进,但主要是应用在天文学方面.15、16世纪三角学的研究转入平面三角,以达到测量上应用的目的.16世纪法国数学家韦达系统地研究了平面三角.他出版了应用于三角形的数学定律的书.此后,平面三角从天文学中分离出来,成了一个独立的分支.平面三角学的内容主要有三角函数、解三角形和三角方程. 而三角学的发展历程又是十分漫长的. 最早,古希腊门纳劳斯(Menelaus of Alexandria)著《球面学》,提出了三角学的基础问题和基本概念,特别是提出了球面三角学的门纳劳斯定理;50年后,另一个古希腊学者托勒密(Ptolemy)著《天文学大成》,初步发展了三角学.而在公元499年,印度数学家阿耶波多(ryabhata I)也表述出古代印度的三角学思想;其后的瓦拉哈米希拉(Varahamihira)最早引入正弦概念,并给出最早的正弦表;公元10世纪的一些 *** 学者进一步探讨了三角学.当然,所有这些工作都是天文学研究的组成部分.直到纳西尔丁(Nasir ed-Din al Tusi,1201~1274)的《横截线原理书》才开始使三角学脱离天文学,成为纯粹数学的一个独立分支.而在欧洲,最早将三角学从天文学独立出来的数学家是德国人雷格蒙塔努斯(J•Regiomontanus,1436~1476). 雷格蒙塔努斯的主要著作是1464年完成的《论各种三角形》.这是欧洲第一部独立于天文学的三角学著作.全书共5卷,前2卷论述平面三角学,后3卷讨论球面三角学,是欧洲传播三角学的源泉.雷格蒙塔努斯还较早地制成了一些三角函数表. 雷格蒙塔努斯的工作为三角学在平面和球面几何中的应用建立了牢固的基础.他去世以后,其著作手稿在学者中广为传阅,并最终出版,对16世纪的数学家产生了相当大的影响,也对哥白尼等一批天文学家产生了直接或间接的影响. 最先使用三角学一词的是文艺复兴时期的德国数学家皮蒂斯楚斯(B.Pitiscus,1561~1613),他在1595年出版的《三角学:解三角形的简明处理》中创造这个词.其构成法是由三角形(tuiangulum)和测量(metuicus)两字凑合而成.要测量计算离不开三角函数表和三角学公式,它们是作为三角学的主要内容而发展的. 三角测量在中国也很早出现,公元前一百多年的《周髀算经》就有较详细的说明,例如它的首章记录“周公曰,大哉言数,请问用矩之道.商高曰,平矩以正绳,偃矩以望高,复矩以测深,卧矩以知远.”(商高说的矩就是今天工人用的两边互相垂直的曲尺,商高说的大意是将曲尺置于不同的位置可以测目标物的高度、深度与广度)1世纪时的《九章算术》中有专门研究测量问题的篇章. 16世纪三角函数表的制作首推奥地利数学家雷蒂库斯(G.J.Rhetucus,1514~1574).他1536年毕业于滕贝格(Wittenbery)大学,留校讲授算术和几何.1539年赴波兰跟随著名天文学家哥白尼学习天文学,1542年受聘为莱比锡大学数学教授.雷蒂库斯首次编制出全部6种三角函数的数表,包括第一张详尽的正切表和第一张印刷的正割表. 17世纪初对数发明后大大简化了三角函数的计算,制作三角函数表已不再是很难的事,人们的注意力转向了三角学的理论研究.不过三角函数表的应用却一直占据重要地位,在科学研究与生产生活中发挥着不可替代的作用. 三角公式是三角形的边与角、边与边或角与角之间的关系式.三角函数的定义已体现了一定的关系,一些简单的关系式在古希腊人以及后来的 *** 人中已有研究. 文艺复兴后期,法国数学家韦达(F.Vieta)成为三角公式的集大成者.他的《应用于三角形的数学定律》(1579)是较早系统论述平面和球面三角学的专著之一.其中第一部分列出6种三角函数表,有些以分和度为间隔.给出精确到5位和10位小数的三角函数值,还附有与三角值有关的乘法表、商表等.第二部分给出造表的方法,解释了三角形中诸三角线量值关系的运算公式.除汇总前人的成果外,还补充了自己发现的新公式.如正切定律、和差化积公式等等.他将这些公式列在一个总表中,使得任意给出某些已知量后,可以从表中得出未知量的值.该书以直角三角形为基础.对斜三角形,韦达仿效古人的方法化为直角三角形来解决.对球面直角三角形,给出计算的完整公式及其记忆法则,如余弦定理,1591年韦达又得到多倍角关系式,1593年又用三角方法推导出余弦定理. 1722年英国数学家棣莫弗(A.De Meiver)得到以他的名字命名的三角学定理 ?(cosθ±isinθ)n=cosnθ+isinnθ, 并证明了n是正有理数时公式成立;1748年欧拉(L.Euler)证明了n是任意实数时公式也成立,他还给出另一个著名公式 ?eiθ=cosθ+isinθ, 对三角学的发展起到了重要的推动作用. 近代三角学是从欧拉的《无穷分析引论》开始的.他定义了单位圆,并以函数线与半径的比值定义三角函数,他还创用小写拉丁字母a、b、c表示三角形三条边,大写拉丁字母A、B、C表示三角形三个角,从而简化了三角公式.使三角学从研究三角形解法进一步转化为研究三角函数及其应用,成为一个比较完整的数学分支学科.而由于上述诸人及19世纪许多数学家的努力,形成了现代的三角函数符号和三角学的完整的理论. 如今,人们从更高、更深的角度来认识“三角学”,是由于复数的引入.人们对复数的思考由来已久,例如对方程x2+1=0的根的思考,但人们认真地将虚数=i引入数学则是16世纪的事了.之后欧拉建立了著名的欧拉公式:eiθ=cosθ+isinθ,使得三角学中的问题都可以化归为复数来讨论,于是三角学中一大批问题得以轻松地解决.有了复数与欧拉公式,使人们对三角学的已有理论的理解更为深刻,并可以把一些原始的、复杂的处理三角学的方法与工具“抛到一边”. 事实上,三角学是一门实用的数学分支,尽管源自于天文学,但在很多其他学科中都有用. 百年前,希尔伯特在他那著名的讲演中,用以下这段话作为结束语:“数学的有机统一,是这门科学固有的特点,因为它是一切精确自然科学知识的基础,为了圆满实现这个崇高的目标,让新世纪给这门科学带来天才的大师和无数热诚的信徒吧!”我深信,只要我们从现在开始,学好数学,用好数学,21世纪一定会“给这门科学带来天才的大师”,而且其中肯定有许多来自我们90后! 注:简单的将网上的排了一下序,仍需修改!

数学小论文”是让学生以 日记 的形式描述他们发现的数学问题及其解决,是学生数学学习经历的一种书面写作记录。下面是我整理的关于小学六年级的数学小论文,供大家参阅,希望对你的学习有帮助!

小学 六年级数学 小论文

“数学来源于生活,也服务于生活。”数学,经常从人们身边走过,生活中人们都离不开它,它为人们的生活作出了巨大的贡献。在我们的班级中经常要使用到数学,例如算单元平均分、统计校园电费……等等数不胜数,和我们的生活息息相关。

有一次,我和爸爸妈妈去购物,买过年吃的糖。超市里糖的花样可多了,有脆皮糖元一斤,牛皮糖元一斤,牛奶糖元一斤,酥酥糖元一斤,巧克力糖元一斤……但主要分为散称和包装。爸爸妈妈问我:“儿子,你希望买什么糖呢?”我望着玲琅满目的“糖果世界”,不知如何抉择是好,但我自幼喜好巧克力,所以我就选了巧克力糖。这时妈妈又给我出题了,他说:“那儿子,你说我们是买散称的呢,还是买包装的呢?”这我就摸不着头脑了,立即心算起来:散称的巧克力糖元一斤,包装的则一盒。散称的巧克力糖一包才10克,包装的巧克力糖一盒就有1000克呢!不过,单单看重量还不能决出胜负,就让我仔细算算——其实算这个并不难,直接用1000克=1千克 1千克=2斤 ÷2=(元) 元>元 所以散称比包装更划算!我高兴的把我得出的结果告诉妈妈,妈妈高兴的点了点头,夸我爱动脑筋,因此我也就成为了妈妈的"小会计"。

在生活中,各式各样的事情都能从一个普普通通毫不起眼的小事变成一个个生动的数学题。我们常做的应用题,就是在生活中取材,再稍加改编而成的题目。这不,我又在做数学题时发现了一道趣题:

大河上有一座东西向横跨江面的桥,人通过需要五分钟。桥中间有一个 亭子。亭子里有一个看守者,他每隔三分钟出来一次。看到有人通过,就叫 他回去,不准通过。有一个从东向西过桥的聪明人,想了一个巧妙的办法, 终于通过了大桥。

我初看这道题,一点头绪也没有,难不成坐船过去?这是不可能的。难道走了一会往回走?唉,这好像行得通……

我经过反复的计算,先想到了走到2分59秒的时候把头转回去,看守的人就会让我往回走,这样不就过去了吗?后来又想了一会,得出只要在走了2分30秒至2分59秒的时候往回走(最好不要到2分59秒的时候走,因为可能你还没转过头来,看守的人就发现了。),就可以成功过桥。

大家肯定都会说这么容易的题谁都会做,我拿出来吹嘘什么?不,这样子你就错了,我并没有在炫耀自己,我是在告诉大家数学在于联系生活思考,在于全心全意去领悟,而不是拿着别人的成果炫耀。

小学数学论文可以怎么写

数学小论文通过学生对生活中数学问题的观察和发现,引起学生的好奇心和求知欲,使学生体会到数学贴近他们的生活,从而对数学产生亲切感,激发起他们学习数学的热情和兴趣;通过引导学生对课堂中学习的数学知识进行实践运用,让学生感受到数学的实用性,提高数学学习的实效;通过探究趣味题和智慧题,开拓学生的视野,培养学生思维的灵活性和深刻性。现结合笔者的教学实际谈谈数学小论文的几种具体写法。

1.一道数学题的解答。主要是学生对某一道有挑战性的题目简便的或与众不同的解法(包括一题多解)。例如,书后的思考题,奥数题,教师或家长布置的智慧题,数学刊物上的挑战题,平时自己在做题时遇到的有一定难度的题目等。学生通过对这些问题的解决,不但发展了思维,而且体验到一种强烈的成就感,这对他以后数学的学习将是一个巨大的动力。

2.用数学的眼光去分析现实问题。主要指学生用数学的眼光去观察、计算、分析现实问题,获得一种理性的思考。比如,有学生写道:如果每人每天节约1克水,那全国13亿人口每天可以节约1300吨水,发出了“人人节约一滴水,沙漠也能变绿洲”的感慨!还有学生写道:如果每个去银行储蓄的人每次都能为“希望工程”捐1角钱的话,全国那么多储蓄点捐到的钱可以资助多少贫困学生实现上学的梦想呀!学生能从这些角度通过数学的计算去思考社会意义,它的价值就能远远超过数学研究本身。

3.生活中的数学问题。主要用来记录学生在生活中遇到的感兴趣并有亲身体验的有关数学的情境记录。写这种数学小论文的题材特别多,比如,有学生写到了人民币为什么只有1元、2元、5元而没有3元、4元、6元、7元、8元、9元的;再如,有学生写到了他家住的楼房每层有24级楼梯,那么他从1楼到5楼要爬多少级楼梯。这些都是生活中每天要经历的很平常的事,但学生一旦用数学的眼光来观察和思考这些看似平常的生活问题,就在数学和生活之间架起了一座桥梁,能够感受到生活中处处有数学。

4.课堂上的数学问题。主要指学生在课堂数学学习过程中自己的一些思考和发现。这对学生数学学习非常有帮助,比如,有个学生在学习画三角形的高时,发现书上介绍了锐角三角形和直角三角形的三条高,而钝角三角形只介绍了一条高。她在课后通过自己的思考和尝试,画出了钝角三角形的另外两条高,在得到老师的肯定后,欣喜万分,连忙写下了《我发现了钝角三角形的另外两条高》这篇数学小论文。

5.数学实践活动中遇到的问题。主要指学生通过自己亲自动手实践,在实践活动的过程中产生的疑惑、获得的启示和得到的结论等。比如,有个学生在教师还没有上实践活动课“可能性”之前,自己看书并根据书上的内容用红、蓝铅笔去摸,自己动手去探索并验证规律,事后写了一篇 心得体会 ,写出了她在动手实践过程中的想法和体会,让她觉得其乐无穷。

6.数学童话。主要指学生发挥丰富的 想象力 ,用童话的形式(其中包含着数学论述)来记录看到的数学世界。这是语文学科和数学学科一种很好的整合,那种独特的视角,生动的语言描述,让教师耳目一新。

小学四年级学生的特点天真,活泼、好动,爱表现,爱好广泛,求知欲旺盛,但注意力的时间相对较短,也让许多的数学老师头疼。我在此整理了四年级数学论文范文,供大家参阅,希望大家在阅读过程中有所收获!

一、转换教师角色

师者,所以传道,解惑者也。在现代教育中,教师究竟该扮演什么样的角色呢?随着“应试教育”逐步向“素质教育”的转轨,多年来由于“应试教育”的影响而形成的一套传统、滞后的教育教学模式显然已不适应教育发展的需要。特别是作为一位小学低年级数学教师,我认为小学数学的课堂教学要进行创新,教师必须改变已经形成的老一套以知识为核心的观念和行为,改变那种把注意力集中在课堂知识教学目标上,而忽视能力、态度和创新精神的培养。切实改掉过去一味的教师“讲”一味学生的“听”注入式的教学方式;真正体现教学形式多样化,让学生自己探讨、讨论、实际操作、合作学习、交流体会、互相帮助,使得教学气氛和谐,学生能活泼地、愉快地进行学习,真正实现把数学的课堂还给学生,切实让学生多"想一想", 让学生多“看一看”, 让学生多“做一做”, 让学生多“说一说”。 因此,我认为教师角色应该定位为学生学习上的指导者,要大胆地放手让学生从感知中领悟到知识,从而达到化教师的教为学生的学,还学生主体的地位。充分让他们在学中玩,在玩中学,促进学生得到全面发展。

二、注重学生的实践操作能力的培养

实践活动是儿童发展成长的主要途径之一,也是学生形成实践能力的载体。针对低年级学生的年龄特点,在数学教学中,我认为应重视通过实践操作的方式,培养学生的思维能力,主动参与意识和勇于探索创新的学习能力,使学生初步学会运用所学知识和方法解决一些简单的实际问题。在教学过程中,为每一个学生提供摆、弄直观材料的机会,让学生在动手操作中自己去发现规律、概括特征、掌握方法,在体验中领悟数学、学会想象、学会创造,让学生摆脱数学的枯燥乏味,从而促进学生主动学习数学的兴趣。《三角形三边的关系》一课中,学生们都准备了三根木棒,我先让他们自己摆一一个三角形,然后再让他们逐一说说自己摆的是三角形,为什么?从而引出三角形的概念,并让他们通过比较两根木棒一另一根木棒的长短,自己进行发现、总结。在“你说我来做”这个环节中,当一个学生说出一种三角形的时候,其他学生都争先恐后摆弄,根本没有空闲去做小动作。整节课,学生们注意力集中,兴趣昂然,表现活跃积极,取得了很好的教学效果。

三、运用多媒体教学,让数学课堂生动起来

新课程改革对教学手段的运用提出更高、更新的要求,充分让计算机等现代化教学工具走进教学,肯定会给课堂带来无限生机。同时,教师在教学中运用现代化的教学工具是实施素质教育的需要,是时代的需要。多媒体集声音、文字、图像和视频于一体,具有很强的表现力,大大弥补了自制教具的局限。当我在运用多媒体进行教学时,鲜艳的色彩,可爱的形象,逼真的动感,迅捷的切换吸引了学生,集中了他们的注意力,大大提高了学生学习的兴趣,提高了课堂教学的效果。主要就是提高了学生对数字的兴趣,对数学兴趣。

四、猜测是不可缺少的环节

科学家牛顿有句名言:“没有大胆的猜想,就不可能有伟大的发明和发现。”将猜想引入数学教学之中,将有助于学生开阔视野、活跃思维、培养创新意识、促进能力的提高。有时我故意将课讲得留有余地,让学生们自己去探讨、去猜想,然后再进行归纳总结。结果下来,我发现,学生们的想法多了,答案也多了,课堂也更活跃了。因此,我又不失时机地给学生设计灵活、开放性的练习,让他们用猜想的结论去解决实际问题,使学生已有的知识得到巩固、深化和发展,有利于调动学生的思维,激发学生的学习兴趣,培养学生运用知识的能力,让学生沉浸于猜想的成功之中。

总之,以上几种教学方法能很好的促进了小学四年级学生的学习兴趣,引导学生在学习中发挥其主体地位,使学生从“乐学”到“要学”,从“要学”到“会学”,最终达到会创新。同时也有利于教师的教学,能让教师以最好的教学效果完成教学任务。

看了《听名师讲课》一书对特级老师的两节数学课,受益匪浅。他的课堂真正做到了以学生为主体,让学生去说、去做,最大限度地去挖掘学生的思维与创造能力。特别是他视学生如朋友,平易、谦和,尊重学生,相信学生的教学作风,与他本人朴实无华却又庄重典雅的气质,贯穿始终的妙语连珠融为一体,展示了他渊博的知识底蕴,使我记忆深刻。

杜老师讲的是小数的初步认识。课前,他和学生做了几分钟的交流。他先告诉学生自己的姓名,从北京来,然后问小朋友:“你们还想问老师点什么呢?”孩子们有的问:“老师,您在哪儿教学?”有的问:“老师,您几岁?”他全都亲切地作了回答。在这融洽亲和的气氛中,学生倾刻之间和老师亲近了许多,对陌生老师的害怕、疑虑全烟消云散了。为下一步顺利地教学做了很好的铺垫,增强了学生的学习兴趣和信心。

讲课中,他让学生用自己准备的长方形、正方形、圆形纸对折,再用阴影画出一部分,说出这是几分之几,又让他们贴在黑板上。孩子们折呀、画呀,说出了等。贴的时候个子小,够不着,他把孩子一个个抱起来让他们贴。每发现有孩子说出一个新分数,他都要夸奖一番:“你真聪明。”“你真了不起!”虽是一声很平常的赞语,但却极大地激励了孩子的自信心。我真切地感到:这不是装饰门面的造作,这是一种爱护学生的真情的自然流露!

讲分数各部分名称时,他不是肤浅、生硬地去讲分数线、分子、分母。而是生动地打比方:我们开头把一个大圆月饼从中间切开,平均分成两份,这一刀啊就代表平均分,用一横表示,咱把它叫分数线。分两份的"2"写在下面叫“分母”。这一半月饼是两份中的一份,就写在上面。它和下面的分母关系密切,该起个什么名呢?学生天真地说:“叫分儿。”“叫分女。”他微笑着告诉孩子:“你们想象得很好,等你们长大了也许会创造出新的数学公式,命名为‘分儿’‘分女’,咱们今天先叫它分子,同意吗?”我感到:这不是无足轻重的儿戏之举,它体现了对学生的尊重,点燃的是智慧与创造的点点火花。

教学过程有这样一个环节,他让学生在黑板上画出各自所想象的“平均分”。引出分数后,他问学生:用数字表示和用画、折纸表示哪个简便?你同意用数字来表示就把你的画和贴纸擦掉或拿掉,不同意可以保留。有一位小朋友不愿擦他画的"D"(表示1/2),杜老师便用方框圈起来。接着,他启发学生说更多更大的分数。刚才保留自己画的同学说了一个“百分之一”,老师让他上讲台画出这个百分之一,这个孩子画了几分钟,跑来告诉老师:太难了,画不出来。“那咱用分数表示该怎么写?”孩子写出了"1/100"。经过实践,这个学生自愿又心悦诚服地擦掉了自己的画图。这一环节看似简单,其实,那是在点拨孩子实践、比较、认知,比一遍又一遍地讲术语名词,效果好得多。这就体现了杜老师独具匠心的教学艺术。

下课铃声响了。孩子们缠着老师再讲一会儿,不愿让老师下课。在依依不舍地停止了授课后,孩子们一个个争着告诉老师:“老师,你的教材好。”“老师,我爱您!”这充满稚气又带着真挚情感的童言,打动了每一位听课者的心。朴素的感情是最美的,它是孩子对老师的最高奖赏。吴老师激动地说:“孩子们,我也爱你们。”我相信,这群孩子会把这节课和这位老师永远铭记在心,终生难忘。

什么是师生平等、民主讨论,什么是激发学生的积极性、创造性和学习兴趣最佳方式,从这节课里我们找到了答案。那就是真诚地爱学生,尊重学生,一切为了孩子获取知识,设法培养孩子的创新意识和兴趣。爱心是敬业的根本,博学是付出的源泉。把讲台让给学生,把学习、思维的更大空间留给学生,这样,也就把成功,把美好未来交给了学生。

一、改革教法,为学生的学习指路导航

1、课堂前置

将课堂上要学习的知识提前让学生知道、了解、学习,也就是预习,虽然三年级时,我们已开始了预习,效果还是不错,到了四年级有所放松,甚至停滞。一个原因是老师没有把预习作为学习的重要内容,没有在思想上放在重要位置上,总是担心同学没有预习或预习不透彻,总是放不开手,课堂上还是要从前到后完完整整的讲解,这样预习的作用只是让认真预习的学生重复学习了一遍,不认真预习的同学应付一下,这样在孩子的心目中就势必形成预习不预习一个样,反正老师上课还要讲的,因此,预习时个别学生来说就流于形式。另一个原因是没有有效及时的检查形式。对于预习作业只限于预习本上的检查批改等,只能了解会的人有多少,不能了解不会的有多少,对于孩子到底自学会了多少。还存在哪些问题疑难还是未知,所以,对课堂的指导意义不大,所以,本期打算重视预习,改变预习方式,将课堂知识前置,每天新课预习要求有三,其一,阅读数学教材,将例题读通、读清、读懂,其二,谈谈我们的收获,我知道了要写出答案,其三,要试着做后面配套的习题,其四,我的疑问困惑是什么?检测方式:先出几道本课的检测题,让学生试做,有多少人作对,有多少人做错一目了然,问题处在和地方也暴露出来了,针对问题以及预习中学生的疑难才进行知识的讲解,这样才能在错误中找到根源,在疑难处点拨达到画龙点睛之效,也给学生留下深刻牢固的印象,并且不仅知道什么样是正确的,还能知道什么样就会错误,从而达到举一反三,触类旁通之效,同时,当堂纠正预习中的错误以加深理解,巩固强化知识。课堂的精讲,势必会给学生留下多练的课堂空间,所以增加课堂容量将是我的改革教法的第二步。

2、提升课堂

就像作文一样结尾处的升华将会使文章大增色彩,所以每堂课基本联系已在预习中解决了,剩下的时间,就要给孩子增加习题的难度变化题型,提升知识的容量,以增强孩子的灵活应变能力,和举一反三应用能力,这样才能提升课堂,提升知识容量,达到学一而应千变之效,避免课堂上知识看似学会了,而考试考不了好成绩,总觉的没有学过这类题,其实真正是没有学透、学活、学用。

3、激活课堂

课堂要活起来,则要有新意,所以在教学中要将问题情境化,将规律法则幽默化(搬家交换、四则混和运算),风趣化,将题中的数量关系直观化(画线段图),将问题情景化等多种形式,使课堂充满活力,充满情趣,以活灵活现的方式呈现给孩子,让孩子从直观形象深刻理解其中的道理、内涵。

二、创新学法,为提高学习成绩指路引航

自古以来,都认为数学是理性的思考,其实不全对,数学中也充满着表现的感知和做题的技巧,它是一个读—思—做三者的有机结合,所以在学法上,我本期打算从三个方面去做:

1、读数学

语文书是读出来,其实数学也是读出来的,首先,读数学书,所有的知识,内涵都包容在数学书里面,可过去我们有谁仔细的去阅读过,去思考过。书中的每一句话都是编者对知识的重点概括,每一个问题都是点睛之笔。如果孩子仔细去品读,读通每一句话,读懂每一个知识点,读清每一个逻辑关系,那么你一定能学会、学好。引导孩子去仔细认真的去读数学书、多读数学书,是引导学生学习的一个改变,要体现在课堂上,体现在预习中。其次是读数学题,题读三遍,其义自见,读是思的前提,题都读不懂,头脑中就没有一个清晰的印象,无从下手,所以,读题三遍是我以前的解决问题的要求,今后要扩展范围,填空题,判断题,选择题都要多读,要读出重点,读出出题的意图(如:250÷8这个算式中余数最大为几?),读出答案(259除以45与36的和,商是多少)那么你绝对不会做错。

2、做数学

数学知识应用于习题才能称得上是真正的学会了,而好多孩子往往是单一的知识点都学会了,而变为习题则不会做了,或做错了,就是因为他们没有掌握做题的能力,做数学题是有技巧的,填空题,找准关键字词。判断题,看重点词是否有,(如:在同一平面内,两条不相交直线互相平行),举特殊的例子,举反例。找理由,选择题,推理法,排除法。文字题,分段法。解决问题,数量关系分析法,画线段图法等,让学生逐渐掌握做题的技巧和策略,那么学生不仅将学会知识点更能将知识串成线,练成面,拼成体,综合运用,灵活运用。

3、思数学

理性的思考仍是数学学习的主旋律,所以要想让孩子真正的学会学习,就得让孩子学会思考,自己去发动脑筋,发动思维,想每一句话的含义,理清题中的来龙去脉,为促进孩子思考,本期我将以“讲数学,争当小老师”活动为契机,每天做完作业后,将作业完成好向老师或组长讲解一遍,自己的做题方法和思路,训练思维,巩固理解,达到真正的理解学会。

三、强化习惯,为数学学习保驾护航。

习惯好坏对孩子的学习起着重要的作用,好习惯小到取得一个好成绩,达到受益终生,坏习惯则开领孩子走向懒散,马虎的深渊,越陷越深,所以,良好的计算习惯,作业习惯,补错习惯,做题习惯,等仍需不断加强,巩固,使孩子从细节做起,从基础做起,为学好数学取得好成绩打好基础,保驾护航。

等腰三角形数学小论文

费马点 定义 在一个多边形中,到每个顶点距离之和最小的点叫做这个多边形的费马点。 在平面三角形中: (1).三内角皆小于120°的三角形,分别以 AB,BC,CA,为边,向三角形外侧做正三角形ABC1,ACB1,BCA1,然后连接AA1,BB1,CC1,则三线交于一点P,则点P就是所求的费马点. (2).若三角形有一内角大于或等于120度,则此钝角的顶点就是所求. (3)当△ABC为等边三角形时,此时外心与费马点重合 (1) 等边三角形中BP=PC=PA,BP、PC、PA分别为三角形三边上的高和中线、三角上的角分线。是内切圆和外切圆的中心。△BPC≌△CPA≌△PBA。 (2) 当BC=BA但CA≠AB时,BP为三角形CA上的高和中线、三角上的角分线。证明 (1)费马点对边的张角为120度。 △CC1B和△AA1B中,BC=BA1,BA=BC1,∠CBC1=∠B+60度=∠ABA1, △CC1B和△AA1B是全等三角形,得到∠PCB=∠PA1B 同理可得∠CBP=∠CA1P 由∠PA1B+∠CA1P=60度,得∠PCB+∠CBP=60度,所以∠CPB=120度 同理,∠APB=120度,∠APC=120度 (2)PA+PB+PC=AA1 将△BPC以点B为旋转中心旋转60度与△BDA1重合,连结PD,则△PDB为等边三角形,所以∠BPD=60度 又∠BPA=120度,因此A、P、D三点在同一直线上, 又∠CPB=∠A1DB=120度,∠PDB=60度,∠PDA1=180度,所以A、P、D、A1四点在同一直线上,故PA+PB+PC=AA1。 (3)PA+PB+PC最短 在△ABC内任意取一点M(不与点P重合),连结AM、BM、CM,将△BMC以点B为旋转中心旋转60度与△BGA1重合,连结AM、GM、A1G(同上),则AA1BC’(两边之和大于第三边)=AB+AC(已知AC=AC’) 所以A是费马点。即之前的结论。 下面探讨第二种情况: ②如果三个内角都在120度以内,那么,费马点就是使得费马点与三角形三顶点的连线两两夹角为120度的点。 做△ABC内一点P,使得∠APC=∠BPC=∠CPA=120°,分别作PA,PB,PC的垂线,交于D,E,F三点(如图),再作一点P’,不与点P重合,连结P’A,P’B,P’C,过P’作P’H垂直EF于H。 ∵∠APB=120°,∴∠PAB+∠PBA=180°-120°=60° 且∠PAF=∠PBF=90°,∴∠F=180°-(90°+90°-60°) 同理可得:∠D=∠E=∠F=60°,即△DEF为等边三角形,设边长为d,面积为S。 则S= 1/2 d (PA+PB+PC) ∵P’H ≤ P’A ∴ 1/2×d×P’H×2S ≤1/2 ×d ×P’A×2S 又∵1/2×d×P’H=△EP’F ∴ 2S△EP’F≤ d ×P’A×S 同理有:2S△DP’F≤d ×P’B×S , 2S△EP’D≤d ×P’C×S 相加,得:2S(△EP’F+△DP’F+△EP’D)≤ d ×S (P’A+P’B+P’C) 又∵△EP’F+△DP’F+△EP’D=△EDF 2S×S ≤ d ×S (P’A+P’B+P’C) 两边同除以S,得:2S ≤ d (P’A+P’B+P’C) 把S= 1/2 ×d (PA+PB+PC)代入上式可得: PA+PB+PC≤P’A+P’B+P’C,当且仅当P,P’重合时取到等号。 所以P是费马点,即与上述结论相符合。 经过上述的推导,我们即得出了三角形中费马点的找法: 当三角形有一个内角大于或等于一百二十度的时候,费马点就是这个内角的顶点;如果三个内角都在120度以内,那么,费马点就是使得费马点与三角形三顶点的连线两两夹角为120度的点。费马(Pierre de Fermat,1601—1665)是法国数学家、物理学家。费马一生从未受过专门的数学教育,数学研究也不过是业余之爱好。然而,在17世纪的法国还找不到哪位数学家可以与之匹敌。他是解析几何的发明者之一;概率论的主要创始人;以及独承17世纪数论天地的人。一代数学大师费马堪称是17世纪法国最伟大的数学家。尤其他提出的费马大定理更是困惑了世间智者358年

在建筑工程中运用最广泛

怎样的等腰三角形满足条件:画一条直线将之分成两个等腰三角形?首先,这条直线必须经过顶点,不然得到的两个图形中一个是三角形,另一个是四边形,那么经过等腰三角形的顶点,又可以将等腰三角形分成两个等腰三角形,分两种情况进行:⑴过顶角顶点的直线:如图一:已知AB=AC,①AD=BD,AD=CD,这时ΔABD≌ΔACD(SSS),∴∠ADB=∠ADC,又∠ADC+∠ADB=180°,∴∠ADB=90°,又AD+BD,∴ΔABD是等腰直角三角形,∴∠B=∠C=45°,∴∠BAC=90°,即ΔABC是等腰直角三角形。②AD=BD,AD=AC,∵∠ADC=∠C>∠B,与∠B=∠C矛盾。③AD=BD,AC=CD,∵∠CDA=∠CAD=∠DAB+∠DBA=2∠B=2∠C,∴在ΔACD中,5∠C=180°,得∠C=36°,∴∠BAC=108°。以上由于其它情况的对称关系,已经考虑了所有的可能性。⑵过底角顶点的直线:如图二,AB=AC,首先,AB>AD,ΔABD中只考虑AD=BD,其次∠DBC<∠ABC=∠C,∴BD>CD,不必考虑BD=CD。分以下两种情况:①AD=BD,BD=BC,∠BDC是ΔABD的外角,∴∠BDC=∠DAB+∠DBA=2∠A,∴∠C=∠BDC=2∠A,∴∠ABC=2∠A,在ΔABC中:5∠A=180°,∠A=36°。②AD=BD,BC=CD,这时∠BDC=2∠A,∴∠DBC=∠BDC=2∠A,∠C=180°-4∠A,在ΔBC中,∠B=∠C=180°-4∠A,根据三角形内角和为180°得方程:360°-8∠A+∠A=180°,7∠A=180°,∠A=(180/7)°,通过以上的分析总结出:一条直线分为两个等腰三角形的等腰三角形存在四种情况,它们的顶角分别为:90°、108°、36°、(180/7)°。从探究过程得到教训:科学的探索是无止境的,只要用心观察,认真推理,我们可能得到尚未让人知道的自然规律。

原创数学小论文,请选为满意答案。

费马点是指在三角形所在的平面内,到三角形三个顶点的距离的和最小的点. (1).三内角皆小於120°的三角形ABC的费马点,分别以 AB,BC,CA,为边,向三角形外侧做正三角形ABC1,ACB1,BCA1,然后连接AA1,BB1,CC1,则三线交于一点P,则点P就是所求的费马点. (2).若三角形有一内角大于或等于120度,则此角的顶点就是所求.对于任意三角形△ABC,若三角形内某一点P令PA + PB + PC三线段有最小值的一点,P为费马点。作法* 当三角形的内角都小于120度时o 向外做三个正三角形△ABC',△BCA',△CAB'o 连接CC'、BB'、AA'* 当有一个内角不小于120度时,费马点为此角对应顶点。费马点的另外一种解法 :在一块理想的(水平光滑)木板上画上要研究的符合条件的三角形(任意顶角小于120度)在三个顶点和费马点处打洞(无限小,壁光滑)用三根绳子分别系上三个同样质量的物体,穿过三个顶点的洞再打个结系在一起。(结当然也是理想的啦,无限小)松手让整个系统自由运动。那么,绳结一定会落在费马点(能量最低原则保证在桌面上的绳子总长度最短)然后,由于是三个大小相同的矢量在平面上平衡,(三个物体质量一样)所以三根绳子之间的夹角均为120度。若P是三角形ABC内的一点,那么就分别过A点,B点,C点作PA,PB,PC的垂线,使之构成新的三角形,然后你就可以证明只有当PA,PB,PC每两条直线所成角为120度时,PA+PB+PC的和最小

数学三角形小论文怎么写

可以,可以联想到三角形具有稳定性(权威性的写到论文绝对米问题)还有根据等腰三角形的性质而运用到生活中的测平仪(不慬可以到网上查一下)还有黄金三角形啦!像五星红旗上面的五星就可以分割成几个黄金三角形...还有很多可以写的啦!加油啊!

例谈椭圆与三角形相关问题解析几何与三角是高中数学的重要内容,两者结合能体现两主干知识的内在联系和知识之间的综合应用,而在知识网络交汇处设计的试题历来受命题者的青睐,在各级各类考试中频频出现,各省和全国高考卷对此也情有独钟.本文就以椭圆和三角形相关问题作一归例谈解析.粗;一、三角形边长问题例1设只、抓为椭圆兰十丝=1的两个焦点.p为椭圆上一点.已知尸、抓、几是一个直94角三角形的三个顶点,且}PF,l>IP不飞I,求里旦的值.IP不’2l分析:利用定义,求出两焦半径即可将问题解决.但根据直角的位置,分两种情解:(l)若乙尸凡式为直角,则}PFl}2二}PFz}2+l名FzI,,…}PF,}2=(6一IPF,l)’+20,得}PF,l=14.。。.4}尸F,}7—,廿?21=一,…二二丁,=一33}件铆2(2)若乙FIPFz为直角,则IFIFzlz=IPFzlz+IPFI尸,…20:lPF.}2+(6一}PF,l)’,得IPFI}=4,IPFI.二2,故塑二2.!丹U本题还可以根据椭圆的对称性,求出P点的坐标:略解如下(l)若乙PFzFI为直角,P(二,力满足方程组。V了兰+竺=l’’“94拭吓,{),..·器7一2一一扩扩=(2)若乙乙PFz为直角尹(:,力满足方程组x2—十9丝=l4n13V污es1--1—终可亏!5/四l二2.}PFzl说明:本题的直角三角形直角的位置没有确定,要分类讨论,这点不注意就可能导致解题不全,其二是解题利用方程的思想.髻撇鑫全、离心率问题例2已知脆椭圆兰+止=1(a>。>0)上一点.只、兀是左右两焦点在△抓PF,中.若矿乙2乙凡外飞二90“,求椭圆离心率的取值范围.解法一:设P(x。,y0),由椭圆的第二定义可得}PFll=a+ex0,}PFzl=a一:。,丫乙凡PFz=900,:.}PF,lz+IPFz臼几月,,即az+e、;二2c,,则了鉴2c,,.,.:.。·{粤,‘}·二〕卫二又因为0b>0)上一点了bzA、B是长轴的两个端点,如果椭圆上存在一点Q使得乙AQB=1200.求椭圆的离心率。的取值范围.翼纂l戴弃角形面积何题以椭圆为载体考查三角形面积问题,或以三角形面积为载体考查椭圆的问题是考试卷中经常出现的一类问题.例32oo7浙江卷)如图,直线:二k:+b与椭圆吐十4户l交于A,B两点,记△AoB的面积为s.(I)求在k=O,0

相关百科

热门百科

首页
发表服务